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Abstract
Counterfactual explanations are increasingly used as an Explainable Artificial Intel-
ligence (XAI) technique to provide stakeholders of complex machine learning algo-
rithms with explanations for data-driven decisions. The popularity of counterfactual 
explanations resulted in a boom in the algorithms generating them. However, not 
every algorithm creates uniform explanations for the same instance. Even though 
in some contexts multiple possible explanations are beneficial, there are circum-
stances where diversity amongst counterfactual explanations results in a potential 
disagreement problem among stakeholders. Ethical issues arise when for example, 
malicious agents use this diversity to fairwash an unfair machine learning model by 
hiding sensitive features. As legislators worldwide tend to start including the right 
to explanations for data-driven, high-stakes decisions in their policies, these ethical 
issues should be understood and addressed. Our literature review on the disagree-
ment problem in XAI reveals that this problem has never been empirically assessed 
for counterfactual explanations. Therefore, in this work, we conduct a large-scale 
empirical analysis, on 40 data sets, using 12 explanation-generating methods, for 
two black-box models, yielding over 192,000 explanations. Our study finds alarm-
ingly high disagreement levels between the methods tested. A malicious user is able 
to both exclude and include desired features when multiple counterfactual explana-
tions are available. This disagreement seems to be driven mainly by the data set 
characteristics and the type of counterfactual algorithm. XAI centers on the trans-
parency of algorithmic decision-making, but our analysis advocates for transparency 
about this self-proclaimed transparency.
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1  Introduction

Artificial Intelligence (AI) or Machine Learning (ML) is rapidly evolving and 
disrupting various sectors, such as finance, healthcare, business (e.g., logistics, 
the labor market), education, and urban development. Besides the many benefits 
AI can create, multiple negative implications can be identified for each sector 
(Păvăloaia and Necula 2023). One of the re-occurring challenges concerning AI 
is the need for transparency: many AI models are opaque and operate on a black-
box basis, which makes it difficult—or sometimes impossible—to interpret and 
explain a decision that has been made. Therefore, Explainable Artificial Intel-
ligence (XAI) has recently emerged as a much-needed research field. Next to an 
obvious focus on the predictability of AI models, model explainability is nec-
essary for users, developers, and other stakeholders of real-life AI applications. 
Not only do people generally want to know an explanation for an algorithm-based 
decision, but also legislation is backing up this need. For example, in 2018 the 
European Union stated in the new General Data Protection Regulation (GDPR) 
that subjects of algorithmic decision-making are entitled to insights about the 
logic involved. Users can ask for explanations of data-driven decisions that sig-
nificantly influence their lives (Goodman and Flaxman 2017). These are catego-
rised under high-risk applications of AI, such as credit scoring and employment 
services. People want, and are entitled to, an answer to why their loan is denied 
or why they are not hired for a job.

Reaching a certain level of explainability in AI models is possible by either 
developing models that are inherently more interpretable - but sometimes have 
less predictive power—or by using post-hoc XAI techniques to generate expla-
nations after predictions have been made with a black-box model. Even though 
seemingly good explanations for a model’s decision can be generated by the use 
of a post-hoc XAI method, and consequently the model and its decisions are 
qualified as transparent, research on the uniformity of these explanations is rather 
scarce. Many different post-hoc XAI methods exist and each method can generate 
different explanations for the same predicted outcome. Ergo, different stakehold-
ers might be more interested in the explanations of one specific XAI method over 
another one. This raises the question of whether the transparency objective of 
XAI is achieved. In the literature, this phenomenon has been recently called the 
disagreement problem (Krishna et al. 2022; Neely et al. 2021; Roy et al. 2022).

Miller (2019) takes knowledge from psychology, sociology, and cognitive sci-
ences to identify what are “good” explanations. They argue that explanations are 
contrastive, selected, social and that probabilities most likely will not matter. The 
first means that people generally don’t ask why a certain decision is made. Peo-
ple wonder why a certain decision is made instead of another one. The second 
points to the fact that even though multiple explanations are possible to justify a 
decision, people are used to selecting one or two causes as the explanation. The 
third means an explanation is always dependent on the beliefs of the user and the 
last refers to the preference of causes over a probability or statistical relation-
ship. These insights stress the usefulness of counterfactual (CF) explanations, 
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a post-hoc example-based XAI method which underlines a set of features that, 
when changed, alter a decision made by a model (Arrieta et al. 2020).

Evaluating the quality of counterfactual explanations in varying contexts and for 
different users is complex, leading to diverse counterfactual algorithms (Verma et al. 
2020; Guidotti 2022). Similar to other types of post-hoc XAI explanations, limited 
research on the consistency of counterfactual explanations reveals a risk: disagree-
ing counterfactual explanations could lead to ethical issues and transparency con-
cerns in XAI, especially if one party controls explanation selection.

Our research focuses on the disagreement problem in popular counterfactual 
(CF) explanation methods, an area that remains less explored compared to feature 
importance explanations in Explainable AI (XAI). Two primary reasons highlight 
the unique nature of the disagreement problem in counterfactual explanations. First, 
counterfactuals explain decisions, while feature importance explanations explain 
prediction scores (Fernández-Loría et  al. 2020). This difference directly relates to 
the contexts where the disagreement problem is most critical: those of the high-
risk scenarios as outlined by the AI Act, where the emphasis is on understanding 
decisions—such as denial of credit, job rejections, or medical diagnoses—rather 
than on interpreting prediction scores. Second, unlike feature importance methods 
that include all features, counterfactual explanations often focus on a small, selec-
tive subset of features. This selectiveness could introduce bias in the explanations. 
For example, explanations with specific features could be chosen to hide the fact 
a model is based on unethical features (see an elaborated example in Sect. 3). Our 
study aims to analyze the disagreement problem in counterfactual explanation algo-
rithms, considering their unique challenges and significant role in ensuring ethical 
and transparent use of AI.

It’s noteworthy that, although the disagreement problem has received attention in 
the context of feature importance methodologies, a comprehensive quantification of 
this challenge within counterfactual algorithms remains unaddressed. Recognizing 
the considerable potential for misuse, our research aims to bridge this critical gap in 
the literature by conducting a comprehensive analysis of the disagreement problem 
amongst counterfactual explanation algorithms.

In Sect. 2.3.1, we will situate counterfactual explanations in the diverse landscape 
of post-hoc XAI techniques and express how a lack of consistent evaluation methods 
for these techniques can lead to ambiguity in their explanations and ethical conse-
quences. Consequently, in Sect. 3, we will quantify the disagreement amongst ten 
different counterfactual explanation methods next to Anchor and SHAP. Section 4 
discusses the disagreement problem for counterfactual explanations and addresses 
potential ways to deal with the problem. The paper ends with conclusions and future 
research in Sect. 5.

2 � The diverse landscape of post‑hoc explanations

Post-hoc explanation methods are a subcategory of XAI that is concerned with 
explaining decisions made by complex black-box models, after these models have 
been trained. In contrast to intrinsic explanation methods, they do not try to create 



	 D. Brughmans et al.

1 3

interpretable white-box models, but are focused on explaining existing complex 
models (Linardatos et al. 2020). These methods are particularly interesting because 
their explanations seem to bypass the accuracy-explainability trade-off (Huysmans 
et al. 2006). This is a paradox stating that model performance often comes at a cost 
of model interpretability. Nonetheless, these post-hoc methods are able to explain 
complex models and thus theoretically achieve both high performance and explain-
ability at the same time. However, the quality of post-hoc explanation has often been 
a point of discussion (Fernández-Loría et al. 2020; Doshi-Velez and Kim 2017).

Because these explanation methods are applied to models that are not intrinsi-
cally explainable, it is difficult to assess the quality of such explanations. The field 
of XAI evaluation has come up with different metrics to quantify this quality, how-
ever, no consensus has currently been reached. Since we cannot strictly quantify the 
quality of a post-hoc explanation method, many methods are proposed and used. 
This has led to ambiguity amongst explanations: explanations for the same instance 
are different depending on the post-hoc explanation method used (the disagreement 
problem). The quantified lack of uniformity in explanations has already been inves-
tigated for several post-hoc explanation methods (Krishna et al. 2022; Neely et al. 
2021; Roy et al. 2022), however, to the best of our knowledge, this problem has not 
yet been investigated for counterfactual explanations, which is the main contribution 
of this work.

We first give an overview and classification of the post-hoc explanation methods 
used for comparison in this work in Sect. 2.1. In Sect. 2.2, we discuss how post-hoc 
explanation methods are currently evaluated and address some core issues regarding 
this topic. Lastly, Sect. 2.3 elaborates on the existing research on the disagreement 
problem and the need to apply this research to counterfactual explanations.

2.1 � Counterfactual explanations and recent post‑hoc explanation methods

The most popular post-hoc explanation methods can be divided into two groups: 
feature-based techniques (also called attribution methods) and example-based 
(also called instance-based) techniques (Dwivedi et  al. 2023; Molnar 2018). The 
first group contains methods like local interpretable model-agnostic explanations 
(LIME), Shapley additive explanations (SHAP), and other feature importance tech-
niques. The second group, example-based post-hoc explanation methods, contains 
Anchors and counterfactuals. We will briefly explain the methods used in our exper-
iments: SHAP, Anchors, and counterfactual explanations. Figure 1 provides a figu-
rative example of the different XAI methods to explain why a person (the instance) 
is predicted not to get their loan approved. For a more detailed description and 
examples, we refer to Molnar (2018) and the works mentioned below.

(LIME and) SHAP

SHAP (Lundberg and Lee 2017) and LIME (Ribeiro et al. 2016) are similar in the 
sense that the impact of a certain feature is measured related to the predictive out-
come. The basic idea of LIME is to sample instances in the neighborhood of the 
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instance that is given to the prediction model and then train an interpretable model 
like linear regression or decision tree to explain this neighborhood. The interpretable 
model can consequently be used to explain the prediction that is made by the actual, 
black-box model. For tabular data, which are used in the experiments of this work, 
the issue is to define the neighborhood of an instance. If LIME would only sample 
closely around the given instance, chances are high all predictions will be exactly 
the same and LIME cannot comprehend how predictions change. Therefore, sam-
ples are taken broadly, e.g., by using a normal distribution. A major disadvantage of 
LIME is that the explanations differ depending on the samples used, which makes 
the explanations unstable and manipulable. Therefore, we do not include LIME in 
our comparisons.

A better feature-based technique can be found in SHAP, which combines the 
locality of LIME with the concept of Shapley values from coalitional or coopera-
tive game theory. The contribution of each feature (player) to the prediction that is 
made by the model (outcome of the game) for a given instance is calculated. Moreo-
ver, the contribution of cooperation between players (multiple features) is examined. 
The average marginal contribution of a feature value across all cooperations is called 
the shapley value.1 Because there are 2k possible cooperations, for which models 
need to be trained, calculating all the Shapley values is computationally expensive. 
Therefore, by using the LIME-inspired sampling, the SHAP algorithm decreases the 
computation time.

Fig. 1   Figurative toy example of LIME, Anchors and counterfactual explanations for a loan approval pre-
dictive model, based on Brughmans et al. (2023); Molnar (2018) and Ribeiro et al. (2016)

1  A common misinterpretation of the Shapley value is that it amounts to the difference in prediction after 
removing the feature from the model training.
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Anchors

Anchors or scoped rules (Ribeiro et al. 2018) are high-precision easy-to-understand if-
then rules. They portray feature conditions together with a predictive outcome. The rules 
are called Anchors because any changes to other features than the ones mentioned, will 
not result in another prediction. In contrast to e.g., LIME, Anchors will provide a region 
of instances to describe the model’s behavior. They are consequently less instance-spe-
cific. For example, imagine if a person applies for a loan at a bank. This person is 50 
years old, has a monthly income of $2000, his gender is male and he currently has $5000 
in debt. A model has predicted that the loan application should be declined. The corre-
sponding Anchor could then be: if the monthly income is lower than $5000 and the age 
is higher than 35, then predict that the loan application would be declined.

Counterfactual explanations

Counterfactual explanations describe a combination of feature changes that would 
alter the predicted class (Martens and Provost 2014). In other words, they determine 
what features should change to change the prediction and are consequently sometimes 
called what-if statements. As mentioned in Sect. 1, this type of explanation is especially 
human-friendly because they are contrastive and selective (Miller 2019). Counterfac-
tual explanations are somewhat the opposite of Anchors. To revisit the same example: 
the person asking for a loan wants to know why he will not get one. A counterfactual 
explanation could then be: if your monthly income rises to $5000, you will get a loan.

Because of their many benefits and varying quality measures to optimize for, a 
sprawl of different counterfactual methods came into existence. This possibly leads 
to different respective explanations, which will be investigated in this work.

Guidotti (2022) and Verma et  al. (2020) give an overview of counterfactual 
explanation techniques, however, to date, the state-of-the-art further unfolded with 
e.g., the introduction of NICE, a counterfactual generation algorithm which simulta-
neously achieves 100% coverage, model-agnosticism and fast counterfactual genera-
tion for different types of classification models.

2.2 � Ambiguity due to a lack of consistent evaluation metrics for post‑hoc 
explanations

As referred to in Sects.  1 and 2.1, evaluating XAI methods is a research field in 
its infancy today, even though a strong need for evaluation methods is identified by 
multiple authors such as Rosenfeld (2021). One reason for the limited amount of 
research done in this field can be the simple fact that evaluating XAI methods is 
difficult, especially for post-hoc explanation methods. Because of they explain black-
box models, by definition, we don’t know the logic involved in a decision made by 
such models.

Vilone and Longo (2021) divide XAI evaluation techniques into two groups: 
those that involve human-centered evaluations and those that evaluate with objec-
tive metrics. The first requires human participants to give qualitative or quantitative 
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feedback to XAI explanations, typically through surveys. For the second, to this day, 
more than 35 metrics have been proposed in the literature to evaluate XAI expla-
nations. Examples of these metrics are, among others, actionability (knowledge is 
useful to the end-user), efficiency (computational speed of the algorithm), simplifi-
cation (minimal features), stability (similar instances should provide similar expla-
nations), etc. The authors conclude that the boom in the number of evaluation met-
rics calls for a general consensus among researchers on how an explanation should 
be evaluated.

Note that these objective metrics are sometimes hard to quantify. Qualitative 
quality properties are therefore often quantified in numbers. For counterfactual 
explanations, popular properties are proximity, sparsity, and plausibility (Verma 
et al. 2020). Proximity is a property that is somehow used in every counterfactual 
algorithm. It tries to measure the total change that is suggested by the counterfactual 
explanations with a distance metric (typically L1 or L2 distance) (Van Looveren and 
Klaise 2021; Mothilal et al. 2020; Wexler et al. 2019). It is intuitive that less change 
is better than more change in most situations. Sparsity is a special case of proxim-
ity. It refers to the number of features in the explanation (L0 distance) (Karimi et al. 
2020; Dandl et al. 2020; Laugel et al. 2018). The argument is that shorter explana-
tions are more comprehensible for humans than longer ones (Miller 1956). Finally, 
plausibility is a more conceptual property that refers to the closeness to the data 
manifold (Pawelczyk et al. 2020). For example, in a credit scoring context, advising 
someone to wait 200 years to get a loan, is not plausible.

Counterfactual explanations have an additional advantage in comparison to fea-
ture importance methods. The latter estimate the influence of each feature on the 
predicted score. These estimates potentially suffer from bias and features which have 
almost no influence on the model’s decision might be labeled important (Fernández-
Loría et al. 2020). Counterfactual explanations don’t suffer from this bias, applying 
the suggested changes of a counterfactual explanation will always lead to a change 
in prediction. Consequently, a counterfactual explanation is always ‘correct’ (in the 
sense that it leads to a class change). However, counterfactual explanations are a 
simplification of all the information involved in the decision-making. Therefore, dif-
ferent explanations contain different bits of information. And while every counter-
factual explanation is ‘correct’, it is not guaranteed to be useful.

The ambiguity of measuring the quality of counterfactual explanations has led to 
the development of many counterfactual algorithms and possibly as many different 
explanations (Verma et  al. 2020; Guidotti 2022). As a result, when a stakeholder 
wants to use counterfactual explanations, he is presented with many options. This 
might be an advantage or can lead to the disagreement problem.

2.3 � The disagreement “problem”

The disagreement problem in XAI arises when different interpretability methods, 
used to explain a given AI model, produce conflicting or contradictory explanations. 
Because of a lack of broadly used evaluation methods, this is often the case, result-
ing in explanations that are generally non-consistent and thus ambiguous. Neely 
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et al. (2021) raise the question of whether agreement as an evaluation method for 
XAI methods is suitable. When assuming agreement as an evaluation method, low 
agreement would mean only a few of the XAI methods are right, while the others 
are far from ideal. However, low agreement is not necessarily a bad thing.

Ambiguity can actually be valuable or result in possible ethical consequences 
(Martens 2022). It all depends on the context in which XAI methods are used (Bordt 
et al. 2022). Mothilal et al. (2020) argues that diversity among counterfactual expla-
nations is beneficial. This for one increases the chance of generating usable explana-
tions. For example, when someone is not allowed to get a loan according to a predic-
tion model, and the only counterfactual explanation is to change their sex or lower 
their level of education, this explanation is argued not to be useful. Some people 
prefer to get an actionable explanation, such as ‘increase your income with $X’. This 
actionability is not uniform over all decision subjects. Therefore, providing multiple 
explanations increases the chance that one explanation is useful for this specific user.

Bordt et al. (2022) examine when ambiguity in explanations is problematic. They 
differentiate between a cooperative and adversarial context. In a cooperative con-
text, all stakeholders have the same interests. For example, in most medical appli-
cations of AI, both doctors and patients have the same goal: to improve or manage 
the patient’s health. In adversarial contexts, this is not the case. Here, different par-
ties have opposite interests. For example, when a student is denied admission to a 
prestigious university, the student is interested in challenging this decision. Another 
example is an autonomous car crashing into a wall to avoid a pedestrian. Insurance 
companies have other interests than the owner of the car or the developers of the 
software that steers the car’s driving decisions. A final example is a denied bank 
loan: the bank and the client have different interests. In these cases, it might not be 
in the model user’s best interest to look for the most correct or elaborate explana-
tion of a decision that is made. The model user will most likely choose the expla-
nation that fits their best interest, if diverse explanations are available. An adver-
sarial context can lead to all kinds of ethical issues (Martens 2022). Aïvodji et al. 
(2019) examine the use of post-hoc explanations to fairwash or rationalize decisions 
made by an unfair prediction model, while Slack et  al. (2020) and Lakkaraju and 
Bastani (2020) investigate the discriminatory characteristics of explanations. Imag-
ine a model using a prohibited feature such as e.g., gender or race, or a feature that 
is linked to one of these e.g., zip code, when other more neat explanations are avail-
able. The model user could choose to ignore the discriminatory explanations and use 
another one instead. When considering the ethical consequences of disagreement, 
consensus amongst explanations might be desired. Therefore, consensus between 
explanations could be seen as a training objective to increase user trust (Schwarzs-
child et al. 2023; Hinns et al. 2021). Namely, if two explanations are consensual, the 
ethical consequences of choosing one XAI method over another one are less severe.

In fact, the scope of how explanation providers manipulate explanations extends 
beyond the selection of explanation algorithms. Goethals et  al. (2023) identify a 
total of 6 stages in which explanations can be influenced. Besides algorithmic selec-
tion, users can also change the parameters of XAI algorithms to influence the expla-
nations. Furthermore, some algorithms are non-deterministic and each run can result 
in a distinct explanation, which can also be exploited. Less obvious might be that 
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manipulation can happen in earlier stages as even changing the training data, pre-
dictive model or test data can also lead to different explanations. Our quantitative 
assessment is only limited to the algorithmic decision stage. However, our recom-
mendations on how to move forward with disagreement in Sect. 4 and especially the 
call for transparency applies to all stages in the framework of Goethals et al. (2023).

2.3.1 � Related work

The ethical issues related to the selection of model explanations can only arise if 
there actually is ambiguity. Neely et al. (2021) were the first to measure the disa-
greement problem in XAI. They compare LIME, Integrated Gradients, DeepLIFT, 
Grad-SHAP, Deep-SHAP, and attention-based explanations with a rank correlation 
(Kendall’s � ) metric. They conclude there is only low agreement in the explanations 
of these methods, between 0.19 and 0.27 depending on the data set used. Krishna 
et al. (2022) expand the previous study by comparing LIME, KernelSHAP, Vanilla 
Gradient, Gradient Input, Integrated Gradients, and SmoothGrad, once again find-
ing disagreement amongst explanation of different methods, especially when the 
model complexity increases. Instead of only using a rank correlation metric, they 
use a feature agreement, (signed) rank agreement, sign agreement, and rank correla-
tion. Depending on the type of data (tabular, text or image data), they use different 
of the above-mentioned evaluation metrics. For tabular data, which are used in this 
work, they found the rank and signed rank agreement to be significantly lower, com-
pared to the feature agreement. They find the feature agreement to be between 79.1% 
and 100% agreement when looking at the top 5 features and 100% when looking 
at the top 7 features. Next to a quantitative comparison, the authors also perform 
a qualitative study on how practitioners handle the disagreement problem. 84% of 
practitioners interviewed by Krishna et al. (2022) mentioned encountering the disa-
greement problem on a day-to-day basis. They report there is no principle evaluation 
method to decide on which explanations to use, therefore, they simply choose to 
generate explanations with the XAI method they are most familiar with. Han et al. 
(2022) extend the study of Krishna et  al. (2022) to investigate why the disagree-
ment problem exists for these methods. They conclude that different XAI methods 
approximate a black-box model over different neighborhoods by applying other loss 
functions. If two explanations are trained to predict different sets of perturbations, 
then the explanations are each accurate in their own domain and may disagree. A 
more focused disagreement problem study can be found in Roy et al. (2022) where 
the explanations of LIME and SHAP are investigated for one single defect predic-
tion model. They calculate the feature, rank, and sign agreement also proposed by 
Krishna et  al. (2022). They conclude that LIME and SHAP disagree more on the 
ranking of important features compared to the feature agreement or the sign agree-
ment of the features.

Table 1 gives an overview of the scarce literature on the quantitative evalua-
tion of disagreement between XAI methods relative to our work. To the best of 
our knowledge, the disagreement problem has not yet been quantified for counter-
factual XAI methods. This is remarkable because recently there has been a boom 
in the number of such algorithms, increasing the malicious user’s potential for 
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exploiting the disagreement problem in this category of XAI algorithms. Fur-
thermore, as mentioned in Sect. 1, within counterfactual explanations, malicious 
users have a greater capacity to, for instance, circumvent specific biased attributes 
in the explanation, such as gender, when compared to feature importance algo-
rithms. In the latter approach, every feature is considered, thus facilitating the 
detection of any inclusion of sensitive attributes in the model. A malicious user 
can deliberately select an explanation that omits gender, even if gender played 
a role in the model’s decision. Consequently, the affected individual may never 
realize that their gender contributed to the decision. Because counterfactual 
explanations consistently yield ‘a rule’-outcome, in the sense that following them 
alters the prediction, the individual affected by the decision is likely to readily 
accept the provided explanation as the reason behind the initial prediction. We 
therefore, argue it is important to quantify the disagreement amongst counterfac-
tual explanation algorithms, which is elaborated upon in Sect. 3 with an example.

It should be noted that morally the disagreement problem for counterfactual 
explanations is similar to the Rashomon effect, introduced by Hasan and Talbert 
(2022). This effect concerns the diversity in multiple counterfactual explana-
tions generated by the same counterfactual algorithm for the same instance and 
classifier. One explanation might say to change feature A (e.g., wait 5 years to 
get a loan), while another might say to change feature B while not adapting A 
(e.g., make sure your income increases with $500 to get a loan immediately). This 
initially seems like a contradiction as well. For example, the DiCE algorithm is 
focused on generating multiple explanations (Mothilal et  al. 2020). In contrast 
to the Rashomon effect, the disagreement problem investigates diversity amongst 
different counterfactual explanation algorithms for the same instance and classi-
fier. However, at the heart of the matter, the Rashomon effect and the disagree-
ment problem face the same ethical issues and moral hazards: who chooses which 
explanation will be used?

3 � The quantified disagreement amongst counterfactual explanation 
methods

In this section, we aim to quantify the disagreement between counterfactual 
explanation methods. We first illustrate the problem and research questions with 
an example in Sect. 3.1. Section 3.2 clarifies the large-scale experimental setup. 
Section 3.3 answers the research questions by providing metrics to quantify the 
disagreement amongst counterfactual algorithms and using these metrics in our 
large-scale experimental setup. Note that measuring the disagreement between 
counterfactual explanations comes with some new challenges. First of all, coun-
terfactual explanations provide a set of features without ranking them. This 
makes measures such as (signed) rank agreement useless. Second, counterfactual 
explanations consist of variable sizes. Some algorithms might suggest six feature 
changes while others might only suggest two.
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3.1 � Example

Table  2 illustrates the disagreement problem for an example instance retrieved 
from the Adult data set (Dua and Graff 2017). This data set can be used to predict 
if a person would have an annual income higher or lower than $50,000. The person 
depicted in the instances is predicted to have an income lower than $50,000. Conse-
quently, ten different counterfactual explanation algorithms generated counterfactual 
instances to tell which features should change in the original instance in order to 
change the prediction.

Firstly, it should be noted that one of the counterfactual explanation methods, 
CBR, is not able to find a counterfactual instance for the given original instance, 
while the others do find one. When having the need to explain a certain instance, 
it is consequently useful that other explanation methods are able to find explana-
tions and thus, that some disagreement amongst methods is existing. However, in 
an adversarial context, a malicious counterfactual generating user, wishing to avoid 
a certain feature e.g., sex or race, is able to do so by simply selecting a counter-
factual method that does not include these features, i.e., wants to change these fea-
tures with respect to the original instance, such as DiCE, NICE (plaus) or NICE 
(spars). Imagine we are predicting whether or not this person would be qualified to 
get a loan from a bank. A prediction model that uses features like sex or race would 
then be unethical and discriminatory. The decision maker would be able to hide this 
fact by secretly choosing a counterfactual method that does not include sex or race 
in the explanations. This way, the unfair prediction model can still be “rationally” 
explained. Vice versa, if the malicious user explicitly wants to include a certain fea-
ture in an explanation, e.g., hours per week, they can do so with CFproto, NICE 
(none) or NICE(plaus). And this once again by simply choosing among the diverse 
explanations, without any need to impose constraints on the counterfactual generat-
ing search. This shows the arbitrariness/disagreement of the methods and the power 
that it brings to the user of counterfactual generating methods. A user can include, 
as well as avoid, almost any desired feature in the given explanation.

This example clearly illustrates the possible existence of the disagreement prob-
lem and the ethical consequences resulting from this existence. In the following sec-
tions, we examine how easy it is to abuse the disagreement problem by malicious 
agents and the driving factors that cause the disagreement problem.

3.2 � Experimental setup

Table 3 gives an overview of the 40 tabular data sets we use for our study. Note that 
this number is significantly higher compared to the 4 to 5 data sets that are used in 
previous studies of the disagreement problem (see Table 1). This allows us to confi-
dently make more general conclusions.

A test set is created for each data set by comprising 20% of the data with a mini-
mum of 200 instances. This means that e.g., for the threeOf9 data set, we do not 
use 102 instances in the test set, but we use 200. The remaining data is used as the 
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Table 3   Descriptive statistics and performance metrics of all 40 binary data sets

Name #Inst. #Feat. #Cat. #Num. Class AUC​ AUC​
feat. feat. imbalance (ANN) (RF)

adult 48,842 14 5 9 0.761 0.903 0.913
agaricus_lepiota 8154 22 21 1 0.481 1.000 1.000
australian 690 14 7 7 0.445 0.905 0.940
breast_w 699 9 8 1 0.345 0.991 0.997
buggyCrx 690 15 8 7 0.555 0.921 0.949
chess 3196 36 36 0 0.522 1.000 0.999
churn 5000 20 4 16 0.142 0.872 0.919
clean2 6598 168 0 168 0.154 1.000 1.000
coil2000 9822 85 84 1 0.060 0.691 0.745
credit_a 690 15 8 7 0.555 0.902 0.910
credit_g 1000 20 17 3 0.700 0.663 0.731
crx 690 15 8 7 0.445 0.859 0.941
diabetes 768 8 0 8 0.349 0.823 0.851
dis 3772 29 23 6 0.985 0.895 0.989
GAMETES1 1600 20 20 0 0.500 0.636 0.648
GAMETES2 1600 20 20 0 0.500 0.746 0.780
GAMETES3 1600 20 20 0 0.500 0.664 0.722
GAMETES4 1600 20 20 0 0.500 0.690 0.705
german 1000 20 17 3 0.700 0.718 0.758
Hill_Valley 1212 100 0 100 0.505 0.993 0.557
hypothyroid 3163 25 18 7 0.952 0.975 0.988
kr_vs_kp 3196 36 36 0 0.522 1.000 0.999
magic 19,020 10 0 10 0.352 0.922 0.937
mofn_3_7_10 1324 10 10 0 0.779 1.000 1.000
monk1 556 6 6 0 0.500 1.000 1.000
monk2 601 6 6 0 0.342 1.000 0.896
monk3 554 6 6 0 0.520 0.992 0.986
mushroom 8124 22 21 1 0.482 1.000 1.000
parity5+5 1124 10 10 0 0.504 1.000 0.674
phoneme 5404 5 0 5 0.294 0.906 0.970
pima 768 8 0 8 0.349 0.867 0.819
profb 672 9 3 6 0.333 0.633 0.676
ring 7400 20 0 20 0.505 0.990 0.992
spambase 4601 57 0 57 0.394 0.974 0.988
threeOf9 512 9 9 0 0.465 0.972 0.999
tic_tac_toe 958 9 9 0 0.653 0.997 1.000
tokyo1 959 44 2 42 0.639 0.962 0.983
twonorm 7400 20 0 20 0.500 0.996 0.997
wdbc 569 30 0 30 0.371 0.973 0.981
xd6 973 9 9 0 0.331 1.000 1.000
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training set for training a Random Forest classifier (RF) and an Artificial Neural 
Network (ANN). The final two columns of Table 3 display the AUC values obtained 
for both classifiers. The hyper-parameters of both models are trained using a five-
fold cross-validation approach. Subsequently, we generate counterfactual explana-
tions using all algorithms for a random sample of 200 instances from the test set. In 
total, we generate 200 counterfactual explanations for 10 counterfactual algorithms, 
Anchors, and SHAP for 2 classifiers on 40 data sets, resulting in a sample size of 
192,000 explanations.

We selected a total of 12 post-hoc explanation methods to study the disagreement 
problem. Our focus lies on ten counterfactual algorithms that are suited for tabular 
data, are model-agnostic, and have their code publicly available. They are depicted 
in Table 4 and we refer to Appendix 1, Table 13, for the parameter values used in 
every algorithm. The final column of Table 4 indicates the type of heuristic used 
for the respective counterfactual algorithms. The final selection includes the fol-
lowing counterfactual algorithms: DiCe (Mothilal et al. 2020), CFproto (Van Loo-
veren and Klaise 2021), WIT (Wexler et al. 2019), CBR (Keane and Smyth 2020), 
SEDC (Fernández-Loría et al. 2020), GeCo (Schleich et al. 2021) and four types of 
the NICE algorithm (Brughmans et al. 2023) to investigate the uniformity of their 
explanations. We refer to their respective manuscripts for detailed descriptions of 
the different counterfactual algorithms. Moreover, we also look at their disagree-
ment with both SHAP and Anchors. As we mentioned in Sect. 2.2, there is no con-
sensus on what defines the quality of a counterfactual explanation, which resulted 
in many algorithms optimizing explanations for different evaluation metrics. When 
we compare algorithms optimized or evaluated for other metrics, some form of disa-
greement is expected. However, when comparing explanations from algorithms that 
optimize for the same metric, one might expect less disagreement.

We notice two distinct groups in Table 4 (divided by a horizontal line). The 
first six algorithms optimize for plausibility and the last four do not. Hence we 
call the first group Plaus, and the second group Prox. We make this distinction 
because every algorithm that optimizes for plausibility, actually also optimizes for 

Table 4   Overview of the counterfactual algorithms used for comparison

GD = Gradient Descent, NB = Neighbor-Based, GA = Genetic Algorithm, BF = Best-first

Name Author Spars Prox Plaus Type

CBR Keane and Smyth (2020) x x NB
CFproto Van Looveren and Klaise (2021) x x x GD
WIT Wexler et al. (2019) x x NB
GeCo (Schleich et al. 2021) x x x GA
NICE (none) Brughmans et al. (2023) x x NB
NICE (plaus) Brughmans et al. (2023) x x NB

DiCE Mothilal et al. (2020) x GD
NICE (prox) Brughmans et al. (2023) x NB
NICE (spars) Brughmans et al. (2023) x NB
SEDC Martens and Provost (2014) x BF
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proximity (or sparsity) in some way: CBR starts from the closest case, CFproto 
has proximity in its loss function, WIT selects the closest counterfactual instance 
from the training set, GeCo selects the fittest candidate in each iteration based on 
proximity, NICE (none) selects the closest counterfactual instance from the train-
ing set and lastly, NICE (plaus) has sparsity in its reward function.

The second group (Prox) is only interested in providing counterfactual 
instances that are close to the original instance. We take algorithms that optimize 
for sparsity and proximity together because sparsity is a special case of proxim-
ity, as is explained in Sect. 2.2. Moreover, even though DiCE and NICE (prox) 
mainly optimize for proximity, they both have an indirect optimization for spar-
sity. DiCE includes a sparsity enhancing step by adapting as many features as 
possible to their original value as long as the predicted class does not change. 
NICE (prox) has a sparsity loss function embedded in its proximity function. We 
therefore define the Prox-group as algorithms that optimize for any distance 
metric (e.g., L0, L1 or L2 distance). We start our counterfactual disagreement 
analysis in Sect. 3.3 by looking at counterfactual algorithms and the two groups 
globally, after which we also include pairwise comparisons between the algo-
rithms individually.

For the counterfactual explanations, we consider a feature to be present in the 
explanation if the counterfactual instance indicates to change the feature com-
pared to the original instance. For Anchors we consider a feature present simply 
when it is mentioned in the Anchor explanation. For SHAP we take into account 
the seven most important features as features present in an explanation (based on 
Miller (1956) and Krishna et al. (2022)).

3.3 � Results

3.3.1 � To what extent can counterfactual disagreement be abused by malicious 
agents?

The main issue with disagreement amongst counterfactual explanations is that 
malicious users can select certain explanations to rationalize decisions made by 
unfair or discriminating models. This can be done by either avoiding certain fea-
tures to convince stakeholders that they are irrelevant or the other way around, by 
including certain features to insinuate that they are the main driver of the deci-
sion-making process.

We first check, how easy it is to exclude a certain feature from a counterfactual 
explanation. This can be done by looking at the percentage of features that are not 
present in at least one explanation. Equation (1) formalizes this metric which we 
call relative feature exclusion. In this metric, the numerator counts the unique fea-
tures that are not present in the explanations of certain methods a to n. This num-
ber is divided by the total number of features FD in a data set D. Tables 5 and 6 
show the average relative feature exclusions for different data sets, XAI-methods 
and classifiers:
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Table 5   Relative feature 
exclusion for the RF classifier

Data set Prox Plaus All CF All

adult 97.8 99.5 100 100
agaricus_lepiota 98.1 100 100 100
australian 99.8 98.9 100 100
breast_w 97.6 97.7 99.6 99.6
buggyCrx 99.2 99.6 100 100
chess 99.7 100 100 100
churn 98 99.1 99.9 100
clean2 99.6 99.3 99.7 99.7
coil2000 99.9 99.9 100 100
credit_a 99.6 97.5 99.9 100
credit_g 99.5 99.8 100 100
crx 99.4 99.4 100 100
diabetes 94.4 92.8 98 98.4
dis 97.6 99.6 99.9 100
GAMETES_1 99.7 100 100 100
GAMETES_2 99.3 99.9 100 100
GAMETES_3 99.7 100 100 100
GAMETES_4 99.6 100 100 100
german 98.8 99.9 100 100
Hill_Valley_without_noise 99.6 99.7 100 100
hypothyroid 98.6 98.9 99.9 100
kr_vs_kp 99.6 100 100 100
magic 93.6 94.6 98.6 99.9
mofn_3_7_10 97.2 99.9 100 100
monk1 97.5 98.3 99.6 99.8
monk2 97.2 98.2 99.8 99.9
monk3 95.1 93.5 96.6 99.1
mushroom 97.8 100 100 100
parity5+5 99.5 99.9 100 100
phoneme 86.8 89.8 97.5 98.9
pima 96.8 90.7 98.3 98.3
profb 98.6 95.5 99.7 100
ring 98.2 99.6 99.9 100
spambase 97.5 99.7 100 100
threeOf9 98.6 98.9 99.8 99.9
tic_tac_toe 99.9 99.2 100 100
tokyo1 99.4 99.5 100 100
twonorm 86.6 99 99.7 99.9
wdbc 98.6 99.3 99.8 100
xd6 98.4 97 99.3 100
Average 97 98.6 99.6 99.9
Standard Deviation 3.4 1.9 0.9 0.2
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Table 6   Relative feature 
exclusion for the ANN classifier

Data set Prox Plaus All CF All

adult 99.4 99.4 100 100
agaricus_lepiota 97.7 97.3 99.8 100
australian 98.4 99.9 100 100
breast_w 99.5 99.6 99.9 100
buggyCrx 98.2 99.9 100 100
chess 99.5 100 100 100
churn 99.4 98.9 99.9 100
clean2 99.9 99.8 100 100
coil2000 99.6 99.7 100 100
credit_a 98.6 99.3 100 100
credit_g 99.2 99.9 100 100
crx 98.2 100 100 100
diabetes 89.8 95.9 97.4 99.9
dis 99.8 100 100 100
GAMETES_1 99.3 100 100 100
GAMETES_2 99.1 99.8 99.9 100
GAMETES_3 99.7 99.9 100 100
GAMETES_4 99.4 100 100 100
german 99 100 100 100
Hill_Valley_without_noise 99.1 100 100 100
hypothyroid 96 99.4 99.8 100
kr_vs_kp 99.4 100 100 100
magic 89.8 96 98.5 100
mofn_3_7_10 98.3 99.9 100 100
monk1 95 98.4 99.4 99.9
monk2 97.4 98.2 99.8 100
monk3 93.3 93.8 95.6 98.8
mushroom 97.4 96.4 99.6 100
parity5+5 99.7 100 100 100
phoneme 92.5 92.9 98.5 99.3
pima 93 98.6 99.4 99.5
profb 95.6 96.4 98.8 100
ring 98.3 98.5 99.9 99.9
spambase 99 100 100 100
threeOf9 98.3 96.7 99.5 99.8
tic_tac_toe 99.1 96.6 99.7 99.9
tokyo1 89.9 100 100 100
twonorm 90.3 99.6 100 100
wdbc 88.2 99.9 100 100
xd6 97.1 94.2 98.1 100
Average 97.8 98.4 99.6 99.8
Standard Deviation 3 2.6 0.8 0.4
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Next, we investigate the possibility to include a random feature into a counterfactual 
explanation. For this, we introduce a metric called relative feature span, see Eq. (2). 
It measures the percentage of all features that is present in at least one explanation. 
The numerator equals the absolute feature span and measures the size of the union 
of all explanations of all explanation methods a to n in the comparison. The absolute 
feature span divided by FD is the relative feature span. A higher feature span most 
likely results from a higher disagreement amongst methods. Consequently, the user 
will be able to choose many features as part of the explanation. The maximum rela-
tive feature span of 1 is achieved when every single feature is used in at least one 
explanation. These relative feature spans are shown in Tables 7 and 8:

If we revisit the example of Sect. 3.1 and assume that the user only has the first two 
counterfactual explanation algorithms, CFproto and WIT, available. The relative 
feature exclusion between these two methods amounts |(FD⧵ECFproto)∪(FD⧵EWIT )|

|FAdult|
 or 57.1%, 

meaning that 57.1% of the features can be avoided by the user when using only these 
two methods. The relative feature span of both methods amounts |ECFproto∪EWIT|

|EAdult|
 or 

85.7%. This means that 85.7% of the features are present in the explanations of 
CFproto and WIT, and can consequently be chosen by the user. If all counterfactual 
explanation methods of Table 2 are available to the user the overall relative feature 
exclusion equals 100%. This means that any of the features can be chosen to be left 
out of the explanation if all methods are available to the user. The overall relative 
feature span equals 92.9%. Only the feature ‘capital loss’ is never used in the 
explanations.

Our results in Tables 5 and 6 show that excluding certain features is particularly 
easy when multiple explanations are available. To obtain the relative feature exclu-
sions for every data set, we first calculate the relative feature exclusion for each of 
the 200 counterfactual explanations individually. Then, we average these numbers. 
The average relative feature exclusion is over 99.6% for both classifiers over all 
counterfactual methods, and 99.8% if we include Anchors and SHAP. For many data 
sets, the average relative feature exclusion is even 100.0%. Meaning that for every 
instance that has to be explained, every feature of choice can be excluded from the 
explanation. These results show that it is fairly easy to avoid sensitive features in 
order to falsely justify model decisions.

Selecting random features that are desired to be in an explanation seems slightly 
more difficult. The average relative feature span for all counterfactual methods 
(depicted in Table 7 and 8) is 62.1% (63.3%) for an RF (ANN) classifier, and 73.9% 
(72.8%) if we include Anchors and SHAP. However, there are still data sets that 
have a relative features span of 100.0%. Similarly to the relative feature exclusion 
calculation, to obtain the relative feature span for every data set, we first calculate 

(1)Relative feature exclusion[a,n] =
|(FD ⧵ Ea) ∪ (FD ⧵ Eb)... ∪ (FD ⧵ En)|

|FD|

(2)Relative feature span[a,n] =
|Ea ∪ Eb... ∪ En|

|FD|
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Table 7   Relative feature 
span for the RF classifier

Data set Prox Plaus All CF All

adult 40.5 48.4 59.7 74.1
agaricus_lepiota 32.7 53 62.4 65.4
australian 45.3 57.7 63.8 74.1
breast_w 56.8 85.3 87.8 88.9
buggyCrx 29.3 60.8 64.4 75
chess 7.3 17.6 20.3 25.8
churn 47.2 87.9 88.9 93.2
clean2 14.7 92.4 92.8 100
coil2000 17.3 31.3 39.8 41.8
credit_a 41.1 57.6 62.7 75.1
credit_g 27.7 55.3 59.4 65.6
crx 27.1 59.4 64.5 74
diabetes 57.2 89.1 91.8 93.2
dis 17.1 24.4 24.8 49.6
GAMETES_1 17 45 49.8 53
GAMETES_2 15.8 39.4 44.2 67.8
GAMETES_3 16.8 39 43.6 62.3
GAMETES_4 17.4 45.5 50.6 70.6
german 24.4 57.2 60.2 65.7
Hill_Valley_without_noise 17.4 100 100 100
hypothyroid 24.5 27.9 31.6 38.2
kr_vs_kp 7.9 17.6 20.5 26.5
magic 99.9 100 100 100
mofn_3_7_10 31.9 39.9 45.8 57.4
monk1 36.5 42.5 49.5 63.8
monk2 41.1 49.4 59.8 85.8
monk3 24.8 36.9 41.2 60.3
mushroom 30.6 51.8 60.6 64.7
parity5+5 23.8 26.6 38 87.7
phoneme 98.4 100 100 100
pima 64.8 88.2 90.9 99.9
profb 25.2 72.1 73.6 90.1
ring 27.9 100 100 100
spambase 30.3 29.9 35.7 94
threeOf9 25.7 25.4 34.4 56.7
tic_tac_toe 26.2 45.1 52.1 73.5
tokyo1 82.4 81.2 87.9 88
twonorm 100 100 100 100
wdbc 98.4 99.1 100 100
xd6 26.1 21.6 31.1 53.6
Average 37.4 57.5 62.1 73.9
Standard Deviation 25.8 27.1 25.2 21
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Table 8   Relative feature 
span for the ANN classifier

Data set Prox Plaus All CF All

adult 28.2 55.3 61.4 68
agaricus_lepiota 23.6 52.1 57.6 60
australian 36.2 63.8 67 76.5
breast_w 41.4 82.8 87.8 91.2
buggyCrx 24.3 61.6 64.2 65.7
chess 8.6 17.6 21.2 27.8
churn 54.8 88.1 90.9 93.8
clean2 8.4 92.6 93.1 93.1
coil2000 17.6 30 38.3 40.2
credit_a 25 58.5 61.8 73.1
credit_g 20.6 56.9 58.9 65.5
crx 31.3 57.3 63.4 72.1
diabetes 54.8 89.6 92 92.4
dis 17.5 24.8 27.6 29.3
GAMETES_1 17.5 43.8 48.9 71.3
GAMETES_2 15.7 40.2 44.7 66.4
GAMETES_3 16.4 41.6 45.8 65.4
GAMETES_4 16.8 46.1 51 69.5
german 21.6 57.8 61.2 67.4
Hill_Valley_without_noise 21.3 100 100 100
hypothyroid 19.8 28.7 30.9 37.9
kr_vs_kp 9.1 17.5 21.4 28
magic 99.7 100 100 100
mofn_3_7_10 34.2 40.4 46.9 57
monk1 38.7 42.4 52.1 87.5
monk2 44.9 48.8 60 89.3
monk3 32.1 38.5 46.2 61.3
mushroom 26.2 50.3 56.8 62
parity5+5 25.1 33.2 42.4 88.9
phoneme 97.7 99.8 99.9 100
pima 49 90.1 91.4 91.8
profb 35.2 77.1 79.2 92.4
ring 32.7 100 100 100
spambase 29.4 34.9 38.4 40.1
threeOf9 26.1 33.9 42.4 61.9
tic_tac_toe 24.6 58.2 64.8 77.5
tokyo1 73.6 85 85.5 88.4
twonorm 99.9 100 100 100
wdbc 97.8 100 100 100
xd6 26.8 30.2 38.8 58.5
Average 35.6 59.2 63.3 72.8
Standard Deviation 24.8 26 24 21.4
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the relative feature span for each of the 200 counterfactual explanations individually, 
after which we average these results. Relative feature spans seem to vary tremen-
dously over different data sets, groups of XAI methods, and classifiers. We refer 
to Sect. 3.3.2 for a more detailed examination of the drivers of this counterfactual 
disagreement.

To conclude, a malicious agent can easily both exclude and include desired fea-
tures when multiple counterfactual algorithms are available. Especially excluding 
certain features to hide their influence in the prediction model, while still using them 
to generate predictions, can easily be done by leveraging the disagreement problem.

3.3.2 � What are the drivers of counterfactual disagreement?

The disagreement problem makes it easy for malicious agents to exclude or include 
certain features. While the variation in feature exclusion is minimal, Tables 7 and 8 
show that feature span does have some variation. In this section, we investigate what 
are the drivers of this variation. We investigate whether, the data set, the counterfac-
tual algorithms, or the classifier cause the variation in counterfactual disagreement. 
This should help to identify when the possibility of feature disagreement is high.

Data set

Tables 7 and 8 show that there is a lot of variance over the different data sets. Over 
all counterfactual explanations, the relative features span varies from around 20% to 
100% for both classifiers. However, this variance seems to be random. There is no 
observed relationship between the characteristics of the data set and the disagree-
ment metrics. Table 9 shows that the number of features in the data set or the AUC 
of the trained models only have a very weak correlation with these disagreement 
metrics.

Counterfactual algorithms

As shown in Table 4, the counterfactual algorithms can be divided into two groups 
plaus and prox. Those that optimize for plausibility, and those that only opti-
mize for proximity. It might be that the existing disagreement only originates from 

Table 9   Correlation between data set characteristics and relative feature span or relative feature exclusion

Relative feature span Relative feature exclusion

ANN RF ANN RF

AUC​ # Feat AUC​ # Feat AUC​ # Feat AUC​ # Feat

prox −0.05 0.19 −0.26 0.28 0.22 −0.19 0.23 −0.23
plaus 0.23 0.05 0.14 −0.03 0.23 0 0.21 −0.25
All CF 0.23 0.07 0.12 −0.04 0.15 −0.09 0.17 −0.12
All 0.21 0.04 0.01 −0.09 0.11 −0.01 0.10 −0.14
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the disagreement between these groups and not from the disagreement within these 
groups. To verify this, we also calculated the relative feature span within these 
groups in Table 7 and 8 and a noticeable difference can be seen. The span within 
plaus is 20.1% to 23.6% higher compared to the span within the prox group.

Figure 2 stresses the difference between the two groups visually by the use of box 
plots. The center of gravity for the prox group is not only lower but also less broad, 
compared to the plaus group, meaning that even though the variance stretches over 
the entire x-axis, the gross of the relative feature spans for this group lies between 
22% and 42% (20% and 39%) for the RF (ANN) classifier. In contrast, the relative 
feature span for the plaus group lies mainly between 39% and 86% (40% and 86%) 
for the RF (ANN) classifier.

To add more detail, we split up the plaus group into exogenous and endogenous 
counterfactual algorithms. Endogenous counterfactual algorithms provide explana-
tions based on observed instances, while exogenous counterfactual algorithms give 
explanations based on unobserved instances (Crupi et al. 2022). In our experiments, 
NICE(none), NICE(plaus), CBR, WIT and Geco are endogenous, CFProto is exog-
enous. On average, the exogenous algorithm results in explanations with a higher 
feature span, compared to the endogenous ones. However, the Plaus Endo group 
has a wider spread, when looking at the gross of the relative feature spans.

This difference can simply be explained by the difference in sparsity between 
both groups as seen in Table 11. Sparsity refers to the number of features in a coun-
terfactual explanation, normalised for the number of features present in the expla-
nation. Optimizing for proximity (or sparsity directly) has a direct effect on this 
number of features in the explanations. Therefore, the average sparsity of the prox 
group is much lower compared to that of the plaus group. Consequently, having 
fewer features on average in each explanation also results in a lower relative feature 
span for this group. In fact, if we would look at only one counterfactual algorithm, 
the relative feature span would equal the normalized sparsity and the relative feature 
exclusion would equal 100%—the normalized sparsity.

Furthermore, the plaus group seems to account for most of the feature span of 
all counterfactual explanations. The difference between the plaus group and the 
group of all counterfactual explanations is less than 5% for both classifiers.

Fig. 2   Box-plots relative feature span for different algorithm groups for the RF and ANN classifiers
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To first have a grasp of how similar the explanations are between different 
counterfactual algorithms, we examine the pairwise scaled L0 distances between 
the counterfactual instances of counterfactual methods. This metric counts the 
number of features that two explanations have in common and divide this number 
by the total number of features in the data set.

To quantify the pairwise disagreement amongst counterfactual explanations, 
Anchors, and SHAP, we first introduce a new measure called feature disagreement 
in Eq. (4). This measure is similar to the feature agreement metric introduced by 
Krishna et al. (2022) but adapted to the variable explanation sizes of which counter-
factuals consist.

When comparing the explanations Ea and Eb of two methods A and B, the feature 
disagreement of A with B is equal to the size of the relative complement of E

a
 in Eb 

divided by the size of Ea . It measures the relative number of features that are in Ea 
but not in Eb . When the feature disagreement equals 1, none of the features of Ea are 
also in Eb.

It could be argued that the Jaccard similarity can be used to quantify the pair-
wise disagreement amongst counterfactual methods, this being an existing metric. 
However, feature disagreement has two advantages compared to Jaccard similar-
ity. First, it contains information about the direction of disagreement. The feature 
disagreement of counterfactual A with counterfactual B is not equal to the fea-
ture disagreement of counterfactual A with counterfactual B, which is the case 
for Jaccard similarity. Second, the feature disagreement of counterfactual A with 
counterfactual B actually tells us the percentage of features in counterfactual A 
that contribute to a higher feature span on top of counterfactual B. For these rea-
sons, we continue with this metric and refer to Appendix 1 for the Jaccard simi-
larity analysis.

When revisiting the example in Sect.  3.1, and once again assuming the user 
only has the first two counterfactual explanation algorithms, CFproto and WIT, 
available. The pairwise scaled L0 distance between CFproto and WIT equals 
ECFproto∩EWIT

FAdult

 or 35.7%. The feature disagreement between CFproto and WIT equals 
|ECFproto⧵EWIT |

|ECFproto|
 or 50%. CFproto has 50% unique features with respect to WIT. Vice 

versa, the feature disagreement between WIT and CFproto equals |EWIT⧵ECFproto|

|EWIT |
 or 

28.6%. WIT has 28.6% unique features with respect to CFproto.
The pairwise scaled L0 distances are shown in Table  14 in Appendix B. 

We visualized these distances in a 2D-plot by using multidimensional scaling 
(MDS) in Fig.  3b and Fig.  3a. Note that the numbers on the x- and y-axis of 
these figures have no translatable meaning, only the relative Euclidean distances 

(3)L0 distanceab =
|Ea ∩ Eb|

FD

(4)Feature disagreementab =
|Ea ⧵ Eb|

|Ea|
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between two points are meaningful. The closer two points lie together, the more 
similar the resulting counterfactual instances of each method are. NICE(prox) 
and NICE(spars) optimize for very similar metrics with the same optimization 
method and therefore result in very similar counterfactual instances. The same 
can be said for NICE(none) and WIT. Both these methods use real instances from 
the training set in their explanations, and those instances seem to be quite close 
to each other. Surprisingly, SEDC and CBR are similar as well. GeCo provides 
counterfactual instances that are the farthest away from all other methods. This 
might be because GeCo’s explanations contain many features in general. Table 11 
shows, that GeCo on average uses around 74% of all features in a single counter-
factual explanation.

Fig. 3   Multidimensional scaling (MDS) for the L0 distance between the counterfactual explanation 
methods (Blue: Prox, Red: Plaus)

Table 10   Relative feature disagreement for the RF and ANN classifier
RF CBR CFproto WIT GeCo NICE(none) NICE(plaus) DiCE NICE(prox) NICE(spars) SEDC Anchors SHAP Average

CBR 0 37.0 14.3 28.9 15.1 20.3 35.4 25.2 25.0 39.1 12.1 43.3 24.6
CFproto 72.0 0 20.7 30.3 20.8 33.6 44.5 45.1 47.8 61.5 34.7 57.4 39.0
WIT 81.6 56.0 0 40.3 4.6 25.8 64.1 48.8 53.5 78.4 57.6 79.7 49.2
GeCo 87.3 63.4 35.7 0 36.7 51.0 70.1 69.0 72.7 82.0 63.9 77.9 59.1
NICE(none) 81.9 55.7 4.0 40.6 0 22.6 64.0 47.2 52.0 78.7 58.0 80.2 48.7
NICE(plaus) 78.0 54.4 3.5 41.1 0 0 60.2 37.4 40.2 70.4 50.3 80.2 43.0

DiCE 80.3 52.0 32.5 43.5 32.4 43.4 0 55.3 59.4 71.4 48.3 69.7 49.0
NICE(prox) 75.2 51.3 3.0 42.1 0 14.3 54.2 0 17.2 66.7 41.5 81.9 37.3
NICE(spars) 72.1 50.9 3.3 43.3 0 11.8 53.5 7.7 0 63.0 37.2 80.9 35.3
SEDC 63.7 45.2 20.2 35.1 21.3 28.1 40.4 33.2 34.3 0 21.2 58.2 33.4

Anchors 80.4 58.0 33.9 50.1 35.7 45.3 55.4 53.4 55.9 67.7 0 79.0 51.2

SHAP 89.7 72.0 57.7 59.6 59.9 67.7 73.3 78.4 79.1 82.3 72.1 0 66.0

ANN CBR CFproto WIT GeCo NICE(none) NICE(plaus) DiCE NICE(prox) NICE(spars) SEDC Anchors SHAP Average

CBR 0 39.7 17.1 30.9 17.9 25.7 43 32.7 32.7 47.5 21.9 59.2 30.7
CFproto 74.3 0 24.8 36.9 24.7 39.6 51.6 54.6 56.7 66.6 42.8 75.3 45.7
WIT 80.8 53.5 0 38.9 4.3 29.9 67.3 55.7 57.4 80.2 59.8 87.3 51.3
GeCo 85.7 56.4 33.9 0 34.6 53.1 65.8 73.7 75.4 81.7 66.4 84.6 59.3
NICE(none) 80.8 53 3.3 38.8 0 26.9 67 54.3 56.1 80.2 59.9 87.8 50.7
NICE(plaus) 75.9 52.2 3.1 39.3 0 0 65.3 40.1 40 70.9 50.9 86.8 43.7

DiCE 82 51 36.8 44.2 36.5 51.8 0 65.7 67.5 75.7 54.8 82.7 54.1
NICE(prox) 70.2 46.7 3.1 41.1 0 12.8 58.6 0 10.7 63.9 38.8 87 36.1
NICE(spars) 68.4 48 3.5 41.8 0 10.6 59 7 0 62.2 37.1 86.3 35.3
SEDC 66.1 44.8 24 36.4 24.5 32.9 50.3 40.5 41.1 0 29.4 71 38.4

Anchors 77.8 54.5 34.2 46.2 35.3 48.3 60.7 57.2 58.8 69.7 0 86.9 52.5

SHAP 76 62.2 52.4 50.2 54.8 62 61.6 68.8 69.1 70.6 58.6 0 57.2
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Which algorithms disagree the most with others, while taking into account the 
number of features present in their explanations, can be identified by looking at the 
pairwise feature disagreement. Table 10 shows that most post-hoc explanation meth-
ods have a high number of features that are not present in CBR, SEDC or SHAP 
(the darkest columns in Table 10) even though the sparsity of these methods is not 
necessarily low (see Table 11). Overall GeCo is the counterfactual algorithm that 
generates the most features that are not available in the explanations of other algo-
rithms. Once again, this can be largely attributed to the fact that GeCo has the worst 
sparsity, meaning that it has the most features in its generated explanations.

The high feature disagreement of SHAP and Anchors with counterfactual expla-
nations confirms that the disagreement between different post-hoc explanation meth-
ods is larger than the disagreement within counterfactual explanations.

Lastly Table 12, presents the average pairwise disagreement between a counter-
factual method presented in the first column and the other counterfactual algorithms 
within the same (intra) and between (inter) group(s). For example, the intra group 
average for CBR (a member of the plaus group) equals the average of the relative 
feature disagreements between CBR and the other members of the plaus group: 
CFproto, WIT, GeCo, NICE(none) and NICE(plaus). On the other hand, the inter 
group average, amounts the average of the relative feature disagreements between 
CBR and the members of the prox group: DiCe, NICE(prox), NICE(spars), and 
SEDC. It is clear that for the plaus group, the intra group averages are signifi-
cantly lower compared to the inter group averages. In contrast, for the prox group 
the inter group averages are lower. Since counterfactual algorithms of the prox 
group generate explanations with less features compared to the other group, chances 

Table 11   The average L0-distance (normalised sparsity) between the instance to explain and the counter-
factual instance

Classifier CBR CFproto WIT GeCo NICE(none) NICE(plaus) DiCE NICE(prox) NICE(spars) SEDC

ANN 44.1 50.2 45.4 73.6 44.7 30.1 32.4 14.9 13.9 31.1
RF 55.1 57.9 44.8 74.0 44.4 32.6 40.4 18.7 15.7 38.3

Table 12   Intra and inter group 
relative feature disagreement

RF ANN

Intra group Inter group Intra group Inter group

CBR 23.1 31.2 26.2 39
CFproto 35.5 49.7 40.1 57.4
WIT 41.7 61.2 41.5 65.2
GeCo 54.8 73.5 52.7 74.1
NICE(none) 41.0 60.5 40.5 64.4
NICE(plaus) 35.4 52.1 34.1 54.1
DiCE 62.0 47.4 69.6 50.4
NICE(prox) 46.0 31.0 44.4 29.0
NICE(spars) 41.4 30.2 42.7 28.7
SEDC 36.0 35.6 44.0 38.1
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of disagreement are higher. Vice versa, it is easier to find agreement when a lot of 
features are present in the explanantions, which is the case in the plaus group.  

Classifier

Surprisingly, the used classifier does not have a critical influence on the size of the 
disagreement problem. For each data set the difference between the average rela-
tive feature span between both classifiers is minimal. Moreover, we calculated the 
correlation between both classifiers, which is more than 99%. The same conclusion 
can be drawn from the L0 distances in Fig. 3 between the counterfactual instances 
or the relative feature disagreements in Table 10. Both metrics show little variation 
between the RF and ANN.

In conclusion, both the data set and the group of counterfactual algorithms deter-
mine the variation in disagreement metrics. Perhaps more surprisingly, we find that 
the classifier has a small to no influence on the results and variation obtained.

4 � Discussion

Our experiments reveal a severe disagreement amongst various counterfactual expla-
nation methods, suggesting that this disagreement may surpass the feature disagree-
ment observed in feature-importance techniques by previous research Krishna et al. 
(2022); Roy et  al. (2022); Neely et  al. (2021). Note that direct comparisons with 
these prior studies are challenging due to their focus on rank and sign agreement 
of the top k features, metrics not directly applicable to counterfactual explanations. 
Our analysis centers on a variant of the feature agreement metric, used by Krishna 
et al. (2022), but adapted to the variable explanation sizes of counterfactual meth-
ods. Krishna et al. (2022) reported one hundred percent feature agreement among 
the tested feature-importance techniques for k = 7 . This finding starkly contrasts 
with the significantly higher feature disagreement rates identified in our study, high-
lighting the unique challenges and potentially greater biases within counterfactual 
explanation methods.

This discrepancy is not entirely surprising, given the intrinsic challenges associ-
ated with their evaluation (cf. Section 2.2). The diversity of desired properties these 
methods aim to optimize contributes to their diversity in outcomes. One resolution 
might be to identify an optimal counterfactual property, providing a unified optimi-
zation objective for all counterfactual algorithms, thereby minimizing the disagree-
ment. However, currently, the field is far from reaching a consensus on what this 
property should be. Perhaps we should ask ourselves if the field of XAI will ever be 
able to fully address this problem, or if it is simply a consequence of the field’s core 
objective: XAI seeks to explain decisions made by complex predictive algorithms in 
terms understandable to humans. The gap between the complexity of these predic-
tive algorithms and human comprehension abilities is vast. Therefore, the resulting 
explanations are often simplifications, leading to an inevitable loss of information. 
Most counterfactual explanations capture only a portion of this information, repre-
senting a unique point of view on the involved prediction logic. It is these varied 
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points of view that lead to the disagreement problem. Different stakeholders inevi-
tably have preferences for distinctive points of view, amplifying this challenge. This 
is compounded by the existence of information asymmetry, where one stakeholder 
(the decision-maker) possesses more information and can determine what is shared 
with others (the decision subject). Such a scenario potentially opens the door to 
manipulative practices. Consequently, there is a pressing need for awareness and the 
implementation of mechanisms that strive to circumvent the disagreement problem 
as much as feasible.

Currently, we identify three potential solutions, though none emerge as flawless. 
The first proposed solution is to present all counterfactual explanations to the deci-
sion subject. This approach empowers decision subjects with the autonomy to select 
the explanation that best suits them, effectively limiting the opportunity for deci-
sion-maker manipulation. However, this presents challenges. The information might 
be too extensive for the decision subject, thus undermining the primary objective 
of XAI, which is to make algorithmic decision-making comprehensible. Moreover, 
there is a risk of providing more information than necessary. Companies invest heav-
ily in predictive modeling, and the confidentiality of these models often preserves 
their competitive edge. Sharing too much information could inadvertently reveal 
insights to competitors. The ideal scenario would strike a balance, sharing sufficient 
information to validate the decision while preventing excessive conflict of interest 
about the model. Yet, there is no guarantee that such a balance can be attained.

A second potential solution is to summarize multiple counterfactual explanations 
into a combination, as suggested by Fernández et  al. (2022) and Carrizosa et  al. 
(2024). However, these approaches introduce an additional step in the framework 
introduced by Goethals et al. (2023). Further research would be needed to determine 
whether these combinatorial algorithms (dis)agree in their explanations. Also the 
usefulness and properties of these combinations should be further investigated.

We conclude that the current state of research has yet to sufficiently address the 
disagreement problem from a technical point of view. And currently, the most via-
ble solution might be to give the decision-subject insight in the process of coming 
to explanations. Providing transparency should ensure that decision-makers can be 
held accountable for their actions. Ideally, such a principle would be enforced by 
regulation. This is particularly crucial in high-risk decision-making scenarios where 
individuals bear the consequences of algorithmic processes. One potential method 
to enforce this transparency is by introducing an audit mechanism when deploying 
these XAI algorithms. Decision-makers could only provide one or a limited num-
ber of explanations to the decision subject in this case. However, they would need 
to document and submit the reasoning, that led to the deployment of these XAI 
algorithms, for review to a third party. This entity would then evaluate whether 
the interests of the decision subject have been appropriately considered. However, 
this oversight should not be confined to the selection of the XAI algorithm alone. 
As mentioned in Sect. 2.3, Goethals et al. (2023) identify several more avenues for 
manipulation in the decision-making process. To close these vulnerabilities and 
maximize accountability, the entire decision-making process (in aspects of data 
selection, modeling, parameter choice, algorithm selection, etc.) should be thor-
oughly justified and presented to a third party for evaluation.
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5 � Conclusion and future research

In our large-scale empirical analyses, on 40 data sets, yielding over 192,000 
explanations generated, we provide evidence of the existence of the disagreement 
problem amongst different counterfactual explanation algorithms. If a malicious 
agent has the option to choose between the 10 counterfactual algorithms exam-
ined in our experiments, it will be very easy to exclude features of their choice in 
an explanation. Including a feature of choice, is slightly more difficult, but still in 
many cases the relative feature span is 100%, giving the decision maker the full 
choice to include a certain feature.

Moreover, we conclude that the size of the disagreement problem is highly 
dependent on the data set and counterfactual methods used and not so much on 
the classifier used. However, we want to stress again that in contrast to other post-
hoc explanation methods, disagreement between counterfactual explanations does 
not mean any explanation is wrong. On one hand, a counterfactual explanation 
cannot be wrong, as the suggested feature changes will by definition lead to a 
class change. It can, however, be that these suggested changes are not useful to 
certain stakeholders. Therefore, situations with high disagreement between coun-
terfactual explanations signal instead that one single explanation fails to capture 
the full complexity of a decision made by a prediction model.

By proving the existence of the disagreement problem amongst counterfac-
tual explanation methods, we demonstrate the potential rise of ethical issues. 
Especially in an adversarial context, where the goals of the stakeholders are not 
aligned, these ethical issues occur when users are able to choose which expla-
nations are used, giving them a lot of power. To avoid the occurrence of moral 
issues, ideally, this power should be in the hands of the decision subject, as they 
carry the, possibly life-changing, consequences of the decision. We discussed 
how giving the explanatory decision power to the decision subject, can in turn 
create new issues. Some of these issues could potentially be solved by develop-
ing new algorithms that can combine many counterfactual explanations into one. 
However, this may cause the problem to simply move to the level of algorithms 
that combine these counterfactual explanations. Therefore, we argue that cur-
rently, the most viable solution might be to provide transparency. Decision mak-
ers should document all decisions that led to the explanations. This should allow 
a third party to determine whether the interest of the decision-subject are taken 
into account.

Appendix A: Parameter values

See Table 13.
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Table 13   Parameters values used in XAI algorithms

Algorithm Code Parameter values

CBR https://​github.​com/​ADMAn​twerp/​NICE_​exper​iments distance_metric= ‘HEOM’
explanation_length = 2
tolerance = 0.2

CFproto https://​github.​com/​Seldo​nIO/​alibi/ beta = 0.01
c_init = 1
c_steps = 5
max_iterations = 500
theta = 10
use_kdtree = True

WIT https://​github.​com/​ADMAn​twerp/​NICE optimization = ‘none’
distance_metric= ‘HEOM’
num_normalization = ‘std’
justified_cf= False

GeCo https://​github.​com/​inter​pretml/​DiCE backend = ‘sklearn’
method = ‘genethic’

NICE(none) https://​github.​com/​ADMAn​twerp/​NICE optimization=‘none’
distance_metric= ‘HEOM’
num_normalization= ‘minmax’
justified_cf = True

NICE(plaus) https://​github.​com/​ADMAn​twerp/​NICE optimization=‘plausibility’
distance_metric = ‘HEOM’
num_normalization = ‘minmax’
justified_cf = True

DiCe https://​github.​com/​inter​pretml/​DiCE backend = ‘sklearn’
method = ‘random’

3NICE(prox) https://​github.​com/​ADMAn​twerp/​NICE optimization =‘proximity’
distance_metric = ‘HEOM’
num_normalization = ‘minmax’
justified_cf = True

NICE(spars) https://​github.​com/​ADMAn​twerp/​NICE optimization =‘sparsity’
distance_metric = ‘HEOM’
num_normalization = ‘minmax’
justified_cf = True

SEDC https://​github.​com/​ADMAn​twerp/​NICE_​exper​iments prune = True
omit_default = True
max_ite=20
stop_at_first = False
cost_func = None

Anchor https://​github.​com/​marco​tcr/​anchor threshold = 0.95
SHAP https://​github.​com/​shap/​shap k_obs = 50

n_samples = 50
l1_reg = False

https://github.com/ADMAntwerp/NICE_experiments
https://github.com/SeldonIO/alibi/
https://github.com/ADMAntwerp/NICE
https://github.com/interpretml/DiCE
https://github.com/ADMAntwerp/NICE
https://github.com/ADMAntwerp/NICE
https://github.com/interpretml/DiCE
https://github.com/ADMAntwerp/NICE
https://github.com/ADMAntwerp/NICE
https://github.com/ADMAntwerp/NICE_experiments
https://github.com/marcotcr/anchor
https://github.com/shap/shap
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Appendix B: Scaled L0 distance

See Table 14.

Appendix C: Jaccard distance

Equation (5) counts the number of features two explanations have in common as 
the numerator and the union of both explanations in the denominator. The Jaccard 
distance always lies between 0 and 1. The complement, 1 minus the Jaccard dis-
tance, gives an indication of the dissimilarity of two explanations (Eq. 6).

Table 15 shows the pairwise inverse Jaccard distance or dissimilarity.

(5)Jaccard distance or similarityab =
|Ea ∩ Eb|

|Ea ∪ Eb|

(6)Jaccard dissimilarityab = 1 −
|Ea ∩ Eb|

|Ea ∪ Eb|

Table 14   Scaled L0 distance for the RF and ANN classifier
RF CBR Cfproto WIT GeCo NICE(none) NICE(plaus) DiCE NICE(prox) NICE(spars) SEDC

CBR 0 38.5 43.1 43.7 42.8 25.6 30.1 15.7 13.4 13.6
Cfproto 38.5 0 46.8 49.1 46.4 42.8 37.1 39.1 38.9 39.3
WIT 43.1 46.8 0 46.3 12.9 21.4 47.7 30.7 32.8 44.9
GeCo 43.7 49.1 46.3 0 46.7 45.3 45.7 44.6 44.3 43
NICE(none) 42.8 46.4 12.9 46.7 0 11.8 47.3 25.7 28.6 44.8
NICE(plaus) 25.6 42.8 21.4 45.3 11.8 0 41.7 18.1 19.3 30.5

DiCE 30.1 37.1 47.7 45.7 47.3 41.7 0 33.7 32.8 31.2
NICE(prox) 15.7 39.1 30.7 44.6 25.7 18.1 33.7 0 5.1 20.9
NICE(spars) 13.4 38.9 32.8 44.3 28.6 19.3 32.8 5.1 0 18.3
SEDC 13.6 39.3 44.9 43 44.8 30.5 31.2 20.9 18.3 0

ANN CBR Cfproto WIT GeCo NICE(none) NICE(plaus) DiCE NICE(prox) NICE(spars) SEDC

CBR 0 39 43.1 45.7 42.7 28.5 29.6 15.1 14 14.7
Cfproto 39 0 47.5 49.7 47.2 43.3 36.7 38.9 38.9 38.6
WIT 43.1 47.5 0 48 16.2 25.7 48.2 34.8 35.4 45.8
GeCo 45.7 49.7 48 0 48.2 47 46.8 46 46 46.4
NICE(none) 42.7 47.2 16.2 48.2 0 14.7 47.5 29.8 30.8 45.6
NICE(plaus) 28.5 43.3 25.7 47 14.7 0 40.5 18 18.1 29.1

DiCE 29.6 36.7 48.2 46.8 47.5 40.5 0 31.5 31.1 30.8
NICE(prox) 15.1 38.9 34.8 46 29.8 18 31.5 0 2.7 17.3
NICE(spars) 14 38.9 35.4 46 30.8 18.1 31.1 2.7 0 16.5
SEDC 14.7 38.6 45.8 46.4 45.6 29.1 30.8 17.3 16.5 0
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