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Introduction

Diabetes mellitus (DM), a non-communicable disease, is 
the seventh greatest cause of mortality and one of the major 
worldwide health problems. The global prevalence of DM is 
suggested to be 7.7% (more than 425 million people) (IDF 
2017). According to the World Health Organization (WHO), 
DM was directly responsible for 1.5 million deaths world-
wide (WHO 2014). These numbers for diabetes-related 
mortality, however, are probably an underestimate because 
they did not completely account for how DM affects other 
causes of death. WHO has reported an expected increase 
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Abstract
Diabetes mellitus (DM) is a set of metabolic diseases defined by a persistently high blood sugar level. Mesenchymal stem 
cells (MSCs) are a novel potential therapeutic intervention in treatments of various diseases, which is also referred to as 
regenerative medicine. We aimed to compare the pro-inflammatory cytokines’ levels during bone marrow mesenchymal 
stem cells (BM-MSCs) transplantation in rats with induced type I (T1D) and type II diabetes (T2D). Thirty-five male 
Sprague dawley rats were divided into: Group I: the healthy control group, group II: untreated rats with streptozotocin 
(STZ)-induced T1D (65  mg/kg), group III: BM-MSCs treated rats with STZ-induced T1D, group IV: untreated rats 
with high-fat diet (HFD)/STZ-induced T2D (40 mg/kg), group V: BM-MSCs-treated rats with HFD/STZ-induced T2D. 
Biochemical, histopathological and immunohistochemical studies were applied. Our results showed that transplantation 
reduced hyperglycemia and increased insulin levels in both induced T1D and T2D. Also, reductions in the levels of inflam-
matory markers were noticed after transplantation that was coincided with nuclear factor-kappa B (NF-кB) immunohis-
tochemical results; which showed negative or moderate cytoplasmic reactivity in treated groups III and V. These results 
indicated the ability of BM-MSCs transplantation to modulate the pro-inflammatory cytokine profile during treatment of 
both T1D and T2D.

Key points
BM-MSCs transplantation, in both T1D and T2D, led to the reduction in blood glucose levels.
The biochemical and histological findings indicated an improvement in pancreatic islets.
The immunomodulatory effect of BM-MSCs allowed the islets to neogenesis.

Keywords  Bone marrow-derived mesenchymal stem cells · Pro-inflammatory cytokines · Diabetes mellitus · Nuclear 
factor-kappa B · Insulin

Received: 7 May 2022 / Accepted: 12 May 2023 / Published online: 9 June 2023
© The Author(s) 2023

Bone marrow-derived mesenchymal stem cells transplantation 
downregulates pancreatic NF-κB and pro-inflammatory cytokine 
profile in rats with type I and type II-induced diabetes: a comparison 
study

Alyaa Farid1  · Lamiaa El-Alfy2 · Neveen Madbouly2

1 3

http://orcid.org/0000-0003-0706-347X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11756-023-01436-0&domain=pdf&date_stamp=2023-6-6


Biologia (2023) 78:3165–3177

in the prevalence of DM in many regions of the world in 
2030 compared to 2011 (North America and the Caribbean: 
from 10.8 to 11.8%, Middle East and North Africa: from 
8.8 to 10.6%, low and middle-income countries: from 7.5 
to 9% and in African countries: from 3.5 to 4.1%) (Wou et 
al. 2019). DM is a set of metabolic disorders characterized 
by high blood glucose levels caused by issues with insulin 
synthesis, insulin usage, or both which cause serious prob-
lems like blindness, kidney failure, cardiovascular disease, 
stroke, neuropathy, and vascular dysfunction (Miniawy et 
al. 2017). Type 1 diabetes (T1D) is most commonly diag-
nosed in children and young adults, and it is caused by the 
autoimmune destruction of pancreatic islet cells, which 
results in the loss of insulin production (Patlak 2002). Glob-
ally, about 8 million people worldwide had T1D in 2021; of 
these, 1 million (18%) were under 20 years old, 5 million 
(64%) were 20–59, and 1 million (19%) were 60 years or 
older, A modelling study has predicted a rise in prevalent 
cases to 13.5–17.4 million is expected in 2040 (Gregory et 
al. 2022). Insulin is still the most effective T1D treatment 
at this time. Type 2 diabetes (T2D) affects about 86–91% 
of the diabetic population, mostly adults. However, its inci-
dence in children is on the rise as a result of childhood obe-
sity (Alberti et al. 2007). T2D is defined as an increase in 
insulin resistance combined with a failure of the pancreatic 
β-cells to produce enough insulin (Colberg et al. 2010). Pro 
and anti-inflammatory cytokines have been linked to the 
development of DM (Banerjee and Saxena 2014). Previous 
research has shown that certain pro- and anti-inflammatory 
cytokines can inhibit insulin-responsive, glucose absorption 
and increase insulin resistance (Saxena and Modi 2014). 
Researches, studying the involvement of inflammatory 
pathways in DM and its complications are expected to shed 
light on the processes that support the disease’s genesis and 
progression. With a better knowledge of the inflammatory 
basis for DM, innovative therapeutic methods, in addition 
to presently utilized non-pharmacologic and pharmacologic 
treatments, might be introduced.

The use of living cells to maintain, restore, or enhance the 
functionality of organs and tissues is known as cell therapy 
(Motawea et al. 2020). Stem cells (SCs) are essential for liv-
ing creatures because they perform functions like maintain-
ing homeostatic tissue and replacing defective and senescent 
cells. SCs are being used in therapies for a variety of dis-
orders as a unique possible therapeutic intervention, often 
known as regenerative medicine, due to their extraordinary 
healing capacities (Gomez-Lopez et al. 2014). The ability 
of SCs to regenerate and differentiate allows researchers to 
investigate their therapeutic potential for treating and con-
trolling diabetic complications. Multipotent SCs can only 
develop into specialized cell types of their tissue of origin, 
such as mesenchymal stem cells (MSCs) and hematopoietic 

stem cells, and they may be found throughout the body in 
various areas. The therapeutic potential of MSCs-based 
therapy of DM pathology and related consequences has 
been intensively investigated in recent years. Nevertheless, 
a number of questions remain unanswered. In the present 
work, we compared the effects of BM-MSCs transplanta-
tion on the levels of pancreatic pro-inflammatory cytokines 
during T1D and T2D as a chronic inflammation model. The 
pancreatic inflammatory cytokines levels during BM-MSCs 
therapy were evaluated together with biochemical analysis, 
histopathological and immunohistochemical parameters.

Materials and methods

Preparation of bone marrow (BM)-MSCs

A total of twelve Sprague dawley rats (3–4 weeks) were sac-
rificed after administration of sodium pentobarbital intra-
peritoneally at a dose of 30 mg/kg. The femora and tibiae of 
the rats were harvested aseptically. BM-MSCs were flushed 
using phosphate-buffered saline (PBS), centrifuged at 300 
× g for 5 min then the BM-MSCs were resuspended at a 
density of 107cells/ml in RPMI-164 medium. The cell sus-
pension was plated into 50 cm2 culture plates (3 ml/plate) 
(Sigma-Aldrich, St. Louis, MO, USA). Isolated BM-MSCs 
were cultured, propagated, and supplemented with 10% 
FBS, 0.5% penicillin/ streptomycin and incubated at 37 °C 
and 5% CO2 until reaching 80–90% confluence within 7 
days. The medium was renewed every two to three days. 
Labeling of BM-MSCs was performed according to Li et 
al. (2012); briefly, BM-MSCs were incubated in a staining 
cocktail consisting of Dulbecco’s modified Eagles medium 
(DMEM) complemented with 1.1% of PKH26 solution in 
diluent ad 100%, and incubated for 1 h in a humidified incu-
bator (37 °C, 5% CO2). Then the staining was stopped as 
described by the supplier (Sigma-Aldrich, St. Louis, MO, 
USA).

Characterization and fluorescence-activated cell 
sorting (FACS) analysis

BM-MSCs were cultured onto 6-well culture plates (Corn-
ing; Lowell, MA, USA). Following 14 days of culture, the 
cells were detached using 0.25% trypsin. Cells were washed 
extensively with PBS. Rat BM-MSCs specific cell surface 
markers, a cluster of differentiation (CD) 90 and CD105 
were characterized for purity of cultured population and 
negative markers for hematopoietic lineage (CD34 and 
CD45) by flow cytometry (BD Biosciences, Franklin Lanes, 
NJ, USA). Briefly, the cells were detached and incubated for 
20 min in the dark at 4 °C with rat monoclonal antibodies 
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labeled with fluorescein isothiocyanate (FITC) and phyco-
erythrin (PE) (Farid et al. 2022a). The samples were centri-
fuged at room temperature for 5 min at 300 × g, resuspended 
in 500 µl PBS and evaluated using flow cytometry.

BM-MSCs homing

BM-MSCs were labeled for in vivo tracing using PKH26 
Red Fluorescent Cell Linker Kit (Sigma-Aldrich, St. Louis, 
MO, USA) according to the manufacturer’s instructions. 
The labeled BM-MSCs were examined in unstained pancre-
atic tissues by Leica DM 5500B fluorescence microscope 
(Leica, Wetzlar, Germany).

Animals and experimental design

Male Sprague dawley rats, one-month-old (180–200  g), 
were purchased from National Organization for Drug Con-
trol and Research (NODCAR, Cairo, Egypt). Rats were 
maintained on a standard diet and tap water ad libitum for 1 
week for acclimatization. Animals were housed in conven-
tional cages at a temperature (22 ± 1 °C) and humidity (40–
60%) with 12 h of dark/light cycle. The study was approved 
by the Institutional Animal Care and Use Committee (CU-
IACUC), Cairo University, Egypt (CUIF 1719). A normal 
diet was composed of 11.4% fat, 62.8% carbohydrate, and 
25.8% protein (12.6 kJ/g) (The central animal house of the 
National Research Center, Dokki, Giza, Egypt). Thirty-five 
male rats were divided into five groups (7 rats each); Group 
I: the healthy control group, group II: untreated rats with 
T1 STZ-induced diabetes, group III: BM-MSCs-treated 
rats with T1 STZ-induced diabetes, group IV: untreated 
rats with T2 HFD/STZ-induced diabetes, group V: BM-
MSCs-treated rats with T2 HFD/SZ-induced diabetes. Rats 
received (2 × 106 cells/rat) BM-MSCs in 0.2 ml DMEM by 
intravenous (i.v.) injection.

T1D (STZ-induced)  at day one of the experiment, all rats 
fasted for 6–8  h prior to STZ (Sigma-Aldrich, St. Louis, 
MO, USA) administration (water was provided ad libitum). 
32.5 mg of STZ was dissolved in 50 mM sodium citrate buf-
fer (enzyme grade; Fisher) (pH 4.5) to a final concentration 
of 32.5  mg/ml. Rats were intravenously (i.v.) injected by 
the prepared STZ solution at 65 mg/kg (2.0 ml/kg) accord-
ing to Furman (2015). Rats were administrated normal 
food and 10% sucrose water, only, on the first day of STZ 
administration.

T2D (HFD/STZ-induced)  Animals were weighed accurately 
before HFD administration. Rats were placed on HFD 
(D12492 diet), 60 kcal% Fat (Research Diets, Inc. NJ, USA) 
for two weeks. On the 15th day, rats fasted for 6–8 h prior 

to STZ treatment (water was provided ad libitum). STZ was 
prepared as mentioned previously, and rats were i.v. injected 
at 40 mg/kg according to Furman (2015).

The control group was injected with citrate buffer only. 
On the 7th day after STZ administration, all rats fasted for 
6–8 h and a blood sample from the tail vein was collected 
for measuring fasting blood glucose (FBG) levels. Rats with 
FBG levels > 150 mg/dl in comparison to the control group 
were considered diabetic.

Biochemical parameters in serum

FBG was measured using a glucose assay Colorimetric/
Fluorometric kit (Abcam, MA, USA, cat lot.: ab65333) 
(El-Hadad et al. 2022; Farid et al. 2022a, b). Insulin was 
assessed using a rat insulin ELISA kit (CUSABIO, Texas, 
USA, cat lot: CSB-E05070r) (Farid et al. 2022a, b). C- reac-
tive protein (CRP) was evaluated with the Rat CRP ELISA 
kits (Abcam, UK, cat lot: ab256398).

Pancreatic homogenate preparation and cytokine 
assay

Dissected pancreatic segments (a half gram) were homoge-
nized in 4.5 ml of cold Tris-HCl buffer (10 mmol, pH = 7.4); 
followed by centrifugation for 10 min at 4 oC at 3000 rpm. 
Protein content was determined, in the supernatant, using 
standard Lowry’s protocol (Waterborg and Matthews 1984). 
Tissue interleukin (IL)-1 beta (β), tumor necrosis factor 
(TNF) alpha (α) and IL-6 were determined using rat IL-1β 
(E-EL-R0012), TNF-α (Biolegend 438,206) and IL-6 (Bio-
vision K4145-100) ELISA Kits (Hegazy et al. 2015; El-
Hadad et al. 2022; Shatter et al. 2022; Farid et al. 2023).

Histological study

Pancreatic segments from the different experimental groups 
were fixed in 10% buffered formalin. The specimens were 
carefully cleaned in tap water before being dehydrated in 
gradient ethanol solutions. Following that, the specimens 
were cleared in xylene and embedded in paraffin wax at 
55 °C. Five sections of 4 μm thickness were cut from each 
segment. Sections were mounted for haematoxylin and 
eosin (H&E) staining for routine histopathological exami-
nation. Steps for sections’ preparation for histopathological 
examination were performed according to Madbouly et al. 
(2021a, b) and Farid et al. (2022c).
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in groups II or IV, diabetes induction significantly decreased 
animals’ body weights (177.54 and 201.61 g, respectively). 
No significant difference was noticed between body weights 
of group V on the 1st and 42nd day (203.43 and 201.63 g, 
respectively). On the other hand, the body weight of group 
V (201.63 g) was significantly higher than that of group IV 
(187.64 g) on the 42nd day. No significant difference was 
noticed between body weights of groups II and III on the 
42nd day (168.24 and 172.44 g, respectively).

Effect of BM-MSCs transplantation on FBG levels 
after diabetes induction

Significantly elevated FBG levels were developed in groups 
II and IV (490.68 ± 0.53 and 420.45 ± 0.76 mg/dl, respec-
tively) when compared to control group I (99.04 ± 0.11 mg/
dl). Group II showed no significant differences in FBG 
levels on the 7th and 42nd day (490.68 ± 0.53 and 
500.63 ± 0.13 mg/dl, respectively). While group IV showed 
an increase in FBG levels on the 42nd day (504.36 ± 0.74) 
when compared to that on the 7th day (420.45 ± 0.76 mg/
dl). A significant reduction in FBG levels were recorded in 
BM-MSCs treated groups III and V (142.87 and 136.47 mg/
dl, respectively) on the 42nd day when compared to that of 
the 7th day (Table 1).

Effect of BM-MSCs transplantation on insulin levels 
after diabetes induction

During T1D induction in group II, a significant reduction 
of the insulin levels (1.9 ± 0.02 ng/ml) was recorded on the 
7th day, this reduction continued to reach 1.3 ng/ml on the 
42nd day of the experiment (Table 2). On the other hand, 
T2D in group IV showed a non-significant difference in 
insulin level during all the experimental periods (4.5 ± 0.41 
and 4.6 ± 0.56 ng/ml) at 7th to 42nd day, respectively. A 
significant elevation in insulin level (3.6 ± 1.10 ng/ml) was 
recorded in group III after BM-MSCs transplantation on the 
42nd day when compared to that of the 7th day (1.50 ± 0.21 
ng/ml). On day 42, group V showed a significant upregula-
tion of insulin to a level comparable to that of the healthy 
control group (group V: 5.1 ± 1.44 Vs group I: 5.6 ± 0.16 
ng/m) (Table 2).

Effect of BM-MSCs transplantation on pancreatic 
pro-inflammatory cytokines and serum CRP during 
treatment of T1 and T2D

Induction of T1D and T2D in groups II and IV developed a 
significant elevation of pancreatic pro-inflammatory cyto-
kines (IL-1β, TNF-α and IL-6) when compared to healthy 
control group I. IL-1β serum level was highly elevated in 

Immunohistochemical parameters

For immunohistochemical localization of insulin and 
NF-кB, 4  μm paraffin pancreatic sections were deparaf-
finized in xylene, then rehydrated by graded alcohols and 
washed using PBS. Endogenous peroxidase activity was 
blocked by 3% hydrogen peroxide in methanol followed 
by washing with PBS. Sections were blocked in 5% bovine 
serum albumin (BSA) for an hour. Primary antibody anti- 
NF-кB p65 antibody (phospho S536) (1:500, Abcam, MA, 
USA, cat lot.: ab86299) or monoclonal anti-insulin antibody 
(Sigma-Aldrich, cat lot.: I2018) were applied to pancre-
atic sections. Sections were incubated for 30 min and then 
washed with PBS. After washing, the sections were incu-
bated with secondary antibody (HRP conjugated rabbit anti-
rat IgG, ab6734) for an hour. The reaction was visualized 
by chromogen (3, 3-diaminobenzidine, DAB) until brown 
color appears. Sections were washed and counterstained 
with Mayer’s haematoxylin.

Statistical analysis  Data were evaluated with the One Way 
ANOVA test using IBM SPSS Statistics for Windows, ver-
sion 22.0 (IBM Corp., Armonk, N.Y., USA). Results were 
expressed as mean ± SD. Values were considered significant 
at p < 0.05.

Results

Characterization and pancreatic homing of BM-
MSCs

After in vitro culture, for 14 days, BM-MSCs demonstrated 
fibroblast-like morphology and were adhered to the flask 
surface (Fig. 1a). FACs analysis showed a high expression 
of CD90 and CD105 and negative staining for CD34 and 
CD45 (Fig.  1b) markers indicating that the cultured cells 
were of mesenchymal origin as well as of high purity with-
out hematopoietic lineage cell contamination. Immunofluo-
rescence staining showed labeled BM-MSCs in pancreatic 
islets of group III (Fig. 1c) and group V (Fig. 1d).

Body weight

Body weights of different experimental groups were pre-
sented in Fig. 1e. Body weight of the healthy control group I 
was significantly elevated, directly, with experimental time 
(190.25, 201.43 and 415.43 g on the 1st, 7th and 42nd day, 
respectively). Groups IV and V showed a significant increase 
in body weights after two weeks of HFD administration 
(211.53 and 209.53 g, respectively). On the 7th day, either 
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Fig. 1  Characterization and pancreatic homing of bone marrow mesen-
chymal stem cells (BM-MSCs). a Photomicrographs of cultured BM-
MSCs showing fibroblast-like stem cells, b fluorescence-activated cell 
sorting (FACS) of BM-MSCs: the cells demonstrated the expected 
phenotype for rat MSCs (positive expression of CD105 and CD90 and 
negative expression of CD34 and CD45), c and d fluorescent micro-
scopic image of sections in pancreas of rat showing the red fluores-
cence of BM-MSCs labeled with PKH26 two weeks after implantation 
in BM-MSCs treated group III with T1 Streptozotocin (STZ)-induced 

diabetes and group IV with T2 high-fat diet (HFD)/STZ-induced dia-
betes, respectively (X200), e body weights of the different experimen-
tal groups with respect to experimental time; results were expressed as 
mean ± standard deviation (SD). Group I: healthy control group, group 
II: untreated T1 STZ-induced diabetic rats, group III: MSCs treated T1 
STZ-induced diabetic rats, group IV: untreated T2 HFD-STZ induced 
diabetic rats, group V: MSCs treated T2 HFD-STZ induced diabetic 
rats
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BM-MSCs transplantation alleviated 
histopathological parameters of the pancreas in T1 
and T2D

Healthy control (group I) showed average-sized pale-
staining islets of Langerhans with predominating β-cells 
with pale blue cytoplasm in the center and less frequently 
alpha cells with pink cytoplasm in the periphery with 
average intervening blood capillaries, average ducts, and 
average exocrine areas (Fig.  2a, b). Pancreatic section of 
T1 STZ-induced diabetes (group II) recorded few small-
sized hypocellular pale-staining islets of Langerhans with 
scattered apoptotic β-cells and markedly edematous cyto-
plasm. Few alpha cells in the periphery dilated intervening 
blood capillaries, dilated ducts, and average exocrine areas 
were noticed in group II (Fig. 2c, d). Pancreatic sections in 
BM-MSCs treated T1D (Group III), showed average-sized 
normocellular islets of Langerhans with few scattered apop-
totic β-cells, few alpha cells in the periphery, mildly dilated 
intervening blood capillaries, and average exocrine areas 
(Fig. 2e, f). In STZ/HFD-induced T2D (group IV), a hypo-
cellular edematous islet with scattered apoptotic β-cells and 
dilated intervening blood capillaries, and average exocrine 
areas were observed (Fig. 2g, h). STZ/HFD diabetic group 
V, BM-MSCs treated rats, showed average-sized normocel-
lular islets of Langerhans with scattered apoptotic β-cells 
and others with vacuolated cytoplasm, mildly dilated 

group II (981.63 pg/mg) more than in group IV (567.69 pg/
mg). On the contrary, levels of TNF-α and IL-6 (883.47 
and 756.39 pg/mg, respectively) were significantly ele-
vated in untreated T2D group IV than those of untreated 
T1D group II (548.26 and 579.21 pg/mg) for TNF-α and 
IL-6, respectively). A significant reduction in cytokine 
levels was recorded in BM-MSCs treated groups III and 
V. In group V Level of IL-1β, was non-significantly dif-
ferent (245.23 ± 0.99 pg/mg) from that of healthy control 
group I (205.87 ± 0.56 pg/mg) while the levels of TNF-α 
and IL-6 were significantly reduced (648.66 ± 0.68 and 
440.01 ± 0.21 pg/mg, respectively) when compared to T2D 
group IV (883.47 ± 0.47 and 756.39 ± 0.67 pg/mg, respec-
tively). However, their levels remained significantly ele-
vated when compared to healthy control group I. In group 
III, the IL-6 level was significantly decreased (220.45 ± 0.56 
pg/mg) when compared to group II (579.21 ± 1.45 pg/mg), 
to reach a comparable level with the group I (199.56 ± 2.10 
pg/mg). Also, we have noticed the same trend of CRP 
level, in T1D and T2D, groups II and IV (34.11 ± 0.43 and 
24.77 ± 0.36 mg/ml, respectively) was significantly elevated 
in comparison to healthy control group I (4.21 ± 0.11 mg/
ml). BM-MSCs transplantation significantly decreased the 
CRP levels in groups III and V (5.40 ± 0.77  mg/ml and 
4.32 ± 0.41 mg/ml, respectively) (Table 2).

Table 1  Levels of fasting blood glucose (FBG) and insulin before (7th experimental day) and after (42nd experimental day) bone marrow mesen-
chymal stem cells (BM-MSCs) transplantation in different experimental groups
Parameters Group I Group II Group III Group IV Group V
FBG (mg/dl) 7th day 99.04 ± 0.11aA 490.68 ± 0.53bA 485.22 ± 1.12bB 420.45 ± 0.76bA 510.14 ± 0.47cB

42nd day 108.42 ± 0.11aA 500.63 ± 0.13cA 142.87 ± 0.73bA 504.36 ± 0.74cB 136.47 ± 0.63bA

Insulin (ng/ml) 7th day 5.5 ± 0.0dA 1.9 ± 0.02bA 1.5 ± 0.21aA 4.5 ± 0.41cA 4.2 ± 0.40cA

42nd day 5.6 ± 0.16dA 1.3 ± 0.02aA 3.6 ± 1.10bB 4.6 ± 0.56cA 5.1 ± 1.44dB

For each measured parameter, in each row, the mean values marked with the same superscript small letter were similar (insignificant, p > 0.05) 
whereas those with different ones were significantly differed (p < 0.05). In each column, the mean values marked with the same superscript 
capital letter were similar (insignificant, p > 0.05) whereas those with different ones were significantly differed (p < 0.05). Group I: healthy 
control group, group II: untreated T1 STZ-induced diabetic rats, group III: MSCs treated T1 STZ-induced diabetic rats, group IV: untreated T2 
HFD-STZ induced diabetic rats, group V: MSCs treated T2 HFD-STZ induced diabetic rats

Table 2  Levels of pancreatic cytokines (IL-1β, TNF-α and IL-6) and C-reactive protein (CRP) after bone marrow mesenchymal stem cells (BM-
MSCs) transplantation (42nd experimental day)
Parameters Group I Group II Group III Group IV Group V
IL-1β (pg/mg) 205.87 ± 0.56a 981.63 ± 0.12c 676.66 ± 1.01b 567.69 ± 2.16b 245.23 ± 0.99a

TNF-α (pg/mg) 312.88 ± 1.14a 548.26 ± 0.87b 425.00 ± 0.43b 883.47 ± 0.47d 648.66 ± 0.68c

IL-6 (pg/mg) 199.56 ± 2.10a 579.21 ± 1.45b 220.45 ± 0.56a 756.39 ± 0.67c 440.01 ± 0.21b

CRP (mg/ml) 4.21 ± 0.11a 34.11 ± 0.43c 5.40 ± 0.77a 24.77 ± 0.36b 4.32 ± 0.41a

For each measured parameter, in each row, the mean values marked with the same superscript small letter were similar (insignificant, p > 0.05) 
whereas those with different ones were significantly differed (p < 0.05). In each column, the mean values marked with the same superscript 
capital letter were similar (insignificant, p > 0.05) whereas those with different ones were significantly differed (p < 0.05). Group I: healthy 
control group, group II: untreated T1 STZ-induced diabetic rats, group III: MSCs treated T1 STZ-induced diabetic rats, group IV: untreated T2 
HFD-STZ induced diabetic rats, group V: MSCs treated T2 HFD-STZ induced diabetic rats
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Fig. 2  Rat pancreatic sections stained with H&E showing a average-
sized pale-staining islets of Langerhans (thick arrow), average ducts 
(thin arrows), and average exocrine areas (dashed arrow) (healthy 
control group I, X 200), b high power view predominating beta cells 
with pale blue cytoplasm (thick arrows) and less frequently alpha cells 
with pink cytoplasm in the periphery (thin arrow), average interven-
ing blood capillaries (arrowhead), and average exocrine areas (dashed 
arrow) (healthy control group I, X 400), c few small-sized hypocel-
lular pale staining islets of Langerhans (thick arrow), average ducts 
(thin arrow), and average exocrine areas (dashed arrow) (untreated 
group II with T1 Streptozotocin (STZ)-induced diabetes, X200), d 
small-sized hypocellular islets with scattered apoptotic beta cells 
(thick arrow) and markedly edematous cytoplasm (dashed arrow), and 
mildly dilated intervening blood capillaries (thin arrow) (untreated 
group II with T1 STZ-induced diabetes, X400), e average-sized nor-
mocellular islets (thick arrow), average ducts (dashed arrow), and 
average exocrine areas (thin arrow) (bone marrow mesenchymal stem 
cells (BM-MSCs)-treated group III with T1 STZ-induced diabetes, 

X200), f average-sized normocellular islets with average beta cells 
(black arrow), scattered large cells with bright eosinophilic cytoplasm 
(dashed arrow), and average intervening blood capillaries (thin arrow) 
(BM-MSCs-treated group III with T1 STZ-induced diabetes, X400), 
g small-sized islets of Langerhans (thick arrow), average ducts (thin 
arrow), and average exocrine areas (dashed arrow) (untreated group 
IV with T2 high-fat diet (HFD)/STZ-induced diabetes, X200), h small-
sized hypocellular islets with few beta cells with vacuolated cyto-
plasm (thick arrow), and mildly dilated intervening blood capillaries 
(dashed arrow) (untreated group IV with T2 HFD/STZ-induced diabe-
tes, X400), i average-sized normocellular islets of Langerhans (thick 
arrow), average ducts (dashed arrow), and average exocrine areas (thin 
arrow) (BM-MSCs-treated group V with T2 HFD/STZ-induced dia-
betes, X200), j average-sized normocellular islet with scattered beta 
cells with vacuolated cytoplasm (thick arrow), and average interven-
ing blood capillaries (thin arrow) (BM-MSCs-treated group V with T2 
HFD/STZ-induced diabetes, X400)
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Fig. 3  Immunohistochemical staining of rat pancreatic sections show-
ing a marked cytoplasmic reactivity (+++) (thin arrow) to insulin anti-
bodies (in more than 90% of Islet cells) with few peripheral negative 
cells (thick arrow) (healthy control group I, X400), b negative cytoplas-
mic reactivity for nuclear factor-kappa B (NF-кB) (0%) in Islet cells 
(arrows) (healthy control group I; X400), c mild cytoplasmic reactiv-
ity (+) to insulin antibodies (in less than 20% of Islet cells) (arrows) 
(untreated group II with T1 Streptozotocin (STZ)-induced diabetes, 
X400), d cytoplasmic reactivity for NF-кB (++) in Islet cells (arrow) 
(untreated group II with T1 STZ-induced diabetes, X400), e marked 
cytoplasmic reactivity (+++) (arrows) to insulin antibodies (in more 
than 90% of Islet cells) with few peripheral negative cells (thin arrow) 
(bone marrow mesenchymal stem cells (BM-MSCs)-treated group III 

with T1 STZ-induced diabetes, X400), f negative cytoplasmic reac-
tivity for NF-кB (0) in Islet cells (arrow) (BM-MSCs-treated group 
III with T1 STZ-induced diabetes, X200), g mild cytoplasmic reactiv-
ity (+) to insulin antibodies (in less than 20% of Islet cells) (arrows) 
(untreated group IV with T2 high-fat diet (HFD)/STZ-induced diabe-
tes, X400), h positive cytoplasmic reactivity for NF-кB (+) in Islet 
cells (arrow) (untreated group IV with T2 HFD/STZ-induced diabetes, 
X400), i moderate cytoplasmic reactivity (++) (thick arrows) to insu-
lin antibodies (in more than 90% of Islet cells) with few peripheral 
negative cells (thin arrow) (BM-MSCs-treated group V with T2 HFD/
STZ-induced diabetes, X400), j mild cytoplasmic reactivity for NF-кB 
(+) in Islet cells (arrows) (BM-MSCs-treated group V with T2 HFD/
STZ-induced diabetes, X400)
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cells in these disorders (Farid et al. 2020; Madbouly et al. 
2021b). Therefore, the present study aimed to compare the 
pancreatic pro-inflammatory cytokine profile in T1 and T2D 
in male Sprague Dawley rats after BM-MSCs transplanta-
tion. Also, the effect of BM-MSCs on pancreatic NF-κB 
was evaluated through immunohistochemical methods. 
The MSCs localization in the pancreas was demonstrated 
through histological methods.

In this study, BM-MSCs were isolated and characterized 
by FACs analysis, where cells have fibroblast-like morphol-
ogy and were adhered to the flask surface. FACs analysis 
showed a high expression of CD90 and CD105 and nega-
tive staining for CD34 and CD45 markers indicating that 
the cultured cells were of mesenchymal origin as well as 
of high purity without haematopoietic lineage cell contami-
nation. After DM induction, rats received (2 × 106 cells/rat) 
MSCs in 0.2 ml DMEM by i.v. injection. The dose of MSCs 
is an important determinant of glucose-insulin homeostasis 
outcome. The doses vary from 2 to 10 million cells either as 
a single injection (Azab et al. 2011) or as multiple injections 
(Banerjee et al. 2005) have been used in animal experiments.

In this study, we observed transplanted labeled BM-
MSCs in the pancreas of the recipient rats which indi-
cated the selective homing of BM-MSCs to the pancreas. 
The homing ability of BM-MSCs means their ability to 
migrate into injured sites, and their capacity to differenti-
ate into local components of the injured sites and the abil-
ity to secrete chemokines, cytokines, and growth factors 
that help in tissue regeneration (Fu et al. 2019; Kang et al. 
2012) suggested the role of inflammatory cytokines such as 
transforming growth factor (TGF)-1β, IL-1β, and TNF-α in 
elevation of the production of matrix metalloproteinases in 
MSCs, resulting in a substantial stimulation of chemotactic 
migration across the extracellular environment to reach the 
damaged tissue. The role of chemokines and growth fac-
tors as migratory cues in MSC trafficking to the damaged 
region have been proven (Karp and Teo 2009). This ability 
of implanted MSCs to seek out the site of tissue damage has 
been demonstrated in bone or cartilage fractures (Murphy et 
al. 2003), myocardial infarction (Barbash et al. 2003), and 
ischemic cerebral injury (Ji et al. 2004; Sordi et al. 2005) 
provided evidence that BM-MSCs are attracted by pancre-
atic islets in vitro and in vivo, and confirmed that CXCL12 
and its ligand CXCR4 play an important role in homing. 
Intravenous delivery of BM-MSCs, which was applied in 
the present work, was found to be efficient for their specific 
migration to the site of injury (Ji et al. 2004; Leibacher and 
Henschler 2016).

Several studies have observed FBG and serum insulin 
levels as biomarkers of STZ’s diabetogenic action (Ahangar-
pour et al. 2018). In this study, DM induction significantly 
increased FBG levels and reduced insulin levels in the serum 
of both T1 and T2 diabetic rats. The elevated blood glucose 

intervening blood capillaries, average ducts, and average 
exocrine areas (Fig. 2i, j).

Effect of BM-MSCs transplantation on pancreatic 
insulin and NF-кB in T1 and T2D

Marked cytoplasmic reactivity (+++) to insulin antibodies 
in more than 90% of the islet cells was observed in pan-
creatic sections of control group I (Fig. 3a) and BM-MSCs 
treated groups III (T1D, Fig. 3e) and V (T2D, Fig. 3i). On 
the other hand, mild cytoplasmic reactivity (+) to insulin 
antibodies in less than 20% of Islet cells was noticed in T1 
and T2-induced diabetic groups II and IV (Fig. 3c and g, 
respectively). Negative cytoplasmic reactivity for NF-кB 
was observed in pancreatic sections of control group I 
and BM-MSCs treated groups III and V (Fig. 3b, f and i). 
Marked cytoplasmic reactivity for NF-кB was observed in 
pancreatic islet cells of diabetic groups II and IV (Fig. 3d 
and h).

Discussion

Traditional insulin therapy helps to manage blood glucose 
levels in diabetic patients. However, it has been shown to 
be ineffective over time causing loss of glycaemic control 
(Pasquel et al. 2021). In addition, due to a lack of pancreatic 
cells, cell rejection, the use of immunosuppressive medi-
cations, and other factors; islet transplantation therapy is 
limited (Hussain and Theise 2004). Because of their low 
immunogenic potential, immune-privileged, and immuno-
modulating features, SCs therapies could help overcome 
these restrictions (Petrus-Reurer et al. 2021). SCs can also 
be genetically modified, allowing the desired MHC com-
plex to be injected to reduce the risk of immunological 
rejection (Kumar et al. 2008). MSCs have also been linked 
to the inhibition of T-cell proliferation, the formation of 
dendritic cells, and the proliferation of B-cells (Weiss and 
Dahlke 2019).

Multipotent MSCs, are self-regenerating cells found in 
nearly all postnatal organs and tissues (Fitzsimmons et al. 
2018). BM-MSCs are multipotent cells that can develop into 
fully functioning insulin-producing cells; they represent a 
prospective source of insulin-producing cells (Gabr et al. 
2014). Successful SCs therapy can eradicate diabetes etiol-
ogy and improve the pancreas regeneration (Bhartiya 2016). 
Various immunomodulatory effects, with various cytokine 
secretion patterns have been observed following the deliv-
ery of MSCs in earlier investigations (Yin et al. 2019), but 
the results are frequently conflicting and a complete pic-
ture is still insufficient. Moreover, cytokines are a signifi-
cant issue of exploration for understanding a lot of diseases 
(Farid et al. 2013), disorders and types of involved immune 
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The authors also suggested that IL-6 reactivity may be used 
to predict chronic progression. Ellingsgaard et al. (2008) 
indicated that, in addition to a systemic elevation in IL-6, 
local islet IL-6 levels were also enhanced in T2D, implying 
that IL-6 may have a function in the pancreatic islets in this 
illness. Furthermore, the elevation of local islet IL-6, found 
to accelerate cell apoptosis. In the present work, DM induc-
tion significantly elevated the inflammatory cytokines (IL-1 
β, TNF-α and IL-6) in both T1 and T2 diabetic groups when 
compared to the control group. Many studies have discussed 
the role of inflammatory markers in the progression of both 
types of DM. Where an elevation in CRP and IL-1β levels 
in patients with T1 induction showed hypocellular edema-
tous islet with scattered apoptotic β-cells diabetes has been 
reported. Daryabor (2020) reported that T2 diabetic patients 
have higher levels of IL-6 and TNF-α than healthy controls. 
Our results were in agreement with these previous studies; 
where the levels of CRP and pancreatic IL-1β were higher 
in T1 rather than those of T2 diabetic rats. On the contrary, 
pancreatic TNF-α and IL-6 levels exhibited an opposite pat-
tern such that their levels were higher in T2 rather than in 
T1 diabetic rats.

One of the predominant components of MSCs is their 
immunomodulatory functions in response to the local 
environment (Petryk and Shevchenko 2020). Numerous 
mediators, including TGF- β, indolamine 2, 3-dioxygenase, 
inducible nitric oxide synthase (iNOS), and prostaglandin 
E2 are thought to be responsible for MSCs’ immunomodu-
latory function. BM-MSCs produce numerous regulatory 
cytokines that have immunomodulatory activities on T 
cells, B cells, dendritic cells, and natural killer cells (Hao 
et al. 2013). In the current work, BM-MSCs transplanta-
tion in T1 diabetic rats, decreased pancreatic IL-1β level 
compared to that of the diabetic untreated group; while its 
level remained higher than that of the healthy control group. 
BM-MSCs treated T2 diabetic group, also, showed a signifi-
cant downregulation of IL-1β level, compared to untreated 
diabetic group IV but with non-significant difference from 
that of healthy control group I. At the same time, the levels 
of TNF-α, IL-6 and CRP in BM-MSCs treated T1 diabetic 
group III dropped significantly to be comparable to those 
of normal control group I. While, in BM-MSCs treated T2 
diabetic group V, the levels of TNF-α and IL-6 were reduced 
but still significantly higher than those of healthy control 
group I.

The anti-inflammatory efficacy of MSCs was found 
to be via different mechanisms involving both innate and 
adaptive immune components; one mechanism involves 
blocking the complement-induced proliferation of periph-
eral blood mononuclear cells. Another mechanism involves 
the regulation of macrophage activity in the healing tissue 
area. When MSCs interact with macrophages, they boost 
their polarization from pro-inflammatory M1 phenotype 

level was suggested to stimulate free radical production, 
oxidative stress and lipid peroxidation (Tangvarasittichai 
2015). In the present data, BM-MSCs transplantation sig-
nificantly dropped FBG levels and upgraded insulin levels 
in both T1 and T2 diabetic rats on the 42nd day compared to 
their levels on the 7th day of the experimental period. The 
improvement of the β-cells mass and/or functions include 
fusion of BM-MSCs with islet cells or trans-differentiation 
of MSCs into β-cells. Yanai et al. (2013) showed that co-
transplantation of electrofused MSCs and islet cells in rats 
improved blood glucose profile due to bi-directional repro-
gramming of both β-cells and MSCs nuclei, thereby allow-
ing the insulin gene expression. Moreover, Khatri et al. 
(2020) suggested the proliferation of pancreatic β-cells and 
provided evidence for the effect of MSCs on the endocrine 
part of the pancreas.

In this study, the histopathological sections of the pan-
creas revealed a few small-sized hypocellular pale-staining 
islets of Langerhans with scattered apoptotic β-cells and 
markedly edematous cytoplasm in T1 induced diabetic 
rats. In addition, T2 diabetic induction showed hypocel-
lular edematous islet with scattered apoptotic β-cells and 
dilated intervening blood capillaries, and average exocrine 
areas. Upon BM-MSCs transplantation, the pancreas of dia-
betic rats treated with BM-MSCs showed histopathological 
improvement in parallel with the biochemical enhancement 
where average-sized normocellular islets of Langerhans 
with few scattered apoptotic β-cells were noticed. Fur-
thermore, a marked cytoplasmic reactivity to anti-insulin 
antibodies was evidenced in both MSCs treated T1 and T2 
diabetic rats; with negative or moderate cytoplasmic reac-
tivity for NF-кB. The mechanism of BM-MSCs in repairing 
islets of Langerhans and regeneration of resident β-cells was 
discussed in some studies as it was suggested that these cells 
are able to migrate and settle in the damaged tissues after the 
systemic intravenous transfer (Anzalone et al. 2010).

Previous studies hypothesized the activation of a final 
common pathway involving IL-1β, NF-κB, and Fas in T1 
and T2D, in spite of different origins. As in T1D, invad-
ing immune cells release cytokines such as IL-1β, TNF-α, 
and IFN-γ. IL-1β and/or TNF-α with IFN-γ cause apoptosis 
in β-cells by activating the transcription factors NF-кB and 
STAT-1, which induce NO production and β-cells apopto-
sis (Ortis et al. 2010). While in T2D, β-cells themselves 
release IL-1β in response to exposure to high glucose lev-
els, which attracts macrophages that serve as an additional 
source of IL-1β and other cytokines, contributing to β-cell 
failure (Zhao et al. 2014). IL-6 was found to play a role 
in the inflammatory response linked to insulin disturbance. 
Hundhausen et al. (2016) demonstrated a link between IL-6 
and T cell migration; increasing the probability that T cell 
responses to IL-6, in T1D, contributed to disease pathogene-
sis by influencing T cell homing to foci of islet inflammation. 
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