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Abstract
The design of new strategies that exploit methods from machine learning to facilitate 
the resolution of challenging and large-scale mathematical optimization problems 
has recently become an avenue of prolific and promising research. In this paper, we 
propose a novel learning procedure to assist in the solution of a well-known compu-
tationally difficult optimization problem in power systems: The Direct Current Opti-
mal Transmission Switching (DC-OTS) problem. The DC-OTS problem consists in 
finding the configuration of the power network that results in the cheapest dispatch 
of the power generating units. With the increasing variability in the operating con-
ditions of power grids, the DC-OTS problem has lately sparked renewed interest, 
because operational strategies that include topological network changes have proved 
to be effective and efficient in helping maintain the balance between generation and 
demand. The DC-OTS problem includes a set of binaries that determine the on/off 
status of the switchable transmission lines. Therefore, it takes the form of a mixed-
integer program, which is NP-hard in general. In this paper, we propose an approach 
to tackle the DC-OTS problem that leverages known solutions to past instances of 
the problem to speed up the mixed-integer optimization of a new unseen model. 
Although our approach does not offer optimality guarantees, a series of numerical 
experiments run on a real-life power system dataset show that it features a very high 
success rate in identifying the optimal grid topology (especially when compared to 
alternative competing heuristics), while rendering remarkable speed-up factors.

Keywords Machine learning · Mathematical optimization · Mixed-integer 
programming · Optimal transmission switching · Optimal power flow

1 Introduction

Power systems are colossal and complex networks engineered to reliably supply 
electricity, where it is needed at the lowest possible cost. For this, operational rou-
tines based on the optimal power flow (OPF) problem are executed daily and in real 
time to guarantee the most cost-efficient dispatch of power generating units that 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-024-00672-0&domain=pdf
http://orcid.org/0000-0002-1089-0970


 S. Pineda et al.

1 3

satisfy the grid constraints. In particular, the way power flows through a power net-
work is determined by the so-called Kirchhoff’s laws. These laws are responsible 
for the fact that switching off a transmission line in the grid can actually result in a 
lower electricity production cost (a type of “Braess’ Paradox”) and have provided 
power system operators with a complementary control action, namely, changes in 
the grid topology, to reduce this cost even further. The possibility of flexibly exploit-
ing the topological configuration of the grid was first suggested in  O’Neill et  al. 
(2005) and later formalized in Fisher et al. (2008) into what we know today as the 
Optimal Transmission Switching (OTS) problem. Essentially, the OTS problem is 
the OPF problem enriched with a whole new set of on/off variables that model the 
status of each switchable transmission line in the system. The OPF formulation we 
use as a basis to pose the OTS problem is built on the widely used direct current 
(DC) linear approximation of the power flow equations. Even so, the resulting for-
mulation of the OTS problem, known as DC-OTS, takes the form of a mixed-integer 
program, which has been proven to be NP-hard for general network classes (Kocuk 
et al. 2016; Fattahi et al. 2019).

Thus, the DC-OTS problem consists in finding the configuration of the power 
network that results in the cheapest dispatch of the power generating units subject to 
constraints, such as thermal limits on transmission lines, generating units’ capacity 
bounds, and network connectivity conditions. To date, the resolution of the DC-OTS 
has been approached from two distinct methodological points of view, namely, by 
means of exact methods and by way of heuristics. The former exploit techniques 
from mixed-integer programming such as bounding, tightening, and the generation 
of valid cuts to solve the DC-OTS to (certified) global optimality, while the latter 
seek to quickly identify good solutions of the problem, but potentially forgoing opti-
mality and even at the risk of suggesting infeasible grid topologies.

Among the methods that are exact, we highlight the works in Kocuk et al. (2016), 
Fattahi et al. (2019), Ruiz et al. (2016), and Dey et al. (2022). More specifically, the 
authors in Kocuk et al. (2016) propose a cycle-based formulation of the DC-OTS 
problem, which results in a mixed-integer linear program. They prove the NP-hard-
ness of the DC-OTS even if the power grid takes the form of a series–parallel graph 
with only one generation-demand pair, and derive classes of strong valid inequalities 
for a relaxation of their formulation that can be separated in polynomial time. In 
Fattahi et al. (2019), the authors work instead with the mixed-integer linear formu-
lation of the DC-OTS that employs a big-M to model the disjunctive nature of the 
equation linking the power flow through a switchable line and the voltage angles at 
the nodes the line connects. This is the formulation of the DC-OTS we also consider 
in this paper. The big-M must be a valid upper bound of the maximum angle dif-
ference when the switchable line is open. In Fattahi et al. (2019), it is proven that 
determining this maximum is NP-hard and, consequently, they propose to set the 
big-M to the shortest path between the nodes concerned over a spanning subgraph 
that is assumed to exist. The authors in Ruiz et al. (2016) conduct a computational 
study of a mixed-integer linear reformulation of the DC-OTS problem alternative 
to that considered in Fattahi et al. (2019). This reformulation makes use of the so-
called power transfer distribution factors (PTDFs) and the notion of flow-cancelling 
transactions to model open lines. They argue that this reformulation comparatively 
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offers significant computational advantages, especially for large systems and when 
the number of switchable lines is relatively small. Finally, a family of cutting planes 
for the DC-OTS problem are developed in Dey et al. (2022). These cutting planes 
are derived from the polyhedral description of the integer hull of a certain constraint 
set that appears in the DC-OTS problem. Specifically, this constraint set is made up 
of a nodal power balance equation together with the power flow limits of the asso-
ciated incident lines. Those of these limits that correspond to switchable lines are 
multiplied by the respective binary variable.

In practice, though, the complexity and size of real-life power grids often ren-
der exact solutions computationally infeasible. Therefore, heuristics, or approximate 
solution methods, become essential for tackling the DC-OTS efficiently. Among the 
heuristic methods that have been proposed in the technical literature, we can distin-
guish two main groups. The first group includes the heuristic approaches that do not 
rely on the solutions of previous instances of the OTS problem. For example, some 
heuristics trim down the computational time by reducing the number of lines that 
can be switched off (Liu et al. 2012; Barrows et al. 2012; Flores et al. 2020). While 
these approaches do not reach the maximum cost savings, the reported numerical 
studies show that the cost increase with respect to the optimal solution is small in 
most cases. Other related works maintain the original set of switchable lines and 
determine their on/off status using greedy algorithms (Fuller et  al. 2012; Crozier 
et al. 2022). They use dual information of the OPF problem to rank the lines accord-
ing to the impact of their status on the operational cost. Finally, the authors of Hin-
neck and Pozo (2022) propose solving the OTS problem in parallel with heuristics 
that generate good candidate solutions to speed up conventional MIP algorithms. 
The second group comprises data-based heuristic methods that require information 
about the optimal solution of past OTS problems. For instance, the authors of John-
son et al. (2021) use a K-nearest neighbor strategy to drastically reduce the search 
space of the integer solution to the DC-OTS problem. In particular, given a collec-
tion of past instances of the problem (whose solution is assumed to be known and 
available), they restrict the search space to the K integer solutions of those instances 
which are the closest to the one to be solved in terms of the problem parameters 
(for example, nodal demands). They then provide as solution to the instance of the 
DC-OTS problem under consideration the one that results in the lowest cost. This 
last step requires solving K linear programs, one per candidate integer solution. Con-
versely, various alternative data-driven methods, distinct from the K nearest neigh-
bor, have also been explored to enhance the solution of the DC-OTS problem. For 
example, references Yang and Oren 2019; Han and Hill 2022; Bugaje et  al. 2023 
present sophisticated methodologies to learn the status of switchable lines using 
neural networks.

Against this background, in this paper, we propose a novel method to address the 
DC-OTS by exploiting known solutions to past instances of the problem. Indeed, 
according to Bengio et  al. (2021); Parmentier (2022), our approach aligns with 
machine learning strategies that extract valuable insights from prior solutions of an 
optimization problem, subsequently applying this knowledge to address new, unseen 
instances. Specifically, our approach leverages information from previous instances 
in two distinct yet potentially synergistic ways. First, from these past solutions, we 



 S. Pineda et al.

1 3

infer those switchable lines that are most likely to be operational (resp. inoperative) 
in the current instance of the problem (the one we want to solve). Mathematically, 
this translates into fixing a few binaries to one (resp. zero), an apparently small 
action that brings, however, substantial benefits in terms of computational speed. 
Second, beyond the speed-up that one can expect from simply reducing the number 
of binaries in a MILP, this strategy also allows us to leverage the shortest-path-based 
argument invoked in Fattahi et al. (2019) to further tighten the big-Ms in the prob-
lem formulation, with the consequent extra computational gain.

Alternatively, we also investigate the potential of directly inferring the big-M val-
ues from past solutions to the problem, eliminating the need for the shortest-path 
calculation. In any case, the inference of the binaries to be fixed and/or the values 
of the big-Ms to be used is conducted through a Machine Learning algorithm of the 
decision-maker’s choice. In this paper, we have opted for the use of the K-nearest 
neighbors methodology due to its simplicity, as well as its interpretability and low 
computational time required for the training task. Besides, this approach has demon-
strated success in mitigating the complexity of related challenges, such as the widely 
studied DC Unit Commitment problem, as evidenced by prior works (Pineda et al. 
(2020); Jiménez-Cordero et al. (2022)).

Importantly, while our proposal is not endowed with theoretical guarantees of 
optimality (and thus, belongs to the group of heuristics discussed above), the role 
that Machine Learning plays in it is supportive rather than surrogative (we still need 
to solve the MILP problem), which results in significantly lower rates of infeasibility 
and suboptimality, as demonstrated in the numerical experiments.

The remainder of this paper is structured as follows. Section 2 introduces the DC-
OTS problem mathematically and discusses how to equivalently reformulate it as 
a mixed-integer linear program (MILP) through the use of large enough constants 
(the so-called big-Ms). Section 3 describes the different methods we consider in this 
paper to identify the most cost-efficient grid topology of a power system, including 
those we propose and those we use for benchmarking. A series of numerical experi-
ments run on a 118-bus power system typically used in the context of the DC-OTS 
problem are presented and discussed in Sect.  4. Finally, conclusions and further 
research are duly drawn in Sect. 5.

2  Optimal transmission switching

We start this section by introducing the standard and well-known formulation of 
the Direct Current Optimal Transmission Switching problem (DC-OTS), which will 
serve us a basis to construct and motivate its mixed-integer reformulation immedi-
ately after.

Consider a power network consisting of a collection of nodes N  and transmis-
sion lines L . To lighten the mathematical formulation of the DC-OTS, we assume 
w.l.o.g that there is one generator and one power load per node n ∈ N  . The power 
dispatch of the generator and the power consumed by the power load are denoted 
by pn and dn , respectively. Each generator is characterized by a minimum and 
maximum power output, p

n
 and pn , and a marginal production cost cn . We repre-
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sent the power flow through the line (n,m) ∈ L connecting nodes n and m by fnm , 
with fnm ∈ [−f nm, f nm] . For each node n we distinguish between the set of trans-
mission lines whose power flow enters the node, L+

n
 , and the set of transmission 

lines whose power flow leaves it, L−
n
 . The power network includes a subset 

LS ⊆ L of lines that can be switched on/off. If the line (n,m) ∈ LS , its status is 
determined by a binary variable xnm , which takes value 1 if the line is fully opera-
tional, and 0 when disconnected. In a DC power network, the flow fnm through an 
operational line is given by the product of the susceptance of the line, bnm , and 
the difference of the voltage angles at nodes n and m, i.e., �n − �m . We use bold 
symbols to define the vectors of variables p = [pn, n ∈ N] , � = [�n, n ∈ N] , 
f = [fnm, (n,m) ∈ L] , and x = [xnm, (n,m) ∈ LS] . With this notation in place, the 
DC-OTS problem can be formulated as follows: 

The objective is to minimize the electricity generation cost, expressed as in (1a). For 
this, the power system operator essentially decides the lines that are switched off and 
the power output of generating units, which must lie within the interval [p

n
, pn] , as 

imposed in (1b). The flows through the transmission lines are governed by the so-called 
Kirchhoff’s laws, which translate into the nodal power balance Eq. (1c) and the flow-
angle relationship stated in (1d) and (1e). In the case of a switchable line, this relation-
ship must be enforced only when the line is in service. This is why the binary variable 
xnm appears in (1d). Naturally, xnm = 0 must imply fnm = 0 . Constraints (1f) and (1g) 
impose the capacity limits of the switchable and non-switchable lines, respectively. 

(1a)min
pn,fnm,�n,xnm

∑

n

cn pn

(1b)s.t. p
n
≤ pn ≤ pn, ∀n ∈ N

(1c)
∑

(n,m)∈L−
n

fnm −
∑

(n,m)∈L+
n

fnm = pn − dn, ∀n ∈ N

(1d)fnm = xnmbnm(�n − �m), ∀(n,m) ∈ LS

(1e)fnm = bnm(�n − �m), ∀(n,m) ∈ L ⧵ LS

(1f)− xnmf nm ≤ fnm ≤ xnmf nm, ∀(n,m) ∈ LS

(1g)− f nm ≤ fnm ≤ f nm, ∀(n,m) ∈ L ⧵ LS

(1h)xnm ∈ {0, 1}, ∀(n,m) ∈ LS

(1i)�1 = 0



 S. Pineda et al.

1 3

Constraint  (1h) states the binary character of variables xnm , while Eq.  (1i) arbitrarily 
sets one of the nodal angles to zero to avoid solution multiplicity.

Problem  (1) is a mixed-integer nonlinear programming problem due to the prod-
uct xnm(�n − �m) in (1d). This problem has been proven to be NP-hard even when the 
power network includes a spanning subnetwork connected by non-switchable lines 
only (Fattahi et al. 2019) or takes the form of a series–parallel graph with a single gen-
erator/load pair  (Kocuk et  al. 2016). The disjunctive nature of Eq.  (1d) allows for a 
linearization of Problem (1) at the cost of introducing a pair of large enough constants 
M

nm
 , Mnm per switchable line (Hedman et al. 2012). Indeed, Eq. (1d) can be replaced 

by the inequalities:

provided that the large constants M
nm
,Mnm respectively constitute a lower and an 

upper bound of bnm(�n − �m) when the line (n, m) is disconnected ( xnm = 0 ), that is, 

 where F ∶= {(p,�, f, x) ∈ ℝ
2|N|+|L|+|LS| satisfying (1b), (1c), (1e)–(1i), xnm = 0 , 

and (2) for all (n�,m�) ∈ LS⧵(n,m) }. Note that, if xnm = 1 , we have

Otherwise, i.e., if xnm = 0 , Eq. (1f) leads to fnm = 0 , which, together with (2), results 
in

or, equivalently,

Finally, by Eq. (3), we have

First of all, for (3) to be of any use, MOPT

nm
 and M

OPT

nm
 must be finite. As proven in Fat-

tahi et al. (2019), this is not the case in power systems where switching off lines can 
result in disconnected subnetworks. The possibility of islanding renders the minimi-
zation (3a) and the maximization (3b) unbounded. Consequently, the linearization of 
the DC-OTS problem based on (2) is not equivalent to its original nonlinear mixed-
integer formulation (1) in this case. However, in practice, islanding in power grids is 
to be avoided in general for many reasons other than the minimization of the opera-
tional cost (e.g., due to reliability and security standards). Consequently, in what 
follows, we assume that the set of switchable lines LS is such that the connectivity 

(2)bnm(�n − �m) −Mnm(1 − xnm) ≤ fnm ≤ bnm(�n − �m) −M
nm
(1 − xnm)

(3a)M
nm

≤ MOPT

nm
∶= bnm ×min

F
(�n − �m)

(3b)Mnm ≥ M
OPT

nm
∶= bnm ×max

F
(�n − �m)

bnm(�n − �m) ≤ fnm ≤ bnm(�n − �m) ⟺ fnm = bnm(�n − �m).

bnm(�n − �m) −Mnm ≤ 0 ≤ bnm(�n − �m) −M
nm

M
nm

≤ bnm(�n − �m) ≤ Mnm.

M
nm

≤ MOPT

nm
≤ bnm(�n − �m) ≤ M

OPT

nm
≤ Mnm.



1 3

Learning-assisted optimization for transmission switching  

of the whole power network is always guaranteed. In this setting, it is ensured that 
there exist finite valid large constants as stated in (3), namely, those corresponding 
to the longest path between nodes n and m on the undirected graph represented by 
the power grid. This already gives us an idea of how difficult the calculation of these 
constants is. In this vein, the authors in Fattahi et al. (2019) show that, even when 
MOPT

nm
 and M

OPT

nm
 are finite, computing them is as hard as solving the original DC-

OTS problem. Therefore, we are obliged to be content with a lower and an upper 
bound. The choice of these bounds, or rather, of the large constants M

nm
,Mnm (for 

all (n,m) ∈ LS ) is of utmost importance, because it has a major impact on the relax-
ation bound of the mixed-integer linear program that results from replacing  (1d) 
with the inequalities (2), that is, 

Tighter constants M
nm
,Mnm lead to stronger linear relaxations of (4), which, in turn, 

is expected to impact positively on the performance of the branch-and-cut algorithm 
used to solve it. Let us define d = [dn, n ∈ N] and M = [(Mnm,Mnm

), (n,m) ∈ LS] . 
We also define the lower and upper bounds of the binary decision variables as 
x = [x

nm
, (n,m) ∈ LS] and x = [xnm, (n,m) ∈ LS] , respectively. Then, we denote as 

x = OTS(d,M, x, x) the solution of model (4) with the additional constraint x ≤ x ≤ x . 
In the general case, x = 0 and x = 1 . However, these bounds may change if the status 
of some switchable lines are fixed through learning.

On the assumption that the power network includes a spanning tree comprising non-
switchable lines, the authors in Fattahi et al. (2019) propose the following symmetric 
bound:

where SP0
nm

 is the shortest path between nodes n and m through said spanning tree. 
Note, however, that the shortest path between two nodes can be modified if some of 
the switchable lines are known to be connected. In that case, the resulting bounds are 
reduced. Therefore, for a given status of the switchable lines x , we denote by SPnm(x) 
the updated shortest path, with SP0

nm
= SPnm(0) . Besides, the bounds obtained using 

Eq. (5) with the updated shortest paths SPnm(x) is referred to as M = FAT(x) . This 

(4a)min
pn,fnm,�n,xnm

∑

n

cn pn

(4b)s.t. (1b), (1c), (1e) − (1i)

(4c)bnm(�n − �m) −Mnm(1 − xnm) ≤ fnm, ∀(n,m) ∈ LS

(4d)fnm ≤ bnm(�n − �m) −M
nm
(1 − xnm), ∀(n,m) ∈ LS

(4e)fnm = bnm(�n − �m), ∀(n,m) ∈ L ⧵ LS

(5)−M
nm

= Mnm = bnm

∑

(k,l)∈SP0
nm

f kl

bkl
, ∀(n,m) ∈ LS
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symmetric bound can be computed in polynomial time using Dijkstra’s algorithm 
(Cormen et al. 2022).

In this paper, we propose and test simple, but effective data-driven scheme based 
on nearest neighbors to estimate lower bounds on MOPT

nm
 and upper bounds on M

OPT

nm
 . 

This scheme is also used to fix some of the binaries xnm in (4). While the inher-
ent sampling error of the proposed methodology precludes optimality guarantees, 
our numerical experiments show that it is able to identify optimal or nearly-optimal 
solutions to the DC-OTS problem very fast.

3  Solution methods

In this section, we present the different methods we consider to solve the DC-OTS 
problem. First, we describe the exact method proposed in Fattahi et al. (2019), which 
we use as a benchmark. Second, we explain a direct learning-based approach that 
utilizes the K nearest neighbors technique and the learning-based heuristic approach 
investigated in Hastie et al. (2009). Finally, we introduce the data-based methodolo-
gies proposed in this paper.

Suppose that the DC-OTS problem (4) has been solved using the big-M val-
ues suggested in Fattahi et  al. (2019) for different instances to form a training 
set T = {(dt, xt,�t), t = 1,… , |T|} , where, the symbol |T| indicates the cardinal 
of set T  . For each instance, t, dt = [dt

n
, n ∈ N] denotes the vector of nodal loads, 

xt = [xt
nm
, (n,m) ∈ LS] is the vector of optimal binary variables, which determine 

whether line (n,  m) in instance t is connected or not; and �t = [�t
n
, n ∈ N] is the 

vector of optimal voltage angles. For notation purposes, we use C(dt, xt) to denote 
the value of the objective function (1a) when model (1) is solved for demand val-
ues dt and the binary variables fixed to xt . This function can be evaluated for any 
set of feasible binary variables xt by solving a linear programming problem. If this 
linear problem is infeasible, then C(dt, xt) = ∞ . Additionally, for a given subset of 
instances T′ ⊂ T  , we define x(T�) as the component-wise average of the binary vari-
ables corresponding to the instances in T′.

In what follows, we present different strategies to solve the DC-OTS problem for 
an unseen test instance t̂ with demand values dt̂ . The goal is to employ the informa-
tion from the training set, T  , to reduce the computational burden of solving the DC-
OTS reformulation (4) for the test instance t̂ . Note that depending on the strategy 
that is applied, the response variable of the test instance to be learned can be xt̂ , �t̂ or 
the tuple (xt̂,�t̂).

3.1  Exact benchmark approach

In the benchmark approach (Bench) the optimal solution of the test DC-OTS prob-
lem is obtained using the proposal in Fattahi et al. (2019). Particularly, problem (4) 
is solved using the big-M values computed according to Eq. (5). This strategy is an 
exact approach that does not make use of previously solved instances of the problem, 
but guarantees that its global optimal solution is eventually retrieved. Nevertheless, 
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the computational time employed by this approach may be extremely high. Algo-
rithm 1 shows a detailed description of this approach.

Algorithm 1   Bench 

Input: load vector for test instance t̂, dt̂.

1) Compute the bounds with all switchable lines open, i.e., M0 = FAT(0).

2) Solve xt̂ = OTS(dt̂,M0,0,1)

Output: Optimal network configuration xt̂.

3.2  Existing learning‑based approaches

In this subsection, we present two existing learning approaches based on the K near-
est neighbors technique (Hastie et al. 2009). The first approach is a pure machine-
learning strategy that directly predicts the binary variables of the test instance using 
the information of the K closest training data. Such closeness is measured in terms 
of the �2 distance among the load values of the training and test points, that is, by 
computing ‖dt − dt̂‖2 , for t = 1,… , |T|} . For each test instance t̂ , the set of K closest 
instances is denoted as Tt̂

K
= KNN(dt̂) . This method is referred to as Direct since it 

directly predicts the value of all binary variables from the data.
In the particular case of the DC-OTS problem, we adapt the Knn strategy as 

follows: for a fixed number of neighbors K, we fix the binary variables of the test 
problem (1) to the rounded mean of the decision binary variables of such K nearest 
neighbors. Once all binary variables are fixed, model (1) becomes a linear program-
ming problem that can be rapidly solved. Algorithm 2 shows a detailed explanation 
of the procedure. Note that, in this strategy we only need the information about the 
load vector and the optimal binary variables in the training data, i.e., we only need 
{(dt, xt)} for t = 1,… , |T|} . This approach is very simple and fast. However, fixing 
the binary variables using a rounding procedure may yield a non-negligible number 
of infeasible and suboptimal problems.
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Algorithm 2   Direct 
Input: number of neighbors, K; training set, T = {(dt,xt)} for
t = 1, . . . , |T |}; and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute the binary variables xt̂ = �x(T t̂
K)�, where �x� denotes the

component-wise nearest integer function.

Output: Network configuration xt̂.

The second learning-based methodology explained in this subsection is proposed 
in Johnson et al. (2021) and also employs the Knn technique. As occurs in the previ-
ous strategy, here, the authors assume given the set {(dt, xt), t = 1,… , |T|} . In short, 
their proposal works as follows: for a fixed value of K, the K closest instances to the 
test point are saved in the set Tt̂

K
 . Then, we evaluate function C(dt̂, xt) for each t ∈ T

t̂
K

 
by solving K linear problems. The optimal binary variables for the test instance xt̂ 
are set to those xt that lead to the lowest value of C(dt̂, xt) . This approach is denoted 
as Linear and more details about it are provided in Algorithm 3.

Algorithm 3   Linear 
Input: number of neighbors, K; training set, T = {(dt,xt), t = 1, . . . , |T |};
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Select t̃ = arg min
t∈T t̂

K

C(dt̂,xt).

Output: Network configuration xt̃.

Note that the value of K strongly affects the speed of the algorithm as well as the 
number of suboptimal or infeasible problems. Larger values of K imply taking into 
account more training points to get the estimation of the test response. As a con-
sequence, a larger number of LPs should be solved, and the computational burden 
increases. However, the probability of having suboptimal or, even worse, infeasible 
solutions is reduced. On the contrary, lower values of K diminishes the computa-
tional time of the procedure but increases the risk of obtaining suboptimal or infea-
sible solutions.
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3.3  Proposed learning‑based approaches

In this subsection, we propose two improved methodologies which combine the 
benefits of exact and learning methods. Both approaches start by finding the K 
closest training points to the test instance t̂ and fixing those binary variables that 
reach the same value for all nearest neighbors according to an unanimous vote. 
The two proposed approaches also find, in a different fashion, lower values of 
the big-Ms than those computed in Fattahi et al. (2019). Since some binary vari-
ables may have been fixed to one thanks to the neighbors’ information, the first 
approach we propose consists in recomputing the shortest paths and the corre-
sponding big-M values using (5). Differently, the second methodology proposed 
in this paper directly set the big-M values to the maximum and minimum values 
of the angle differences observed in the closest DC-OTS instances. Either way, 
smaller big-Ms are obtained, and hence, the associated feasible region of the DC-
OTS problem is tighter. As a consequence, we solve a single MILP with a tighter 
feasible region and a smaller number of binary variables.

More specifically, in the first proposed approach (denoted as FixB-FatM) the binary 
variables of the test instance are set to 1 (resp. to 0) if all the training instances in Tt̂

K
 

concur that the value should be 1 (resp. 0). On the other hand, for those binary vari-
ables that are not fixed, the corresponding big-M values are updated using the infor-
mation of the previously fixed variables. In particular, these fixed binaries are used to 
recompute the shortest path that determines the big-M values in Eq. (5). In essence, 
the computation of the new shortest path involves not only the non-switchable lines 
from the original spanning tree but also those switchable lines with a learned status 
equal to 1. This update could result in even shorter paths, leading to improved big-M 
bounds and a more tightly defined feasible region. This strategy relies on the unanimity 
of all the nearest neighbors and therefore, this learning-based approach is expected to 
be quite conservative, specially for high values of K.

To further assess the computational savings yielded by this approach we also inves-
tigate two variations. For instance, we denote by FixB the approach in which binary 
variables are fixed but big-M values are computed using only the information from the 
original spanning tree. We also consider the FatM approach that does not fix any binary 
decision variable but only uses the information of the closest neighbors to recompute 
the shortest paths and update the big-M values with Eq. (5). In other words, while none 
of the binary variables are fixed in this method, the learned status of switchable lines 
can still be utilized to decrease the big-M values. By comparing the computational bur-
den of these three approaches we can analyze whether the numerical improvements 
are caused by the lower number of binary variables or the tighter values of the big-M 
parameters. Algorithms 4, 5 and 6 show a detailed description of the methods FixB, 
FatM and FixB-FatM, respectively.
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Algorithm 4  FixB 
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) M0 = FAT(0) and T t̂
K = KNN(dt̂).

2) Compute xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

3) Solve xt̂ = OTS(dt̂,M0,xt̂,xt̂).

Output: Network configuration xt̂.

Algorithm 5   FatM 
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute x̃t̂ = �x(T t̂
K)� and M̃t̂ = FAT(x̃t̂).

3) Solve xt̂ = OTS(dt̂, M̃t̂,0,1).

Output: Network configuration xt̂.

Algorithm 6   FixB-FatM 
Input: number of neighbors, K; training set, T = {(dt,xt)} for t = 1, . . . , |T |;
and load vector for test instance t̂, dt̂.

1) T t̂
K = KNN(dt̂).

2) Compute x̃t̂ = �x(T t̂
K)� and M̃t̂ = FAT(x̃t̂).

3) Determine xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

4) Solve xt̂ = OTS(dt̂, M̃t̂,xt̂,xt̂).

Output: Network configuration xt̂.
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FixB and FixB-FatM can be slightly modified to relax the unanimity condi-
tion required to fix binary variables. To do so, we introduce a threshold parameter 
𝜏 < 0.5 . The binary variables are then fixed according to the following rules:

– If the predicted status for a particular line falls in [0, �] , the binary variable is 
fixed to 0.

– If the predicted status for a particular line falls in [1 − �, 1] , the binary variable is 
fixed to 1.

– If the predicted status for a particular line falls between (�, 1 − �) , the binary var-
iable is left unfixed.

This can be implemented by replacing, respectively, step 2) in Algorithm 4 and step 
3) in Algorithm 6 by:

The value of K also plays an important role in these approaches. Low values of K 
increase the chances of unanimous consensus of the nearest neighbors and therefore, 
a higher number of binary variables are expected to be fixed, and tighter big-M val-
ues are obtained. This way, the computational burden of the OTS problem is reduced 
at the expense of increasing the risk of obtaining infeasible or suboptimal problems. 
In the extreme case, if K = 1 , all binary variables are fixed to the values of the clos-
est instance of the training set. On the contrary, large values of K increase the com-
putational burden but the resulting problems have a high chance of being feasible. In 
the extreme case, if the whole training set is considered, very few binary variables 
are expected to be fixed and the computational savings are reduced.

The three methodologies presented above compute the big-M values using past 
observed data through the shortest path algorithm. However, as can be derived from 
Eq. (3), the values Mnm and M

nm
 for a switchable line are just the maximum and 

minimum values of the difference between the voltage angles at nodes n and m mul-
tiplied by bnm . Therefore, following this idea, the second data-driven approach that 
we propose (denoted as FixB-AngM) estimate the big-M values using the informa-
tion of historic observed angles as follows:

Using (6) to compute the bounds values for a set of past instances T  is denoted 
as M = ANG(T) for notation purposes. It is important to clarify that computing 
the big-M values using (3) and (6) involves significant differences. The problems 
addressed by (3) focus on identifying the tightest valid bounds by solving mixed-
integer problems, which are as challenging as the original OTS problem. In contrast, 
Eq. (6) efficiently approximates these bounds using observed angles from the his-
torical dataset. Consequently, the bounds derived from (6) are consistently tighter 
than those obtained from (3), potentially excluding feasible solutions to the original 
OTS problem if the training set lacks sufficient representativeness. In fact, this strat-
egy is riskier than the one used in FixB-FatM since it leads to much tighter feasible 

xt̂ = ⌊min(x(Tt̂
K
) + 𝜏, 1)⌋ and x

t̂
= ⌈max(x(Tt̂

K
) − 𝜏, 0)⌉

(6)Mnm = bnm × max
t∈T∶ xt

nm
=0
(�t

n
− �t

m
) M

nm
= bnm × min

t∈T∶ xt
nm
=0
(�t

n
− �t

m
)
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regions, which significantly reduces the computational burden of solving the OTS 
problem, but also increases the chances of yielding infeasible problems. To avoid 
using too tight big-M values that could cut off the optimal solution, the learned 
bounds obtained through (6) can be multiplied by a security factor � ≥ 1.

For the sake of comparison, we also consider the approach AngM in which no 
binary variables are fixed and big-M values are set using the observed angle dif-
ferences. More details about the approaches FixB-AngM and AngM are provided in 
Algorithms 7 and 8, respectively. It is worth noticing that while the big-M values 
computed by (5) are symmetric, those derived by Algorithms 7 and 8 are not.

Algorithm 7   FixB-AngM 
Input: number of neighbors, K; training set, T = {(dt,xt,θt)} for
t = 1, . . . , |T |; load vector for test instance t̂, dt̂; and security factor λ ≥ 1.

1) T t̂
K = KNN(dt̂).

2) Determine xt̂ = �x(T t̂
K)� and xt̂ = �x(T t̂

K)�.

3) Compute big-M values as M̂ = λ ·ANG(T ).

4) Solve xt̂ = OTS(dt̂, M̂,xt̂,xt̂).

Output: Network configuration xt̂.

Algorithm 8   AngM 
Input: training set, T = {(dt,xt,θt)} for t = 1, . . . , |T |; load vector for test
instance t̂, dt̂; and security factor λ ≥ 1.

1) Compute big-M values as M̂ = λ ·ANG(T ).

2) Solve xt̂ = OTS(dt̂, M̂,0,1).

Output: Network configuration xt̂.

To sum up, Table 1 provides a brief description of the different methods explained 
throughout Sect. 3. The first column of the table includes the name of each strategy. 
The second column shows whether the final problem to be solved is a linear pro-
gram (LP) or a mixed-integer linear program (MILP). In the third column, the total 
number of problems to be solved is indicated. Column four shows the number of 
binary decision variables of the MILPs to be solved. Particularly, original means 
that the number of variables is exactly the same as the one from the original OTS 
formulation (4). In contrast, reduced means that the number of binary variables of 
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the resulting MILP has been reduced compared to the original formulation. Finally, 
the last column indicates how the big-M values have been computed. If shortest 
(spanning) is written, then we indicate that the bounds are computed by means of 
the shortest path method and only using the information from the original span-
ning subgraph. On the contrary, the choice shortest (update) means that the short-
est paths needed to compute the big-M values have been updated with the informa-
tion provided by the closest neighbors. Finally, the word historic angles implies that 
the bounds are computed using the voltage angle information of previously solved 
instances.

4  Numerical simulations

In this section, we present the computational results of the different methodologies 
discussed in Sect. 3 for a realistic network. In particular, we compare all approaches 
using a 118-bus network that includes 186 lines (Blumsack 2006). This network size 
is sufficiently substantial to render the instances nontrivial for current algorithms, 
yet not so large as to make them computationally intractable. Indeed, this is the 
most commonly used network to test OTS solving strategies in the literature (Fisher 
et al. 2008; Kocuk et al. 2016; Fattahi et al. 2019; Johnson et al. 2021; Dey et al. 
2022). As justified in Sect. 2, we consider a fixed connected spanning subgraph of 
117 lines, while the remaining 69 lines can be switched on or off to minimize the 
operation cost. The spanning subgraph has been chosen to obtain sufficiently chal-
lenging problems. For this network, we generate 500 different instances of the OTS 
problem that differ in the nodal demand dn using probability distributions centered 
in the baseline demand d̂n . Since the demand variability may significantly affect the 
performance of the compared methodologies, we consider the following three cases:

– Unif10: The demand levels are sampled using independent uniform distributions 
in the range [0.9d̂n, 1.1d̂n].

– Unif20: The demand levels are sampled using independent uniform distributions 
in the range [0.8d̂n, 1.2d̂n].

Table 1  Summary of the 
methods explained in Sect. 3

Method LP/MILP # problems # binary big-M computation

Bench MILP 1 Original Shortest (spanning)
Direct – – – –
Linear LP K – –
FixB MILP 1 Reduced Shortest (spanning)
FatM MILP 1 Original Shortest (update)
FixB-FatM MILP 1 Reduced Shortest (update)
FixB-AngM MILP 1 Reduced Historic angles
AngM MILP 1 Original Historic angles
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– Normal: The demand levels are sampled using a multinormal distribution with 
the correlation matrix obtained from the demand time series available at (Joswig-
Jones et al. 2021).

The three database files can be downloaded from (OASYS 2023). We use a leave-
one-out cross-validation technique under which all the available data except for one 
data point is used as the training set, and the left-out data point is used as the test set. 
Consequently, the number of nearest neighbors K ranges from 1 to 499. This process 
is repeated for all data points and the resulting performance metrics are averaged to 
get an estimate of the model’s generalization performance.

All optimization problems have been solved using GUROBI 9.1.2 (Gurobi Opti-
mization, LLC 2022) on a Linux-based server with CPUs clocking at 2.6 GHz, 1 
thread and 8 GB of RAM. In all cases, the optimality GAP has been set to 0.01% and 
the time limit to 1 h.

The simulation results are presented in two subsections. In Sect. 4.1, a compre-
hensive comparison is conducted for all learning strategies introduced in Sect.  3 
using the Unif10 database. Section 4.2 utilizes the Unif20 and Normal databases to 
explore the impact of increased demand variability and correlation on the computa-
tional performance of these methodologies.

4.1  Base case study

All simulation results presented in this subsection correspond to the Unif10 data-
base. To illustrate the economic advantages of disconnecting some lines, Fig.  1 
depicts an histogram of the relative difference between the DC-OTS cost if model 
(4) is solved by the benchmark approach described in Sect.  3.1, and the cost 
obtained if all the 186 lines are connected. This second cost is computed by fix-
ing binary variables xnm to one and solving model (1) as a linear programming 
problem. Figure 1 does not include the instances for which this linear problem is 
infeasible. As observed, the cost savings are significant in most instances, and in 
the most favorable cases it reaches 15%. The average cost savings for this particu-
lar network and the 500 instances considered is 13.2%. On the other hand, solving 

Fig. 1  DC-OTS cost savings 
distribution
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model (4) is computationally hard and to prove it, Fig. 2 plots the number of prob-
lems solved as a function of the computational time. For illustration purposes, the 
left plot shows the 439 problems solved in less than 100 s (“easy” instances) and 
the right plot the remaining “hard” instances that require a longer time. The average 
time of all instances is 145 s, while the average time of the hard instances amounts 
to 1085s, which demonstrates the difficulty of solving model (4) to certified optimal-
ity. In addition, the benchmark approach is unable to solve 12 of the 500 instances to 
global optimality within one hour (with a maximum mip-gap equal to 2.46%) even 
though model (4) “only” includes 69 binary variables associated to the 69 switch-
able lines. This means that, for these 12 instances, this method has not been able to 
certify the optimality of the best integer solution found within the time limit, due 
to the poor relaxation bound originated from excessively large big-M values. We 
have thoroughly examined the simulations of this case study and verified that, for all 
instances, the best integer solution identified by the benchmark consistently matches 
the best solution discovered by all the other (learning-based) approaches. This lead 
us to conjecture that the benchmark does find the optimal solution for all instances 
in the Unif10 database. Therefore, throughout this section, we compare the differ-
ent methodologies with the best integer solution found in one hour by the Bench 
approach.

Next, we discuss the results provided by the Direct approach described in 
Sect.  3.2, where the binary variables are just fixed to the values predicted by the 
nearest neighbor technique. Table 2 collates, for different number of neighbors K, 
the number of instances in which Direct delivers the same solution obtained by 
the benchmark (# opt), the number of instances with a suboptimal solution (# sub) 
as well as the average and maximum relative gap with respect to the benchmark 
approach (gap-ave, gap-max). Note that the metrics # opt, # sub, gap-ave and gap-
max are computed with respect to the best solution found within one hour, which 
may not correspond to the true optimum. Finally, the results are also compared in 
terms of the average computational time, which can be seen in the last column of the 
table. Unsurprisingly, this approach is extremely fast and the computational time is 
just negligible. On the other hand, the vast majority of the instances only attain sub-
optimal solutions for any number of neighbors K, and the maximum gap is above 8% 

Fig. 2  Computational burden of the Bench approach
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in all cases. These results illustrate that the use of machine-learning approaches to 
directly predict the value of the binary variables of mixed-integer problems is likely 
to be extremely fast but potentially suboptimal.

Now we run similar experiments using the Linear approach described in Sect. 3.2 
and proposed in Johnson et al. (2021). The corresponding results are presented in 
Table  3. Logically, the Linear solves a higher number of LP problems for differ-
ent combinations of the binary variables and therefore, some instances are solved 
to optimality, specially for large values of K. Although this methodology could be 
parallelized, Table 3 includes the sum of the computational times required to solve 
all the LP problems and therefore, this time increases with K. It is worth clarify-
ing that the computational time required to find the nearest neighbors is below 
1ms in all cases. Although the computational burden is insignificant if compared 
with the benchmark, the number of suboptimal cases and maximum gap are still 
considerable.

We continue this numerical study by comparing approaches FixB, FatM and 
FixB-FatM discussed in Sect.  3.3. For simplicity, Table  4 provides the results for 
K = 50 (10% of the training data) and � = 0 . Unlike Direct and Linear, these three 
approaches lead to the optimal solution for all instances, which confirms their 
robustness for a sufficiently high number of neighbors. Therefore, although these 
approaches require a higher computational burden than Direct and Linear, they 
still involve significant computational savings with respect to the benchmark, while 
reducing the probability of returning suboptimal solutions.

Table 2  Performance of the 
Direct approach

K # opt # sub gap-ave gap-max Time (s)

5 2 498 1.799 13.78 0.0
10 0 500 2.025 16.40 0.0
20 0 500 2.085 13.84 0.0
50 0 500 2.057 14.13 0.0
100 0 500 1.846 12.53 0.0
200 0 500 2.367 12.28 0.0
499 0 500 2.629 8.38 0.0

Table 3  Performance of the 
Linear approach

K # opt # sub gap-ave gap-max Time (s)

5 10 490 0.300 3.59 0.00
10 19 481 0.194 3.56 0.01
20 24 476 0.130 1.61 0.02
50 51 449 0.083 1.06 0.04
100 77 423 0.061 0.71 0.08
200 104 396 0.049 0.71 0.16
499 127 373 0.043 0.71 0.39
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Table 4 also shows that approaches FixB, FatM and FixB-FatM differ in terms 
of their computational burden. The FatM approach reports higher times than FixB, 
which allows us to conclude that fixing some binary variables involves higher com-
putational savings than tightening the big-M constants. Notwithstanding this, the 
highest computational gains are obtained if both effects are combined under the 
FixB-FatM approach. Figure 3 plots the number of problems solved as a function 
of time. In the left subplot, the x-axis ranges from 0 to 100  s, while in the right 
subplot the x-axis goes from 100  s to 3600  s. In the left subplot we can observe 
that approaches FixB and FixB-FatM are able to solve most of the instances in less 
than 100 s, while approach FatM has a similar performance as the benchmark. In 
the right subplot we see that the hardest instance solved by FixB and FixB-FatM 
requires 1645 s and 296 s, respectively. On the contrary, although FatM outperforms 
the benchmark, this approach is not able to solve all instances in less than one hour.

It is also relevant to point out that the higher the value of K, the lower the chances 
of achieving unanimity on the status of switchable lines, and thus, the lower the 
number of binary variables that are fixed in the OTS problem. To illustrate this fact, 
Table 5 collects the results of approach FixB-FatM for � = 0 and for different values 
of K including the average number of binary variables fixed to one or zero using the 
training data (# bin). For K = 5 , 28 binary variables (out of the original 69 binary 
variables) are fixed in average, then leading to low computational times but a larger 
number of suboptimal instances. For K = 499 , only 8 binary variables are fixed 
(in average), no suboptimal solutions are obtained, but the computational time is 
increased. Figure 4 also illustrates the impact of K on the performance of the FixB-
FatM approach. Note that setting K equal to 5 yields the lowest computational times 

Table 4  Performance of FixB, 
FatM, FixB-FatM for K=50 and 
� = 0

# opt # sub gap-ave gap-max Time (s)

FixB 500 0 – – 16.39
FatM 500 0 – – 109.95
FixB-FatM 500 0 – – 12.33

Fig. 3  Computational burden of FixB, FatM, FixB-FatM for K=50 and � = 0
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and all instances are solved in less than 100 s. However, this method leads to 47 sub-
optimal solutions. On the other hand, if K is set to 499, the maximum time reaches 
400 s but all instances are solved to optimality.

While in the previous simulations � was set to zero in all cases, increasing its 
value has the potential to fix a greater number of binary variables, thereby decreas-
ing the time to solve the resulting OTS problem. This, however, comes at the cost 
of potentially increasing the number of infeasible and/or suboptimal instances. For 
K = 50 , Table 6 presents the simulation results for the FixB-FatM method with vari-
ous values of the threshold parameter � . The last column of this table ( # bin) shows 
the average number of fixed binary variables, which logically rises with increasing 
values of � . However, the reduction in computational time is arguably minor and, 
certainly, may not justify the trade-off, as the gap values and the number of sub-
optimal instances increase significantly in contrast. Therefore, the relaxation of the 
unanimity condition in the proposed learning-based methods may not be deemed 
worthwhile.

Next, we analyze the results of the two remaining approaches: the FixB-
AngM approach that uses the nearest neighbors to fix some binary variables 
and all the elements in the training to learn the big-M values as explained in 
Sect. 3.3, and the AngM approach described in the same section. The results of 
these two methods for � = 1 are provided in Table 7 and allow us to draw some 

Table 5  Impact of K on the 
performance of FixB-FatM for 
� = 0

K # opt # sub gap-ave gap-max Time (s) # bin

5 453 47 0.031 1.92 2.41 28.31
10 486 14 0.010 0.92 6.98 21.32
20 499 1 0.000 0.10 9.56 18.19
50 500 0 – – 12.33 15.65
100 500 0 – – 15.27 13.61
200 500 0 – – 16.65 11.29
499 500 0 – – 16.46 8.00

Fig. 4  Impact of K on the computational burden of FixB-FatM for � = 0
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interesting conclusions. First, both approaches lead to suboptimal solutions for 
some instances. This is understandable since, as explained in Sect.  3.3, these 
methods set the big-M constants fully relying on the maximum angle difference 
observed in the training set. Therefore, if the training set does not include an 
instance in which the actual maximum angle difference realizes, then the learned 
values of the big-Ms may leave the optimal solution out of the feasible region. 
In other words, while this strategy usually leads to very tight big-M values, it 
also increases the probability of having suboptimal or even infeasible solutions. 
This strategy is substantially different from approaches FatM and FixB-FatM that 
learn shorter paths of connected lines based on the optimal solution of the OTS 
problem for the training data and recompute the big-M constants using (5). Since 
shorter paths are only updated under the unanimity of the nearest neighbors, this 
strategy leads to more conservative big-M values and, consequently, larger feasi-
bility regions and computational times. These facts are confirmed by comparing 
Tables 5 and 7. For instance, for K = 50 , FixB-FatM solves all instances to opti-
mality and takes 12.33s in average, the FixB-AngM yields five suboptimal solu-
tions but the average computational times is reduced to 0.7s only. The third rel-
evant fact arises from the comparison of the average computational times of the 
two approaches in Table 7. As observed, these times are particularly similar for 
all values of K. This leads us to conclude that the obtained big-M constants are so 
tight that fixing some binary variables does not have a significant impact on the 
computational burden. For completeness, Fig. 5 compares, for � = 1 , the number 

Table 6  Impact of threshold � on FixB-FatM approach

K � # opt # sub # inf gap-ave gap-max Time (s) # bin

FixB-FatM 50 0.00 500 0 0 – – 12.33 15.65
FixB-FatM 50 0.01 500 0 0 – – 11.23 15.65
FixB-FatM 50 0.02 497 3 0 0.001 0.26 9.73 17.95
FixB-FatM 50 0.05 493 7 0 0.003 0.32 10.56 19.17
FixB-FatM 50 0.10 486 14 0 0.009 0.76 6.99 22.16
FixB-FatM 50 0.20 454 46 0 0.031 1.96 2.43 27.61

Table 7  Performance of 
approaches FixB-AngM and 
AngM for � = 1

K # opt # sub gap-ave gap-max Time (s)

FixB-AngM 5 450 50 0.033 1.92 0.41
FixB-AngM 10 482 18 0.011 0.92 0.59
FixB-AngM 20 494 6 0.002 0.39 0.61
FixB-AngM 50 495 5 0.002 0.39 0.70
FixB-AngM 100 495 5 0.002 0.39 0.71
FixB-AngM 200 495 5 0.002 0.39 0.70
FixB-AngM 499 495 5 0.002 0.39 0.71
AngM – 495 5 0.002 0.39 0.88
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of problems solved by FixB-AngM for 50 neighbors and AngM with the bench-
mark. Notice that these two methodologies are able to solve most instances in less 
than 5 s, while only 250 instances are solved by the benchmark in that time. This 
figure also proves that fixing the binary variables has a negligible effect on the 
computational savings.

To reduce the number of suboptimal instances, AngM can be run with values 
of the multiplying factor � higher than 1. Table 8 compiles the simulation results 
for AngM with various values of � . It is observed that a slight increase in the 
big-M values above those learned from historical data has a minimal impact on 
computational time, but reduces the number of suboptimal instances. Remark-
ably, even for � = 1.1 , all instances are solved optimally by AngM.

To further illustrate the performance of the two data-driven strategies to learn 
the big-M constants, Table 9 provides, for ten of the switchable lines, the big-M 
values for approaches Bench, FixB-FatM for K = 50, � = 0 and AngM for � = 1 . 
For the first two methods, M

nm
 and Mnm are symmetric for all lines, whereas 

approach AngM computes asymmetric values as explained in Sect.  3.3. Since 
the learned large constants may change for each instance, Table 9 includes value 
ranges. Thanks to the status of switchable lines of the nearest neighbors, the 
FixB-FatM approach is able to reduce the shortest paths used in (5) and signifi-
cantly decrease the values of the big-Ms for some lines. For lines 2, 58 and 103, 
these values remain, however, unaltered. The approach AngM learns from the 
observed angle differences and therefore, the big-M are tightened even further. 
In fact, for lines 58, 85, 135, 164, this methodology is able to infer the direction 
of the power flow through these lines and consequently one of the big-M values 
is set to 0. This bound reduction effectively tightens the DC-OTS model (4) and 
significantly reduces its computational burden.

After this in-depth analysis of the simulation results for the Unif10 database, 
we can conclude that the most promising approaches are Linear with K = 499 , 
FixB-FatM with K = 50 and � = 0 , and AngM with � = 1.1 . Table 10 summarizes 
the computational results of these approaches. The Linear approach is the fastest, 
but returns 373 suboptimal instances, a maximum gap of 0.71% and an average 
gap that is four times the target value of 0.01%. On the other hand, FixB-FatM 

Fig. 5  Computational burden 
of FixB-AngM and AngM for 
K = 50 and � = 1
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and AngM achieve the optimal solution for all instances. Besides, AngM reports 
the lowest computational time, which is in fact slightly above that of the Linear 
approach.

To conclude this section, we remark that the primary goal of these learning 
procedures is to swiftly generate solutions needed for online applications. How-
ever, it is crucial to note that the rapid solutions obtained are not directly included 
in the training data. As new demand levels materialize over time, each instance 
must undergo an offline optimization using the benchmark approach to achieve 
optimality before integrating its corresponding solution into the expanding train-
ing set.

Table 8  Impact of factor � on 
AngM approach

� # opt # sub # inf gap-ave gap-max Time (s)

AngM 1.0 495 5 0 0.002 0.39 0.88
AngM 1.1 500 0 0 – – 0.78
AngM 1.2 500 0 0 – – 0.82
AngM 1.5 500 0 0 – – 1.21

Table 9  Comparison of big-M 
values for Bench, FixB-FatM, 
AngM 

Line Bench FixB-FatM AngM

−M = M −M = M M −M

2 1080 1080 [212,218] [388,383]
23 10,267 [6615,10267] [1441,1575] [639,607]
28 16,806 [7434,16806] [553,628] [604,510]
31 1417 [1309,1417] [248,252] [176,175]
46 5279 [2287,5279] [289,325] [34,9]
58 247 247 0 81
85 776 [0,776] [376,391] 0
103 486 486 [184,185] 381
135 1458 [0,294] [122,127] 0
164 3231 [0,837] 0 [115,114]

Table 10  Summary of computational results for the Unif10 database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 499 127 373 0 0.043 0.71 0.39
FixB-FatM(� = 0) 50 500 0 0 – – 12.33
AngM(� = 1.1) – 500 0 0 – – 0.78
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4.2  Impact of demand variability and correlation

As mentioned earlier, the variability and correlation of nodal demand levels can 
influence the performance of the learning-based methods compared in this paper. 
Specifically, an increase in demand variability relative to nominal values is expected 
to reduce the accuracy of any learning method, given the same size of the training 
dataset. Conversely, a higher correlation among demand levels at different nodes in 
the network simplifies the learning task, thanks to a more pronounced data structure.

Table 11 compiles the simulation results of various methods for the Unif20 data-
base, which has a higher variability than Unif10. While none of the methods applied 
to the Unif10 database result in any infeasible instances, this is not the case for the 
Unif20 dataset. The fifth column of the table indicates the number of infeasible 
instances for each approach. It is worth noting that, for this dataset, the benchmark 
fails to achieve optimality for 43 instances within one hour, resulting in an average 
mip-gap of 0.50% and a maximum mip-gap of 2.40%. The average time required by 
the benchmark method is 510.9 s. For the Unif20 database, which includes the most 
challenging instances, we do observe a few cases where some of the learning-based 
methods produce slightly improved integer solutions compared to Bench. However, 
for consistency, the reported gaps in this case study are calculated using the solu-
tions identified by the Bench approach as optimal. The simulation results in Table 11 
yield noteworthy observations. Firstly, as anticipated, increasing the variability of 
demand levels leads to a rise in the number of suboptimal and infeasible instances. 
For instance, FixB-FatM with K = 5 produced 47 suboptimal instances for the 
Unif10 database. However, for the Unif20 database, this method resulted in 153 sub-
optimal instances and 4 infeasible problems. The maximum gap for this approach 
has also increased from 1.92% to 5.93%. Secondly, augmenting the number of clos-
est neighbors diminishes the number of infeasible instances, as binary variables are 
fixed only under the unanimity condition. Indeed, the FixB-AngM approach exhib-
its no infeasible instances when K is increased from 5 to 50. Similarly, the Linear 
approach avoids any infeasible instance for a value of K = 499 . This suggests that 
these approaches are not particularly suitable for high variability in parameters or 
a low number of training instances. Thirdly, the Linear approach is very fast, but 

Table 11  Computational results for the Unif20 database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 5 2 490 8 0.923 6.27 0.00
Linear 50 18 481 1 0.276 2.63 0.04
Linear 499 44 456 0 0.153 1.50 0.33
FixB-FatM(� = 0) 5 343 153 4 0.179 5.93 4.99
FixB-FatM(� = 0) 50 496 4 0 0.002 0.72 115.02
FixB-FatM(� = 0) 499 499 1 0 0.000 0.02 105.54
AngM(� = 1) – 492 8 0 0.008 2.00 1.38
AngM(� = 1.1) – 499 1 0 0.000 0.02 1.93
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involves large average and maximum gap values, even for K = 499 . Finally, con-
sidering both the number of suboptimal instances, the average and maximum gaps, 
and the average computational time, it can be concluded that the AngM with � = 1.1 
method exhibits superior performance for the Unif20 database.

Despite the insightful findings presented in Table 11, one could argue that elec-
tricity demand in real power systems exhibits a higher spatial correlation. Therefore, 
utilizing uncorrelated probability distributions for the nodal demands may diverge 
from reality. To address this concern, in Table 12 we present results analogous to 
those in Table 11 where demand levels are randomly sampled from a multinormal 
distribution with a correlation matrix computed using data from Joswig-Jones et al. 
(2021). For the Normal dataset, the benchmark approach fails to solve 30 instances 
within one hour, yielding an average mip-gap of 0.49% and a maximum mip-gap 
of 2.45%. Besides, the benchmark approach takes an average time of 289.5  s. As 
with the Unif10 database, none of the learning-based approaches improves the solu-
tion found by the Bench approach in one hour for any of the 500 instances of the 
Normal database. In this more realistic setting, we observe that there are no infea-
sible instances for any of the methods, while most methods result in some subop-
timal instances. Notably, the computational times required by Linear, FixB-FatM 
and AngM are of the same order of magnitude. However, while the Linear approach 
returns suboptimal instances for the three values of K, the proposed methodologies 
FixB-FatM with K = 499 and � = 0 , and AngM with � = 1.1 are able to solve the 
500 instances to global optimality. This underscores the efficacy of learning-based 
procedures in delivering rapid solutions that closely approximate the original solu-
tion for the OTS problem, even with realistic demand level variability.

5  Conclusions and further research

In the field of power systems, the optimal transmission switching problem (OTS) 
determines the on/off status of transmission lines to reduce the operating cost. The 
OTS problem can be formulated as a mixed-integer linear program (MILP) that 
includes large enough constants. This problem belongs to the NP-hard class and its 

Table 12  Computational results for the Normal database

K # opt # sub # inf gap-ave gap-max Time (s)

Linear 5 164 336 0 0.024 0.47 0.00
Linear 50 446 54 0 0.004 0.37 0.04
Linear 499 488 12 0 0.001 0.11 0.41
FixB-FatM(� = 0) 5 493 7 0 0.003 0.46 0.30
FixB-FatM(� = 0) 50 499 1 0 0.000 0.17 0.57
FixB-FatM(� = 0) 499 500 0 0 – – 0.56
AngM(� = 1) – 495 5 0 0.002 0.51 0.26
AngM(� = 1.1) – 500 0 0 – – 0.29
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computational burden is, consequently, significant even for small networks. While 
pure end-to-end learning approaches can solve the OTS problem extremely fast, the 
obtained solutions are usually suboptimal, or even infeasible. Alternatively, we pro-
pose in this paper some learning-based approaches that reduce the computational 
burden of the MILP model by leveraging information of previously solved instances. 
These computational savings arise from the fact that some binary variables are fixed 
and tighter big-M values are found. Numerical simulations on a 118-bus power net-
work show that the first proposed approach is able to solve all instances to optimal-
ity in less than 300 s, while the benchmark approach is unable to solve all of them in 
3600 s. The second approach we propose is more aggressive and solves all instances 
in less than 10 s, but 1% of them do not reach the optimal solution. We also assess 
the performance of the proposed learning-based approaches under increased demand 
variability and correlation.

All the learning approaches presented in this paper utilize the Knn algorithm and 
the l2 norm distance. The exploration of different machine learning methods and/
or distances is left as a potential avenue for future research. In this paper, we intro-
duce a machine learning approach that leverages the structural patterns observed 
in past DC-OTS instances to improve the performance of new problems. However, 
the solver hyperparameters are set to default values. Future research could explore 
utilizing the data information not only to exploit the problem structure but also to 
finely tune solver hyperparameters, as demonstrated in Lodi and Zarpellon (2017); 
Cappart et  al. (2023). Additionally, our study assumes the use of DC approxima-
tions for power flow equations. A potential research direction involves addressing 
the more challenging AC-OTS problem, considering data-driven strategies to sim-
plify it into a DC-OTS format, akin to approaches presented in Parmentier (2022).
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