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Abstract
The	community	level	physiological	profiles	(CLPP)	of	bacterial	communities	inhabiting	polluted	environments	(acid	mine	
drainage	water	and	sediments,	 soils	contaminated	with	 tannery	waste	and	oil	 refinery	effluents)	were	assessed	using	 the	
Biolog Ecoplates™ in comparison to non-contaminated sites (water and sediments from a recreational lake and soil from 
anopen	space).	Although	the	polluted	sites	were	characterized	by	typically	high	metal	concentrations,	CLPP	fingerprints	
of	 the	different	bacterial	communities	from	these	sites	were	indicative	of	versatile	metabolic	potentials.	These	microbial	
communities	 could	 differentially	 utilize	 all	 the	 different	 groups	 of	 carbon	 substrates.	 However,	 the	 rates	 of	 utilization	
were	significantly	lower,	and	the	number	of	utilized	substrates	were	fewer	than	those	of	microbial	communities	from	non-
contaminated	 sites.	This	was	 confirmed	by	 cluster	 analysis	 in	which	 the	 dendrogram	 showed	 two	 clusters	 of	microbial	
communities from contaminated environments and another for those from non-contaminated sites. Nonetheless, the indices 
of diversity calculated did not show a reduction of diversity or evenness in the microbial communities from contaminated 
sites.	This	study	confirms	the	usefulness	of	the	CCLP	method	in	untangling	the	functional	diversity	of	microbial	diversity	
in contaminated environments.
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Introduction

The global rise in urbanization and industrialization results 
in the release of large quantities of various contaminants 
(such as acid mine drainage, municipal waste, and indus-
trial	 effluents)	 into	 the	 environment	 (Stamps	 et	 al.	 2016; 
Thiebault et al. 2017). The presence of contaminants in any 
environment creates “special” habitats with distinct physico-
chemical parameters which often induce physiological and 
morphological changes to indigenous microbial communi-
ties, with ultimate changes in their biodiversity (Emmanuel 
et al. 2014; Gümral et al. 2016; Li et al. 2016; Siddiqee et 
al. 2013). Partly these exert selective pressure on indige-
nous microbial communities in favor of populations with 
the tenacity to tolerate and use the introduced contaminants 
to their advantage. For instance, heavy metal contamina-
tion	was	identified	as	a	major	cause	for	reduced	microbial	
biomass and enzyme activity in soil microbial communities 
(Fazekaš et al. 2019). While the heavy metal contaminated 
soils depicted reduced microbial activity and changes in 
microbial community structure, a high microbial evenness 
index was observed. This suggests that some populations of 
the microbial community were ‘enriched’ by the presence 
of the very same pollutants which diminish the population 
sizes of the less tolerant microorganisms (Brito et al. 2013). 
Similarly, long-term PAH contamination in soils has been 
linked to reduced microbial diversity and species richness 
(Markowicz et al. 2016a).

The realization that contaminated environments may 
harbor specialized microbial communities with possible 
applications in environmental and industrial biotechnology 
has sparked research interests in understanding their physi-
ological properties and their adaptive strategies (Sibanda et 
al. 2017; Singh et al., 2015; Stamps et al. 2016). Therefore, 
there has been a drive to understand the role of contaminants 
in shaping microbial diversity and functionality in contami-
nated environments, as well as how ecological functions 
respond to pollution stress. The advent of high through-
put Next Generation Sequencing (NGS), such as targeted 
gene	amplicon	sequencing,	has	been	very	beneficial	in	the	
field	 of	microbial	 systematics	 as	 it	 allows	 comprehensive	
taxonomic	and	predictive	functional	profiling	of	microbial	
communities (De Mandal et al. 2015). Nonetheless, despite 
their obvious advantages, NGS based platforms are limited 
in providing insights into the in situ metabolic potential of 
microbial communities, which is also crucial for possible 
exploitation of microbial communities. Consequently, cul-
ture-based techniques remain relevant for studying the in 
situ metabolic potentials of microbial communities. The 
Community-Level	Physiological	Profiling	(CLPP)	remains	
a common and meaningful approach to studying the meta-
bolic potentials and diversity of microbial communities 

in	 different	 environments	 (Fra̧c	 et	 al.	 2012). The Biolog 
EcoplateTM is a versatile tool used to assess the metabolic 
diversity of microbial communities in environmental sam-
ples	by	evaluating	their	utilization	of	different	carbon	sources	
(Feigl et al. 2017). By means of biological indices such as 
the Average Well Colour development (AWCD), Substrate 
Average Well Colour Development (SAWCD), Substrate 
Richness (SR), Shannon index of diversity (H) and Shannon 
Evenness (E), it allows quick characterization of the eco-
logical status of environmental samples (Feigl et al. 2017). 
These have been successfully used to evaluate the metabolic 
diversity in soil and a range of other environments including 
aquaculture ponds (Kurten and Barkoh 2016), constructed 
wetlands (Lv et al. 2017), sediment-water interface (Oest 
et al. 2018), and compost microbial communities (Huang et 
al. 2015). Biolog EcoplatesTM have been particularly instru-
mental in studying the changes in microbial diversity along 
contamination	gradients	 (Kuźniar	et	al.	2018; Liang et al. 
2017; Oest et al. 2018). This study was aimed at evaluating 
the functional diversity in acid mine drainage (AMD), oil 
refinery	effluent	(ORE)	and	tannery	dumpsite	soils	(TDSS)	
as examples of contaminated environments using Biology 
EcoplatesTM.

Materials and methods

Sampling

Sampling	 was	 done	 from	 three	 sites	 identified	 as	 model	
metal polluted sites, an AMD dam, a tannery dumpsite, 
and	 an	 oil	 refinery	 plant	 wastewater	 treatment	 plant.	 For	
comparison, samples were also collected from non-contam-
inated sites, a recreational freshwater lake and non-contami-
nated open space around the location of a tannery dumpsite. 
AMD water and sediment samples were collected from an 
abandoned AMD tailings dam, in the Gauteng Province of 
the Republic of South Africa (GPS coordinates S 26° 07 
39.9′	E	27°	46	46.2′).	Three	sampling	points	were	identified	
around the dam from which water was collected into ster-
ile 1 L bottles and sediments into sterile 50 mL centrifuge 
tubes. For chemical analysis water was collected into 1 L 
polypropylene bottles. In the laboratory, equal volumes of 
water or sediments from each of the three sampling points 
were combined to obtain a composite water or sediment 
sample. From a tannery dumpsite, located in the Limpopo 
Province of the Republic of South Africa, (GPS coordi-
nates	S	23°	54	00′	E	29°	27	00′),	topsoil	(0–20	cm	depth)	
was collected from six points within the dumpsite, selected 
based on easy accessibility. Soil was collected into sterile 
polyethylene bags using standard microbiology procedures. 
Two sets of samples were collected for microbiological and 
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chemical	analysis.	Wastewater	samples	(effluents)	were	col-
lected	from	a	petrochemical	refinery	plant	 in	Sasolburg	in	
the Mpumalanga Province of South Africa. Samples for 
microbiological work were collected aseptically into 50 mL 
sterile centrifuge tubes and those for chemical analysis were 
collected into 500 mL bottles. Two non-contaminated sites, 
a recreational lake, and an open space within the vicinity of 
the tannery dumpsite were also considered as control sites. 
From the recreational lake, located in Rooderpoort in the 
Westrand area of the Gauteng Province of South Africa, 
water and sediments were collected. Soil samples were col-
lected from a non-contaminated open space in the vicinity 
of the tannery dumpsite. In all sampling sites sampling was 
conducted twice over a period of 1 month.

Analysis of physical and chemical parameters in 
water, sediments, and soil

To ascertain prevailing environmental conditions under 
which microbial communities survive in the contaminated 
and non-contaminated environments, physical and chemical 
parameters	were	measured	using	different	 analytical	 tech-
niques. Measurements included temperature, pH, electrical 
conductivity (EC), total dissolved solids (TDS), salinity 
(SAL), chemical oxygen demand (COD), sulfates, nitrates, 
and metals. Where possible measurements such as pH, 
temperature, EC, TDS, SAL were measured on site using a 
field	multiparameter	meter.	Other	parameters	such	sulfates,	
nitrates,	and	COD,	were	quantified	spectrophotometrically	
in a Spectroquant Pharo 300 (Merck, South Africa). Prior 
to any analysis soil and sediment samples were dried in a 
vacuum freeze-drying equipment (Labconco, USA). Dry 
samples	were	ground	to	a	fine	powder	in	a	pestle	and	mor-
tar and homogenized by passing through a 200-mesh sieve. 
To measure physicochemical parameters soil and sediment 
samples were mixed with deionized water at the ratio of 1:5 
and the mixture shaken at 150 rpm for 2 h. The suspension 
was allowed to settle overnight, the supernatant was care-
fully	decanted,	filtered,	and	used	 to	measure	pH,	 sulfates,	
nitrates, and COD.

Metal analysis

For metal analysis, AMD and water from the recreational 
Lake	 were	 first	 filtered	 through	 0.45	 μm	 polyvinylidene	
fluoride	 (PVDF)	 syringe	 filters,	 acidified	 to	 pH	 2,	 and	
analyzed.	 The	 refinery	 wastewater,	 dried	 soil	 and	 sedi-
ments were digested prior to metal analysis in a microwave 
(SINEO MDS-6G). For soil and sediment samples, 0.5 g 
sample was weighed and placed in microwave vessels and 
mixed with 9 mL nitric acid, and 3 mL hydrochloric acid. 
Thereafter digestion was performed at 175 °C for 60 min 

at	6	watts	power.	For	the	oil	refinery	wastewater,	a	20	mL	
volume of wastewater was measured into microwave bombs 
and mixed with 4.5 mL of nitric acid and 1.5 mL of hydro-
chloric acid. The mixture was digested at 220 °C for 30 min 
at	6	watts	power.	After	digestion	the	samples	were	filtered	
through	qualitative	filter	paper,	 the	filtrate	 transferred	 into	
volumetric	 flasks,	 and	 quantitatively	 made	 up	 to	 50	 mL.	
Metals were measured in an Inductively Coupled Plasma 
Mass Spectrometer (Perkin Elmer, Nexion 350D).

Assessment of microbial community functional 
diversity using the Biolog Ecoplate™

Biolog Ecoplates™ (Biolog, Hayward, California) were 
used to evaluate the functional diversity of the soil, sedi-
ment, and water bacterial community from polluted sites 
comparatively with those from non-polluted sites.

Culturing

For sediment and soil sample analysis, 3 g sample was sus-
pended in 27 mL of sterile 0.85% sodium chloride solution 
and vortexed for 5 min at maximum speed. After settling for 
10 min, 180 µL of the supernatant was inoculated (pipet-
ted) into each of the wells. For water samples, 180 µL of 
water was directly inoculated into each of the wells without 
pretreatment.	All	plates	were	sealed	with	parafilm	and	incu-
bated at 25 °C in the dark. Absorbance was read at 590 nm 
wavelength	with	a	VarioSkan	Flash	(Thermoscientific)	plate	
reader at 0, 24, 48, 72, 96, 120, and 144 h.

Data analysis

Prior to analysis absorbance values from each well were 
corrected by blanking against the corresponding absorbance 
at 0 h (Insam and Goberna 2004). Furthermore, negative 
absorbance	values	were	coded	as	zero	(Fra̧c	et	al.	2012). For 
each sample, absorbance values obtained where the growth 
curve reached an asymptote were used for data evaluation 
and statistical analysis. To assess the functional diversity of 
microbial communities, several indices were calculated. The 
AWCD was calculated for all carbon containing wells at all 
incubation times using the equation AWCD = ΣODi/31  
where ODi is the corrected absorbance value of each carbon 
containing well. To calculate the SAWCD, carbon sources 
were grouped into six biochemical categories (amino acids, 
carboxylic acids, carbohydrates, polymers, phenols, and 
amines). The SAWCD was calculated from the equation 
SAWCD = ΣODi/N , where ODi is the corrected absor-
bance value of the substrates within the substrate category 
and N is the number of substrates within that category. The 
Shannon index of diversity was calculated from the equation 
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levels of SAL, EC, and SO4
2− which were relatively higher 

than those of the non-contaminated water collected from 
the recreational lake (RLW). Metal concentrations in oil 
refinery	effluents	were	also	high	with	 their	 concentrations	
decreasing in the order Na > Mg > Li > Cr > Fe > Zn > Cu > 
Al > Mn. The non contaminated water from the recreational 
lake had a neutral pH (≈ 7) and besides nitrates (> 40 mg 
L− 1), the concentrations of all the other measured param-
eters were lower than those recorded for AMD and the oil 
refinery	effluents.

For the soil and sediment samples pH, sulfates, nitrates, 
and	metals	were	quantified	(Table	2). The sediment samples 
from the AMD dam (AMDS) were also acidic with high con-
centrations	of	sulfates	(1267–2775	mg	kg− 1) and low con-
centrations of nitrates. High concentrations of metals were 
also recorded, with Fe detected as the most abundant metal 
with concentrations ranging between 35,619 and 65,314 mg 
kg− 1. Al, Ca, Mg, K, Mn, were also detected in substan-
tial amounts (above 500 mg kg − 1), whilst Zn, Cr, and Cu 
were detected in trace amounts. Non contaminated sediment 
samples collected from the recreational lake (RLS) were 
neutral (pH 6.47 and 7.36) and rich in nitrates (> 450 mg 
kg− 1). The concentrations of all other parameters including 
sulfates and metals were lower than those recorded for the 
AMD sediments. The soil samples collected from a dump-
site receiving solid tannery waste (TDSS) were also slightly 
acidic (pH 5.99 and 5.43) with high concentrations of sul-
fates	and	different	metal	ions	quantified.	Fe,	Al	and	Na	were	
detected as the most abundant (concentrations exceeding 
1000 mg kg− 1).	Li,	Zn,	Mg,	Cr,	and	Ca	were	also	quantified	

H = −ΣPi(lnPi), where Pi is the proportional color devel-
opment of the well over total color development of all wells 
of a plate. Pi is given by the equation Pi = ODi/ΣODi . 
SR was calculated as the sum of the number of cells where 
absorbance reached the threshold value set at 0.15 at the 
asymptote of the AWCD against time graph (Feigl et al. 
2017). E was calculated from the Shannon index and sub-
strate richness using the equation E = H/logSR

Results

Physicochemical parameters

The chemical and physical properties of water, soil and 
sediment samples were evaluated using a broad suite of 
analytical techniques. For the water samples pH, EC, TDS, 
SAL,	 COD,	 sulfates,	 nitrates,	 and	metals	were	 quantified	
(Table 1). AMD water samples (AMDW) were character-
ized by low pH values that are below 3. The EC, TDS, SAL, 
COD, and SO4

2− concentrations were also higher than those 
recorded for the non-contaminated water. In these samples 
aluminium (Al) was by far the most prevalent dissolved 
metal	 quantified,	 with	 concentrations	 exceeding	 500	 mg	
L− 1. This was followed by iron (Fe), magnesium (Mg), 
sodium (Na), and manganese (Mn), all with concentrations 
above 100 mg L− 1. Other metal ions detected in substantial 
amounts are zinc (Zn), calcium (Ca), potassium (K), and 
copper	 (Cu).	Whilst	 the	oil	 refinery	 effluents	 (ORE)	were	
alkaline (pH > 8), they were also characterized by high 

Table 1	 Physicochemical	properties	of	water	samples	collected	from	an	AMD	dam,	oil	refinery	wastewater	treatment	plant	and	a	recreational	lake
Parameter AMDW-1 AMDW-2 ORE-1 ORE-2 RLW-1 RLW-2
pH 3.04 ± 0.08 2.93 ± 0.01 9.47 ± 1.55 8.35 ± 0.72 7.13 ± 0.21 6.73 ± 4.89
EC 5355.33 ± 156.31 5948 ± 186.95 6800 ± 3.20 5200 ± 1.30 156.7 ± 3.32 153.4 ± 2.57
TDS 4391.67 ± 9.71 4413.5 ± 6.5 2100 ± 0.01 2000 ± 0.01 128.7 ± 1.13 143.15 ± 9.06
SAL 3.74 ± 0.01 3.74 ± 0.01 3.74 ± 0.01 3.92 ± 0.00 0.09 ± 0.01 0.09 ± 0.01
COD 129.22 ± 6.59 154.22 ± 22.30 190 ± 4.67 277 ± 8.90 77.89 ± 1.45 80 ± 3.00
SO4 − 2 920.00 ± 280.10 1416.67 ± 113.91 165.00 ± 13.73 139.40 ± 14.56 1.51 ± 1.04 2.42 ± 1.22
NO3

− 1.93 ± 0.70 4.09 ± 0.30 0.75 ± 0.31 0.00 ± 0.00 53.67 ± 1.80 45.56 ± 1.24
Al 550.54 ± 24.49 570.96 ± 12.88 1.42 ± 0.31 1.82 ± 0.03 1.17 ± 1.82 0.14 ± 0.01
Ca 17.62 ± 0.46 17.93 ± 0.34 0.44 ± 0.007 1.48 ± 0.47 4.61 ± 1.45 4.33 ± 2.33
Cr 1.15 ± 0.11 1.17 ± 0.34 8.17 ± 5.09 8.98 ± 5.44 0.00 ± 0.05 0.00 ± 0.00
Cu 2.92 ± 0.11 3.04 ± 0.07 1.96 ± 0.43 0.66 ± 0.27 0.01 ± 0.00 0.00 ± 0.00
Fe 274.68 ± 13.34 288.71 ± 5.71 64.59 ± 9.72 9.06 ± 5.11 1.59 ± 0.08 0.37 ± 0.43
K 4.90 ± 0.11 4.90 ± 1.32 1.96 ± 1.43 0.66 ± 0.27 2.21 ± 0.08 2.48 ± 0.64
Li 0.69 ± 0.14 0.87 ± 0.09 106.54 ± 10.03 182.65 ± 9.74 0.04 ± 0.13 0.05 ± 0.01
Mg 171.62 ± 5.17 175.98 ± 3.55 2121 ± 457 1299.85 ± 110.26 5.53 ± 1.02 4.54 ± 0.04
Mn 65.05 ± 2.71 54.22 ± 24.16 0.25 ± 0.14 0.16 ± 0.01 0.22 ± 0.30 0.11 ± 0.07
Na 112.86 ± 4.34 117.21 ± 1.18 141.26 ± 36.33 94.92 ± 24.88 12.24 ± 1.98 11.61 ± 1.54
Zn 20.73 ± 0.91 22.01 ± 0.49 2.63 ± 2.89 0.56 ± 0.20 0.05 ± 0.07 0.00 ± 0.00
Each value is a mean of 3 measurements ± standard deviation; pH has no units; T in °C, EC in (µS cm− 1); SAL (µg L− 1); all other measurements 
in mg L− 1. AMDW = acid mine drainage water, ORE =	oil	refinery	effluent,	RLW	= recreational lake water
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with concentrations between 100 and 1000 mg kg− 1. As the 
least	abundant	metals,	Cu,	K	and	Mn	were	quantified	with	
concentrations below 100 mg kg− 1. The non-contaminated 
soils	collected	as	a	control	(TDC)	had	a	neutral	pH	(6.97–
7.01) with comparatively lower concentrations of sulfates, 
nitrates,and metal ions.

Assessment of functional diversity

The metabolic potentials of microbial communities from 
both contaminated and non-contaminated environments 
were	quantified	in	terms	of	the	AWCD,	which	is	the	average	
absorbance (A590) of all the wells at a particular time. These 
were plotted against time for all the communities (Fig. 1). 
For the non-contaminated sites (recreational lake water, rec-
reational lake sediments and tannery dumpsite control soil) 
the plot of AWCD against time is a sigmoid curve, depict-
ing the distinct phases of a typical bacterial growth curve. 
These curves are characterized by remarkably low AWCD 
values between 0 and 24 h (lag phase), gradually increasing 
to reach the maximum at 96 or 120 h. On the contrary, for 
microbial communities inhabiting contaminated sites, the 
plot of AWCD against time generally showed rapid growth 
between 0 and 48 h followed by gradual/slow growth until 
the end of incubation. For these communities the optimal 
AWCD values were observed at either 24 or 48 h. Notably, 
the AWCD values for contaminated environments are signif-
icantly lower than those of the non-contaminated sites. For 
example, the maximum AWCD values recorded for AMD 
water	 are	 0.11	 and	0.12	which	 is	 significantly	 lower	 than	
2.67 and 1.64 recorded for recreational lake water which 
is treated as a non-contaminated control. Similarly, for the 
AMD sediments the maximum recorded AWCD values are 
0.40 and 0.18 compared to 1.17 and 1.28 for the recreational 
lake sediments.

SAWCD

The	rate	of	utilization	of	carbon	sources	in	six	different	cat-
egories is presented in Fig. 2 as a percentage contribution 
of each substrate guild towards the overall activity pattern. 
Like the AWCD values, SAWCD values calculated for the 
different	 microbial	 communities	 indicate	 some	 variations	
in their potential to catabolize the six groups of carbon 
substrates. The SAWCD values calculated for microbial 
communities inhabiting non-contaminated environments 
are higher than those calculated for microbial communi-
ties from contaminated environments. For example, for the 
AMD water the SAWCD values for AA, CA, CAR, PHE, 
POL, AM were 0.17, 0.16, 0.06, 0.09, 0.07, 0.08 respec-
tively compared to 1.75, 1.75, 2.04, 2.11, and 0.05 for the 
recreational lake water. The microbial communities show 
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had their substrate utilization percentage exceeding 3%. 
Comparatively, for the corresponding control soils 13 and 
17 substrates recorded a substrate utility percentage of more 
than 3%. The patterns of substrate utility also showed a high 
level of uniformity for microbial communities in non-con-
taminated environments. These communities depicted an 
almost comparable level of substrate utilization for all the 
different	substrate	guilds.	Also,	the	range	between	the	most	
utilized and the least utilized substrates is small or minimal. 
On the other hand, the microbial communities from con-
taminated environments showed a high level of variation 
in	their	patterns	of	substrate	utility,	the	difference	between	
the most utilized substrate and the least used is high. For 
instance, the most utilized carbon substrate in the tannery 
dumpsite	 soil	 community	 is	α-ketobutyric	 acid	 at	 21.77%	
compared to 0.36% for Glycyl-L-glutamic acid which is the 
least utilized.

Cluster analysis

Cluster analysis was performed based on the AWCD and 
SAWCD values using the Wards method (Fig. 4). Based on 

wide	variation	in	their	preference	to	catabolize	the	different	
groups of carbon substrates. For example, for the tannery 
dumpsite soils the level of substrate utilization decreased 
in the order AM > AA > CA > CAR > PHE > POL with 
SAWCD values ranging between 0.50 and 0.16. Compara-
tively, the pattern of substrate utility for the control soil was 
POL > PHE > CAR > CA > AM > AA with the SAWCD val-
ues ranging between 0.99 and 0.53.

Single substrate utilization

The potential of the microbial communities in contaminated 
and non-contaminated sites to utilize each of the 31 car-
bon substrates was measured as a percentage of the overall 
potential to utilize all 31 carbon substrates. The substrate 
utilization patterns (Fig. 3)	 further	 highlight	 subtle	 differ-
ences between microbial communities from contaminated 
and non-contaminated sites. Clearly, microbial communi-
ties in non-contaminated environments could utilize (% 
substrate utilization > 3) more substrates as compared to 
the contaminated sites. For instance, for the two microbial 
communities in tannery dumpsite soils 12 and 11 substrates 

Fig. 1 Plot of AWCD of metabolized single carbon substrates in Biolog Ecoplates. Error bars represent standard deviation (n = 3)
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correlations were shown by sulfates and the metals Al, Ca, 
Cr, Fe, K, Li, Mg, Na and Zn. The second axis accounted for 
29% of the variation and components that showed positive 
correlations were pH, and nitrates. Negative correlations 
were noted with sulfates, and the metals K, Fe, Mg, Al, Ca, 
Zn, Cr, Li, Na.

Indices of diversity

The measurement of richness, diversity, and evenness in 
substrate utilization were inferred from the Substrate rich-
ness, Shannon diversity and Shannon evenness indices 
(Table 3)	and	used	to	delineate	subtle	differences	between	
the bacterial microcosms from contaminated and non-con-
taminated environments. SR values for microbial communi-
ties from contaminated sites are lower/ smaller than those 
of communities from non-contaminated sites. However, the 
Shannon diversity and the evenness index do not discrimi-
nate the microbial communities into those from contami-
nated and non-contaminated sites. Low values of H and E 

their potential metabolic activity the microbial communi-
ties can be grouped into two clusters, one for the microbial 
communities in contaminated sites and another for micro-
bial communities in non-contaminated sites.

Furthermore, the Principal Component Analysis (PCA) 
was	 performed	 to	 identify	 the	 extent	 to	 which	 different	
physicochemical	 parameters	 influence	 the	 potential	meta-
bolic activity of various bacterial communities. From the 
PCA scatter diagram for water samples (Fig. 5a)	 the	 first	
axis accounted for 62% of the correlation. Along this axis 
pH and nitrates showed a positive correlation to microbial 
community functional diversity whilst all other param-
eters (sulfates, Al, Ca, Cr, Fe, K, Li, Mg, Mn, Na, and Zn) 
depicted a negative correlation. The second axis accounted 
for 34% of the correlation. Along this axis positive correla-
tions were noted with sulfate, Al, Ca, Fe, K, Mn, and Zn 
whilst pH, nitrates, Li, Mg, Cr, and Na showed negative cor-
relations. For the sediments and soils PCA biplot (Fig. 5b), 
the	first	axis	accounted	for	53%	of	the	variation	with	posi-
tive correlations shown by pH, nitrates, and Mn. Negative 

Fig. 2 Metabolic activity of heterotrophic bacterial populations 
inhabiting water, sediment, or soil samples from contaminated and 
non-contaminated	 sites	 expressed	 as	 the	 utilization	 rate	 of	 differ-

ent carbon sources presented as percentage SAWCD. AA = amino 
acids, CA = carboxylic acids, CAR = carbohydrates, PHE = phenolics, 
POL = polymers, AM = amines
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Fig. 3 Patterns of substrate utilization of each of 31 organic carbon substrates in Biolog Ecoplates by microbial communities in contaminated and 
non-contaminated sites
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structure, diversity, and function (Markowicz et al. 2016a, 
b). These harsh environmental conditions in the contami-
nated sites may account for deterioration in the microbial 
activity and diversity of the heterotrophic microbial com-
munity which could be related to reduction in catabolic 
function (Keshri et al. 2015).

Microbial utilization of the 31 substrates in the BioLog 
EcoPlate™ occurred in all the water, soil and sediment sam-
ples tested, indicating potential for heterotrophic processes 
at varying levels. Obviously the rate and level of substrate 
utilization	 differed	 from	 site	 to	 site	 as	 shown	 by	 the	 sig-
nificantly	 different	AWCD,	SAWCD	and	SR	 indices.	The	
AWCD, SAWCD and SR values calculated for all the con-
taminated	 sites	were	 significantly	 lower	 than	 those	 calcu-
lated for the non-contaminated sites. For most of these sites 
the AWCD values were below 0.75 which is accepted as 
an optimal response of a microbial community that can be 
seen in most wells and a point at which highly active micro-
bial communities reach the asymptote of color development 
(Oest et al. 2018). The reduced or lowered catabolic activ-
ity in the contaminated sites can be explained by reduced 
numbers of heterotrophic bacteria, a changed community 
composition and or inhibited enzyme activity attributed to 
metal toxicity (Markowicz et al. 2016a, b). The presence 
of metals in these environments could also be a cause for 
reduced metabolic functions. Several authors have alluded 

were reported for AMD water and sediments, recreational 
lake water and sediments as well tannery dumpsite control 
soils.	On	the	contrary	the	oil	refinery	effluents,	and	tannery	
dumpsite soils recorded high values of H and E.

Discussion

In this study the metabolic potential of microbial communi-
ties inhabiting contaminated environments were evaluated 
comparatively with those from non-contaminated environ-
ments. The contaminated environments (AMD water, AMD 
sediments,	 oil	 refinery	 effluent,	 tannery	 dumpsite	 soils)	
receive substantial amounts of metals from mining (ongoing 
or abandoned) and industrial activities. Typically, the analy-
sis	 of	 physicochemical	 parameters	 revealed	 significantly	
high concentrations of EC, TDS, and COD. This ultimately 
translated to high concentrations of ions including metals. 
These results on high metal concentrations are congruent 
to	 previous	findings,	 of	 excessive	metal	 concentrations	 in	
industrial wastewaters (Hallberg 2010; Khatoon and Malik 
2019; Oyetibo et al. 2017). The available literature suggest 
that high levels of dissolved solids in any environment may 
be selective to microbial growth. For instance, previous 
works have attested to the fact that the metal accumula-
tion in soils induces changes in the microbial community 

Fig. 4 Dendrogram showing the cluster-
ing of microbial communities based on 
the AWCD and SAWCD of microbial 
communities from contaminated and 
non-contaminated environments
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A closer look at the CLPP patterns indicates limited vari-
ability in terms of the number of individual carbon sub-
strates utilized by microbial communities in contaminated 
sites compared to the non-contaminated sites. The types of 
substrates used, and the utilization levels exhibited for sub-
strates are indicative of either the presence or absence of 
specific	catabolic	potentials	within	a	microbial	community	
(Stefanowicz 2006). Individual carbon substrates with a 
calculated	substrate	utility	of	3–4%	relative	absorbance	are	
perceived to be supportive of bacterial activity (Oest et al. 
2018). Substrates that produce consistently low % substrate 
utility are assumed to be poorly degraded. Other studies 
comparing the metabolic potential of bacterial communities 
along	contamination	gradients	have	identified	shifts	in	met-
abolic function with those communities from contaminated 
sites displaying an ability to metabolize the more complex 
substrates	 like	 polymers	 (Kuźniar	 et	 al.	2018; Oest et al. 
2018). However, in this study there were no clear patterns 
separating the microbial communities from contaminated 
and non-contaminated sites.

Conclusions

The	CLPP	 profiles	 of	microbial	 communities	 in	 contami-
nated sites (AMD water, AMD sediments, tannery dumpsite 
soil,	oil	refinery	effluent)	indicate	a	reduction	in	their	cata-
bolic potentials which could be attributed to the presence of 
high concentrations of metals and an unavailability of ade-
quate resources for microbial growth. Indices of diversity 
and evenness did not show any trend of reduction in either 
the microbial diversity or the evenness in both the con-
taminated and non-contaminated sites. The study provides 
insights into the versatile nature of physiological responses 

to the fact that metal contamination impacts negatively on 
microbial population size, biodiversity, and physiological 
activity. Metal contamination has been reported to shift 
microbial populations towards metal tolerant populations 
which are often gram negative (Quadros et al. 2016). Sev-
eral other studies have reported a reduction in the metabolic 
potential/activity of microbial communities in metal con-
taminated soils (Fazekaš et al. 2019; Kenarova et al. 2014). 
The reported mechanism by which metals induce changes in 
microbial	communities	is	through	their	toxic	effects	which	
reduces microbial viability of certain populations with spe-
cific	 functional	 attributes,	 inhibits	 microbially	 mediated	
metabolic activities as well as restrict the availability of 
carbon sources (Martínez-Toledo et al. 2021). The reduced 
metabolic activity in contaminated environments can also 
be explained as a function of the availability of resources in 
the ecosystem (Díaz Villanueva et al. 2018). The metabolic 
function	 of	 bacterial	 communities	 differs	 as	 per	 the	 pool	
of available organic substrates in the environment. This 
has	been	observed	in	different	environments	with	different	
trophic states including streams, lakes, and rivers (Basti-
das Navarro et al. 2014; Freixa and Romaní 2014; Sala et 
al. 2020). In this study microbial communities from con-
taminated sites recorded lower nitrate concentrations which 
may be depictive of limited essential resources for bacte-
rial growth. Ultimately, the limited availability of essential 
resources may be restrictive to the catabolic activity.

Another discrepancy observed between the metabolic 
potential of contaminated and non-contaminated sites is 
with	the	growth	patterns	of	the	different	microbial	commu-
nities. The growth on EcoPlate™ is a new stress for bacte-
ria. Therefore, the time taken to recover, as deduced from 
the	 lag	phase,	differs	according	 to	 the	contrasting	habitats	
and is indicative of the microbial community’s resistance/
tolerance to new stresses in the environment. In this study 
microbial communities from contaminated sites had shorter 
lag phases. This could imply that they easily adapt to new 
stresses	 attributable	 to	 their	 exposure	 to	 different	 stresses	
in their respective environments. Alternatively, this could 
be	explained	in	terms	of	differences	in	the	microbial	com-
munity composition with the contaminated sites probably 
being dominated by fast growing R strategists and the 
non-contaminated sites being dominated by slow growing 
K-strategists (Oest et al. 2018).

Fig. 5 PCA biplot showing correlations between metabolic potential 
of bacterial communities from contaminated and non-contaminated 
environments in relation to the utilization of 31 carbon substrates and 
selected physicochemical parameters. 1 = pH, 2 = NO3

−, 3 = SO4 − 2, 
4 = Al, 5 = Ca, 6 = Cr, 7 = Fe, 8 = K, 9 = Li, 10 = Mg, 11 = Mn, 
12 = Na, 13 = Zn, 14 = AWCD, 15 = SAWCD AA, 16 = SAWCD 
CA, 17 = SAWCD CAR, 18 = SAWCD PHE, 19 = SAWCD POL, 
20 = SAWCD AM, 21 = SR

Table 3 Indices of diversity for microbial communities in contami-
nated and non-contaminated environments
Sample Index

SR H E
AMDW-1 8 ± 1.53 3.40 ± 0.08 1.70 ± 0.13
AMDW-2 9 ± 6.56 2.20 ± 7.00 1.28 ± 0.35
ORE-1 16 ± 6.56 70.14 ± 6.56 23.92 ± 4.22
ORE-2 28 ± 2.08 97.73 ± 3.81 28.62 ± 0.50
RLW-1 31 ± 0.00 4.47 ± 0.01 1.30 ± 0.00
RLW-2 29 ± 1.73 3.31 ± 0.07 0.98 ± 0.00
AMDS-1 26 ± 4.04 4.30 ± 0.02 1.31 ± 0.13
AMDS-2 10 ± 10.79 2.39 ± 0.55 1.76 ± 1.11
RLS-1 31 ± 0.00 4.49 ± 0.03 1.31 ± 0.25
RLS-2 30 ± 0.58 3.36 ± 0.02 0.99 ± 0.01
TDSS-1 15 ± 5.57 22.27 ± 0.86 9.80 ± 1.38
TDSS-2 9 ± 3.51 18.24 ± 1.24 10.91 ± 2.35
TDC-1 28 ± 1.53 5.59 ± 1.48 0.96 ± 1.07
TDC-2 25 ± 2.31 3.18 ± 0.20 0.99 ± 0.05
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