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Abstract
Stochastic gradient descent method and its variants constitute the core optimization 
algorithms that achieve good convergence rates for solving machine learning prob-
lems. These rates are obtained especially when these algorithms are fine-tuned for 
the application at hand. Although this tuning process can require large computational 
costs, recent work has shown that these costs can be reduced by line search methods 
that iteratively adjust the step length. We propose an alternative approach to stochas-
tic line search by using a new algorithm based on forward step model building. This 
model building step incorporates second-order information that allows adjusting not 
only the step length but also the search direction. Noting that deep learning model 
parameters come in groups (layers of tensors), our method builds its model and cal-
culates a new step for each parameter group. This novel diagonalization approach 
makes the selected step lengths adaptive. We provide convergence rate analysis, and 
experimentally show that the proposed algorithm achieves faster convergence and 
better generalization in well-known test problems. More precisely, SMB requires 
less tuning, and shows comparable performance to other adaptive methods.

Keywords Model building · Second-order information · Stochastic gradient 
descent · Convergence analysis

Mathematics Subject Classification 90C26 · 90C06 · 90C30 · 90C15

Stochastic gradient descent (SGD) is a stochastic-approximation type optimiza-
tion algorithm with several variants and a well-studied theory (Tadić 1997; Chen 
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et  al. 2023). It is a popular choice for machine learning applications; in practice, 
it can achieve fast convergence when its stepsize and its scheduling are tuned well 
for the specific application at hand. However, this tuning procedure can take up to 
thousands of CPU/GPU days resulting in big energy costs (Asi and Duchi 2019). A 
number of researchers have studied adaptive strategies for improving the direction 
and the step length choices of the stochastic gradient descent algorithm. Adaptive 
sample size selection ideas (Byrd et al. 2012; Balles et al. 2017; Bollapragada et al. 
2018) improve the direction by reducing its variance around the negative gradient of 
the empirical loss function, while stochastic quasi-Newton algorithms (Byrd et al. 
2016; Wang et al. 2017) provide adaptive preconditioning. Recently, several stochas-
tic line search approaches have been proposed. Not surprisingly, some of these work 
cover sample size selection as a component of the proposed line search algorithms 
(Balles et al. 2017; Paquette and Scheinberg 2020).

The Stochastic Model Building (SMB) algorithm proposed in this paper is not 
designed as a stochastic quasi-Newton algorithm in the sense explained by Bottou 
et al. (2018). However, it still produces a scaling matrix in the process of generat-
ing trial points, and its overall step at each outer iteration can be written in the form 
of matrix–vector multiplication. Unlike the algorithms proposed by Mokhtari and 
Ribeiro (2014) and Schraudolph et al. (2007), we have no accumulation of curvature 
pairs throughout several iterations. Since there is no memory carried from earlier 
iterations, the scaling matrices in individual past iterations are based only on the 
data samples employed in those iterations. In other words, the scaling matrix and the 
incumbent random gradient vector are dependent. That being said, we also provide a 
version (SMBi), where the matrix and gradient vector in question become independ-
ent (see Algorithm 2).

Vaswani et al. (2019) apply a deterministic globalization procedure on mini-batch 
loss functions. That is, the same sample is used in all function and gradient evalua-
tions needed to apply the line search procedure at a given iteration. However, unlike 
our case, they employ a standard line search procedure that does not alter the search 
direction. They establish convergence guarantees for the empirical loss function 
under the interpolation assumption, which requires each component loss function to 
have zero gradient at a minimizer of the empirical loss. Mutschler and Zell (2020) 
assume that the optimal learning rate (i.e., step length) along the negative batch gra-
dient is a good estimator for the optimal learning rate with respect to the empiri-
cal loss along the same direction. They test validity of this assumption empirically 
on deep neural networks (DNNs). Rather than making such strong assumptions, we 
stick to the general theory for stochastic quasi-Newton methods.

Other work follow a different approach to translate deterministic line search pro-
cedures into a stochastic setting, and they do not employ fixed samples. In Mahsereci 
and Hennig (2017), a probabilistic model along the search direction is constructed 
via techniques from Bayesian optimization. Learning rates are chosen to maximize 
the expected improvement with respect to this model and the probability of satisfy-
ing Wolfe conditions. Paquette and Scheinberg (2020) suggest an algorithm closer 
to the deterministic counterpart, where the convergence is based on the requirement 
that the stochastic function and gradient evaluations approximate their true values 
with a high enough probability.



1 3

Bolstering stochastic gradient descent with model building  

Finally, we should mention that the finite-sum minimization problem is a spe-
cial case of the general expected value minimization problem, for which certain 
modification ideas for SGD regarding the selection of the search direction and the 
step length can be applicable. One such idea is gradient aggregation, which adds to 
the search direction of SGD a variance reducing component obtained via stochastic 
gradient evaluations at previous iterates (Roux et al. 2012; Defazio et al. 2014). In 
Malinovsky et al. (2022), an aggregated-gradient-type step is produced in a distrib-
uted setting where the overall step is produced by employing step lengths at two lev-
els. Another idea is to use an extended step length control strategy depending on the 
objective value and the norm of the computed direction that might occasionally set 
the step length to zero (Liuzzi et al. 2022). However, it is not clear how these ideas 
can be extended to the more general case of expected value minimization.

With our current work, we make the following contributions. We use a model 
building strategy for adjusting the step length and the direction of a stochastic gradi-
ent vector. This approach also permits us to work on subsets of parameters. This fea-
ture makes our model steps not only adaptive, but also suitable to incorporate into 
the existing implementations of DNNs. Our method changes the direction of the step 
as well as its length. This property separates our approach from the backtracking 
line search algorithms. It also incorporates the most recent curvature information 
from the current point. This is in contrast with the stochastic quasi-Newton methods 
which use the information from the previous steps. Capitalizing our discussion on 
the independence of the sample batches, we also give a convergence analysis for 
SMB. Finally, we illustrate the computational performance of our method with a set 
of numerical experiments and compare the results against those obtained with other 
well-known methods.

1  Stochastic model building

We introduce a new stochastic unconstrained optimization algorithm in order to 
approximately solve problems of the form

where F∶ℝn ×ℝ
d
→ ℝ is continuously differentiable and possibly nonconvex, 

� ∈ ℝ
d denotes a random variable, and �[.] stands for the expectation taken with 

respect to � . We assume the existence of a stochastic first-order oracle which outputs 
a stochastic gradient g(x, �) of f for a given x. A common approach to tackle (1) is to 
solve the empirical risk problem

where fi∶ℝn
→ ℝ is the loss function corresponding to the ith data sample, and N 

denotes the data sample size which can be very large in modern applications.

(1)min
x∈ℜn

f (x) = �[F(x, �)],

(2)min
x∈ℜn

f (x) =
1

N

N∑

i=1

fi(x),
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As an alternative approach to line search for SGD, we propose a stochastic model 
building strategy inspired by the work of Öztoprak and Birbil (2018). Unlike core SGD 
methods, our approach aims at including a curvature information that adjusts not only 
the step length but also the search direction. Öztoprak and Birbil (2018) consider only 
the deterministic setting and they apply the model building strategy repetitively until a 
sufficient descent is achieved. In our stochastic setting, however, we have observed experi-
mentally that using multiple model steps does not benefit much to the performance, and 
its cost to the runtime can be extremely high in large-scale (e.g., deep learning) problems. 
Therefore, if the sufficient descent is not achieved by the stochastic gradient step, then we 
construct only one model to adjust the length and the direction of the step.

Conventional stochastic quasi-Newton methods adjust the gradient direction 
by a scaling matrix that is constructed by the information from the previous steps. 
Our model building approach, however, uses the most recent curvature information 
around the latest iteration. In popular deep learning model implementations, model 
parameters come in groups and updates are applied to each parameter group sepa-
rately. Therefore, we also propose to build a model for each parameter group sepa-
rately making the step lengths adaptive.

The proposed iterative algorithm SMB works as follows: At step k, given the iter-
ate xk , we calculate the stochastic function value fk = f (xk, �k) and the mini-batch 
stochastic gradient gk =

1

mk

∑mk

i=1
g(xk, �k,i) at xk , where mk is the batch size, and 

�k = (�k,1,… , �k,mk
) is the realization of the random vector � . Then, we apply the 

SGD update to calculate the trial step st
k
= −�kgk , where {�k}k is a sequence of 

learning rates. With this trial step, we also calculate the function and gradient values 
f t
k
= f (xt

k
, �k) and gt

k
= g(xt

k
, �k) at xt

k
= xk + st

k
 . Then, we check the stochastic Arm-

ijo condition

where c > 0 is a hyper-parameter. If the condition is satisfied and we achieve suffi-
cient decrease, then we set xk+1 = xt

k
 as the next step. If the Armijo condition is not 

satisfied, following Öztoprak and Birbil (2018), we build a quadratic model using 
the linear models at the points xk,p and xt

k,p
 for each parameter group p and find the 

step sk,p to reach its minimum point. Here, xk,p and xt
k,p

 denote respectively the coor-
dinates of xk and xt

k
 that correspond to the parameter group p. We calculate the next 

iterate xk+1 = xk + sk , where sk = (sk,p1 ,… , sk,pr ) and r is the number of parameter 
groups, and proceed to the next step with xk+1 . This model step, if needed, requires 
extra mini-batch function and gradient evaluations (forward and backward pass in 
deep neural networks).

For each parameter group p ∈ {p1,… , pr} , the quadratic model is built by com-
bining the linear models at xk,p and xt

k,p
 , given by

respectively. Then, the quadratic model becomes

(3)f t
k
≤ fk − c �k‖gk‖2,

l0
k,p
(s) ∶= fk + g⊤

k,p
s and lt

k,p
(s − st

k,p
) ∶= f t

k
+ (gt

k,p
)⊤(s − st

k,p
),

mt
k,p
(s) = �k,p�

0
k,p

+ (1 − �k,p)�
t
k,p
,



1 3

Bolstering stochastic gradient descent with model building  

where

The constraint

is also imposed so that the minimum is attained in the region bounded by xk,p and 
xt
k,p

 . This constraint acts like a trust region. Figure  1 shows the steps of this 
construction.

In this work, we solve a relaxation of this constrained model as explained in 
Öztoprak and Birbil (2018, Section 2.2) where one can find the full approach for 
finding the approximate solution of the constrained problem. The minimum value 
of the relaxed model is attained at the point xk,p + sk,p with

where yk,p ∶= gt
k,p

− gk,p . Here, the coefficients are given as

with

𝛼k,p = −
(s − st

k,p
)⊤st

k,p

‖st
k,p
‖2

.

‖s‖2 + ‖s − st
k,p
‖2 ≤ ‖st

k,p
‖2,

(4)sk,p = cg,p(�)gk,p + cy,p(�)yk,p + cs,p(�)s
t
k,p
,

cg,p(𝛿) = −
‖st

k,p
‖2

𝛿
, cy,p(𝛿) = −

‖st
k,p
‖2

𝛿𝜃

�
−(y⊤

k,p
st
k,p

+ 𝛿)(st
k,p
)⊤gk,p + ‖st

k,p
‖2y⊤

k,p
gk,p

�
,

cs,p(𝛿) = −
‖st

k,p
‖2

𝛿𝜃

�
−(y⊤

k,p
st
k,p

+ 𝛿)y⊤
k,p
gk,p + ‖yk,p‖2(stk,p)

⊤gk,p

�
,

Fig. 1  An iteration of SMB on a simple quadratic function. We assume for simplicity that there is only 
one parameter group, and hence, we drop the subscript p. The algorithm first computes the trial point 
xt
k
 by taking the (stochastic) gradient step st

k
 . If this point is not acceptable, then it builds a model using 

the information at xk and xt
k
 , and computes the next iterate xk+1 = xk + sk . Note that sk not only have a 

smaller length compared to the trial step st
k
 , but it also lies along a direction decreasing the function value
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where 0 < 𝜂 < 1 is a constant. Then, the adaptive model step becomes 
sk = (sk,p1 ,… , sk,pr ) . We note that our construction in terms of different parameter 
groups lends itself to constructing a different model for each parameter subspace.

We summarize the steps of SMB in Algorithm 1. Line 5 shows the trial point, 
which is obtained with the standard stochastic gradient step. If this step satisfies the 
stochastic Armijo condition, then we proceed with the next iteration (line 8). Other-
wise, we continue with building the models for each parameter group (lines 11–13), 
and move to the next iteration with the model building step in line 14.

Algorithm 1  SMB: Stochastic Model Building

An example run It is not hard to see that SGD corresponds to steps 3–5 of Algo-
rithm 1, and the SMB step can possibly reduce to an SGD step. Moreover, the SMB 
steps produced by Algorithm 1 always lie in the span of the two stochastic gradients, 
gk and gt

k
 . In particular, when a model step is computed in line 13, we have

where � is a constant step length. Therefore, it is interesting to observe how the val-
ues of w1 and w2 evolve during the course of an SMB run, and how the resulting per-
formance compares to taking SGD steps with various step lengths. For this purpose, 
we investigate the steps of SMB for one epoch on the MNIST dataset with a batch 
size of 128 (see Sect. 3 for details of the experimental setting).

We provide in Fig. 2 the values of w1 and w2 for SMB with � = 0.5 over the 468 
steps taken in an epoch. Note that the computations of gt

k
 in line 6 of Algorithm 1 

(5)

𝜃 =
�
y⊤
k,p
st
k,p

+ 2𝛿
�2

− ‖st
k,p
‖2‖yk,p‖2 and 𝛿 = ‖st

k,p
‖
�
‖yk,p‖ +

1

𝜂
‖gk,p‖

�
− y⊤

k,p
st
k,p
,

sk = w1gk + w2g
t
k
with w1 = cg(�) − cy(�) − cs(�)� and w2 = cy(�),
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may spend a significant portion of the evaluation budget, if model steps are taken 
very often. Figure 2 shows that SMB algorithm indeed takes too many model steps 
in this run as indicated by the frequency of positive w2 values. To account for the 
extra gradient evaluations in computing the model steps, we run SGD with a con-
stant learning rate of � on the same problem for two epochs rather than one. (The 
elapsed time of sequential runs on a PC with 8GB RAM vary in 8–9 s for SGD, and 
in 11–15 s for SMB). Table 1 presents a summary of the resulting training error and 
testing accuracy values. We observe that the performance of SMB is significantly 
more stable for different � values, thanks to the adaptive step length (and the modi-
fied search direction) provided by SMB. SGD can achieve performance values com-
parable to or even better than SMB, but only for the right values of � . In Fig. 2, it 
is interesting to see that the values of w2 are relatively small. We also realize that if 
we run SGD with a learning rate close to the average (w1 + w2) value, it has an infe-
rior performance. For the SMB run with � = 0.5 , for instance, the average (w1 + w2) 
value is close to −0.3 . This can be contrasted with the resulting performance of SGD 
with � = 0.3 in Table 1. These observations suggest that gt

k
 contributes to altering 

the search direction as intended, rather than acting as an additional stochastic gradi-
ent step.

2  Convergence analysis

The steps of SMB can be considered as a special quasi-Newton update:

where Hk is a symmetric positive definite matrix as an approximation to the inverse 
Hessian matrix. In  Appendix, we explain this connection and give an explicit for-
mula for the matrix Hk . We also prove that there exists 𝜅, 𝜅 > 0 such that for all k, 
the matrix Hk satisfies

where for two matrices A and B, A ⪯ B means B − A is positive semidefinite. It is 
important to note that Hk is built with the information collected around xk , particu-
larly, gk . Therefore, unlike stochastic quasi-Newton methods, Hk is correlated with 
gk , and hence, ��k

[Hkgk] is very difficult to analyze. Unfortunately, this difficulty 
prevents us from using the general framework given by Wang et al. (2017).

(6)xk+1 = xk − �kHkgk,

(7)�I ⪯ Hk ⪯ �I,

Table 1  Performance on the MNIST data; SMB is run for one epoch, and SGD is run for two epochs

� = 1.0 � = 0.5 � = 0.3 � = 0.1 � = 0.05

SGD SMB SGD SMB SGD SMB SGD SMB SGD SMB

Training loss 2.3033 0.3402 2.2947 0.1770 0.7435 0.1889 0.1594 0.3379 0.2410 0.3131
Test accuracy 0.1135 0.8949 0.1137 0.9460 0.7685 0.9422 0.9513 0.8993 0.9298 0.9162
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To overcome this difficulty and carry on with the convergence analysis, we 
modify Algorithm  1 such that Hk is calculated with a new independent mini 
batch, and therefore, it is independent of gk . By doing so, we still build a model 
using the information around xk . Assuming that gk is an unbiased estimator of 
∇f  , we conclude that ��k

[Hkgk] = Hk∇f  . In the rest of this section, we provide a 
convergence analysis for this modified algorithm which we will call as SMBi (‘i’ 
stands for independent batch). The steps of SMBi are given in Algorithm 2. As 
Step 11 shows, we obtain the model building step with a new random batch.

Algorithm 2  SMBi: Hk with an independent batch

Before providing the analysis, let us make the following assumptions:

Assumption 1 Assume that f∶ℝn
→ ℝ is continuously differentiable, 

lower bounded by f low , and there exists L > 0 such that for any x, y ∈ ℝ
n , 

‖∇f (x) − ∇f (y)‖ ≤ L‖x − y‖.

Assumption 2 Assume that �k , k ≥ 1 , are independent samples and for any iteration 
k, �k is independent of {xj}kj=1 , ��k

[g(xk, �k)] = ∇f (xk) and ��k
[‖g(xk, �k) − ∇f (xk)‖2] ≤ M2 , 

for some M > 0.

Although Assumption 1 is standard among the stochastic unconstrained opti-
mization literature, one can find different variants of the Assumption 2 (see 
Khaled and Richtárik (2020) for an overview). In this paper, we follow the frame-
work of Wang et al. (2017) which is a special case of Bottou et al. (2018).

In order to be in line with practical implementations and with our experiments, 
we first provide an analysis covering the constant step length case for (possi-
bly) non-convex objective functions. Below, we denote by �[T] = (�1,… , �T ) the 
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random samplings in the first T iterations. Let �max be the maximum step length 
that is allowed in the implementation of SMBi with

where 0 < 𝜂 < 1 . This hyper-parameter of maximum step length is needed 
in the theoretical results. Observe that since 𝜂−1 > 1 , assuming L ≥ 1 implies 
that it suffices to choose �max ≥ 1 to satisfying (8). This implies further that 
2∕(L�−1 + 2 L2�max) ≤ �max . The proof of the next convergence result is given in 
Appendix.

Theorem  2.1 Suppose that Assumptions 1 and 2 hold and {xk} is generated by 
SMBi as given in Algorithm 2. Suppose also that {�k} in Algorithm 2 satisfies that 
0 < 𝛼k < 2∕(L𝜂−1 + 2 L2𝛼max) ≤ 𝛼max for all k. For given T, let R be a random vari-
able with the probability mass function

for k = 1,… , T  . Then, we have

where Df ∶= f (x1) − f low and the expectation is taken with respect to R and �[T] . 
Moreover, if we choose �k = 1∕(L�−1 + 2L2�max) and mk = m for all k = 1,… , T  , 
then this reduces to

Using this theorem, it is possible to deduce that stochastic first-order oracle 
complexity of SMB with random output and constant step length is O(�−2) (Wang 
et al. 2017, Corollary 2.12). In Wang et al. (2017) (Theorem 2.5), it is shown that 
under our assumptions above and the extra assumptions of 
0 < 𝛼k ≤

1

L(𝜂−1+2L𝛼max)
≤ 𝛼max , 

∑∞

k=1
�k = ∞ and 

∑∞

k=1
𝛼2
k
< ∞ , if the point sequence 

{xk} is generated by SMBi method (when Hk is calculated by an independent 
batch in each step) with batch size mk = m for all k, then there exists a positive 
constant Mf  such that �[f (xk)] ≤ Mf  . Using this observation, the proofs of Theo-
rem 2.1, and Theorem 2.8 in Wang et al. (2017), we can also give the following 
complexity result when the step length sequence is diminishing.

(8)�max ≥
−1 +

√
1 + 16�2

4L�
,

ℙR(k) ∶= ℙ{R = k} =
�k∕(�

−1 + 2L�max) − �2
k
L∕2

∑T

k=1
(�k∕(�

−1 + 2L�max) − �2
k
L∕2)

�[‖∇f (xR)‖2] ≤
Df + (M2L∕2)

∑T

k=1
(�2

k
∕mk)

∑T

k=1
(�k∕(�

−1 + 2L�max) − �2
k
L∕2)

,

�[‖∇f (xR)‖2] ≤
2L(�−1 + 2L�max)

2Df

T
+

M2

m
.
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Theorem 2.2 Suppose that Assumption 1 and Assumption 2 hold. Let the batch size 
mk = m for all k and assume that �k =

1

L(�−1+2 L�max)
k−� with � ∈ (0.5, 1) for all k. 

Then {xk} generated by SMBi satisfies

for some Mf > 0 , where T denotes the iteration number. Moreover, for a given 
� ∈ (0, 1) , to guarantee that 1

T

∑T

k=1
�[‖∇f (xk)‖2] < 𝜖 , the number of required itera-

tions T is at most O
(
�
−

1

1−�

)
.

3  Numerical experiments

In this section, we compare SMB and SMBi against Adam (Kingma and Ba 2015), 
and SLS (SGD+Armijo) (Vaswani et al. 2019). We have chosen SLS, since it is a 
recent method that uses stochastic line search with backtracking. We have conducted 
experiments on multi-class classification problems using neural network models.1 
Our Python package SMB along with the scripts to conduct our experiments are 
available online: https:// github. com/ sibir bil/ SMB

We start our experiments with constant stepsizes for all methods. We should 
point out that SLS method adjusts the stepsize after each backtracking process and 
also uses a stepsize reset algorithm between epochs. We refer to this routine as step-
size auto-scheduling. Our numerical experiments show that even without such an 
auto-scheduling the performances of our methods are on par with SLS. Following 
the experimental setup in He et al. (2016), the default setting for hyperparameters 
of Adam and SLS is used and �0 has been set to 1 for SLS and 0.001 for Adam. As 
regards SMB and SMBi, the constant learning rates have been fixed to 0.5, and the 
constant c = 0.1 as in SLS. Due to the high computational costs of training the neu-
ral networks, we report the results of a single run of each method.

MNIST dataset On the MNIST dataset, we have used the one hidden-layer multi-
layer perceptron (MLP) of width 1,000.

In Fig. 3, we see the best performances of all four methods on the MNIST data-
set with respect to epochs and run time. The run time represents the total time cost 
of 100 epochs. Even though SMB and SMBi may calculate an extra function value 
(forward pass) and a gradient (backward pass), we see in this problem that SMB 
and SMBi achieve the best performance with respect to the run time as well as the 
number of epochs. More importantly, the generalization performances of SMB and 
SMBi are also better than the remaining three methods.

It should be pointed out that, in practice, choosing a new independent batch 
means the SMBi method can construct a model step in two iteration using two 

1

T

T�

k=1

�[‖∇f (xk)‖2] ≤ 2L(�−1 + 2L�max)(Mf − f low)T�−1 +
M2

(1 − �)m
(T−� − T−1)

1 The implementations of the models are taken from https:// github. com/ Issam Larad ji/ sls

https://github.com/sibirbil/SMB
https://github.com/IssamLaradji/sls
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batches. This way the computation cost for each iteration is reduced on average with 
respect to SMB but the model steps can only be taken in half of the iterations in the 
epoch. As seen in Fig. 3, this does not seem to effect the performance in this prob-
lem significantly.

CIFAR10 and CIFAR100 datasets For the CIFAR10 and CIFAR100 datasets, 
we have used the standard image-classification architectures ResNet-34 (He et al. 
2016) and DenseNet-121 (Huang et  al. 2017). As before, we provide perfor-
mances of all four methods with respect to epochs and run time. The run times 
represent the total time cost of 200 epochs.

In Fig. 4, we see that on CIFAR10-Resnet34, SMB performs better than Adam 
algorithm. However, its performance is only comparable to SLS. Even though 
SMB reaches a lower training loss value in CIFAR100-Resnet34, this advantage 
does not show in test accuracy.

In Fig. 5, we see a comparison of performances of on CIFAR10 and CIFAR100 
with DenseNet121. SMB with a constant stepsize outperforms all other optimiz-
ers in terms of training error and reaches the best test accuracy on CIFAR100, 
while showing similar accuracy with ADAM on CIFAR10.

Fig. 3  Classification on MNIST with an MLP model
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Our last set of experiments are devoted to demonstrating the robustness of 
SMB. The preliminary results in Fig. 6 show that SMB is robust to the choice of 
the learning rate, especially in deep neural networks. This aspect of SMB needs 
more attention theoretically and experimentally.

4  Conclusion

Stochastic model building (SMB) is a fast alternative to stochastic gradient 
descent method. The algorithm provides a model building approach that replaces 
the one-step backtracking in stochastic line search methods. We have analyzed 
the convergence properties of a modification of SMB by rewriting its model 
building step as a quasi-Newton update and constructing the scaling matrix with 
a new independent batch. Our numerical results have shown that SMB converges 
fast and its performance is insensitive to the selected step length.

In its current state, SMB lacks any internal learning rate adjusting mechanism 
that could reset the learning rate depending on the progression of the iterations. 
Our initial experiments show that SMB can greatly benefit from a step length 

Fig. 6  Robustness of SMB under different choices of the learning rate
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auto-scheduling routine. This is a future work that we will consider. Our con-
vergence rate analysis is given for the alternative algorithm SMBi which can 
perform competitive against other methods, but consistently underperforms 
the original SMB method. This begs for a convergence analysis for the SMB 
method.

Appendix

Proof of Theorem 2.1

First we show that the SMBi step for each parameter group p can be expressed as a 
special quasi-Newton update. For brevity, let us use sk , stk , gk , g

t
k
 , and yk instead of 

sk,p , stk,p , gk,p , g
t
k,p

 , and yk,p , respectively. Recalling the definitions of � and � given in 
(5), observe that

and

where

Therefore, we have

and

2𝛿 = ‖st
k
‖‖yk‖ +

1

𝜂
‖st

k
‖‖gk‖ − y⊤

k
st
k
= 𝛼k

�
‖gk‖‖yk‖ +

1

𝜂
‖gk‖2 + y⊤

k
gk

�
= 𝛼k𝜎,

𝜃 =
�
y⊤
k
st
k
+ 2𝛿

�2
− ‖st

k
‖2‖yk‖2 = 𝛼2

k
(𝜎 − y⊤

k
gk)

2 − 𝛼2

k
‖gk‖2‖yk‖2

= 𝛼2

k
(𝛽2 − ‖gk‖2‖yk‖2) = 𝛼2

k
𝛾 ,

𝜎 = ‖gk‖‖yk‖ +
1

𝜂
‖gk‖2 + y⊤

k
gk, 𝛽 = 𝜎 − y⊤

k
gk, and 𝛾 = (𝛽2 − ‖gk‖2‖yk‖2).

cg(𝛿)gk = −
‖st

k
‖2

2𝛿
gk = −

𝛼2
k
‖gk‖2

𝛼k𝜎𝛾
𝛾gk = −𝛼k
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𝜎𝛾
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‖2
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k
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k
+ 2𝛿)(st

k
)⊤gk + ‖st

k
‖2y⊤
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gk]yk

= −
‖gk‖2

𝛼k𝜎𝛾
yk[𝛼

2
k
(𝜎 − y⊤

k
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⊤

k
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‖gk‖2y⊤k gk]

= − 𝛼k
‖gk‖2

𝜎𝛾
[𝛽ykg

⊤

k
+ ‖gk‖2yky⊤k ]gk,
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Now, it is easy to see that

Thus, for each parameter group p, we define

 where

Now, assuming that we have the parameter groups {p1,… , pn} , the SMB steps can 
be expressed as a quasi-Newton update given by

where

Here, I denotes the identity matrix, and diag(Hk,p1
,… ,Hk,pn

) denotes the block diag-
onal matrix with the blocks Hk,p1

,… ,Hk,pn
.

We next show that the eigenvalues of the matrices Hk , k ≥ 1 , are bounded from 
above and below uniformly which is, of course, obvious when Hk = I . Using the 
Sherman–Morrison formula twice, one can see that for each parameter group p, the 
matrix Hk,p is indeed the inverse of the positive semidefinite matrix

and hence, it is also positive semidefinite. Therefore, it is enough to show the bound-
edness of the eigenvalues of Bk,p uniformly on k and p.

Since gk,py⊤k,p + yk,pg
⊤
k,p

 is a rank two matrix, �p∕‖gk,p‖2 is an eigenvalue of Bk,p 
with multiplicity n − 2 . The remaining extreme eigenvalues are

cs(𝛿)s
t
k
= −

‖st
k
‖2

2𝛿𝜃
[−(y⊤

k
st
k
+ 2𝛿)y⊤
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t
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with the corresponding eigenvectors ‖yk,p‖gk,p + ‖gk,p‖yk,p and ‖yk,p‖gk,p − ‖gk,p‖yk,p , 
respectively.

Observe that,

Thus, the smallest eigenvalue Bk,p is bounded away from zero uniformly on k and p.
Now, by our assumption of Lipschitz continuity of the gradients, for any x, y ∈ ℝ

n 
and �k , we have

Thus, observing that ‖yk,p‖ = ‖gt
k,p

− gk,p‖ ≤ L‖xt
k,p

− xk,p‖ ≤ �kL‖gk,p‖ , we have

This implies that the eigenvalues of Hk,p = B−1
k,p

 are bounded below by 1∕(�−1 + 2L�max) 
and bounded above by 1 uniformly on k and p. This result, together with our assumptions, 
shows that steps of the SMBi algorithm satisfy the conditions of Theorem 2.10 in Wang 
et  al. (2017) with � = 1∕(�−1 + 2L�max) and � = 1 and Theorem  2.1 follows as a 
corollary.

Data availability All datasets are publicly available and can be downloaded via Pytorch’s Torchvision 
library. As referenced in the beginning of Sect.  3, our Python package SMB along with the scripts to 
download the datasets and conduct our experiments are available online: https:// github. com/ sibir bil/ SMB.
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