
Vol.:(0123456789)

TOP
https://doi.org/10.1007/s11750-024-00672-0

1 3

INVITED PAPER

Learning‑assisted optimization for transmission switching

Salvador Pineda1,3 · Juan Miguel Morales2,3 · Asunción Jiménez‑Cordero2,3

Received: 14 April 2023 / Accepted: 9 March 2024
© The Author(s) 2024

Abstract
The design of new strategies that exploit methods from machine learning to facilitate
the resolution of challenging and large-scale mathematical optimization problems
has recently become an avenue of prolific and promising research. In this paper, we
propose a novel learning procedure to assist in the solution of a well-known compu-
tationally difficult optimization problem in power systems: The Direct Current Opti-
mal Transmission Switching (DC-OTS) problem. The DC-OTS problem consists in
finding the configuration of the power network that results in the cheapest dispatch
of the power generating units. With the increasing variability in the operating con-
ditions of power grids, the DC-OTS problem has lately sparked renewed interest,
because operational strategies that include topological network changes have proved
to be effective and efficient in helping maintain the balance between generation and
demand. The DC-OTS problem includes a set of binaries that determine the on/off
status of the switchable transmission lines. Therefore, it takes the form of a mixed-
integer program, which is NP-hard in general. In this paper, we propose an approach
to tackle the DC-OTS problem that leverages known solutions to past instances of
the problem to speed up the mixed-integer optimization of a new unseen model.
Although our approach does not offer optimality guarantees, a series of numerical
experiments run on a real-life power system dataset show that it features a very high
success rate in identifying the optimal grid topology (especially when compared to
alternative competing heuristics), while rendering remarkable speed-up factors.

Keywords Machine learning · Mathematical optimization · Mixed-integer
programming · Optimal transmission switching · Optimal power flow

1 Introduction

Power systems are colossal and complex networks engineered to reliably supply
electricity, where it is needed at the lowest possible cost. For this, operational rou-
tines based on the optimal power flow (OPF) problem are executed daily and in real
time to guarantee the most cost-efficient dispatch of power generating units that

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-024-00672-0&domain=pdf
http://orcid.org/0000-0002-1089-0970

 S. Pineda et al.

1 3

satisfy the grid constraints. In particular, the way power flows through a power net-
work is determined by the so-called Kirchhoff’s laws. These laws are responsible
for the fact that switching off a transmission line in the grid can actually result in a
lower electricity production cost (a type of “Braess’ Paradox”) and have provided
power system operators with a complementary control action, namely, changes in
the grid topology, to reduce this cost even further. The possibility of flexibly exploit-
ing the topological configuration of the grid was first suggested in O’Neill et al.
(2005) and later formalized in Fisher et al. (2008) into what we know today as the
Optimal Transmission Switching (OTS) problem. Essentially, the OTS problem is
the OPF problem enriched with a whole new set of on/off variables that model the
status of each switchable transmission line in the system. The OPF formulation we
use as a basis to pose the OTS problem is built on the widely used direct current
(DC) linear approximation of the power flow equations. Even so, the resulting for-
mulation of the OTS problem, known as DC-OTS, takes the form of a mixed-integer
program, which has been proven to be NP-hard for general network classes (Kocuk
et al. 2016; Fattahi et al. 2019).

Thus, the DC-OTS problem consists in finding the configuration of the power
network that results in the cheapest dispatch of the power generating units subject to
constraints, such as thermal limits on transmission lines, generating units’ capacity
bounds, and network connectivity conditions. To date, the resolution of the DC-OTS
has been approached from two distinct methodological points of view, namely, by
means of exact methods and by way of heuristics. The former exploit techniques
from mixed-integer programming such as bounding, tightening, and the generation
of valid cuts to solve the DC-OTS to (certified) global optimality, while the latter
seek to quickly identify good solutions of the problem, but potentially forgoing opti-
mality and even at the risk of suggesting infeasible grid topologies.

Among the methods that are exact, we highlight the works in Kocuk et al. (2016),
Fattahi et al. (2019), Ruiz et al. (2016), and Dey et al. (2022). More specifically, the
authors in Kocuk et al. (2016) propose a cycle-based formulation of the DC-OTS
problem, which results in a mixed-integer linear program. They prove the NP-hard-
ness of the DC-OTS even if the power grid takes the form of a series–parallel graph
with only one generation-demand pair, and derive classes of strong valid inequalities
for a relaxation of their formulation that can be separated in polynomial time. In
Fattahi et al. (2019), the authors work instead with the mixed-integer linear formu-
lation of the DC-OTS that employs a big-M to model the disjunctive nature of the
equation linking the power flow through a switchable line and the voltage angles at
the nodes the line connects. This is the formulation of the DC-OTS we also consider
in this paper. The big-M must be a valid upper bound of the maximum angle dif-
ference when the switchable line is open. In Fattahi et al. (2019), it is proven that
determining this maximum is NP-hard and, consequently, they propose to set the
big-M to the shortest path between the nodes concerned over a spanning subgraph
that is assumed to exist. The authors in Ruiz et al. (2016) conduct a computational
study of a mixed-integer linear reformulation of the DC-OTS problem alternative
to that considered in Fattahi et al. (2019). This reformulation makes use of the so-
called power transfer distribution factors (PTDFs) and the notion of flow-cancelling
transactions to model open lines. They argue that this reformulation comparatively

1 3

Learning-assisted optimization for transmission switching

offers significant computational advantages, especially for large systems and when
the number of switchable lines is relatively small. Finally, a family of cutting planes
for the DC-OTS problem are developed in Dey et al. (2022). These cutting planes
are derived from the polyhedral description of the integer hull of a certain constraint
set that appears in the DC-OTS problem. Specifically, this constraint set is made up
of a nodal power balance equation together with the power flow limits of the asso-
ciated incident lines. Those of these limits that correspond to switchable lines are
multiplied by the respective binary variable.

In practice, though, the complexity and size of real-life power grids often ren-
der exact solutions computationally infeasible. Therefore, heuristics, or approximate
solution methods, become essential for tackling the DC-OTS efficiently. Among the
heuristic methods that have been proposed in the technical literature, we can distin-
guish two main groups. The first group includes the heuristic approaches that do not
rely on the solutions of previous instances of the OTS problem. For example, some
heuristics trim down the computational time by reducing the number of lines that
can be switched off (Liu et al. 2012; Barrows et al. 2012; Flores et al. 2020). While
these approaches do not reach the maximum cost savings, the reported numerical
studies show that the cost increase with respect to the optimal solution is small in
most cases. Other related works maintain the original set of switchable lines and
determine their on/off status using greedy algorithms (Fuller et al. 2012; Crozier
et al. 2022). They use dual information of the OPF problem to rank the lines accord-
ing to the impact of their status on the operational cost. Finally, the authors of Hin-
neck and Pozo (2022) propose solving the OTS problem in parallel with heuristics
that generate good candidate solutions to speed up conventional MIP algorithms.
The second group comprises data-based heuristic methods that require information
about the optimal solution of past OTS problems. For instance, the authors of John-
son et al. (2021) use a K-nearest neighbor strategy to drastically reduce the search
space of the integer solution to the DC-OTS problem. In particular, given a collec-
tion of past instances of the problem (whose solution is assumed to be known and
available), they restrict the search space to the K integer solutions of those instances
which are the closest to the one to be solved in terms of the problem parameters
(for example, nodal demands). They then provide as solution to the instance of the
DC-OTS problem under consideration the one that results in the lowest cost. This
last step requires solving K linear programs, one per candidate integer solution. Con-
versely, various alternative data-driven methods, distinct from the K nearest neigh-
bor, have also been explored to enhance the solution of the DC-OTS problem. For
example, references Yang and Oren 2019; Han and Hill 2022; Bugaje et al. 2023
present sophisticated methodologies to learn the status of switchable lines using
neural networks.

Against this background, in this paper, we propose a novel method to address the
DC-OTS by exploiting known solutions to past instances of the problem. Indeed,
according to Bengio et al. (2021); Parmentier (2022), our approach aligns with
machine learning strategies that extract valuable insights from prior solutions of an
optimization problem, subsequently applying this knowledge to address new, unseen
instances. Specifically, our approach leverages information from previous instances
in two distinct yet potentially synergistic ways. First, from these past solutions, we

 S. Pineda et al.

1 3

infer those switchable lines that are most likely to be operational (resp. inoperative)
in the current instance of the problem (the one we want to solve). Mathematically,
this translates into fixing a few binaries to one (resp. zero), an apparently small
action that brings, however, substantial benefits in terms of computational speed.
Second, beyond the speed-up that one can expect from simply reducing the number
of binaries in a MILP, this strategy also allows us to leverage the shortest-path-based
argument invoked in Fattahi et al. (2019) to further tighten the big-Ms in the prob-
lem formulation, with the consequent extra computational gain.

Alternatively, we also investigate the potential of directly inferring the big-M val-
ues from past solutions to the problem, eliminating the need for the shortest-path
calculation. In any case, the inference of the binaries to be fixed and/or the values
of the big-Ms to be used is conducted through a Machine Learning algorithm of the
decision-maker’s choice. In this paper, we have opted for the use of the K-nearest
neighbors methodology due to its simplicity, as well as its interpretability and low
computational time required for the training task. Besides, this approach has demon-
strated success in mitigating the complexity of related challenges, such as the widely
studied DC Unit Commitment problem, as evidenced by prior works (Pineda et al.
(2020); Jiménez-Cordero et al. (2022)).

Importantly, while our proposal is not endowed with theoretical guarantees of
optimality (and thus, belongs to the group of heuristics discussed above), the role
that Machine Learning plays in it is supportive rather than surrogative (we still need
to solve the MILP problem), which results in significantly lower rates of infeasibility
and suboptimality, as demonstrated in the numerical experiments.

The remainder of this paper is structured as follows. Section 2 introduces the DC-
OTS problem mathematically and discusses how to equivalently reformulate it as
a mixed-integer linear program (MILP) through the use of large enough constants
(the so-called big-Ms). Section 3 describes the different methods we consider in this
paper to identify the most cost-efficient grid topology of a power system, including
those we propose and those we use for benchmarking. A series of numerical experi-
ments run on a 118-bus power system typically used in the context of the DC-OTS
problem are presented and discussed in Sect. 4. Finally, conclusions and further
research are duly drawn in Sect. 5.

2 Optimal transmission switching

We start this section by introducing the standard and well-known formulation of
the Direct Current Optimal Transmission Switching problem (DC-OTS), which will
serve us a basis to construct and motivate its mixed-integer reformulation immedi-
ately after.

Consider a power network consisting of a collection of nodes N and transmis-
sion lines L . To lighten the mathematical formulation of the DC-OTS, we assume
w.l.o.g that there is one generator and one power load per node n ∈ N . The power
dispatch of the generator and the power consumed by the power load are denoted
by pn and dn , respectively. Each generator is characterized by a minimum and
maximum power output, p

n
 and pn , and a marginal production cost cn . We repre-

1 3

Learning-assisted optimization for transmission switching

sent the power flow through the line (n,m) ∈ L connecting nodes n and m by fnm ,
with fnm ∈ [−f nm, f nm] . For each node n we distinguish between the set of trans-
mission lines whose power flow enters the node, L+

n
 , and the set of transmission

lines whose power flow leaves it, L−
n
 . The power network includes a subset

LS ⊆ L of lines that can be switched on/off. If the line (n,m) ∈ LS , its status is
determined by a binary variable xnm , which takes value 1 if the line is fully opera-
tional, and 0 when disconnected. In a DC power network, the flow fnm through an
operational line is given by the product of the susceptance of the line, bnm , and
the difference of the voltage angles at nodes n and m, i.e., �n − �m . We use bold
symbols to define the vectors of variables p = [pn, n ∈ N] , � = [�n, n ∈ N] ,
f = [fnm, (n,m) ∈ L] , and x = [xnm, (n,m) ∈ LS] . With this notation in place, the
DC-OTS problem can be formulated as follows:

The objective is to minimize the electricity generation cost, expressed as in (1a). For
this, the power system operator essentially decides the lines that are switched off and
the power output of generating units, which must lie within the interval [p

n
, pn] , as

imposed in (1b). The flows through the transmission lines are governed by the so-called
Kirchhoff’s laws, which translate into the nodal power balance Eq. (1c) and the flow-
angle relationship stated in (1d) and (1e). In the case of a switchable line, this relation-
ship must be enforced only when the line is in service. This is why the binary variable
xnm appears in (1d). Naturally, xnm = 0 must imply fnm = 0 . Constraints (1f) and (1g)
impose the capacity limits of the switchable and non-switchable lines, respectively.

(1a)min
pn,fnm,�n,xnm

∑

n

cn pn

(1b)s.t. p
n
≤ pn ≤ pn, ∀n ∈ N

(1c)
∑

(n,m)∈L−
n

fnm −
∑

(n,m)∈L+
n

fnm = pn − dn, ∀n ∈ N

(1d)fnm = xnmbnm(�n − �m), ∀(n,m) ∈ LS

(1e)fnm = bnm(�n − �m), ∀(n,m) ∈ L ⧵ LS

(1f)− xnmf nm ≤ fnm ≤ xnmf nm, ∀(n,m) ∈ LS

(1g)− f nm ≤ fnm ≤ f nm, ∀(n,m) ∈ L ⧵ LS

(1h)xnm ∈ {0, 1}, ∀(n,m) ∈ LS

(1i)�1 = 0

 S. Pineda et al.

1 3

Constraint (1h) states the binary character of variables xnm , while Eq. (1i) arbitrarily
sets one of the nodal angles to zero to avoid solution multiplicity.

Problem (1) is a mixed-integer nonlinear programming problem due to the prod-
uct xnm(�n − �m) in (1d). This problem has been proven to be NP-hard even when the
power network includes a spanning subnetwork connected by non-switchable lines
only (Fattahi et al. 2019) or takes the form of a series–parallel graph with a single gen-
erator/load pair (Kocuk et al. 2016). The disjunctive nature of Eq. (1d) allows for a
linearization of Problem (1) at the cost of introducing a pair of large enough constants
M

nm
 , Mnm per switchable line (Hedman et al. 2012). Indeed, Eq. (1d) can be replaced

by the inequalities:

provided that the large constants M
nm
,Mnm respectively constitute a lower and an

upper bound of bnm(�n − �m) when the line (n, m) is disconnected (xnm = 0), that is,

 where F ∶= {(p,�, f, x) ∈ ℝ
2|N|+|L|+|LS| satisfying (1b), (1c), (1e)–(1i), xnm = 0 ,

and (2) for all (n�,m�) ∈ LS⧵(n,m) }. Note that, if xnm = 1 , we have

Otherwise, i.e., if xnm = 0 , Eq. (1f) leads to fnm = 0 , which, together with (2), results
in

or, equivalently,

Finally, by Eq. (3), we have

First of all, for (3) to be of any use, MOPT

nm
 and M

OPT

nm
 must be finite. As proven in Fat-

tahi et al. (2019), this is not the case in power systems where switching off lines can
result in disconnected subnetworks. The possibility of islanding renders the minimi-
zation (3a) and the maximization (3b) unbounded. Consequently, the linearization of
the DC-OTS problem based on (2) is not equivalent to its original nonlinear mixed-
integer formulation (1) in this case. However, in practice, islanding in power grids is
to be avoided in general for many reasons other than the minimization of the opera-
tional cost (e.g., due to reliability and security standards). Consequently, in what
follows, we assume that the set of switchable lines LS is such that the connectivity

(2)bnm(�n − �m) −Mnm(1 − xnm) ≤ fnm ≤ bnm(�n − �m) −M
nm
(1 − xnm)

(3a)M
nm

≤ MOPT

nm
∶= bnm ×min

F
(�n − �m)

(3b)Mnm ≥ M
OPT

nm
∶= bnm ×max

F
(�n − �m)

bnm(�n − �m) ≤ fnm ≤ bnm(�n − �m) ⟺ fnm = bnm(�n − �m).

bnm(�n − �m) −Mnm ≤ 0 ≤ bnm(�n − �m) −M
nm

M
nm

≤ bnm(�n − �m) ≤ Mnm.

M
nm

≤ MOPT

nm
≤ bnm(�n − �m) ≤ M

OPT

nm
≤ Mnm.

1 3

Learning-assisted optimization for transmission switching

of the whole power network is always guaranteed. In this setting, it is ensured that
there exist finite valid large constants as stated in (3), namely, those corresponding
to the longest path between nodes n and m on the undirected graph represented by
the power grid. This already gives us an idea of how difficult the calculation of these
constants is. In this vein, the authors in Fattahi et al. (2019) show that, even when
MOPT

nm
 and M

OPT

nm
 are finite, computing them is as hard as solving the original DC-

OTS problem. Therefore, we are obliged to be content with a lower and an upper
bound. The choice of these bounds, or rather, of the large constants M

nm
,Mnm (for

all (n,m) ∈ LS) is of utmost importance, because it has a major impact on the relax-
ation bound of the mixed-integer linear program that results from replacing (1d)
with the inequalities (2), that is,

Tighter constants M
nm
,Mnm lead to stronger linear relaxations of (4), which, in turn,

is expected to impact positively on the performance of the branch-and-cut algorithm
used to solve it. Let us define d = [dn, n ∈ N] and M = [(Mnm,Mnm

), (n,m) ∈ LS] .
We also define the lower and upper bounds of the binary decision variables as
x = [x

nm
, (n,m) ∈ LS] and x = [xnm, (n,m) ∈ LS] , respectively. Then, we denote as

x = OTS(d,M, x, x) the solution of model (4) with the additional constraint x ≤ x ≤ x .
In the general case, x = 0 and x = 1 . However, these bounds may change if the status
of some switchable lines are fixed through learning.

On the assumption that the power network includes a spanning tree comprising non-
switchable lines, the authors in Fattahi et al. (2019) propose the following symmetric
bound:

where SP0
nm

 is the shortest path between nodes n and m through said spanning tree.
Note, however, that the shortest path between two nodes can be modified if some of
the switchable lines are known to be connected. In that case, the resulting bounds are
reduced. Therefore, for a given status of the switchable lines x , we denote by SPnm(x)
the updated shortest path, with SP0

nm
= SPnm(0) . Besides, the bounds obtained using

Eq. (5) with the updated shortest paths SPnm(x) is referred to as M = FAT(x) . This

(4a)min
pn,fnm,�n,xnm

∑

n

cn pn

(4b)s.t. (1b), (1c), (1e) − (1i)

(4c)bnm(�n − �m) −Mnm(1 − xnm) ≤ fnm, ∀(n,m) ∈ LS

(4d)fnm ≤ bnm(�n − �m) −M
nm
(1 − xnm), ∀(n,m) ∈ LS

(4e)fnm = bnm(�n − �m), ∀(n,m) ∈ L ⧵ LS

(5)−M
nm

= Mnm = bnm

∑

(k,l)∈SP0
nm

f kl

bkl
, ∀(n,m) ∈ LS

 S. Pineda et al.

1 3

symmetric bound can be computed in polynomial time using Dijkstra’s algorithm
(Cormen et al. 2022).

In this paper, we propose and test simple, but effective data-driven scheme based
on nearest neighbors to estimate lower bounds on MOPT

nm
 and upper bounds on M

OPT

nm
 .

This scheme is also used to fix some of the binaries xnm in (4). While the inher-
ent sampling error of the proposed methodology precludes optimality guarantees,
our numerical experiments show that it is able to identify optimal or nearly-optimal
solutions to the DC-OTS problem very fast.

3 Solution methods

In this section, we present the different methods we consider to solve the DC-OTS
problem. First, we describe the exact method proposed in Fattahi et al. (2019), which
we use as a benchmark. Second, we explain a direct learning-based approach that
utilizes the K nearest neighbors technique and the learning-based heuristic approach
investigated in Hastie et al. (2009). Finally, we introduce the data-based methodolo-
gies proposed in this paper.

Suppose that the DC-OTS problem (4) has been solved using the big-M val-
ues suggested in Fattahi et al. (2019) for different instances to form a training
set T = {(dt, xt,�t), t = 1,… , |T|} , where, the symbol |T| indicates the cardinal
of set T . For each instance, t, dt = [dt

n
, n ∈ N] denotes the vector of nodal loads,

xt = [xt
nm
, (n,m) ∈ LS] is the vector of optimal binary variables, which determine

whether line (n, m) in instance t is connected or not; and �t = [�t
n
, n ∈ N] is the

vector of optimal voltage angles. For notation purposes, we use C(dt, xt) to denote
the value of the objective function (1a) when model (1) is solved for demand val-
ues dt and the binary variables fixed to xt . This function can be evaluated for any
set of feasible binary variables xt by solving a linear programming problem. If this
linear problem is infeasible, then C(dt, xt) = ∞ . Additionally, for a given subset of
instances T′ ⊂ T , we define x(T�) as the component-wise average of the binary vari-
ables corresponding to the instances in T′.

In what follows, we present different strategies to solve the DC-OTS problem for
an unseen test instance t̂ with demand values dt̂ . The goal is to employ the informa-
tion from the training set, T , to reduce the computational burden of solving the DC-
OTS reformulation (4) for the test instance t̂ . Note that depending on the strategy
that is applied, the response variable of the test instance to be learned can be xt̂ , �t̂ or
the tuple (xt̂,�t̂).

3.1 Exact benchmark approach

In the benchmark approach (Bench) the optimal solution of the test DC-OTS prob-
lem is obtained using the proposal in Fattahi et al. (2019). Particularly, problem (4)
is solved using the big-M values computed according to Eq. (5). This strategy is an
exact approach that does not make use of previously solved instances of the problem,
but guarantees that its global optimal solution is eventually retrieved. Nevertheless,

1 3

Learning-assisted optimization for transmission switching

the computational time employed by this approach may be extremely high. Algo-
rithm 1 shows a detailed description of this approach.

Algorithm 1 Bench

Input: load vector for test instance t̂, dt̂.

1) Compute the bounds with all switchable lines open, i.e., M0 = FAT(0).

2) Solve xt̂ = OTS(dt̂,M0,0,1)

Output: Optimal network configuration xt̂.

3.2 Existing learning‑based approaches

In this subsection, we present two existing learning approaches based on the K near-
est neighbors technique (Hastie et al. 2009). The first approach is a pure machine-
learning strategy that directly predicts the binary variables of the test instance using
the information of the K closest training data. Such closeness is measured in terms
of the �2 distance among the load values of the training and test points, that is, by
computing ‖dt − dt̂‖2 , for t = 1,… , |T|} . For each test instance t̂ , the set of K closest
instances is denoted as Tt̂

K
= KNN(dt̂) . This method is referred to as Direct since it

directly predicts the value of all binary variables from the data.
In the particular case of the DC-OTS problem, we adapt the Knn strategy as

follows: for a fixed number of neighbors K, we fix the binary variables of the test
problem (1) to the rounded mean of the decision binary variables of such K nearest
neighbors. Once all binary variables are fixed, model (1) becomes a linear program-
ming problem that can be rapidly solved. Algorithm 2 shows a detailed explanation
of the procedure. Note that, in this strategy we only need the information about the
load vector and the optimal binary variables in the training data, i.e., we only need
{(dt, xt)} for t = 1,… , |T|} . This approach is very simple and fast. However, fixing
the binary variables using a rounding procedure may yield a non-negligible number
of infeasible and suboptimal problems.

 S. Pineda et al.

1 3

Algorithm 2 Direct
Input: number of neighbors, K; training set, T = {(dt,xt)} for
t = 1, . . . , |T |}; and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute the binary variables xt̂ = �x(T t̂
K)�, where �x� denotes the

component-wise nearest integer function.

Output: Network configuration xt̂.

The second learning-based methodology explained in this subsection is proposed
in Johnson et al. (2021) and also employs the Knn technique. As occurs in the previ-
ous strategy, here, the authors assume given the set {(dt, xt), t = 1,… , |T|} . In short,
their proposal works as follows: for a fixed value of K, the K closest instances to the
test point are saved in the set Tt̂

K
 . Then, we evaluate function C(dt̂, xt) for each t ∈ T

t̂
K

by solving K linear problems. The optimal binary variables for the test instance xt̂
are set to those xt that lead to the lowest value of C(dt̂, xt) . This approach is denoted
as Linear and more details about it are provided in Algorithm 3.

Algorithm 3 Linear
Input: number of neighbors, K; training set, T = {(dt,xt), t = 1, . . . , |T |};
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Select t̃ = arg min
t∈T t̂

K

C(dt̂,xt).

Output: Network configuration xt̃.

Note that the value of K strongly affects the speed of the algorithm as well as the
number of suboptimal or infeasible problems. Larger values of K imply taking into
account more training points to get the estimation of the test response. As a con-
sequence, a larger number of LPs should be solved, and the computational burden
increases. However, the probability of having suboptimal or, even worse, infeasible
solutions is reduced. On the contrary, lower values of K diminishes the computa-
tional time of the procedure but increases the risk of obtaining suboptimal or infea-
sible solutions.

1 3

Learning-assisted optimization for transmission switching

3.3 Proposed learning‑based approaches

In this subsection, we propose two improved methodologies which combine the
benefits of exact and learning methods. Both approaches start by finding the K
closest training points to the test instance t̂ and fixing those binary variables that
reach the same value for all nearest neighbors according to an unanimous vote.
The two proposed approaches also find, in a different fashion, lower values of
the big-Ms than those computed in Fattahi et al. (2019). Since some binary vari-
ables may have been fixed to one thanks to the neighbors’ information, the first
approach we propose consists in recomputing the shortest paths and the corre-
sponding big-M values using (5). Differently, the second methodology proposed
in this paper directly set the big-M values to the maximum and minimum values
of the angle differences observed in the closest DC-OTS instances. Either way,
smaller big-Ms are obtained, and hence, the associated feasible region of the DC-
OTS problem is tighter. As a consequence, we solve a single MILP with a tighter
feasible region and a smaller number of binary variables.

More specifically, in the first proposed approach (denoted as FixB-FatM) the binary
variables of the test instance are set to 1 (resp. to 0) if all the training instances in Tt̂

K

concur that the value should be 1 (resp. 0). On the other hand, for those binary vari-
ables that are not fixed, the corresponding big-M values are updated using the infor-
mation of the previously fixed variables. In particular, these fixed binaries are used to
recompute the shortest path that determines the big-M values in Eq. (5). In essence,
the computation of the new shortest path involves not only the non-switchable lines
from the original spanning tree but also those switchable lines with a learned status
equal to 1. This update could result in even shorter paths, leading to improved big-M
bounds and a more tightly defined feasible region. This strategy relies on the unanimity
of all the nearest neighbors and therefore, this learning-based approach is expected to
be quite conservative, specially for high values of K.

To further assess the computational savings yielded by this approach we also inves-
tigate two variations. For instance, we denote by FixB the approach in which binary
variables are fixed but big-M values are computed using only the information from the
original spanning tree. We also consider the FatM approach that does not fix any binary
decision variable but only uses the information of the closest neighbors to recompute
the shortest paths and update the big-M values with Eq. (5). In other words, while none
of the binary variables are fixed in this method, the learned status of switchable lines
can still be utilized to decrease the big-M values. By comparing the computational bur-
den of these three approaches we can analyze whether the numerical improvements
are caused by the lower number of binary variables or the tighter values of the big-M
parameters. Algorithms 4, 5 and 6 show a detailed description of the methods FixB,
FatM and FixB-FatM, respectively.

 S. Pineda et al.

1 3

Algorithm 4 FixB
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) M0 = FAT(0) and T t̂
K = KNN(dt̂).

2) Compute xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

3) Solve xt̂ = OTS(dt̂,M0,xt̂,xt̂).

Output: Network configuration xt̂.

Algorithm 5 FatM
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute x̃t̂ = �x(T t̂
K)� and M̃t̂ = FAT(x̃t̂).

3) Solve xt̂ = OTS(dt̂, M̃t̂,0,1).

Output: Network configuration xt̂.

Algorithm 6 FixB-FatM
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute x̃t̂ = �x(T t̂
K)� and M̃t̂ = FAT(x̃t̂).

3) Determine xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

4) Solve xt̂ = OTS(dt̂, M̃t̂,xt̂,xt̂).

Output: Network configuration xt̂.

1 3

Learning-assisted optimization for transmission switching

FixB and FixB-FatM can be slightly modified to relax the unanimity condi-
tion required to fix binary variables. To do so, we introduce a threshold parameter
𝜏 < 0.5 . The binary variables are then fixed according to the following rules:

– If the predicted status for a particular line falls in [0, �] , the binary variable is
fixed to 0.

– If the predicted status for a particular line falls in [1 − �, 1] , the binary variable is
fixed to 1.

– If the predicted status for a particular line falls between (�, 1 − �) , the binary var-
iable is left unfixed.

This can be implemented by replacing, respectively, step 2) in Algorithm 4 and step
3) in Algorithm 6 by:

The value of K also plays an important role in these approaches. Low values of K
increase the chances of unanimous consensus of the nearest neighbors and therefore,
a higher number of binary variables are expected to be fixed, and tighter big-M val-
ues are obtained. This way, the computational burden of the OTS problem is reduced
at the expense of increasing the risk of obtaining infeasible or suboptimal problems.
In the extreme case, if K = 1 , all binary variables are fixed to the values of the clos-
est instance of the training set. On the contrary, large values of K increase the com-
putational burden but the resulting problems have a high chance of being feasible. In
the extreme case, if the whole training set is considered, very few binary variables
are expected to be fixed and the computational savings are reduced.

The three methodologies presented above compute the big-M values using past
observed data through the shortest path algorithm. However, as can be derived from
Eq. (3), the values Mnm and M

nm
 for a switchable line are just the maximum and

minimum values of the difference between the voltage angles at nodes n and m mul-
tiplied by bnm . Therefore, following this idea, the second data-driven approach that
we propose (denoted as FixB-AngM) estimate the big-M values using the informa-
tion of historic observed angles as follows:

Using (6) to compute the bounds values for a set of past instances T is denoted
as M = ANG(T) for notation purposes. It is important to clarify that computing
the big-M values using (3) and (6) involves significant differences. The problems
addressed by (3) focus on identifying the tightest valid bounds by solving mixed-
integer problems, which are as challenging as the original OTS problem. In contrast,
Eq. (6) efficiently approximates these bounds using observed angles from the his-
torical dataset. Consequently, the bounds derived from (6) are consistently tighter
than those obtained from (3), potentially excluding feasible solutions to the original
OTS problem if the training set lacks sufficient representativeness. In fact, this strat-
egy is riskier than the one used in FixB-FatM since it leads to much tighter feasible

xt̂ = ⌊min(x(Tt̂
K
) + 𝜏, 1)⌋ and x

t̂
= ⌈max(x(Tt̂

K
) − 𝜏, 0)⌉

(6)Mnm = bnm × max
t∈T∶ xt

nm
=0
(�t

n
− �t

m
) M

nm
= bnm × min

t∈T∶ xt
nm
=0
(�t

n
− �t

m
)

 S. Pineda et al.

1 3

regions, which significantly reduces the computational burden of solving the OTS
problem, but also increases the chances of yielding infeasible problems. To avoid
using too tight big-M values that could cut off the optimal solution, the learned
bounds obtained through (6) can be multiplied by a security factor � ≥ 1.

For the sake of comparison, we also consider the approach AngM in which no
binary variables are fixed and big-M values are set using the observed angle dif-
ferences. More details about the approaches FixB-AngM and AngM are provided in
Algorithms 7 and 8, respectively. It is worth noticing that while the big-M values
computed by (5) are symmetric, those derived by Algorithms 7 and 8 are not.

Algorithm 7 FixB-AngM
Input: number of neighbors, K; training set, T = {(dt,xt,θt)} for
t = 1, . . . , |T |; load vector for test instance t̂, dt̂; and security factor λ ≥ 1.

1) T t̂
K = KNN(dt̂).

2) Determine xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

3) Compute big-M values as M̂ = λ ·ANG(T).

4) Solve xt̂ = OTS(dt̂, M̂,xt̂,xt̂).

Output: Network configuration xt̂.

Algorithm 8 AngM
Input: training set, T = {(dt,xt,θt)} for t = 1, . . . , |T |; load vector for test
instance t̂, dt̂; and security factor λ ≥ 1.

1) Compute big-M values as M̂ = λ ·ANG(T).

2) Solve xt̂ = OTS(dt̂, M̂,0,1).

Output: Network configuration xt̂.

To sum up, Table 1 provides a brief description of the different methods explained
throughout Sect. 3. The first column of the table includes the name of each strategy.
The second column shows whether the final problem to be solved is a linear pro-
gram (LP) or a mixed-integer linear program (MILP). In the third column, the total
number of problems to be solved is indicated. Column four shows the number of
binary decision variables of the MILPs to be solved. Particularly, original means
that the number of variables is exactly the same as the one from the original OTS
formulation (4). In contrast, reduced means that the number of binary variables of

1 3

Learning-assisted optimization for transmission switching

the resulting MILP has been reduced compared to the original formulation. Finally,
the last column indicates how the big-M values have been computed. If shortest
(spanning) is written, then we indicate that the bounds are computed by means of
the shortest path method and only using the information from the original span-
ning subgraph. On the contrary, the choice shortest (update) means that the short-
est paths needed to compute the big-M values have been updated with the informa-
tion provided by the closest neighbors. Finally, the word historic angles implies that
the bounds are computed using the voltage angle information of previously solved
instances.

4 Numerical simulations

In this section, we present the computational results of the different methodologies
discussed in Sect. 3 for a realistic network. In particular, we compare all approaches
using a 118-bus network that includes 186 lines (Blumsack 2006). This network size
is sufficiently substantial to render the instances nontrivial for current algorithms,
yet not so large as to make them computationally intractable. Indeed, this is the
most commonly used network to test OTS solving strategies in the literature (Fisher
et al. 2008; Kocuk et al. 2016; Fattahi et al. 2019; Johnson et al. 2021; Dey et al.
2022). As justified in Sect. 2, we consider a fixed connected spanning subgraph of
117 lines, while the remaining 69 lines can be switched on or off to minimize the
operation cost. The spanning subgraph has been chosen to obtain sufficiently chal-
lenging problems. For this network, we generate 500 different instances of the OTS
problem that differ in the nodal demand dn using probability distributions centered
in the baseline demand d̂n . Since the demand variability may significantly affect the
performance of the compared methodologies, we consider the following three cases:

– Unif10: The demand levels are sampled using independent uniform distributions
in the range [0.9d̂n, 1.1d̂n].

– Unif20: The demand levels are sampled using independent uniform distributions
in the range [0.8d̂n, 1.2d̂n].

Table 1 Summary of the
methods explained in Sect. 3

Method LP/MILP # problems # binary big-M computation

Bench MILP 1 Original Shortest (spanning)
Direct – – – –
Linear LP K – –
FixB MILP 1 Reduced Shortest (spanning)
FatM MILP 1 Original Shortest (update)
FixB-FatM MILP 1 Reduced Shortest (update)
FixB-AngM MILP 1 Reduced Historic angles
AngM MILP 1 Original Historic angles

 S. Pineda et al.

1 3

– Normal: The demand levels are sampled using a multinormal distribution with
the correlation matrix obtained from the demand time series available at (Joswig-
Jones et al. 2021).

The three database files can be downloaded from (OASYS 2023). We use a leave-
one-out cross-validation technique under which all the available data except for one
data point is used as the training set, and the left-out data point is used as the test set.
Consequently, the number of nearest neighbors K ranges from 1 to 499. This process
is repeated for all data points and the resulting performance metrics are averaged to
get an estimate of the model’s generalization performance.

All optimization problems have been solved using GUROBI 9.1.2 (Gurobi Opti-
mization, LLC 2022) on a Linux-based server with CPUs clocking at 2.6 GHz, 1
thread and 8 GB of RAM. In all cases, the optimality GAP has been set to 0.01% and
the time limit to 1 h.

The simulation results are presented in two subsections. In Sect. 4.1, a compre-
hensive comparison is conducted for all learning strategies introduced in Sect. 3
using the Unif10 database. Section 4.2 utilizes the Unif20 and Normal databases to
explore the impact of increased demand variability and correlation on the computa-
tional performance of these methodologies.

4.1 Base case study

All simulation results presented in this subsection correspond to the Unif10 data-
base. To illustrate the economic advantages of disconnecting some lines, Fig. 1
depicts an histogram of the relative difference between the DC-OTS cost if model
(4) is solved by the benchmark approach described in Sect. 3.1, and the cost
obtained if all the 186 lines are connected. This second cost is computed by fix-
ing binary variables xnm to one and solving model (1) as a linear programming
problem. Figure 1 does not include the instances for which this linear problem is
infeasible. As observed, the cost savings are significant in most instances, and in
the most favorable cases it reaches 15%. The average cost savings for this particu-
lar network and the 500 instances considered is 13.2%. On the other hand, solving

Fig. 1 DC-OTS cost savings
distribution

1 3

Learning-assisted optimization for transmission switching

model (4) is computationally hard and to prove it, Fig. 2 plots the number of prob-
lems solved as a function of the computational time. For illustration purposes, the
left plot shows the 439 problems solved in less than 100 s (“easy” instances) and
the right plot the remaining “hard” instances that require a longer time. The average
time of all instances is 145 s, while the average time of the hard instances amounts
to 1085s, which demonstrates the difficulty of solving model (4) to certified optimal-
ity. In addition, the benchmark approach is unable to solve 12 of the 500 instances to
global optimality within one hour (with a maximum mip-gap equal to 2.46%) even
though model (4) “only” includes 69 binary variables associated to the 69 switch-
able lines. This means that, for these 12 instances, this method has not been able to
certify the optimality of the best integer solution found within the time limit, due
to the poor relaxation bound originated from excessively large big-M values. We
have thoroughly examined the simulations of this case study and verified that, for all
instances, the best integer solution identified by the benchmark consistently matches
the best solution discovered by all the other (learning-based) approaches. This lead
us to conjecture that the benchmark does find the optimal solution for all instances
in the Unif10 database. Therefore, throughout this section, we compare the differ-
ent methodologies with the best integer solution found in one hour by the Bench
approach.

Next, we discuss the results provided by the Direct approach described in
Sect. 3.2, where the binary variables are just fixed to the values predicted by the
nearest neighbor technique. Table 2 collates, for different number of neighbors K,
the number of instances in which Direct delivers the same solution obtained by
the benchmark (# opt), the number of instances with a suboptimal solution (# sub)
as well as the average and maximum relative gap with respect to the benchmark
approach (gap-ave, gap-max). Note that the metrics # opt, # sub, gap-ave and gap-
max are computed with respect to the best solution found within one hour, which
may not correspond to the true optimum. Finally, the results are also compared in
terms of the average computational time, which can be seen in the last column of the
table. Unsurprisingly, this approach is extremely fast and the computational time is
just negligible. On the other hand, the vast majority of the instances only attain sub-
optimal solutions for any number of neighbors K, and the maximum gap is above 8%

Fig. 2 Computational burden of the Bench approach

 S. Pineda et al.

1 3

in all cases. These results illustrate that the use of machine-learning approaches to
directly predict the value of the binary variables of mixed-integer problems is likely
to be extremely fast but potentially suboptimal.

Now we run similar experiments using the Linear approach described in Sect. 3.2
and proposed in Johnson et al. (2021). The corresponding results are presented in
Table 3. Logically, the Linear solves a higher number of LP problems for differ-
ent combinations of the binary variables and therefore, some instances are solved
to optimality, specially for large values of K. Although this methodology could be
parallelized, Table 3 includes the sum of the computational times required to solve
all the LP problems and therefore, this time increases with K. It is worth clarify-
ing that the computational time required to find the nearest neighbors is below
1ms in all cases. Although the computational burden is insignificant if compared
with the benchmark, the number of suboptimal cases and maximum gap are still
considerable.

We continue this numerical study by comparing approaches FixB, FatM and
FixB-FatM discussed in Sect. 3.3. For simplicity, Table 4 provides the results for
K = 50 (10% of the training data) and � = 0 . Unlike Direct and Linear, these three
approaches lead to the optimal solution for all instances, which confirms their
robustness for a sufficiently high number of neighbors. Therefore, although these
approaches require a higher computational burden than Direct and Linear, they
still involve significant computational savings with respect to the benchmark, while
reducing the probability of returning suboptimal solutions.

Table 2 Performance of the
Direct approach

K # opt # sub gap-ave gap-max Time (s)

5 2 498 1.799 13.78 0.0
10 0 500 2.025 16.40 0.0
20 0 500 2.085 13.84 0.0
50 0 500 2.057 14.13 0.0
100 0 500 1.846 12.53 0.0
200 0 500 2.367 12.28 0.0
499 0 500 2.629 8.38 0.0

Table 3 Performance of the
Linear approach

K # opt # sub gap-ave gap-max Time (s)

5 10 490 0.300 3.59 0.00
10 19 481 0.194 3.56 0.01
20 24 476 0.130 1.61 0.02
50 51 449 0.083 1.06 0.04
100 77 423 0.061 0.71 0.08
200 104 396 0.049 0.71 0.16
499 127 373 0.043 0.71 0.39

1 3

Learning-assisted optimization for transmission switching

Table 4 also shows that approaches FixB, FatM and FixB-FatM differ in terms
of their computational burden. The FatM approach reports higher times than FixB,
which allows us to conclude that fixing some binary variables involves higher com-
putational savings than tightening the big-M constants. Notwithstanding this, the
highest computational gains are obtained if both effects are combined under the
FixB-FatM approach. Figure 3 plots the number of problems solved as a function
of time. In the left subplot, the x-axis ranges from 0 to 100 s, while in the right
subplot the x-axis goes from 100 s to 3600 s. In the left subplot we can observe
that approaches FixB and FixB-FatM are able to solve most of the instances in less
than 100 s, while approach FatM has a similar performance as the benchmark. In
the right subplot we see that the hardest instance solved by FixB and FixB-FatM
requires 1645 s and 296 s, respectively. On the contrary, although FatM outperforms
the benchmark, this approach is not able to solve all instances in less than one hour.

It is also relevant to point out that the higher the value of K, the lower the chances
of achieving unanimity on the status of switchable lines, and thus, the lower the
number of binary variables that are fixed in the OTS problem. To illustrate this fact,
Table 5 collects the results of approach FixB-FatM for � = 0 and for different values
of K including the average number of binary variables fixed to one or zero using the
training data (# bin). For K = 5 , 28 binary variables (out of the original 69 binary
variables) are fixed in average, then leading to low computational times but a larger
number of suboptimal instances. For K = 499 , only 8 binary variables are fixed
(in average), no suboptimal solutions are obtained, but the computational time is
increased. Figure 4 also illustrates the impact of K on the performance of the FixB-
FatM approach. Note that setting K equal to 5 yields the lowest computational times

Table 4 Performance of FixB,
FatM, FixB-FatM for K=50 and
� = 0

opt # sub gap-ave gap-max Time (s)

FixB 500 0 – – 16.39
FatM 500 0 – – 109.95
FixB-FatM 500 0 – – 12.33

Fig. 3 Computational burden of FixB, FatM, FixB-FatM for K=50 and � = 0

 S. Pineda et al.

1 3

and all instances are solved in less than 100 s. However, this method leads to 47 sub-
optimal solutions. On the other hand, if K is set to 499, the maximum time reaches
400 s but all instances are solved to optimality.

While in the previous simulations � was set to zero in all cases, increasing its
value has the potential to fix a greater number of binary variables, thereby decreas-
ing the time to solve the resulting OTS problem. This, however, comes at the cost
of potentially increasing the number of infeasible and/or suboptimal instances. For
K = 50 , Table 6 presents the simulation results for the FixB-FatM method with vari-
ous values of the threshold parameter � . The last column of this table (# bin) shows
the average number of fixed binary variables, which logically rises with increasing
values of � . However, the reduction in computational time is arguably minor and,
certainly, may not justify the trade-off, as the gap values and the number of sub-
optimal instances increase significantly in contrast. Therefore, the relaxation of the
unanimity condition in the proposed learning-based methods may not be deemed
worthwhile.

Next, we analyze the results of the two remaining approaches: the FixB-
AngM approach that uses the nearest neighbors to fix some binary variables
and all the elements in the training to learn the big-M values as explained in
Sect. 3.3, and the AngM approach described in the same section. The results of
these two methods for � = 1 are provided in Table 7 and allow us to draw some

Table 5 Impact of K on the
performance of FixB-FatM for
� = 0

K # opt # sub gap-ave gap-max Time (s) # bin

5 453 47 0.031 1.92 2.41 28.31
10 486 14 0.010 0.92 6.98 21.32
20 499 1 0.000 0.10 9.56 18.19
50 500 0 – – 12.33 15.65
100 500 0 – – 15.27 13.61
200 500 0 – – 16.65 11.29
499 500 0 – – 16.46 8.00

Fig. 4 Impact of K on the computational burden of FixB-FatM for � = 0

1 3

Learning-assisted optimization for transmission switching

interesting conclusions. First, both approaches lead to suboptimal solutions for
some instances. This is understandable since, as explained in Sect. 3.3, these
methods set the big-M constants fully relying on the maximum angle difference
observed in the training set. Therefore, if the training set does not include an
instance in which the actual maximum angle difference realizes, then the learned
values of the big-Ms may leave the optimal solution out of the feasible region.
In other words, while this strategy usually leads to very tight big-M values, it
also increases the probability of having suboptimal or even infeasible solutions.
This strategy is substantially different from approaches FatM and FixB-FatM that
learn shorter paths of connected lines based on the optimal solution of the OTS
problem for the training data and recompute the big-M constants using (5). Since
shorter paths are only updated under the unanimity of the nearest neighbors, this
strategy leads to more conservative big-M values and, consequently, larger feasi-
bility regions and computational times. These facts are confirmed by comparing
Tables 5 and 7. For instance, for K = 50 , FixB-FatM solves all instances to opti-
mality and takes 12.33s in average, the FixB-AngM yields five suboptimal solu-
tions but the average computational times is reduced to 0.7s only. The third rel-
evant fact arises from the comparison of the average computational times of the
two approaches in Table 7. As observed, these times are particularly similar for
all values of K. This leads us to conclude that the obtained big-M constants are so
tight that fixing some binary variables does not have a significant impact on the
computational burden. For completeness, Fig. 5 compares, for � = 1 , the number

Table 6 Impact of threshold � on FixB-FatM approach

K � # opt # sub # inf gap-ave gap-max Time (s) # bin

FixB-FatM 50 0.00 500 0 0 – – 12.33 15.65
FixB-FatM 50 0.01 500 0 0 – – 11.23 15.65
FixB-FatM 50 0.02 497 3 0 0.001 0.26 9.73 17.95
FixB-FatM 50 0.05 493 7 0 0.003 0.32 10.56 19.17
FixB-FatM 50 0.10 486 14 0 0.009 0.76 6.99 22.16
FixB-FatM 50 0.20 454 46 0 0.031 1.96 2.43 27.61

Table 7 Performance of
approaches FixB-AngM and
AngM for � = 1

K # opt # sub gap-ave gap-max Time (s)

FixB-AngM 5 450 50 0.033 1.92 0.41
FixB-AngM 10 482 18 0.011 0.92 0.59
FixB-AngM 20 494 6 0.002 0.39 0.61
FixB-AngM 50 495 5 0.002 0.39 0.70
FixB-AngM 100 495 5 0.002 0.39 0.71
FixB-AngM 200 495 5 0.002 0.39 0.70
FixB-AngM 499 495 5 0.002 0.39 0.71
AngM – 495 5 0.002 0.39 0.88

 S. Pineda et al.

1 3

of problems solved by FixB-AngM for 50 neighbors and AngM with the bench-
mark. Notice that these two methodologies are able to solve most instances in less
than 5 s, while only 250 instances are solved by the benchmark in that time. This
figure also proves that fixing the binary variables has a negligible effect on the
computational savings.

To reduce the number of suboptimal instances, AngM can be run with values
of the multiplying factor � higher than 1. Table 8 compiles the simulation results
for AngM with various values of � . It is observed that a slight increase in the
big-M values above those learned from historical data has a minimal impact on
computational time, but reduces the number of suboptimal instances. Remark-
ably, even for � = 1.1 , all instances are solved optimally by AngM.

To further illustrate the performance of the two data-driven strategies to learn
the big-M constants, Table 9 provides, for ten of the switchable lines, the big-M
values for approaches Bench, FixB-FatM for K = 50, � = 0 and AngM for � = 1 .
For the first two methods, M

nm
 and Mnm are symmetric for all lines, whereas

approach AngM computes asymmetric values as explained in Sect. 3.3. Since
the learned large constants may change for each instance, Table 9 includes value
ranges. Thanks to the status of switchable lines of the nearest neighbors, the
FixB-FatM approach is able to reduce the shortest paths used in (5) and signifi-
cantly decrease the values of the big-Ms for some lines. For lines 2, 58 and 103,
these values remain, however, unaltered. The approach AngM learns from the
observed angle differences and therefore, the big-M are tightened even further.
In fact, for lines 58, 85, 135, 164, this methodology is able to infer the direction
of the power flow through these lines and consequently one of the big-M values
is set to 0. This bound reduction effectively tightens the DC-OTS model (4) and
significantly reduces its computational burden.

After this in-depth analysis of the simulation results for the Unif10 database,
we can conclude that the most promising approaches are Linear with K = 499 ,
FixB-FatM with K = 50 and � = 0 , and AngM with � = 1.1 . Table 10 summarizes
the computational results of these approaches. The Linear approach is the fastest,
but returns 373 suboptimal instances, a maximum gap of 0.71% and an average
gap that is four times the target value of 0.01%. On the other hand, FixB-FatM

Fig. 5 Computational burden
of FixB-AngM and AngM for
K = 50 and � = 1

1 3

Learning-assisted optimization for transmission switching

and AngM achieve the optimal solution for all instances. Besides, AngM reports
the lowest computational time, which is in fact slightly above that of the Linear
approach.

To conclude this section, we remark that the primary goal of these learning
procedures is to swiftly generate solutions needed for online applications. How-
ever, it is crucial to note that the rapid solutions obtained are not directly included
in the training data. As new demand levels materialize over time, each instance
must undergo an offline optimization using the benchmark approach to achieve
optimality before integrating its corresponding solution into the expanding train-
ing set.

Table 8 Impact of factor � on
AngM approach

� # opt # sub # inf gap-ave gap-max Time (s)

AngM 1.0 495 5 0 0.002 0.39 0.88
AngM 1.1 500 0 0 – – 0.78
AngM 1.2 500 0 0 – – 0.82
AngM 1.5 500 0 0 – – 1.21

Table 9 Comparison of big-M
values for Bench, FixB-FatM,
AngM

Line Bench FixB-FatM AngM

−M = M −M = M M −M

2 1080 1080 [212,218] [388,383]
23 10,267 [6615,10267] [1441,1575] [639,607]
28 16,806 [7434,16806] [553,628] [604,510]
31 1417 [1309,1417] [248,252] [176,175]
46 5279 [2287,5279] [289,325] [34,9]
58 247 247 0 81
85 776 [0,776] [376,391] 0
103 486 486 [184,185] 381
135 1458 [0,294] [122,127] 0
164 3231 [0,837] 0 [115,114]

Table 10 Summary of computational results for the Unif10 database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 499 127 373 0 0.043 0.71 0.39
FixB-FatM(� = 0) 50 500 0 0 – – 12.33
AngM(� = 1.1) – 500 0 0 – – 0.78

 S. Pineda et al.

1 3

4.2 Impact of demand variability and correlation

As mentioned earlier, the variability and correlation of nodal demand levels can
influence the performance of the learning-based methods compared in this paper.
Specifically, an increase in demand variability relative to nominal values is expected
to reduce the accuracy of any learning method, given the same size of the training
dataset. Conversely, a higher correlation among demand levels at different nodes in
the network simplifies the learning task, thanks to a more pronounced data structure.

Table 11 compiles the simulation results of various methods for the Unif20 data-
base, which has a higher variability than Unif10. While none of the methods applied
to the Unif10 database result in any infeasible instances, this is not the case for the
Unif20 dataset. The fifth column of the table indicates the number of infeasible
instances for each approach. It is worth noting that, for this dataset, the benchmark
fails to achieve optimality for 43 instances within one hour, resulting in an average
mip-gap of 0.50% and a maximum mip-gap of 2.40%. The average time required by
the benchmark method is 510.9 s. For the Unif20 database, which includes the most
challenging instances, we do observe a few cases where some of the learning-based
methods produce slightly improved integer solutions compared to Bench. However,
for consistency, the reported gaps in this case study are calculated using the solu-
tions identified by the Bench approach as optimal. The simulation results in Table 11
yield noteworthy observations. Firstly, as anticipated, increasing the variability of
demand levels leads to a rise in the number of suboptimal and infeasible instances.
For instance, FixB-FatM with K = 5 produced 47 suboptimal instances for the
Unif10 database. However, for the Unif20 database, this method resulted in 153 sub-
optimal instances and 4 infeasible problems. The maximum gap for this approach
has also increased from 1.92% to 5.93%. Secondly, augmenting the number of clos-
est neighbors diminishes the number of infeasible instances, as binary variables are
fixed only under the unanimity condition. Indeed, the FixB-AngM approach exhib-
its no infeasible instances when K is increased from 5 to 50. Similarly, the Linear
approach avoids any infeasible instance for a value of K = 499 . This suggests that
these approaches are not particularly suitable for high variability in parameters or
a low number of training instances. Thirdly, the Linear approach is very fast, but

Table 11 Computational results for the Unif20 database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 5 2 490 8 0.923 6.27 0.00
Linear 50 18 481 1 0.276 2.63 0.04
Linear 499 44 456 0 0.153 1.50 0.33
FixB-FatM(� = 0) 5 343 153 4 0.179 5.93 4.99
FixB-FatM(� = 0) 50 496 4 0 0.002 0.72 115.02
FixB-FatM(� = 0) 499 499 1 0 0.000 0.02 105.54
AngM(� = 1) – 492 8 0 0.008 2.00 1.38
AngM(� = 1.1) – 499 1 0 0.000 0.02 1.93

1 3

Learning-assisted optimization for transmission switching

involves large average and maximum gap values, even for K = 499 . Finally, con-
sidering both the number of suboptimal instances, the average and maximum gaps,
and the average computational time, it can be concluded that the AngM with � = 1.1
method exhibits superior performance for the Unif20 database.

Despite the insightful findings presented in Table 11, one could argue that elec-
tricity demand in real power systems exhibits a higher spatial correlation. Therefore,
utilizing uncorrelated probability distributions for the nodal demands may diverge
from reality. To address this concern, in Table 12 we present results analogous to
those in Table 11 where demand levels are randomly sampled from a multinormal
distribution with a correlation matrix computed using data from Joswig-Jones et al.
(2021). For the Normal dataset, the benchmark approach fails to solve 30 instances
within one hour, yielding an average mip-gap of 0.49% and a maximum mip-gap
of 2.45%. Besides, the benchmark approach takes an average time of 289.5 s. As
with the Unif10 database, none of the learning-based approaches improves the solu-
tion found by the Bench approach in one hour for any of the 500 instances of the
Normal database. In this more realistic setting, we observe that there are no infea-
sible instances for any of the methods, while most methods result in some subop-
timal instances. Notably, the computational times required by Linear, FixB-FatM
and AngM are of the same order of magnitude. However, while the Linear approach
returns suboptimal instances for the three values of K, the proposed methodologies
FixB-FatM with K = 499 and � = 0 , and AngM with � = 1.1 are able to solve the
500 instances to global optimality. This underscores the efficacy of learning-based
procedures in delivering rapid solutions that closely approximate the original solu-
tion for the OTS problem, even with realistic demand level variability.

5 Conclusions and further research

In the field of power systems, the optimal transmission switching problem (OTS)
determines the on/off status of transmission lines to reduce the operating cost. The
OTS problem can be formulated as a mixed-integer linear program (MILP) that
includes large enough constants. This problem belongs to the NP-hard class and its

Table 12 Computational results for the Normal database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 5 164 336 0 0.024 0.47 0.00
Linear 50 446 54 0 0.004 0.37 0.04
Linear 499 488 12 0 0.001 0.11 0.41
FixB-FatM(� = 0) 5 493 7 0 0.003 0.46 0.30
FixB-FatM(� = 0) 50 499 1 0 0.000 0.17 0.57
FixB-FatM(� = 0) 499 500 0 0 – – 0.56
AngM(� = 1) – 495 5 0 0.002 0.51 0.26
AngM(� = 1.1) – 500 0 0 – – 0.29

 S. Pineda et al.

1 3

computational burden is, consequently, significant even for small networks. While
pure end-to-end learning approaches can solve the OTS problem extremely fast, the
obtained solutions are usually suboptimal, or even infeasible. Alternatively, we pro-
pose in this paper some learning-based approaches that reduce the computational
burden of the MILP model by leveraging information of previously solved instances.
These computational savings arise from the fact that some binary variables are fixed
and tighter big-M values are found. Numerical simulations on a 118-bus power net-
work show that the first proposed approach is able to solve all instances to optimal-
ity in less than 300 s, while the benchmark approach is unable to solve all of them in
3600 s. The second approach we propose is more aggressive and solves all instances
in less than 10 s, but 1% of them do not reach the optimal solution. We also assess
the performance of the proposed learning-based approaches under increased demand
variability and correlation.

All the learning approaches presented in this paper utilize the Knn algorithm and
the l2 norm distance. The exploration of different machine learning methods and/
or distances is left as a potential avenue for future research. In this paper, we intro-
duce a machine learning approach that leverages the structural patterns observed
in past DC-OTS instances to improve the performance of new problems. However,
the solver hyperparameters are set to default values. Future research could explore
utilizing the data information not only to exploit the problem structure but also to
finely tune solver hyperparameters, as demonstrated in Lodi and Zarpellon (2017);
Cappart et al. (2023). Additionally, our study assumes the use of DC approxima-
tions for power flow equations. A potential research direction involves addressing
the more challenging AC-OTS problem, considering data-driven strategies to sim-
plify it into a DC-OTS format, akin to approaches presented in Parmentier (2022).

Acknowledgements This work was supported in part by the European Research Council (ERC) under the
EU Horizon 2020 research and innovation program (grant agreement No. 755705), in part by the Spanish
Ministry of Science and Innovation (AEI/10.13039/501100011033) through project PID2020-115460GB-
I00, and in part by the Research Program for Young Talented Researchers of the University of Málaga
under Project B1-2020-15. Finally, the authors thankfully acknowledge the computer resources, technical
expertise, and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the Uni-
versity of Málaga.

Funding Funding for open access publishing: Universidad Málaga/CBUA. Open access charge: Universi-
dad de Málaga / CBUA. HORIZON EUROPE European Research Council (755705); Ministerio de Cien-
cia e Innovación (PID2020-115460GB-I00); Universidad de Málaga (B1-2020-15).

Declarations

 Conflict of interest The authors declare no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

1 3

Learning-assisted optimization for transmission switching

directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Barrows C, Blumsack S, Bent R (2012) Computationally efficient optimal transmission switching: Solution
space reduction. In: 2012 IEEE Power and Energy Society General Meeting, pp 1–8

Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial optimization: a methodological
tour d’horizon. Eur J Oper Res 290(2):405–421. https:// doi. org/ 10. 1016/j. ejor. 2020. 07. 063

Blumsack S (2006) Network topologies and transmission investment under electric-industry restructuring.
Carnegie Mellon University, Pittsburgh, Pennsylvania

Bugaje A-AB, Cremer JL, Strbac G (2023) Real-time transmission switching with neural networks. IET
Gener, Transm Distrib 17(3):696–705. https:// doi. org/ 10. 1049/ gtd2. 12698

Cappart Q, Chételat D, Khalil EB, Lodi A, Morris C, Veličković P (2023) Combinatorial optimization and
reasoning with graph neural networks. J Mach Learn Res 24(130):1–61

Cormen TH, Leiserson CE, Rivest RL, Stein C (2022) Introduction to Algorithms. MIT press, Cambridge,
Massachusetts

Crozier C, Baker K, Toomey B (2022) Feasible region-based heuristics for optimal transmission switching.
Sustain Energy, Grids Netw 30:100628

Dey SS, Kocuk B, Redder N (2022) Node-based valid inequalities for the optimal transmission switching
problem. Discret Optim 43:100683

Fattahi S, Lavaei J, Atamtürk A (2019) A bound strengthening method for optimal transmission switching in
power systems. IEEE Trans Power Syst 34(1):280–291

Fisher EB, O’Neill RP, Ferris MC (2008) Optimal transmission switching. IEEE Trans Power Syst
23(3):1346–1355

Flores M, Macedo LH, Romero R (2020) Alternative mathematical models for the optimal transmission
switching problem. IEEE Syst J 15(1):1245–1255

Fuller JD, Ramasra R, Cha A (2012) Fast heuristics for transmission-line switching. IEEE Trans Power Syst
27(3):1377–1386

Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. https:// www. gurobi. com
Han T, Hill D (2022) Learning-based topology optimization of power networks. IEEE Trans Power Syst

38(2):1366–78
Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining,

inference, and prediction, vol 2. Springer, New York
Hedman KW, Oren SS, O’Neill RP (2012) Flexible transmission in the smart grid: optimal transmission

switching. Handbook of networks in power systems. Springer, Berlin, pp 523–553
Hinneck A, Pozo D (2022) Optimal transmission switching: improving exact algorithms by parallel incum-

bent solution generation. IEEE Trans Power Syst 38(4):3317–3330
Jiménez-Cordero A, Morales JM, Pineda S (2022) Warm-starting constraint generation for mixed-integer

optimization: a machine learning approach. Knowl-Based Syst 253:109570
Johnson ES, Ahmed S, Dey SS, Watson J-P (2021) A K-nearest neighbor heuristic for real-time DC optimal

transmission switching. arXiv. arxiv: 2003. 10565
Joswig-Jones T, Zamzam A, Baker K (2021) OPFLearndata: Dataset for learning AC optimal power flow.

Technical report, NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory
Kocuk B, Jeon H, Dey SS, Linderoth J, Luedtke J, Sun XA (2016) A cycle-based formulation and valid

inequalities for DC power transmission problems with switching. Oper Res 64(4):922–938
Liu C, Wang J, Ostrowski J (2012) Heuristic prescreening switchable branches in optimal transmission

switching. IEEE Trans Power Syst 27(4):2289–2290
Lodi A, Zarpellon G (2017) On learning and branching: a survey. Top 25:207–236
OASYS (2023) Learning_Assisted_Optimization_for_Transmission_Switching. https:// github. com/ group

oasys/ Learn ing_ Assis ted_ Optim izati on_ for_ Trans missi on_ Switc hing
O’Neill RP, Baldick R, Helman U, Rothkopf MH, Stewart W (2005) Dispatchable transmission in RTO mar-

kets. IEEE Trans Power Syst 20(1):171–179
Parmentier A (2022) Learning to approximate industrial problems by operations research classic problems.

Oper Res 70(1):606–623
Pineda S, Morales JM, Jiménez-Cordero A (2020) Data-driven screening of network constraints for unit

commitment. IEEE Trans Power Syst 35(5):3695–3705. https:// doi. org/ 10. 1109/ TPWRS. 2020. 29802 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1049/gtd2.12698
https://www.gurobi.com
http://arxiv.org/abs/2003.10565
https://github.com/groupoasys/Learning_Assisted_Optimization_for_Transmission_Switching
https://github.com/groupoasys/Learning_Assisted_Optimization_for_Transmission_Switching
https://doi.org/10.1109/TPWRS.2020.2980212

 S. Pineda et al.

1 3

Ruiz PA, Goldis E, Rudkevich AM, Caramanis MC, Philbrick CR, Foster JM (2016) Security-constrained
transmission topology control milp formulation using sensitivity factors. IEEE Trans Power Syst
32(2):1597–1605

Yang Z, Oren S (2019) Line selection and algorithm selection for transmission switching by machine learn-
ing methods. In: 2019 IEEE Milan PowerTech. IEEE. pp 1–6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Salvador Pineda1,3 · Juan Miguel Morales2,3 · Asunción Jiménez‑Cordero2,3

 * Salvador Pineda
 spineda@uma.es

 Juan Miguel Morales
 juan.morales@uma.es

 Asunción Jiménez-Cordero
 asuncionjc@uma.es

1 Department of Electrical Engineering, University of Málaga, Málaga, Spain
2 Department of Mathematical Analysis, Statistics and Operations Research, and Applied

Mathematics, University of Málaga, Málaga, Spain
3 OASYS Research Group, University of Málaga, Málaga, Spain

http://orcid.org/0000-0002-1089-0970

	Learning-assisted optimization for transmission switching
	Abstract
	1 Introduction
	2 Optimal transmission switching
	3 Solution methods
	3.1 Exact benchmark approach
	3.2 Existing learning-based approaches
	3.3 Proposed learning-based approaches

	4 Numerical simulations
	4.1 Base case study
	4.2 Impact of demand variability and correlation

	5 Conclusions and further research
	Acknowledgements
	References

