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Abstract 
For several decades, the use of antibiotics has led to the emergence of highly resistant human and animal pathogens, posing a sig-
nificant threat to global health, food security, and economic progress. In the quest for alternatives to combat multidrug-resistant 
bacteria and yeasts, the utilization of nanoparticles materials has emerged as a promising avenue. In this research, we investigated 
the antimicrobial properties of Zn-Al-layered double hydroxide, synthesized through co-precipitation and subsequently calcined 
at temperatures of 400, 600, and 800°C. A total of 21 bacterial strains, including 15 clinical strains and 6 Gram-reference strains, 
along with one fungal strain, were subjected to testing. The synthesized materials underwent characterization using various 
techniques such as X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), ultraviolet–visible spectros-
copy, and fourier-transform infrared (FTIR) spectroscopy. The key findings indicate that the uncalcined Zn-Al-layered double 
hydroxide and the heterojunction ZnO-ZnAl2O4 calcined at 400°C and 600°C exhibited a minimum inhibitory concentration 
(MIC) of 0.125 μg/mL against the tested strains. The spinell  ZnAl2O4 calcined at 800°C showed MICs ranging between 0.125 
and 2 μg/mL, with a greater bactericidal effect on gram-negative bacteria (GNBs) such as Enterobacteriaceae and non-Entero-
bacteriaceae compared to Gram-positive bacteria. Consequently, the heterojunction ZnO-ZnAl2O4 demonstrated higher efficacy 
against Gram-positive bacteria. These findings highlight the potential of heterojunction ZnO-ZnAl2O4 and spinell  ZnAl2O4 
as mixed metal oxides derived from ZnAl-layered double hydroxide, offering promising alternatives to traditional antibiotics 
and suggesting their potential use as impregnating agents in matrices with a broad spectrum of specific antimicrobial activity.
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NPs  Nanoparticles
ROS  Reactive Oxygen Species
LDH  Layered Double Hydroxide
MMO  Mixed Metal Oxide
MIC  Minimum Inhibitory Concentration
MBC  Minimum Bactericidal Concentration
GNB  Gram-negative bacteria
ATCC   American Type Culture Collection
CFU  Colony Forming Unit
PCD  Programmed Cell Death

Introduction

The incorrect utilization of antimicrobials has resulted in the 
emergence of strains that exhibit resistance to multiple drugs. 
Consequently, this has led to an escalation in the occurrence 
of infectious diseases and fatalities. Bacterial resistance can 
arise from genetic alterations that transpire as bacteria adapt 
to their surroundings, or through the process of horizontal 
gene transfer (HGT).(Derewacz et al. 2013; Silva et al. 2019). 
Antibacterial agents play a crucial role in preventing the pro-
liferation of microorganisms and minimizing their adverse 
effects on our daily lives. (Zhao et al. 2018). A lot of illness, 
death, and economic stress is caused by nosocomial infec-
tions (Revelas 2012). Improper utilization of antimicrobial 
agents in clinical settings is a key factor contributing to the 
emergence of alarming diseases. This misuse leads to the 
development of bacteria that exhibit resistance to multiple 
drugs and possess an extended lifespan. The rapid prolifera-
tion of these drug-resistant bacteria is a major cause for con-
cern (Fymat 2017; MacGowan and Macnaughton 2017). As 
public health awareness regarding the detrimental impacts of 
various microbes continues to rise, there is an increasing need 
for antibacterial materials across various sectors. These mate-
rials are sought after in medical devices, hospital supplies, 
surgical equipment, household sanitation products, textiles, 
as well as in food packaging and storage.(Vallapa et al. 2011; 
Vinet and Zhedanov 2011; Pan et al. 2019). The modification 
of materials with the incorporation of antimicrobial activity is 
highly desirable to reduce the risk of contamination (Vinet and 
Zhedanov 2011). Given this concern, utilizing nanomaterials 
as antimicrobial agents is a logical approach. Nanomaterials 
offer advantages in scenarios where antibiotics may be inef-
fective. They can achieve this through various mechanisms, 
including the disruption of microbial membranes, prevention 
of biofilms formation, and simultaneous targeting of multiple 
pathways to impede microbial growth. Notably, the mecha-
nisms by which bacteria develop resistance to antibiotics 
often differ from the mechanisms employed by nanomateri-
als.(Wang et al. 2017; Silva et al. 2019). Extensive research 
has been dedicated to solid bactericidal materials due to their 
exceptional bactericidal activity and structural durability. As 

a result, these materials have gained widespread usage in vari-
ous applications. (Lin et al. 2009; Salem et al. 2015).

Currently, inorganic antimicrobial agents, including metal 
salts, nano-sized metals, and metal oxides, show great poten-
tial and promise (Ibrahim et al. 2013; Petkova et al. 2014). 
CuO,  TiO2,  CeO2,  SiO2,  Fe3O3,  Al2O3, and ZnO are all metal 
oxides that are often used as antibacterial agents (Nath et al. 
2016; Ibrahim et al. 2017; Zhao et al. 2018). Furthermore, 
the synergistic properties observed in composite metal 
oxides have surpassed those of individual oxides, leading 
to significant advancements in this rapidly evolving scien-
tific field(Stankic et al. 2016; Bayahia et al. 2017; Chakra 
et al. 2017). Over the past few years, there has been notable 
progress in the development of zinc oxides derived from the 
hydrothermal treatment of layered double hydroxide (LDH) 
structures. These novel materials exhibit remarkable optical 
properties. By leveraging the larger band gap of ZnAl2O4 
(Eg = 3.8 eV) compared to ZnO (Eg = 3.37 eV), scientists 
have successfully engineered an LDH-derived material with 
enhanced UV absorbance, surpassing that of pure ZnO. (Dai 
et al. 2018; Ghribi et al. 2020). Layered double hydroxides 
(LDHs) are a class of anionic clays composed of stacked 
layers. These layers consist of various cations and differ-
ent amounts of counter ions positioned between them. Each 
LDH layer comprises octahedral units, denoted as M(OH)6, 
which are connected through shared edges, resembling the 
structure of brucite. These octahedral units contain both 
M2 + and M3 + ions, with the positively charged M3 + units 
experiencing electrostatic repulsion, causing them to remain 
dispersed and avoid proximity to one another. This charac-
teristic ensures the distribution of metal ions throughout the 
LDH layers. (Kanezaki 2004; Lin et al. 2009).

In our research, we employed the chemical co-precip-
itation method for the synthesis of our materials. Subse-
quently, the obtained material underwent varying calcina-
tion temperatures (400, 600, and 800 °C) to explore the 
impact of this factor on its structure. Samples obtained at 
different calcination temperatures were then subjected to a 
range of characterizations, encompassing X-ray diffraction 
(XRD) for structural analysis, scanning electron microscopy 
(SEM) for morphological analysis, UV–visible spectros-
copy for optical analysis, and Fourier transform infrared 
spectroscopy (FTIR) for infrared analysis. These characteri-
zations enabled us to gain a holistic understanding of the 
structural, morphological, optical, and infrared properties 
of our study material at different calcination temperatures.

Furthermore, the antibacterial activities of the synthesized 
nanomaterials were evaluated against 21 multidrug-resistant 
bacteria, comprising both Gram-positive and Gram-negative 
strains. The testing involved ATCC reference strains such as 
Enterococcus faecalis ATCC 29212, Staphylococcus ATCC 
29213, Staphylococcus aureus ATCC 25923, Staphylococcus 
aureus ATCC 43300, Bacillus ATCC 16404, Pseudomonas 
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aeruginosa ATCC 27853, and Salmonella typhi ATCC 14028. 
Additionally, clinical strains including Acinetobacter bauman-
nii MDR-05, Acinetobacter NDM, Acinetobacter OXA23, 
Bacillus cereus, Escherichia coli B.L.S.E, Escherichia coli 
M.C.R.1, Elizabethkingia anophelis, Klebsiella oxytoca, 
Klebsiella pneumoniae carbapenemase-negative (Kpc-), 
Klebsiella pneumoniae carbapenemase-positive (Kpc +), 
Pseudomonas VIM-2, Serratia marcescens, Sphingomonas, 
Staphylococcus aureus cipro, as well as a fungal strain Can-
dida albicans were included in the evaluation. The antibacte-
rial testing was conducted in the absence of light.

Materials and methods

Chemicals and bacterial strains

The chemicals used were obtained from Sigma-Aldrich. The 
General Microbiology Laboratory at the Faculty of Medicine 
at Badji Mokhtar University in Annaba, which is supervised 
by Professor DJAHOUDI A.E.G., was kind enough to supply 
the bacterial strains that were used in this study.

Preparation of ZnAl—layered double hydroxide 
(LDHs)

Materials were prepared via co precipitation method at pH 
value of 9—10. The synthesis was carried out by a slow addi-
tion of two metal nitrates solutions (Zn  (NO3)2.6H2O) and Al 
 (NO3)3.9H2O with Zn/Al molar ratios of 2. The solution that 
contained 1 M of sodium nitrate  (NaNO3) was added slowly 
(drop wise addition) to the metal nitrates solutions with con-
stant stirring. The pH value for all samples was controlled by 
addition of aqueous NaOH (2 M). The resulting slurry was 
aged at 80 C° for 24 h in an oil bath shaker. The precipitate 
was washed with deionized water many times with centrifu-
gation. Finally, the precipitate was dried in an oven at 80 C° 
for 18 h. The resultant ZnAl-layered double hydroxide was 
ground into fine powder. A quantity of the materials was cal-
cined at 400 °C, 600 °C and 800 °C for 5 h to get ZnAl-400 
and ZnAl-600 and ZnAl-800. Scheme 1(S.M).

Characterization of ZnAl –LDH and ZnAl‑mixed 
metal oxide (MMO)

Different methods were used to characterize the prepared 
samples. The structural characterization was carried out 
using the Siemens D-5000 diffractometer with Cu-Ka radia-
tion (k = 1.5418 Å) in 2θ range of 5–80°. Scanning Electron 
Microscopy (SEM: JEOL-JSM-6390) was used to appreci-
ate the morphological observations. The UV–Vis absorp-
tion spectra were measured by a UV–Vis spectrophotometer 

(Shimadzu UV-2401). The Infrared Spectra (FTIR) was 
scanned in the range of 400–4000 cm-1 using a JASCO-
FTIR-4200 spectrophotometer.

Determination of minimum inhibitory 
concentration (MIC)

The minimum inhibitory concentration (MIC) represents the 
lowest concentration completely inhibiting visible bacterial 
growth after 24 h of incubation at 37°C(Curcic et al. 2012; 
Obeizi et al. 2021). The MIC of ZnAl-LDH and ZnAl-MMO 
was determined by the micro dilution method. At 37°C for 
18 h, gram-positive and gram-negative bacteria were cul-
tured on nutrient agar. The inoculums of organisms should 
be prepared at 105 CFU/ mL Prepared solutions of our mate-
rial have concentrations of (512, 256, 128, 64, 32, 16, 8, 4, 2, 
1, and 0.5 µg/ mL), followed by sonication and autoclaving 
at 121 °C for 30 min. 2 ml of each concentration were mixed 
with 18 ml of Muller Hinton agar for 30 min), then the plates 
were incubated at 37°C for 18–24 h.

Determination of minimum bactericidal 
concentration (MBC)

The minimum bactericidal concentration (MBC) is usually 
found by figuring out the MIC and then trying to grow alive 
organisms that have been exposed to drug concentrations 
above the MIC in media that doesn't kill bacteria. Most of the 
time, a 3 log10 (99.9%) drop in the number of viable cells is 
taken as the point at which the organism has been completely 
wiped out. This is because complete sterilization of cultures 
is not an easily attainable endpoint(O’Neill and Chopra 2004).

Determination of the MBC / MIC ratio

Xenobiotic with a MBC/MIC ratio ≤ 4 are defined as bacte-
ricidal, while a MBC/MIC ratio > 4 indicates bacteriostatic 
activity and is tolerant when the ratio is > 26(Zabransky 
et al. 1973; O’Neill and Chopra 2004).

Results and discussions

Characterizations of ZnAl LDH and ZnAl MMO

XRD analysis

The XRD patterns of the final products of uncalcined ZnAl-
LDH and calcined at 400, 600, and  800∘C for 5 h are pre-
sented in Fig. 1. The XRD pattern relative to the uncalcined 
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powder is shown in (Fig. 1). The diffraction peaks present 
in the XRD diffract gram are identical to the two-phase 
ZnO reference pattern (PDF number 65–3411) and Zinc 
Aluminum Carbonate Hydroxide Hydrate (Zn0.67Al0.33 
(OH) 2 (C O3)0.165·xH2 O) reference pattern (PDF number 
48–1023). When the temperature of calcination was raised 
to 400 °C, the amount of ZnO in the phase increased from 
2.7% to 21% (reference pattern, PDF number 65–3411). The 
second phase amount of 79% of the  ZnAl2O4 appeared (ref-
erence pattern, PDF number 01–1146). At 600 °C, the XRD 
results indicate that the ZnO phase was present but in a lower 
percentage than at 400 °C (reference pattern, PDF number 
PDF65-3411). The  ZnAl2O4 phase was also present, but at 
a higher percentage than at 400 °C (reference pattern, PDF 
number 05–0669) When the temperature of calcination was 
raised to 400 °C. After reaching a calcination temperature 
the 800 °C, the XRD spectrum obtained reveals the presence 
of a pure phase of Zinc Aluminum Oxide  (ZnAl2O4) (refer-
ence pattern, PDF number 82–1043).

Scheme 1  Synthesis Steps of ZnAl-LDH and ZnAl-MMO Materials using the Co-Precipitation Method

Fig. 1  XRD diffraction patterns of ZnAl-LDH and ZnAl-MMO 
obtained at different temperature of calcination: a) ZnAl-LDH; b) 
ZnAl-400; c) ZnAl-600; and d) ZnAl-800



941Biologia (2024) 79:937–952 

The presence of carbonate phases in the X-ray diffrac-
tion (XRD) analysis of uncalcined ZnAl-DHD indicates 
contamination with carbon dioxide, which is a common 
issue encountered during the preparation of Layered Double 
Hydroxides (LDHs) using various methods, including the 
co-precipitation method. When LDH samples are exposed to 
atmospheric carbon dioxide, it can lead to the formation of 
carbonate anions. These carbonate anions tend to be incor-
porated into the interlayer of the LDH structure and tightly 
bound(Nyambo et al. 2008; Cardinale et al. 2023).

The mean crystallite size D of the synthesized nanopar-
ticles was estimated using the Debye-Scherer’s formula 
(Table 1): (Boulkroune et al. 2019; Boudiaf et al. 2021; 
Salima et al. 2023).

where λ is the used wavelength (λ = 1.5406 Å) and Ө, the 
Bragg’s diffraction angle.

SEM analysis

SEM was used to characterize the morphology of synthesized 
materials. SEM images of uncalcined ZnAl-LDH and that cal-
cined ZnAl-MMO at different temperatures (400,600 and 800° 
C) are exhibited in Fig. 2a, b, c, and d, respectively (S.M). The 
fine, granular, and spherical shaped particles are visible in the 
SEM image (Fig. 2) of ZnO-ZnAl2O4. Some aggregation is 
also seen because particles stick together while being washed.

Optical properties

The UV–Vis absorption study of uncalcined (ZnAl-LDH) and 
calcined (ZnAl-MMO) at different temperatures (400, 600, and 
800 °C) samples have been carried out over the wavelength 
range of 200 nm to 900 nm. Figure 3 shows the absorption 
spectra of the materials obtained at different temperatures of 
calcination, with the absorption peaks at 239 nm and 231 nm 

(1)D =
0.9λ

β cos θ

Table 1  The different 
parameters obtained from X-ray 
diffraction spectra

Samples Grain 
size 
(nm)

Uncalcined ZnAl-LDH 34
ZnAl-400 4
ZnAl-600 8
ZnAl-800 23

Fig. 2  SEM images of the 
synthesized ZnAl-LDH and 
ZnAl-MMO obtained at differ-
ent temperature of calcination: 
a) ZnAl-LDH; b) ZnAl-400; c) 
ZnAl-600; and d) ZnAl-800
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for ZnAl-LDH and ZnAl-400, respectively. Similarly, absorb-
ance peaks like this one show the existence of the ZnO phase. 
The absorption peaks at 267 nm and 271 nm are for ZnAl 600 
and ZnAl 800, respectively; which indicate the presence of 
the  ZnAl2O4 phase. The absorption peak for ZnO-ZnAl2O4 
(ZnAl-600) was enlarged and shifted to the longer wavelength, 
which indicates synergistic effects between  ZnAl2O4 and ZnO.

The absorption coefficient F(R) is calculated from the 
reflectance curves using the Kubelka Munk equation to esti-
mate the band gap energy Eg.(Bouarroudj et al. 2023, 2021; 
Salima et al. 2023; Tairi et al. 2022)

where R is the reflectance and F(R) is equivalent to the 
absorption coefficient α.

The optical band gaps (Eg) of the uncalcined ZnAl-LDH 
and that calcined at different temperatures ZnAl-MMO 
(400,600 and 800° C), were calculated using the Tauc rela-
tionship: (αhv)2 = A (ℎv—Eg).The extrapolation of the linear 
part of Tauc plots intersects with the photon energy axis to 
define Eg,shown in Fig. 4a, b, c, and d, respectively (S.M). 
The band gap of ZnAl-LDH nanoparticles was determined 
to be 3.8 eV, while for ZnAl-400; the band energy was meas-
ured at 3.52 eV and 4.14 eV relative to two materials con-
firmed by XRD. Additionally, the band gap for ZnAl-600 
and ZnAl-800 was found to be 3.7 eV and 3.8 respectively.

FTIR characterization

The FTIR spectrum of ZnAl-LDH and ZnAl-MMO (ZnO-
ZnAl2O4) is presented in Fig. 5. The infrared spectra (FTIR) 

(2)F(R) =
(1 − R)2

2R

of the material were between 400 and 4000  cm−1, which 
shows the chemical bonds and functional groups in the com-
pound. The significant absorption band centered at 3396 
 cm−1 is caused by the O–H stretching vibration of water mol-
ecules on the surface and in the spaces between the layers of 
the material(Nickel and Fleischer 2003; Iaiche and Djelloul 
2015; Ghribi et al. 2020). The band at 1640  cm−1 is caused by 
the water molecule's H–O-H scissor-bending vibration. The 
strong and distinct band at 1357 cm-1 is attributed to the pres-
ence of nitrate ions (Wang et al. 2015; Touahra et al. 2016; 
Iaiche et al. 2020). The bands at 3396  cm−1, 1640  cm−1 and 
1357  cm−1in ZnAl-LDH are not present in the correspond-
ing calcined samples at 600 and 800°C, which are attributed 
to the removal of water molecules and the decomposition of 
the  NO3−groups in the LDH interlayer. The absorption peak 
located at 423  cm−1, corresponding to the Zn–O vibration 
frequency(Bouzid et al. 2009; Iaiche and Djelloul 2015). The 
two peaks at 518 and 650  cm−1 are caused by Al-O stretch-
ing and O–Al-O bending vibrations of the  AlO6 group in the 
spinel-type  ZnAl2O4 structure, respectively(Abd El All et al. 
2007; Sunder et al. 2011; Abd-Allah et al. 2022). The FT-IR 
and XRD results are in good agreement to confirm ZnO and 
 ZnAl2O4 as mixed metal oxides formation.

Antibacterial activity

Effects of ZnO‑ZnAl2O4 on Gram‑Positive Bacteria

Effects on Gram‑Positive Cocci Figure 6 (a,b) displays the 
results of the minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MBC) tests conducted 
at different temperatures (400, 600, and 800 °C). Remark-
ably, the Staphylococcus aureus ATCC43300 strain exhibited 
a MIC of 0.5 µg/mL when treated with ZnAl 800, indicat-
ing a strong inhibitory effect. Additionally, the Enterococcus 
faecalis ATCC29212 strain demonstrated a MIC of 0.25 µg/
mL when exposed to the uncalcined material, suggesting its 
potential as an effective antimicrobial agent. Notably, all other 
Gram-positive cocci strains showed a MIC of 0.125 µg/mL, 
signifying a consistent antimicrobial response. The MBC 
values ranged from 0.250 to 16 µg/mL, with ZnAl 400 and 
ZnAl-600 respectively, highlighting the varying bactericidal 
effects of the different materials and temperatures used in the 
study. These results confirm the conclusion that  Zn2+, released 
from ZnO particles interacting with the bacterial medium, can 
exhibit significant antimicrobial activity against Gram-posi-
tive bacteria, particularly cocci(Pasquet et al. 2014; Cardinale 
et al. 2023). Figure 6 (b) (S.M).

Table 2 presents the compiled results of the ratio (MBC/
MIC) obtained from treating gram-positive cocci bacte-
ria with varying concentrations of uncalcined ZnAl-LDH 
and calcined ZnAl-MMO at three different temperatures 

Fig. 3  UV–Vis spectra of ZnAl-LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800 obtained at different temperature of calcination
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(400 °C, 600 °C, and 800 °C). Our findings demonstrate 
that the uncalcined material possesses bactericidal proper-
ties against all three strains: S. aureus 43300, S. aureus cipro. 
R, and E. faecalis ATCC 29212. However, the material cal-
cined at temperatures of 400 °C, 600 °C, and 800 °C exhib-
its bacteriostatic characteristics specifically against the S. 

aureus cipro. R strain. Notably, when treated with ZnAl-600, 
the material demonstrates a tolerant nature towards certain 
strains of the Staphylococcus genus.

Effects on Gram‑Positive Bacillus Figure 7(a,b) presents the 
MIC and MBC values obtained when treating Gram-positive 
bacillus bacteria with varying concentrations of ZnAl-LDH 
and ZnAl-MMO calcined at different temperatures (400, 
600, and 800 °C). Analyzing the results of the treatment 
on Gram-positive bacillus, it is observed that the Bacillus 
cereus strain exhibited a MIC of 1 μg/mL when exposed 
to ZnAl-800 material, while a MIC of 0.125 μg/mL was 
obtained with the other tested materials. Bacillus 16404 
displayed a MIC of 0.125 µg/mL for all calcined materials. 
Furthermore, the MBC for the Bacillus genus strain ranged 
from 0.25 to 32 µg/mL with different ZnAl-MMO samples. 
These findings align with the work of Lin et al. (2009), who 
investigated ZnO-Al2O3 composites with various Zn/Al 
molar ratios (2, 2.5, 3, 3.5, and 4). Through calcination of 
ZnRAl-CO3-HDLs at 500 °C using a nucleation and aging 
method (SNAS), they evaluated the efficacy against Staphy-
lococcus aureus ATCC 6538. Their results demonstrated that 
ZnO-ZnAl2O4 composites effectively eliminated Staphylo-
coccus aureus ATCC 6538, Bacillus subtilis var, and Bacil-
lus subtilis var Niger ATCC 9372, including their spores. 
The effectiveness of killing Bacillus subtilis var Niger ATCC 
9372 increased with ZnO content due to the heterojunction 

Fig. 4  UV–Vis absorption data 
fitted by Tauc’s formula for 
direct band gap: a ZnAl-LDH; b 
ZnAl-400; c ZnAl-600; and (d) 
ZnAl-800

Fig. 5  FT-IR spectra of ZnAl-LDH and ZnAl-MMO obtained at dif-
ferent temperature of calcinations
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structure of ZnO-Al2O3 composites. The presence of ZnO 
in the composites led to the generation of  O2

− and −OH, 
which interacted with the -NH-CO- bonds, resulting in the 
breakdown of bacterial walls, apoptosis, and cell death (Lin 
et al. 2009). Figure 7(b) (S.M).

Table 3 provides a summary of the ratio (MBC/MIC) 
values obtained from treating gram-positive bacillus bacte-
ria with different concentrations of uncalcined ZnAl-LDH 
and calcined ZnAl-MMO at three temperatures (400 °C, 
600 °C, and 800 °C). Analyzing the results of the treatment 
on gram-positive bacilli, it is evident that both ZnAl-LDH 
in its uncalcined form and the calcined ZnAl-MMO mate-
rials exhibit bacteriostatic properties when tested against 
the Bacillus 16404 strain. However, interestingly, the same 
strain shows tolerance towards ZnAl-400. On the other hand, 

the Bacillus cereus strain demonstrates tolerance towards 
both ZnAl-LDH and ZnAl-MMO at 800 °C. The desired 
bactericidal effect is achieved with ZnAl-MMO at 400 °C.

Effect of ZnAl‑LDH and ZnAl‑MMO on Gram‑negative 
bacteria

Effect on Lactose positive Enterobacteriaceae Figure 8 (a, 
b) presents the MIC and MBC values obtained from treating 
Lactose positive Enterobacteriaceae with varying concentra-
tions of ZnAl-LDH, ZnAl-400, ZnAl-600, and ZnAl-800. It 
is observed that with ZnAl-LDH, ZnAl-400, and ZnAl-600, 
the MIC for lactose-positive Enterobacteriaceae is approxi-
mately 0.125 µg/mL However, when using ZnAl-800, the 

Fig. 6  a Values of MIC of 
Gram-positive cocci treated 
with ZnAl-LDH, ZnAl-400, 
ZnAl-600, and ZnAl-800, b 
Values of MBC of Gram-pos-
itive cocci treated with ZnAl-
LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800

Table 2  Values of the ratio 
(MBC/MIC) of Gram-positive 
cocci treated with ZnAl-LDH, 
ZnAl-400, ZnAl-600, and 
ZnAl-800

Ratio of MBC/MIC

Temperature of calcination S. aureus 
25,923

S.aureus43300 S.29213 S. aureus 
cipro. R

E. feacalis
ATCC 29212

Uncalcined ZnAl LDH 32 4 32 4 4
ZnAl  400° C 2 2 16 16 64
ZnAl  600° C 32 64 32 16 4
ZnAl  800° C 4 32 8 16 16

Fig. 7  a Values of MIC of 
Gram-positive bacillus treated 
with ZnAl-LDH, ZnAl-400, 
ZnAl-600, and ZnAl-800, b 
Values of MBC of Gram-posi-
tive bacillus treated with ZnAl-
LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800
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MIC ranges from 0.125 to 2 µg/mL as for the MBC; it var-
ies within the range of 0.5 to 16 µg/mL, depending on the 
specific ZnAl-MMO material used.

Nanoparticles have shown promising activity against 
lactose-positive Enterobacteriaceae bacteria. Nanoparticles 
have the ability to disrupt bacterial cell membranes, leading 
to leakage of essential components and disruption of vital 
processes. Additionally, nanoparticles can induce oxidative 
damage at the cellular level, resulting in deterioration of bac-
terial DNA and proteins(Juan et al. 2021). Figure 8 (b)(S.M).

Table 4 compiles the ratio (MBC/MIC) values obtained after 
treating lactose-positive Enterobacteriaceae with different con-
centrations of ZnAl-LDH, ZnAl-400, ZnAl-600, and ZnAl-800. 
It is noteworthy that ZnAl-LDH demonstrates bactericidal activ-
ity against strains of E. coli M.C.R.1, Klebsiella oxytoca, and 
Kpc-. Similarly, ZnAl-600 exhibits bactericidal effects against 
E. coli B.L.S.E., Klebsiella oxytoca, Kpc-, and Kpc + strains. 
However, strains of E. coli M.C.R.1 and Kpc + display tolerance 
towards ZnAl-400 treatment. Additionally, E. coli M.C.R.1 and 
Klebsiella oxytoca strains demonstrate tolerance towards ZnAl-
400 and ZnAl-800 materials, respectively.

Effect on Lactose negative Enterobacteriaceae Figure 9 (a,b) 
presents the MIC and MBC values obtained when treating 
lactose-negative Enterobacteriaceae with varying concen-
trations of ZnAl-LDH and ZnAl-MMO calcined at different 

temperatures (400, 600, and 800 °C). Notably, the strain Sal-
monella typhi 14028 exhibited an MIC of 0.125 μg/mL The 
CMB values were 0.250 µg/mL for ZnAl-400 and ZnAl-600, 
and 1 µg/mL for ZnAl-LDH. It is worth mentioning that the 
CMB for ZnAl-800 was 8 μg/ mL.The presence of prepared 
nanoparticles (NPs) in the bacterial medium triggers the 
secretion of reactive oxygen species (ROS). These ROS play 
a crucial role in facilitating the penetration of NPs through 
the bacterial cell membrane and subsequently inactivating the 
bacteria. The bactericidal activity of NPs becomes more pro-
nounced as the concentration of NPs increases(Meena Kumari 
and Philip 2015; Vidhu and Philip 2015). Figure 9 (b) (S.M).

Table 5 presents the ratios (MBC/MIC) obtained when 
treating lactose-negative Enterobacteriaceae with differ-
ent concentrations of uncalcined ZnAl-LDH and calcined 
ZnAl-MMO at temperatures of 400°c, 600°c, and 800°c. The 
results indicate that the uncalcined material ZnAl-LDH dem-
onstrated bacteriostatic properties against salmonella typhi 
14028, while the same bacterial strain exhibited bactericidal 
properties when treated with ZnAl-400 and ZnAl-600.

Effects on Gram‑negative bacillus

Figure 10(a, b, c, d) presents the MIC and MBC values 
obtained when treating Gram-negative bacilli with varying 

Table 3  Values of the ratio (MBC/MIC) of Gram-positive bacillus 
treated with ZnAl-LDH, ZnAl-400, ZnAl-600, and ZnAl-800

Ratio of MBC/MIC

Temperature of calcination Bacillus cereus Bacil-
lus 
16,404

Uncalcined ZnAl LDH 64 16
ZnAl  400° C 2 32
ZnAl  600° C 8 16
ZnAl  800° C 32 16

Fig. 8  a Values of MIC of Lac-
tose positive Enterobacteriaceae 
treated with ZnAl-LDH, ZnAl-
400, ZnAl-600 and ZnAl-800, b 
Values of MBC of Lactose posi-
tive Enterobacteriaceae treated 
with ZnAl-LDH, ZnAl-400, 
ZnAl-600 and ZnAl-800

Table 4  Values of the ratio (MBC/MIC) of lactose-positive Entero-
bacteriaceae treated with ZnAl-LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800

Ratio of MBC/MIC

Temperature of calcina-
tion

E. coli 
B.L.S.E

E. coli 
M.C.R.1

Kleb-
siella 
oxytoca

Kpc- Kpc + 

Uncalcined ZnAl LDH 8 4 4 4 8
ZnAl  400° C 8 64 8 4 32
ZnAl  600° C 4 64 4 4 2
ZnAl  800° C 4 16 128 8 4
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concentrations of ZnAl-LDH and ZnAl-MMO. The results 
obtained for the GNB strains indicate that Acinetobac-
ter baumannii MDR 05, Elizabethkingia anophelis, and 
Sphingomonas paucimobilis exhibited MIC values rang-
ing from 0.250 to 2 µg/mL for ZnAl-800, while the Aci-
netobacter OXA23 strain displayed an MIC of 0.25 µg/mL 
for ZnAl-LDH material. The other strains showed an MIC 
of 0.125 µg/mL across different calcination temperatures. 
The CMB values ranged from 0.250 to 8 μg/mL for various 
ZnAl-MMO materials. In a study by Suprabha Yadav et al. 
(2020) it was reported that ZnO/Al2O3 (ZANC) nanocom-
posites synthesized with different Zn: Al ratios and calcined 
at temperatures ranging from 400 °C to 1000 °C exhibited 
inhibition efficiencies of 86.86%, 87.29%, and 100% against 
strains of S. aureus, P. aeruginosa, and B. subtilis, respec-
tively (Yadav et al. 2020). These results align with our find-
ings. Figure 10(b,d)(S.M).

Table 6 presents the results of the (MBC/MIC) ratio 
obtained when treating Gram-negative bacillus bacteria with 
ZnAl-LDH and ZnAl-MMO materials. The results obtained 
for the GNB strains indicate that ZnAl-LDH, ZnAl-400, 
ZnAl-600, and ZnAl-800 materials exhibit bactericidal prop-
erties against the S. paucimobilis strain. However, strains 
such as P. aeruginosa ATCC 27853, P. VIM 2, A. OXA 23, 
A. NDM, A. baumannii MDR 05, and S. marcescens demon-
strate bacteriostatic properties when treated with ZnAl-600. 

Interestingly, the A. OXA 23 strain appears to have some 
level of tolerance to treatment with the ZnAl-800 material 
(Table 6).

Effect of ZnAl‑LDH and ZnAl‑MMO on fungi

Figure 11(a,b) displays the MIC and MBC values obtained 
when treating yeasts with different concentrations of ZnAl-
LDH and ZnAl-MMO. Our findings reveal that the Candida 
albicans strain exhibited an MIC of 0.125 µg/mL across 
various materials. The MBC values ranged from 0.250 to 
4 µg/mL to the best of our knowledge, we have not come 
across any published research on the effects of our ZnAl-
LDH, ZnAl-400, ZnAl-600, and ZnAl-800 materials on 
fungi. Therefore, our results are encouraging and validate 
the antifungal efficacy of the tested materials against Can-
dida albicans strains(Ayanwale et al. 2021; Djearamane et al. 
2022; Arsène et al. 2023). Figure 11(b) (S.M). 

Table 7 presents the values of the (MBC/MIC) ratio 
obtained when treating fungi with different concentrations of 
ZnAl-LDH, ZnAl-400, ZnAl-600, and ZnAl-800. Our find-
ings indicate that our materials exhibit bactericidal proper-
ties against the Candida albicans strain.

Mechanisms of antimicrobial activity

Currently, there are ongoing discussions regarding the mech-
anism by which nanoparticles exhibit antibacterial activity. 
Existing scientific literature suggests that nanoparticles have 
the potential to inhibit the growth of various microorgan-
isms, including bacteria and fungi. Several studies (Applerot 
et al. 2012; Guo et al. 2015; Suresh et al. 2016), frequently 
mention the generation of reactive oxygen species (ROS) 
by metal oxide nanoparticles as a prominent mechanism 
contributing to their antimicrobial effects. However, the 
generation of ROS appears to be somewhat perplexing, as 
many studies have demonstrated that it occurs under light 
exposure. Conversely, other studies (Adams et al. 2006; 

Fig. 9  a Values of MIC of 
Lactose negative Enterobacte-
riaceae treated with ZnAl-LDH, 
ZnAl-400, ZnAl-600, and 
ZnAl-800. b Values of MBC of 
Lactose negative Enterobacte-
riaceae treated with ZnAl-LDH, 
ZnAl-400, ZnAl-600, and 
ZnAl-800

Table 5  Values of the ratio (MBC/MIC) of lactose-negative Entero-
bacteriaceae treated with ZnAl-LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800

Ratio of MBC/MIC

Temperature of calcination Salmonella 
typhi 14028

Uncalcined ZnAl LDH 8
ZnAl  400° C 2
ZnAl  600° C 2
ZnAl  800° C 64
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Fig. 10  a Values of MIC of 
Gram-negative bacillus treated 
with ZnAl-LDH, ZnAl-400, 
ZnAl-600, and ZnAl-800, b 
Values of MBC of Gram-nega-
tive bacillus treated with ZnAl-
LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800, c Values of MIC of 
Gram-negative bacillus treated 
with ZnAl-LDH, ZnAl-400, 
ZnAl-600, and ZnAl-800, d 
Values of MBC of Gram-nega-
tive bacillus treated with ZnAl-
LDH, ZnAl-400, ZnAl-600, and 
ZnAl-800

Table 6  Values of the ratio (MBC/MIC) of Gram-negative bacillus treated with ZnAl-LDH, ZnAl-400, ZnAl-600, and ZnAl-800

Ratio of MBC/MIC

Temperature of calcination P. aeruginosa 
ATCC 27853

P
VIM 2

A
OXA 23

A
NDM

A 
baumannii
MDR 05

E
anophelis

S
marcescens

S. 
pauci-
mobilis

Uncalcined ZnAl LDH 16 4 4 2 8 16 2 2
ZnAl  400° C 8 2 16 8 2 2 2 2
ZnAl  600° C 16 8 8 8 8 2 8 4
ZnAl  800° C 4 4 64 2 4 16 16 2

Fig. 11  a Values of: MIC of 
fungi treated with ZnAl-LDH, 
ZnAl-400, ZnAl-600, and ZnAl-
800, b Values of: MBC of fungi 
treated with ZnAl-LDH, ZnAl-
400, ZnAl-600, and ZnAl-800
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Hirota et al. 2010; Sirelkhatim et al. 2015) have reported 
that this activity also occurs in the absence of light, suggest-
ing an alternative explanation. (Hirota et al. 2010) conducted 
experiments using ZnO-NPs against E. coli and observed 
the generation of reactive oxygen species (ROS) even in 
the absence of light. This finding was consistent with the 
results reported by (Jones et al. 2008), which also indicated 
the production of superoxide species. These consistent find-
ings suggest the existence of unidentified processes that may 
be responsible for the generation of reactive species in the 
absence of light.

According to researchers, in the absence of light or under 
visible light with photon energy lower than the ZnO band 
gap, the sources of electrons and holes that contribute to 
antibacterial activity are electronic defects. These defects 
include the negatively charged Zni defect for electrons and 
the positively charged Zinc vacancy Vzn defect for holes. 
Studies on photoluminescence (PL) have revealed that the 
presence of these two defects increases with In doping 
(Danial et al. 2020). This suggests that the Zni and Vzn 
defects play a crucial role in the production of reactive oxy-
gen species (ROS) that are responsible for inhibiting bacte-
rial growth (Ravichandran et al. 2015; Vijayaprasath et al. 
2016; Zhang et al. 2017; Danial et al. 2020).

Oxidative stress is a chemical mechanism that plays a 
significant role in the activity of bactericides. It refers to 
an imbalance between the excessive formations of reactive 
oxygen species (ROS) and the antioxidant defense system. 
ROS are highly reactive compounds derived from oxygen, 
including singlet oxygen (1O2), superoxide (•O−

2), hydroxyl 
ions (OH), hydroxyl radicals (•OH), and peroxides  (H2O2). 
These ROS can cause oxidative damage to lipids, proteins, 
and DNA, which can be detrimental to cellular health. When 
present in high concentrations, ROS can be extremely harm-
ful to organisms, leading to lipid peroxidation, protein oxi-
dation, DNA damage, enzyme inhibition, activation of the 
programmed cell death (PCD) pathway, and ultimately, 
cell death.(Hancock et al. 2001; Díez-Pascual and Luceño-
Sánchez 2021).

Another mechanism that has been investigated involves 
the release of zinc ions (Zn2 +) resulting from the dissolution 

of ZnO nanoparticles (NPs) (Li et al. 2011; Pasquet et al. 
2015). The presence of zinc can interfere with the enzymatic 
system, leading to a slowdown in the metabolism of amino 
acids (Sirelkhatim et al. 2015).

The adsorption of nanoparticles (NPs) onto bacterial 
membranes is an inherent toxicological phenomenon. The 
physical chemistry of the surrounding environment plays 
a role in determining the extent of adsorption and subse-
quent deleterious effects. The presence of NPs destabilizes 
the membrane, leading to the leakage of water and intra-
cellular ions. As a result, the membrane loses its semi-per-
meable barrier function. This disruption creates significant 
osmotic stress at the cellular level, ultimately resulting in 
cell death (Mager et al. 2000; Gunasekera et al. 2008). The 
scientific literature suggests that the attraction between 
bacteria and metal oxide NPs is mediated by electrostatic 
forces. According to the hypothesis proposed by Stoi-
menov et al. (2002), metallic oxide nanoparticles adhere 
to bacteria electrostatically, leading to the rupture of the 
bacterial cell membrane and subsequent bacterial death 
(Stoimenov et al. 2002).

Mechanism of ROS production

The presence of oxygen vacancies enhances the acidic 
nature of the surface, thereby increasing the attractive 
interaction with  H2O (Lewis base). When water molecules 
occupy these electrophilic sites, hydroxyl groups  (OH−) 
are formed. Indeed, oxygen vacancies have the ability to 
dissociate  H2O by transferring a proton to a neighboring 
oxygen atom, thus forming two hydroxyl groups for each 
vacancy. This dissociation allows the hydroxyl groups to 
form hydrogen bonds with neighboring water molecules. 
Thus, the presence of oxygen vacancies promotes the for-
mation of hydroxyl groups and strengthens the interactions 
between the surface and water molecules. However, it is 
worth noting that these hydroxyl radicals can also play a 
role in bacterial cell death, as they can cause oxidative 
damage to membranes and DNA, thereby inhibiting bac-
terial growth Scheme 2 (S.M). (Ravichandran et al. 2015; 
Mrabet et al. 2016; Biswas et al. 2022; Querebillo 2023).

We propose the following mechanism for the production 
of ROS in the dark (Narayana et al. 1982; Lupan et al. 2009; 
Lakshmi Prasanna and Vijayaraghavan 2015):

(3)O
2
+ e

−
→

∙
O − 3

(4)∙
O

−
2
+ H

2
O →

∙
HO

2
+ OH

4

(5)∙
HO

2
+∙

HO
2
→ H

2
O

2

Table 7  Values of the ratio (MBC/MIC) of fungi treated with ZnAl-
LDH, ZnAl-400, ZnAl-600 and ZnAl-800

Ratio of MBC/MIC

Temperature of calcination Candida 
albicans

Uncalcined ZnAl LDH 2
ZnAl  400° C 2
ZnAl  600° C 2
ZnAl  800° C 32
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Antibacterial mechanism of prepared nanomaterials

(1) ZnO-ZnAl2O4 nanomaterials disrupt cell walls and 
cytoplasmic membranes by releasing ions that adhere to 
or pass through them. (2) These ions denature ribosomes 
and inhibit protein synthesis. Additionally, they deactivate 
the respiratory enzyme on the cytoplasmic membrane, (3) 
leading to the interruption of adenosine triphosphate (ATP) 

(6)H
2
O

2
+∙

O
−
2
→ O

2
+∙ OH + OH

− production. (4) Reactive oxygen species produced by the 
damaged electron transport chain can also cause membrane 
disruption. (5) ZnO-ZnAl2O4 nanomaterials, along with 
reactive oxygen species, bind to deoxyribonucleic acid 
(DNA) and prevent its replication and cell multiplication. (6) 
By accumulating in the pits of the cell wall, these nanopar-
ticles also denature the membrane. (7) Furthermore, ZnO-
ZnAl2O4 nanomaterials can directly traverse the cytoplasmic 
membrane, potentially resulting in the release of cell orga-
nelles Scheme 3 (S.M) (You et al. 2012; Slavin et al. 2017; 
Gupta and Bahadur 2018; Yin et al. 2020; Yu et al. 2020).

Scheme 2  Mechanism of ROS 
production via oxygen vacan-
cies

Scheme 3  Antibacterial mecha-
nism of prepared nanomaterials
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Conclusion

ZnAl-LDH was synthesized using the co-precipitation 
method, followed by calcination at different temperatures 
(400, 600, and 800°C) to obtain ZnAl mixed metal oxides. 
Characterization results revealed the formation of ZnO-
ZnAl2O4 at a calcination temperature of 400 and 600°C, 
while  ZnAl2O4 as spinel was obtained at 800°C.

In this study, we conducted an in vitro evaluation of the 
antimicrobial activity of ZnAl-LDH, ZnAl-400, ZnAl-600, 
and ZnAl 800 against a panel of 21 bacterial strains, including 
15 clinical strains, 6 Gram-reference strains, and one fungal 
strain. Our findings demonstrated that ZnAl-LDH, ZnAl- 400, 
and ZnAl-600 exhibited minimum inhibitory concentration 
(MIC) values of 0.125 µg/mL against the tested strains. MIC 
values ranging between 0.125 and 2 μg/mL were obtained 
with ZnAl-800, and it was observed that Enterobacteriaceae 
and non-Enterobacteriaceae bacteria were more susceptible 
compared to Gram-positive bacteria. Thus, ZnAl-LDH and 
ZnAl-MMO showed greater effectiveness against gram-pos-
itive bacteria than gram-negative bacteria, possibly attributed 
to the formation of a type II heterojunction structure between 
ZnO and  ZnAl2O4, which occurs at 400 and 600°C.

In conclusion, the mixed metal oxides (ZnO-ZnAl2O4) 
derived from the calcination of ZnAl-LDH, synthesized via 
the co-precipitation method, show promising potential as 
alternatives to antibiotics. These mixed metal oxides could 
be employed as an impregnating agent in a matrix to prevent 
microbial contamination by inhibiting microorganisms that 
come into contact with or approach the receptive surface.
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