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Abstract
Microbial exopolysaccharides (EPS) provide a broad range of applications. Thus, there is an increasing interest in the pro-
duction, characterization, and use of EPS derived from various microorganisms. Extremophile polysaccharides have unique 
properties and applications due to its unique structures. The importance of exopolysaccharides synthesized by a new bacte-
rial strain, Alkalibacillus sp. w3, was highlighted in this study. Alkalibacillus sp. w3, a haloalkalitolerant firmicute that was 
recovered from a salt lake, was optimized for EPS production, and its biological activities were studied. Exopolysaccharide 
synthesis was observed in Horikoshi I broth medium. The optimal culture conditions for achieving the highest exopolysac-
charide production were a 7-day incubation period, pH 10, and 250 g/L of NaCl. The most effective carbon and nitrogen 
sources for EPS production were glucose and a combination of yeast extract and peptone. Additionally, Plackett-statistical 
Burman’s design showed that all factors tested had a favorable impact, with glucose having the greatest significance on the 
production of EPS. The model’s best predictions for culture conditions resulted in a two-fold improvement in EPS production 
compared to the original yield before optimization. The recovered EPS contained 65.13% carbohydrates, 30.89% proteins, 
and 3.98% lipids. Moreover, EPS produced by Alkalibacillus sp. w3 demonstrated anticancer activity against hepatocellular 
carcinoma (HepG2) and human colon carcinoma (HCT-116) cell lines, with IC50 values as low as 11.8 and 15.5 µg/mL, 
respectively, besides antibacterial activity against various Gram-positive, Gram-negative bacteria, and yeast. Based on these 
results, EPS made by Alkalibacillus sp. w3 has many useful properties, which make it suitable for use in the medical field.
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Introduction

Extracellular polymeric substances (EPSs) are high molec-
ular weight polymers composed mainly of carbohydrate 
monomers and known as exopolysaccharide and the same 
is used. The EPS secreted extracellularly by various micro-
organisms. However, other secreted macromolecules like 
proteins, lipids, and nucleic acids might also be present 
to give its heterogeneous structure. These EPSs are either 

excreted loosely into the environment or attached to the cell 
surface. EPSs serve in various roles, improving cell integrity 
and helping in survival in harsh environments either with 
extreme physical stressors or nutrient scarcity (Ates 2015; 
Decho and Gutierrez 2017; Almutairi and Helal 2021). 
Moreover, they provide microenvironments around micro-
bial cells, where genes and metabolites are often exchanged, 
giving the bacteria the competency to survive in nutrient-
poor environments. In other words, the presence of such EPS 
guards against environmental changes such as temperature 
and salinity fluctuations, as well as possible predators (Nich-
ols et al. 2005; Squillaci et al. 2016; Rana and Upadhyay 
2020) said that the functions of exopolysaccharides depend 
on the structure of the microorganism and where it lives. 
Capsular polysaccharides also contributes to vilrulance in 
pathogenic strains (Deng et al. 2010; Abdella et al. 2017; 
El-Wazzan et al. 2020).

Competent microorganisms that can survive in harsh envi-
ronmental conditions, such as high salinity and temperatures, 
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are referred to as an extremophile. Among these fascinating 
microbes, halophiles live in hypersaline ecosystems like soda 
lakes and coastal lagoons and are sources of several biomol-
ecules (Ventosa 2006; Naghoni et al. 2017). These biomol-
ecules can be produced by assisting these cells in surviving 
and shielding them from stress in harsh environments (Parada-
Pinilla et al. 2021). Extremophile EPS has drawn attention due 
to the rising industrial need for natural polymers (Poli et al. 
2010; Sahana and Rekha 2020).

Because of their biocompatibility and biodegradability, 
the macromolecules produced by halophilic bacteria have 
been used in biomedical and agro-industrial applications 
(Radchenkova et al. 2013; Corinaldesi et al. 2017). Addi-
tionally, they contribute significantly to health, owing to their 
antiviral, anticancer, and antibacterial capabilities (Yildiz and 
Karatas 2018; Rajoka et al. 2019). They are water soluble, 
edible, biocompatible, and biodegradable, which accounts 
for this (Ates 2015; Liang and Wang 2015; Hao et al. 2019; 
Riaz Rajoka et al. 2020).

The diverse microbes found in extreme environments hold 
exciting potential for the discovery of new polysaccharides. 
In a previous study, several haloalkaliphilic bacterial cultures 
were isolated from Al Hamra lake, Egypt (Arayes et al. 2021). 
These isolates were screened for EPS production. One of these 
bacteria, Alkalibacillus sp. w3, could produce exopolysaccha-
rides. To our knowledge, there are no reports on exopolysac-
charide production from the genus Alkalibacillus and this is 
the first report on the EPS production by Alkalibacillus sp. w3. 
It has been reported that EPS production is strongly dependent 
on the types of microbe and fermentation conditions (incuba-
tion time, agitation, pH, carbon or nitrogen source, mineral 
salts). Furthermore, the chemical composition of microbial 
EPS depends mainly on the composition of the production 
medium and several physical conditions provided throughout 
the fermentation process (Ju et al. 2022). Developing industrial 
fermentation, optimizing culture conditions, and designing 
media are critical. This research evaluated the EPS produc-
tion by the haloalkaliphilic Alkalibacillus sp. w3. Exopolysac-
charide production by Alkalibacillus sp. w3 was also enhanced 
by culture conditions and nutritional variables using a one-
variable temporal technique and Plackett-Burman statistical 
design. Ultimately, EPS compositional analyses and potential 
applications (against germs and cancer) were looked at.

Materials and methods

Growth medium and cultivation conditions

The haloalkaliphilic Alkalibacillus sp. w3 was isolated 
from Al Hamra lake (30° 23′ 21” North, 30° 20′ 45′′ East), 
El-Beheira Governorate, Egypt. Taxonomic identification 
was done by 16S rRNA and the sequence was deposited 

in GenBank with an accession number LC164826 (Arayes 
et al. 2021). The bacterial culture was maintained on modi-
fied Horikoshi I agar slants, at 4°C as a working culture, 
whereas for long-term preservation, 15% glycerol broth 
was stored at -70°C. The medium Horikoshi I consisted of 
glucose, 10 g; yeast extract, 5 g; peptone, 5 g; KH2PO4, 1; 
MgSO4.7H2O, 0.2 g, NaCl 150 g, and agar 20 g dissolved 
in 1 L distilled water (Horikoshi 1996), pH was adjusted to 
9 ± 0.2 with Na2CO3.

EPS production

To produce EPS, Alkalibacillus sp. w3 was first inoculated 
into a 250 mL Erlenmeyer flask having 50 mL of modified 
Horikoshi I as seed medium, pH was adjusted after autoclav-
ing to 9 ± 0.2 with sterile Na2CO3 and incubated in an orbital 
shaker at 150 rpm and 35 °C for 24 h. After cultivation, 2% 
(v/v) of a seed culture (OD600 of 1 ± 0.1) was inoculated 
into a 250 mL Erlenmeyer flask having 50 mL of modified 
Horikoshi I as a production medium and incubated at 35 °C 
for 7 days in both static and shaked conditions to assess the 
effect of agitation/aeration. Every 24 h, the optical density 
of both cultures was evaluated against a sterile uninoculated 
medium as a blank to check the growth. For the EPS produc-
tion evaluation, samples of fermentation broth were obtained 
at the same time intervals in clean and sterile glass tubes 
(Mehta et al. 2014).

Precipitation and quantification

Cell-free supernatant obtained by centrifugation at 15.294 
x g (12,000 rpm) for 15 min (Sigma 2-16KL, Germany) 
was mixed with three volumes of 95% chilled ethanol and 
stirred vigorously, and kept at 4 °C for 24 h to ensure com-
plete precipitation of EPS. Subsequently, the precipitates 
were collected by centrifugation at 15.294 x g (12,000 rpm) 
for 20 min. The formed pellet was dried at 60 °C overnight 
(Padmanaban et al. 2015). The recovered EPS was figured 
out gravimetrically by grams per 100 mL culture medium.

Effect of culture conditions on EPS Production

The nutrient components of the EPS production medium 
were selected by the onefactoratatime (OFAT) approach, 
based on the yield of the EPS in each formulation. The fac-
tors and their respective parameters that were optimized 
for EPS production were as follows; pH (6 to 11), differ-
ent carbon sources with concentrations of 10 g/L (glucose, 
fructose, maltose, galactose, mannitol, sucrose, and lactose), 
nitrogen sources adjusted to 0.89 g N/L nitrogen equivalent 
(peptone, beef extract, yeast extract, tryptone, casein, ammo-
nium chloride, sodium nitrate, ammonium nitrate, urea, and 
ammonium sulfate), and various NaCl concentration (5% 
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35%). All experiments were performed in triplicate, and the 
obtained results were expressed as computed mean ± stand-
ard error of triplicates.

Optimization of EPS production by Plackett‑Burman 
Design

One-factor-at-a-time approach of the optimization study 
showed that glucose and a mixture of peptone and yeast 
extract were the best carbon and nitrogen sources, respec-
tively, for maximum EPS yield. Therefore, it was selected 
for further optimization experiments. Plackett-Burman 
design was used as part of a multifactorial design strategy 
for screening the most influential variable (Plackett and Bur-
man 1946; Mabrouk et al. 2014; Peele et al. 2018). As shown 
in Table 1, the seven independent variables of the production 
medium were evaluated at two different levels, high (1) and 
low (-1). All trials were done in triplicate and the averages 
of the produced EPS were treated as the response. Table 2 
shows how the variable combinations were grouped using 
the Plackett-Burman design matrix. A multiple regression 
analysis was used to decide whether variables affected the 
EPS production, either favorably or adversely. The follow-
ing equation was used to calculate the main effect for each 
parameter before continuing.

R (H) = response parameter had the higher quantity of 
a given parameter, R(L) = response parameter had a lower 
quantity of a given component, and N = number of assem-
blies divided by two. The p-value of each variable was 
calculated for the determination of the significance level. 
The statistical handling of data obtained for the design of 
Plackett-Burman design has been achieved by Statistica 10 
software. The variables with confidence levels ≥ 85% were 
considered to significantly influence the EPS production 
(Abdel-Fattah 2007).

Analytical methods

Total carbohydrate determination

For total carbohydrate determination, the recovered EPS 
was resolubilized in distilled water and dialyzed against 
distilled water at 4 °C for 24 h using a 12-kDa cut-off 
dialysis membrane. Then, it was reprecipitated using 
chilled acetone and dried at 60 °C overnight (Vijaya-
baskar et al. 2011; Silva et al. 2020). The carbohydrate 
content was determined using the method proposed by 
Dubois et al. (1956). Briefly, 1 mL of dissolved EPS 
sample (1 mg) was mixed with 0.5 mL of 5% phenol and 
3.5 mL of concentrated sulfuric acid and incubated in a 
hot water bath for 15 min at 40 °C. The absorbance of 
the mixture was measured at 490 nm (Dubois et al. 1956; 
Patil and Shirsath 2015). The amount of carbohydrates 
was determined using a calibration curve with glucose 
as a standard.

Total protein determination

The protein content was determined by Lowry’s method 
(Lowry et al. 1951). A standard curve was prepared using 
bovine serum albumin as the standard (Biswas and Paul 2014).

Main effect =

∑

R(H) −
∑

R(L)

N

Table 1   Independent variables affecting the EPS production by Alka-
libacillus sp. w3

Variables Low level (-) Basal level (0) High level (+)

Glucose (g/L) 5 10 25
Yeast extract (g/L) 3 5 7
Peptone (g/L) 3 5 7
KH2PO4 (g/L) 0.5 1 1.5
NaCl (%, w/v) 10 15 20
MgSO4.7H2O (g/L) 0.1 0.2 0.3
Inoculum size % (mL) 1 2 3

Table 2   The Plackett-Burman 
experimental design matrix for 
seven factors

Trials Glucose Yeast extract KH2PO4 MgSO4 NaCl Peptone Inoculum size EPS (g/100 mL)

1 -1 -1 -1 1 1 1 -1 0.02
2 -1 -1 1 1 -1 -1 1 0
3 -1 1 -1 -1 1 -1 1 0.1
4 -1 1 1 -1 -1 1 -1 0.17
5 1 -1 -1 -1 -1 1 1 1.2
6 1 -1 1 -1 1 -1 -1 1.5
7 1 1 -1 1 -1 -1 -1 1
8 1 1 1 1 1 1 1 3
9 0 0 0 0 0 0 0 1.45
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Total lipid determination

To assess lipid content, the EPS sample (0.2 g) was extracted 
with a chloroform-methanol (2:1) mixture and agitated vig-
orously. The solvent phase was recovered by centrifuga-
tion at 12,745 x g (10,000 rpm) for 15 min. The extraction 
was repeated three times. The whole solvent was collected, 
evaporated, and dried under a vacuum. The lipid content was 
determined via gravimetric analysis following the method 
described by Makkar and Cameotra (1998).

Fourier transform infrared (FT‑IR)

Fourier transform infrared was used for the determination 
of functional groups of EPS. A Bruker Tensor 37 FT-IR 
(Germany) spectrometer with a mercury cadmium tellu-
ride detector chilled with liquid nitrogen was used for the 
analysis. 2 mg of the dried EPS sample was ground in about 
200 mg of spectra-grade KBr (sigma) and crushed into pel-
lets under about 5–6 tons cm− 2 pressure using a hydraulic 
press. The spectrum measurements were done in transmit-
tance mode in the range 4000 − 400 cm− 1. Using the OPUS 
3.1 (Bruker Optics) software, infrared (IR) spectra were 
analysed.

UV spectroscopy

The purified EPS was diluted in distilled water at a concen-
tration of 1 mg/mL and analyzed using a UV-visible spec-
trophotometer (Labda /Vis, Perkinelmer, Japan) for the UV 
spectrum (Sathiyanarayanan et al. 2014; Wang et al. 2015).

Functional characterization of EPS

Antimicrobial activity

The antimicrobial properties of EPS were evaluated using 
the agar well diffusion method against various human 
pathogenic bacteria, including Gram-positive (Strepto-
coccus pneumoniae RCMB 010010) and Gram-negative 
(Pseudomonas aeruginosa RCMB 010043, Escherichia 
coli RCMB 010052) and yeast (Candida albicans RCMB 
05036) (Verma et al. 2015; Viju et al. 2016). Bacterial 
indicators were cultivated in nutrient broth until the mid-
exponential phase, then 100 µl were evenly distributed on 
nutrient agar plates. Then, wells of 6 mm diameter were cut 
in the agar using a sterile cork borer and filled with 100 µL 
(1 mg/mL) pure EPS. The plates were incubated for 1 h at 
4 ℃ in a cooled incubator before being incubated for 24 h 
at 37 ℃ and 72 h at 28 ℃ for bacteria and yeast, respec-
tively. Subsequently, the inhibitory zone was measured in 
millimeters. Negative controls were employed using sterile 
deionized water.

Anticancer activity

To assess the anticancer activity, human colon cancer (HCT-
116 from ATCC CCL-247) and human hepatocellular car-
cinoma (HepG2 from ATCC HB-8065) cell lines were used 
to evaluate the antitumor potential of the EPS. The cells 
were grown as monolayers in a 96-well microtiter plate on a 
PRMI-1640 growth medium supplemented with 10% inac-
tivated fetal calf serum and 50 µg/mL gentamicin and incu-
bated for 24 h at 37 °C in a 5% CO2 humidified incubator. 
The cells grown were then washed with sterile phosphate 
buffer saline (0.01 M, pH 7.2) and then the cells were treated 
with 100 µL from different concentrations of the tested sam-
ple, Doxorubicin was used as a positive control. The number 
of surviving cells was determined by staining the cells with 
crystal violet (Mosmann 1983; Gangadevi and Muthumary 
2007) followed by cell lysing using 33% glacial acetic acid 
and reading the absorbance at 590 nm using a microplate 
reader (SunRise, TECAN, Inc, USA) after mixing. The per-
centage of viability is calculated. The 50% inhibitory con-
centration (IC50) was estimated from graphic plots.

Results

Alkalibacillus sp. w3 growth and EPS production

The production of EPS began after the cells had achieved 
OD600 ≈ 1. The growth and EPS production increased 
gradually and reached a maximum on the 6th day of incu-
bation when the cells were stationary. During the stationary 
phase, the polymer quantity remained constant under shak-
ing circumstances (Fig. 1). Whereas no further increase in 
EPS production was observed after this period. In contrast, 
there was a slow growth (OD600 = 0.67), and the EPS was 
not produced until the 7th day in static incubation (data not 
shown). These results prove that good growth of Alkaliba-
cillus sp. w3 is a determining factor for the high production 
of EPS.

Effect of environmental parameters on EPS 
production

Figure (2a) shows the impact of different pH values on 
growth and EPS production. The results showed that 
pH values less than 8 greatly hampered the growth 
rate of Alkalibacillus sp. w3 and completely inhibited 
the EPS production, while at pH values from 9 to 11, it 
showed the maximum growth (OD600 = 2) and EPS yield 
(14.3 g/L). This result suggests the alkaliphilic nature of 
the microbe, which confirms our previous work. Moreo-
ver, the results show that Alkalibacillus sp. w3 could 
develop and resist the NaCl concentration up to 25%, 
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but no growth was observed at 30% NaCl concentra-
tion (Fig. 2b). It is obvious that EPS was produced only 
above 5% NaCl and the highest yield (1.5 g EPS/100 
mL) was achieved with 15% and 20% NaCl. However, 
with more increased NaCl concentration, the lowest 
yield (0.97 g/100 mL) was obtained in media having 25% 
NaCl. Glucose was shown to be the most effective carbon 
source for EPS production with a yield of 1.53 g/100 
mL, followed by maltose and sucrose (Fig. 2c. As dem-
onstrated in Fig. 2d, organic nitrogen, which is easier to 
digest, stimulated microbial growth and EPS synthesis 
more than inorganic nitrogen did. The maximum yield 
of EPS was produced (1.53 g/100 mL) when peptone and 
yeast extract were combined.

Fig. 1   Exopolysaccharide production and growth pattern of Alkaliba-
cillus sp. w3 in Horikoshi I media in response to different incubation 
periods. Error bars represent SEM., n = 3

Fig. 2   Influence of changing environmental factors on the generation of EPS by Alkalibacillus sp. w3. a  pH values, b  NaCl concentrations, 
c carbon supply, and d nitrogen sources. Error bars represent the SEM, n = 3
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Statistical optimization and Verification of EPS 
Production

The influence of medium components on EPS production 
from Alkalibacillus sp. w3 was studied using the Plackett-
Burman design. Table 3 displays the main effect calcula-
tion, regression coefficient, p-value, and significance of each 
variable. All the variables that were examined in the current 
study had a positive effect on EPS production. A high coef-
ficient value writes down the importance of this variable in 
EPS production. Among all, glucose had the highest signifi-
cance for EPS production. Based on the values in Table 3, 
the other components had confidence scores of less than 85% 
and were considered insignificant.

The verification experiment was conducted in triplicate 
using this optimal medium composition (predicted optimum 
levels of the independent variables) and compared with the 
basal medium to confirm the results. Under the best con-
ditions, EPS yield increased from 1.45 to 3.0 g/L (2-fold) 
(Fig. 3b).

Chemical composition and characterization 
of purified EPS

The obtained EPS had a chemical composition of 65.13% 
carbohydrate, 30.89% protein, and 3.98% lipid. The FT-IR 
spectrum of the purified Alkalibacillus sp. w3 EPS (Fig. 4) 
showed distinctive functional groups such as large stretching 
in the 3439 cm− 1 area, matching the stretching vibration of 
the hydroxyl groups of polysaccharides and the (N-H) stretch 
of amines (Nanda and Raghavan 2014; Gugliandolo et al. 
2015). The absorption peak at 2972 cm− 1 is attributed to the 
asymmetrical C-H stretching vibration of the methyl group 
(Vasanthakumari et al. 2015). The peak around 1643 cm− 1 
indicates the C = O stretch of amides corresponding to amide 
C = O and C-N bending of protein and peptide amines that 
indicates the characteristic IR absorption of polysaccharides 
and this absorption peak concluded that there is an amino 
sugar (Qiang et al. 2013). The C = C stretching vibration at 
1643.27 cm− 1 might indicate a phenyl ring or the presence 
of conjugated carbonyl groups (Pal et al. 2015). The absorp-
tion peak at 1414.02 cm− 1 confirms the presence of O = H 

bend of esters that could be assigned to C = O of the COO 
and C-O bond from COO- (Helm 1995). The 621 cm− 1 band 
indicates the acetylenic C-H bend of alkynes (Zhang et al. 
2013; Nisha and Thangavel 2014).

Figure 5 shows the UV spectrum of EPS generated by 
Alkalibacillus sp. w3, which exhibits functional groups 
such as carboxyl, carbonyl, amine, and ester, with maximal 
absorption at 200–230 nm (Singh et al. 2011; Sathiyanaray-
anan et al. 2014). A modest peak was noticed at roughly 
280 nm, which is typical of π-π* transitions in aromatic or 
poly-aromatic compounds found in the most conjugated 
molecules, such as proteins (Sathiyanarayanan et al. 2014).

Functional characterization of EPS

Antimicrobial activity

EPS was assessed for antimicrobial activities against vari-
ous microorganisms. Figure 6 shows that at a dose of 1 mg/
mL, EPS was effective against Gram-positive and negative 
bacteria and yeast. Candida albicans has the largest inhibi-
tory zone (17.8 mm), followed by Streptococcus pneumoniae 
(13.8 mm).

Anticancer activities

As the concentration of EPS was increased, the proportion 
of viable cancer cells dropped (Fig. 7). EPS from Alkaliba-
cillus sp. w3 was evaluated for anticancer efficacy against 
hepatocellular carcinoma (HepG2) and human colon carci-
noma (HCT-116) cell lines (IC50 = 11.8 and 15.5 µg/mL, 
respectively).

Discussion

The results of the current study demonstrated a relationship 
between cell growth and EPS production by Alkalibacillus 
sp. w3. Besides, agitation was essential for the organism to 
grow and synthesize materials as efficiently as possible, this 
is because the fact that it maintains the oxygen diffusion rate 
and keeps the mixture homogenous, which influences mass 

Table 3   Statistical parameters 
for the various components 
included in the Plackett-Burman 
screening study

Variables Main Effect Coefficient Standard error p-value Significance %

Glucose 1.6025 0.80125 0.185417 0.144771 85.6
Peptone 0.4475 0.22375 0.185417 0.440531 56
NaCl 0.5625 0.28125 0.185417 0.371058 62.9
MgSO4.7H2O 0.2625 0.13125 0.185417 0.607852 39.3
Yeast extract 0.3875 0.19375 0.185417 0.486011 51.4
KH2PO4 0.5875 0.29375 0.185417 0.358448 64.2
Inoculum size 0.4025 0.20125 0.185417 0.473946 52.7
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transfer and, in turn, metabolite concentrations (Yadav et al. 
2014). Earlier studies reported that both biomass and curd-
lan formation by Pseudoalteromonas sp. and Paenibacillus 
polymyxa increased with an increase in the agitation speed to 
150 rpm (Al-Nahas 2011; Rafigh et al. 2014). The length of 
the fermentation period also affects how much EPS is made 
in the culture. Our results corroborate those of prior research 
showing that EPS was formed by Pseudoalteromonas sp. 
and Enterobacter cloacae MBB8 isolated from marine water 
throughout both the exponential and stationary phases (Al- 
Nahas 2011; Prakash Shyam et al. 2021). Additionally, EPS 
synthesis occurred during the stationary phase, which may 
have been caused by a lack of nutrients. Since it might affect 
cell growth, nutrient absorption, and EPS production, the 

initial pH of the culture medium is crucial (Manivasagan 
et al. 2013). Increasing the pH from 9 to 11 had no effect on 
production, suggesting that pH 9 is the bare minimum for 
EPS synthesis by Alkalibacillus sp. w3. Bacillus amylolique-
faciens, according to Rao et al. (2013), has an optimum pH 
of 9, whereas Vagococcus carniphilus, according to Joshi 
and Kanekar (2011), has an optimum pH of 10 to generate 
the maximum EPS value (560 mg/L) after 1 week.

Our results evidence the concept that EPS may aid micro-
organisms in surviving in harsh conditions such as very high 
salinity and low food availability by surrounding the cells 
and their proximity (Finore et al. 2014). Cultures of Plano-
coccus rifietoensis in a medium containing 8.8 to 11.8% 
NaCl demonstrated the largest increase in EPS synthesis 

Fig. 3   a The main effect of 
different variable concentrations 
on Alkalibacillus sp. w3 EPS 
production, b A verification 
experiment of applied Plackett-
Burman statistical design-
comparing EPS production on 
the basal (pre-optimized), and 
optimized medium
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(Qurashi and Sabri 2012). The growth and production of 
EPS by Pseudoalteromonas agarovorans were similarly 
stimulated by an increase in salt concentration from 10 to 
40 g/L (Choi et al. 2009).

Alkalibacillus needed a carbon source to produce EPS, 
and it was found that glucose was the best alternative. Sphin-
gomonas sp. (Xu et al. 2015) and Halomonas sp. also prefer 
this carbon source (Karuppiah et al. 2015).

The kind of nitrogen source, concentration, and avail-
ability impacted EPS production. According to our studies, 
the optimal nitrogen source is totally organic. This might 
be because certain essential amino acids cannot be synthe-
sized from inorganic nitrogen molecules, restricting growth 
and resulting in decreased EPS output (Abdul Razack et al. 

Fig. 4   FT-IR spectrum of EPS 
produced by Alkalibacillus sp. 
w3 grown on optimized medium

Fig. 5   UV-absorbance spectrum of Alkalibacillus sp. w3 EPS grown 
on optimized medium

Fig. 6   Antimicrobial activity 
of Alkalibacillus sp. w3 EPS 
using the agar well diffusion 
technique
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2013). According to our findings, peptone was essential 
for EPS production and this was in accordance with pre-
vious reports. For instance, peptone was the best nitrogen 
source for Pseudomonas fluorescens WR-1 EPS synthesis 
(Raza et al. 2012). Moreover, Bacillus amyloliquefaciens 
produced the most EPS (18.5 g/L) using yeast extract (Rao 
et al. 2013). Yeast extract has also been identified as the 
most effective source of gellan gum from Sphingomonas 
paucimobilis (Bajaj et al. 2006; Raghunandan et al. 2018). 
This is due to the higher concentrations of amino acids, vita-
mins, short peptides, and growth promoters.

Based on its chemical makeup, Alkalibacillus w3 EPS is 
mostly made up of carbohydrates (65.13%), followed by pro-
teins (30.89%) and lipid (3.98%).This is consistent with the 
EPS properties and classification reviewed by López-Ortega 
et al. (2021). In a similar report, Pal and Paul (2013) showed 
that the EPS made by the rhizobacterium Cupriavidus pauc-
ulus KPS 201 has protein, lipid plus uronic acid, and nucleic 
acid. Which supprprt the concept of the heterogeneity of the 
the EPS from microbibes.

In hepatocellular carcinoma (HepG2) and human colon 
cancer (HCT-116) cell lines, the pure EPS had IC50 val-
ues of 11.8 and 15.5 µg/mL, respectively. The anticancer 
properties of microbial EPS have been thoroughly recog-
nized and supported by research. For instance, Halomonas 
smyrnensis strain’s levan shown anticancer effectiveness 
in vitro against human lung (A549), liver (HepG2/C3A), 
gastric (AGS), and breast (MCF-7) cancer cell lines (Kazak 
Sarilmiser and Toksoy Oner 2014). Similarly, clavan, an 
L-fucose-containing polysaccharide, may help out in the 
inhibiting of lung carcinoma cell colonization (Patel and 
Prajapati 2013). Furthermore, Lactobacillus helveticus 
MB2-1 in vitro investigations revealed that c-EPS success-
fully reduced the proliferation of HepG2 and HT-29 cancer 

cells (Li et al. 2015); Lactobacillus kefri MSR101 demon-
strated good anticancer activity (44.1%) on colon cancer 
cells (HT-29) (Rajoka et al. 2019). In mice with hepatoma 
22 (H22) and Ehrlich ascites carcinoma, glucan generated by 
an isolated Chinese Rhizobium sp. demonstrated immuno-
logical potentiating and anticancer activity in vivo research 
(Zhao et al. 2010).

Furthermore, it has previously been noted that EPS may 
have antibacterial action, which is consistent with our find-
ings. The EPS generated by Alkalibacillus sp. w3 showed 
antibacterial activity against the yeast Candida albicans, 
Gram-positive bacteria, and Gram-negative. The antibacte-
rial properties of EPS produced by microorganisms have 
been previously reported. For example, crude EPS generated 
by Lysinibacillus fusiformis showed antibacterial activity 
against E. coli, Staphylococcus aureus, Proteus sp., B. sub-
tilis, P. aeruginosa, and Klebsiella sp., according to Mahen-
dran et al. (2013). The formation of an external barrier that 
prevents nutrient and metal uptake from the medium, dete-
rioration of cell membrane integrity via ionic interactions, 
and inhibition of DNA replication and mRNA synthesis by 
binding of EPS to enzymes or genetic elements may all con-
tribute to the antimicrobial mechanism of microbial EPS 
(Tokura et al. 1997; Rajoka et al. 2019).

In conclusion, a haloalkalitolerant Alkalibacillus sp. was 
isolated and evaluated to produce exopolysaccharide, and 
various environmental parameters such as salt concentra-
tions, pH value, and different carbon and nitrogen sources 
were investigated. The best formula to produce EPS from 
Alkalibacillus sp. was (g/L): glucose, 25; peptone, 7; yeast 
extract, 7; KH2PO4, 1.5; MgSO4, 0.3; NaCl, 25% (w/v); and 
inoculum volume, 3% (v/v). The ideal environment doubled 
the produced quantity of EPS, from 15 to 30 g/L. Finally, 
future research should focus on extending the investigation 

Fig. 7   EPS activity of Alkali-
bacillus sp. w3 against human 
colon (HCT-116) and hepato-
carcinoma (HepG2) cancer cell 
lines. Error bars represent the 
SEM, n = 3
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into the activity of EPS produced by Alkalibacillus sp. w3 as 
an antimicrobial and anticancer drug against other microbial 
cells and cancer cell lines coming from various malignan-
cies, as well as examining the mode of action and moving 
the study further to animal models.
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