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Abstract
Wind power is a major source of green energy production. However, the energy gen-
eration of wind power is highly affected by uncertainty. Here, we consider the prob-
lem of designing the cable network that interconnects the turbines to the substation 
in wind farms, aiming to minimize both the infrastructure cost and the cost of the 
energy losses during the wind farm’s lifetime. Nonetheless, the energy losses depend 
on wind direction and speed, which are rarely known with certainty in real situa-
tions. Hence, the design of the network should consider these losses as uncertain 
parameters. We assume that the exact probability distribution of these parameters is 
unknown but belongs to an ambiguity set and propose a distributionally robust two-
stage mixed integer model. The model is solved using a decomposition algorithm. 
Three enhancements are proposed given the computational difficulty in solving real 
problem instances. Computational results are reported based on real data.

Keywords Wind farm layout optimization · Distributionally robust optimization · 
Decomposition algorithm

Mathematics Subject Classification 90C11 · 90C15 · 90C17 · 90C90

 * Adelaide Cerveira 
 cerveira@utad.pt

 Agostinho Agra 
 aagra@ua.pt

1 Instituto de Telecomunicações, Departamento de Matemática and Centro de Investigação 
e Desenvolvimento em Matemática e Aplicações (CIDMA), Universidade de Aveiro, 
3810-193 Aveiro, Portugal

2 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Vila Real, 
Portugal

3 INESC TEC–INESC Technology and Science (formerly INESC Porto, UTAD pole), Porto, 
Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-023-00663-7&domain=pdf
http://orcid.org/0000-0002-7494-6566


 A. Agra, A. Cerveira 

1 3

1 Introduction

Energy production from renewable sources is becoming critical for current societies. 
Wind power is one of the main renewable sources. Consequently, improving the effi-
ciency of wind farms (WF) is becoming increasingly important. One of the fields to 
achieve this goal is in designing the distribution network of onshore wind farms that 
interconnects the turbines and the substation because this design may have a major 
impact on the energy losses.

Here, we consider the problem of designing the wind farm network layout, assum-
ing that the locations of the substation and all wind turbine locations are given. The 
design of the layout includes the choice of links and the type of electrical cables 
used to establish those links, aiming to minimize both the infrastructure cost and the 
cost of the energy losses during the wind farm’s lifetime. In the literature, see Cer-
veira et al. (2016), this problem has been addressed considering the energy losses as 
deterministic. However, the energy (active and reactive) losses depend on the energy 
produced by the turbines and the cable types. The turbine’s production is directly 
influenced by the wind direction and speed, which are uncertain. This makes the 
deterministic models a major simplification of the real problems. Consequently, if 
there are variations in wind direction or speed in relation to the deterministic param-
eters, the deterministic solution may no longer be optimal. Here, we approach this 
problem by resorting to the recent optimization methodology called distribution-
ally robust optimization (DRO) (Rahimian and Mehrotra 2022). We assume that 
the exact probability distribution of the turbines’ production is unknown, but it is 
assumed to belong to an uncertainty set called ambiguity set. This set is formed by 
all the distributions within a predefined distance of a reference distribution. For the 
distance, we assume the 1-norm Wasserstein metric. A particular two-stage mixed 
integer model is proposed, where the choice of links and cable types are first-stage 
decisions, while the losses depend on the realized scenarios and corresponding 
probabilities. These losses are not true recurse decisions since their value is uniquely 
defined for a given scenario. However, computing these losses is not trivial and we 
rely on a dynamic program. The objective is to minimize the infrastructure cost and 
the worst-case (with respect to the ambiguity set) expected cost of the energy losses. 
A major advantage of this model approach is that by varying a single parameter 
value that controls the size of the ambiguity set, one can obtain the stochastic pro-
gramming solution and the worst-case scenario (robust optimization) solution.

To solve the model, we propose a decomposition algorithm that, in each iteration, 
solves a master problem where only a subset of probability distributions in the ambi-
guity set is considered. Then, with the obtained solution for the master problem, it 
is checked whether a probability distribution exists, leading to the worst expected 
value of the losses. If such a distribution is found, an inequality (called optimality 
cut) is added to the master problem, and the process is repeated. We propose three 
enhancements with different goals. The first one is to define an aggregation of the 
optimality cuts, which reduces the number of iterations. The second enhancement 
consists of introducing a constraint to the master problem imposing a local search 
in the neighborhood of the current best solution. This heuristic is employed only in 
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the first iterations of the decomposition algorithm and aims to avoid spending too 
much time solving the intermediate master problems. The last improvement con-
sists of incorporating into the master problem a deterministic component of the cost 
from energy losses corresponding to a quantile of the reference distribution. This 
improvement increases the lower bound obtained in each iteration of the decomposi-
tion algorithm, thus reducing the gap between the best-known solution and the best 
lower bound.

Computational experiments are conducted on a set of instances based on real data 
to compare the several obtained solutions and their costs and to test the algorithm 
performance with and without the enhancements.

The paper is organized as follows: In Sect.  2, we review the relevant literature 
review. The problem characteristics are given in Sect. 3. The distributionally robust 
model is introduced in Sect.  4, and the decomposition algorithm is described in 
Sect. 5. The discussion of algorithm improvements is done in Sect. 6. The compu-
tational experiments and case studies are reported in Sect. 7. Final conclusions and 
remarks are given in Sect. 8.

2  Literature review

The deterministic problem was considered by Cerveira et al. (2016), where authors 
propose different mathematical models to optimize the cable network layout, aim-
ing to minimize the sum of the infrastructure cost and the costs of energy losses, 
considering several cable types. Combining a preprocessing procedure and adding 
valid inequalities, efficient ILP models were obtained, solving real instances with 
up to 57 wind turbines (WTs) in less than 480 s. There are other works in the litera-
ture under the scope of WF optimization layout (WFLO). Pillai et  al. (2015) deal 
with the problem of determining the substation placement and the layout design of 
offshore WFs, combining heuristic algorithms and mixed integer linear program-
ming (MILP) models. Wȩdzik et al. (2016) addressed the WF design using a MILP 
model, taking into account the network layout and cable cross-sections, with and 
without the power losses. Fischetti and Pisinger (2018) optimize the offshore WF 
cable routing. They optimize the infrastructure costs and future revenues while con-
sidering energy losses under different scenarios. A MILP formulation was proposed. 
To handle the non-linearity of the model regarding power losses, they combine exact 
and matheuristic methods. Moreover, some wind scenarios were analyzed in the pre-
processing part to compute the power losses. In Fischetti and Pisinger (2019), the 
same authors give an overview of the different phases in the design of an offshore 
wind farm and some of the optimization problems involved. Three essential optimi-
zation tasks, turbine location, electrical cable routing, and foundation optimization, 
are analyzed in detail.

Cerveira et al. (2023) consider the onshore WF layout design, knowing the sub-
station and WT location, aiming to minimize the initial investment cost plus the cost 
of electrical energy losses over the lifetime of the WF, considering that each trench 
can deploy multiple cables, turning this problem into a more complex variant of the 
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WFLO problems previously addressed. This variant makes the problem most appro-
priate to the real case and leads to significant gains in the total cost of the solutions. 
In Cerveira et al. (2021), it is considered a WFLO problem with several substations 
and a discrete set of possible turbine locations. The combined optimization of WT 
location and cable connection is also considered in Fischetti and Fischetti (2023).

In Fischetti (2021), two challenges in designing offshore wind farms are 
addressed: the optimal allocation of wind turbines to minimize interference between 
them and position-related costs and their electrical interconnection. Mixed integer 
programming models and heuristic methods are used to solve both problems.

Cazzaro and Pisinger (2022) developed an advanced heuristic for offshore 
WFLO, based on the variable neighborhood search (VNS) meta-heuristic, to solve 
the problem of placing hundreds of turbines in a subset of thousands of available 
locations, taking into account foundation costs and the minimum distance constraint.

Since renewable energies from sources, such as wind and sunlight, are highly 
affected by uncertain conditions, we have witnessed increased research devoted to 
optimization under uncertainty applied to energy problems. An overview of chance-
constrained optimization, an important tool for decision-making in uncertain envi-
ronments based on data-driven problems in power systems, is given in Geng and 
Xie (2019). Using different approaches, MirHassani and Yarahmadi (2017) study 
the wind farm layout problem under uncertainty, taking into account the wake effect, 
which has a major impact on the power output, especially in the offshore wind farm.

Li et al. (2022) deal with maintenance decision-making for offshore wind farms 
under different types of uncertainty inherent to the problem. The uncertainties con-
sidered include the stochastic attributes of time to failure, the deviation between 
actual and predicted component failure times, and uncertain maintenance conse-
quences. A distributionally robust scheduling model for the integrated gas-electric-
ity system (IGES) with electricity and gas load uncertainties is proposed in He et al. 
(2019). In Dhoot et al. (2021), a quadratic integer formulation of the discretized lay-
out design problem is proposed in order to maximize the produced energy while 
considering stochastic wind conditions and wake losses.

DRO is a recent technique that generalizes both stochastic programming and 
robust optimization (Bayraksan and Love 2015; Rahimian and Mehrotra 2022). In 
stochastic programming, the probability distribution of the uncertain parameters is 
assumed to be known. This is a very restrictive assumption in practice since, in most 
cases, as in the case of wind direction and speed, one may have some historical data 
but not necessarily a probability distribution that holds for the entire wind farm life-
time. On the other hand, robust optimization assumes that the uncertain parameters 
belong to a given uncertainty set. Although such a set may be formed from historical 
data, it generally does not use all the historical information, leading to over-con-
servative solutions. In DRO, the probability distribution of the uncertain parameters 
is assumed to belong to an ambiguity set. If this set is a singleton, we obtain the 
stochastic programming approach, and if the probability distribution is supported on 
a finite discrete set of scenarios and the ambiguity set is wide enough, allowing the 
probability mass to concentrate in a single scenario, we obtain the robust optimiza-
tion case.
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To the best of our knowledge, DRO has never been used to design wind farms’ 
layouts. In the context of wind farms, DRO was applied to the generation expansion 
planning considering the virtual inertia support from wind farms aiming to mini-
mize the generation expansion cost while maximizing the probability of the system 
fully absorbing renewable energy generation, see Hu et al. (2022). In AlSaba et al. 
(2023), a multi-objective DRO approach was followed to find the optimal location 
of wind turbines and solar photovoltaics that minimize the variance of renewable 
energy sources and maximize power production. DRO has also been used in other 
energy-related problems. For instance, in the context of energy planning problems, 
Guevara et al. (2020) compare stochastic approaches and DRO on strategic invest-
ment decisions. Arrigo et  al. (2022) developed a distributionally robust chance-
constrained optimization with a Wasserstein ambiguity set for energy and reserve 
dispatch.

The mathematical model and the solution procedure depend on the type of uncer-
tainty set considered. Here, we consider a Wasserstein ambiguity set, where the true 
probability distribution distances from a nominal distribution (using the 1-norm 
Wasserstein metric) at most a given predefined parameter. This set is also known 
as the Kantarovich set. For a deeper discussion of ambiguity sets based on the Was-
serstein distances, see Esfahani and Kuhn (2018) and Gao and Kleywegt (2016). A 
Wasserstein distance-based distributionally robust scheduling problem was consid-
ered recently in Chen et al. (2021) for a rural microgrid, considering the coordinated 
interaction among source-grid-load-storage to minimize the operating costs. For this 
particular ambiguity set, Bansal et al. (2018) show that if the subproblem associated 
with the recourse variables is a linear or a mixed-binary problem, then the DRO can 
be solved using a decomposition approach that generalizes the well-known L-shaped 
algorithm. When the subproblem includes binary variables, it is necessary to pro-
vide an approximation of the subproblem using a set of linear inequalities. Here 
we propose a decomposition approach that deviates from that given in Bansal et al. 
(2018) since the subproblem is not modeled as a linear or mixed-binary problem, 
but it is solved using a dynamic program leading to an approximation of the sub-
problem value through a set of feasibility cuts.

Fig. 1  Wind farm layout 
example
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3  Wind farm electrical system

A WF comprises several wind turbines interconnected by a cable network where the 
electrical current generated by each wind turbine (WT) is transported to the sub-
station, which injects it into the main grid. The cable network associated with an 
onshore WF has a radial structure which corresponds to a spanning tree, were the 
root node is the substation. The node set is N0 = {0, 1,… , n} , where node 0 rep-
resents the substation and the other nodes, N = {1,… , n} , represent the wind tur-
bines. For illustrative purposes, in Fig. 1 , we present a graph layout representation 
of a WF with one substation and 10 WT, N0 = {0, 1,… , 10}.

The rated current Ir generated by a WT is given by Cerveira et al. (2016):

where U is the rated voltage of the WF, Pr is the rated power of each WT, and cos� 
is the power factor which, in WF, is considered very close to 1 and so, we get

The cable network follows Kirchhoff’s current law, which states that the current 
flowing into a node must equal the current flowing out of it. So, if all the turbines 
operate at the rated current, the electrical current flowing on a branch toward the 
substation with t downstream WTs is t ⋅ Ir.

The WF presented in Fig.  1 has one substation and 10 WTs arranged in 
3 branch lines. A branch line corresponds to the connections and turbines that 
inject power toward the substation, reaching there through a single branch. One 
of the branch lines starts with branch (0, 1), another one starts with branch (0, 2), 
and the other one starts with branch (0, 4).

Assuming in the example of Fig. 1 that Pr = 2 MW and U = 20 kV (which are 
typical values for medium size WFs), using Eq.  (2), the rated current drawn by 
each WT is Ir = 57.735 A. Then, branch (0, 2) supports the electrical current gen-
erated by five downstream WTs (2, 5, 6, 9, and 10), and so, the electrical current 
flowing through it is I20 = 5 ⋅ Ir = 288.675 A.

As in any other electrical system, branch cables lose energy while carrying 
electrical current in the WF cable system. The energy losses during the WF life-
time (expected to be around 20 years) represent a considerable cost to the energy 
provider. There are two types of energy losses to consider: active and reactive 
power losses. For each branch, these quantities depend on the current intensity 
passing through the connection and the cable type used. We consider nk cable 
types where each cable type k ∈ K = {1, 2, ..., nk} is characterized by its section 
size, its current rating Ik (representing its maximum supported electrical current), 
its electrical inductance Lk and resistance Rk , and its price per meter Ck.

(1)Ir =
Pr√

3 ⋅ U ⋅ cos�
,

(2)Ir =
Pr√
3 ⋅ U
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For a given current intensity I flowing on a branch, and assuming the short 
transmission line model, the active power losses P are generically given by 
Joule’s Law (Cerveira et al. 2016):

and the reactive power losses Q are generically given by:

where R is the cable resistance, L is the cable inductance (presented on Table 1) and 
100� corresponds to the angular frequency of the electrical current (Cerveira et al. 
2016).

A wind farm will not permanently operate at its maximum rated power through-
out its lifetime, as the electrical power extracted from the WTs depends on the wind 
speed. So, it is convenient to reflect this behavior in the mathematical formulation, 
defined as load factor lf  (a value between 0 and 1). The load factor corresponds to 
the ratio between the total electrical energy produced by the WF and the energy that 
could be produced if the WTs were always operating at their rated power through-
out the years (Van Kuik 2007). Usually, the load factor is assumed to be a constant, 
based on real data, and equal for every WT (Cerveira et al. 2016).

So, for a topology x, on branch (i, j), with the set Si(x) of downstream WTs, of a 
given cable of type k, characterized by a resistance Rk , in Ω/km, and an inductance 
Lk , in mH/km, with length �ij , in meters, the active power loss Pk

ij
(x) and reactive 

power losses Qk
ij
(x) , following Eqs. (3) and (4), are given by:

where lfl is the load factor corresponding to wind turbine l. Notice that each branch 
requires three conductors (one per current phase), which explains factor 3 in Eqs. (5) 
and (6).

In the particular case on which all the WT have the same load factor lf  , Eqs. (5) 
and (6) can be simplified. Let t be the number of the downstream WTs, i.e., the car-
dinality of Si , the active and reactive power losses of branch (i, j) supporting t down-
stream turbines are given by:

(3)P = R ⋅ I2

(4)Q = 100� ⋅ L ⋅ I2

(5)Pk
ij
(x) = 3 ⋅

𝓁ij ⋅ Rk

103
⋅

( ∑
l∈Si(x)

Ir ⋅ lfl

)2

(6)Qk
ij
(x) = 3 ⋅

𝓁ij ⋅ � ⋅ Lk

104
⋅

( ∑
l∈Si(x)

Ir ⋅ lfl

)2

,

(7)Pkt
ij
(x) = 3 ⋅

𝓁ij ⋅ Rk

103
⋅ (t ⋅ Ir ⋅ lf )

2
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The goal is to obtain the optimal layout to minimize the total costs, including 
the infrastructure cost and the (worst-case) expected power loss cost during the 
wind farm’s lifetime. The infrastructure cost accounts for the cable cost and their 
installation.

To motivate the importance of considering the variation in load factor values, 
Fig.  2 presents the optimal layouts considering three different load factor values, 
lf = 0.25 , lf = 0.35 and lf = 0.5 , for Montalegre wind farm. It is a Portuguese WF 
with 25 WTs, which will be presented in Sect. 7.1.

The black node with the label “0” represents the substation, and the lines repre-
sent the connections between the WT and the substation. Moreover, the WTs on the 
same branch lines are represented with the same color.1 As can be seen, there are 
differences in the design and in the type of cable used. And so, the optimal solutions 
depend on the values of the load factor considered, hence the importance of consid-
ering the randomness of these values to be closer to the real case.

4  Distributionally robust model

In this section, we introduce the distributionally robust (DR) model. The load factor 
at turbine j,  lf j, depends on unpredicted factors, such as wind direction and speed. 
Here, we assume that the vector lf  belongs to a discrete uncertainty set Ω of scenar-
ios. Each scenario represents a possible realization of the load factors. These values 

(8)Qkt
ij
(x) = 3 ⋅

𝓁ij ⋅ � ⋅ Lk

104
⋅ (t ⋅ Ir ⋅ lf )

2.

Fig. 2  Montalegre layout for different load factor values

1 The horizontal and vertical scales are adjusted for a better WF layout organization on the page.
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have been calculated considering, for each WT, the wind characteristics and geo-
graphical location. The true probability distribution p,  where p� is the probability 
of scenario � ∈ Ω, is assumed to be unknown, but that belongs to a given set � , 
known as ambiguity set.

For a given topology defined by x and a scenario � ∈ Ω , the active and reac-
tive losses cost value is given by R(x,�) . Function R(x,�) is known as the recourse 
function.

The distribution robust (DR) problem can be written in a general form as follows:

where x corresponds to a topology in the feasible set, X, which will be defined latter.
The goal is to determine the topology that minimizes the infrastructure cost 

plus the expected cost of active and reactive losses assuming the most unfavora-
ble (regarding that solution) probability distribution of load factors occurs. The 
DR model coincides with the stochastic programming model if the ambiguity set 
includes a single probability distribution. Also, if the ambiguity set is large enough, 
allowing the degenerate probability distributions such that for each scenario � ∈ Ω 
the distribution p� = 1 and p�� = 0 for all �� ∈ Ω,�� ≠ �, belongs to the ambiguity 
set, then the DR model coincides with a robust model where the worst-case scenario 
is considered. Hence, this model also generalizes the two well-known optimization 
approaches.

Next, we describe several components: the deterministic model, which gives the 
feasible set of the first-stage solutions, the ambiguity set, and the recourse function.

4.1  Deterministic model to obtain a topology, x

To obtain an appropriate ILP model for the deterministic case, the decision variables 
are the binary variables xkt

ij
 that, when equal to 1, indicate that nodes i and j are con-

nected by a cable of type k such that i is the node on the substation side, and this 
cable supports the current of t downstream wind turbines (including the one located 
in j), all of them corresponding to the same load factor. Being 0 the root node, arcs 
(i, 0) are not considered in the formulations.

The mathematical model can be stated as follows:

(9)min
x∈X

{
ctx +max

p∈�

∑
�∈Ω

p�R(x,�)

}

(10)min
∑
i∈N0

∑
j∈N

∑
k∈K

tki∑
t=1

((
ck
ij
+ pkt

ij
+ qkt

ij

)
⋅ xkt

ij

)

(11)

subject to

∑
j∈N

∑
k∈K

tk0∑
t=1

(
t ⋅ xkt

0j

)
= n
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where pkt
ij

 and qkt
ij

 are given by Eqs. (7) and (8), tki is the maximum number of WT 
that can be supported by a connection outgoing from node i with cable type k. It 
holds:

where mk =

⌊
Izk

Ir

⌋
 , being Izk the maximum current intensity value that cable of type k 

can support.
The objective function (10) aims to minimize the sum of infrastructure cost 

and energy loss costs. Constraint (11) guarantees that from the substation, there are 
branches that support all the n wind turbines. Constraints (12) are the radial structure 
constraints guaranteeing that each wind turbine j ∈ N  has one incoming connection. 
Constraints (13) are the flow conservation constraints and guarantee that, on each wind 
turbine j ∈ N  , if an incoming connection supporting t downstream wind turbines is in 
the solution, the outgoing connections must support a total of t − 1 downstream wind 
turbines. Finally, constraints (14) are the variable domain constraints.

The feasible set X given in (9) is the set of solutions satisfying (11)–(14).

4.2  Ambiguity set �

We assume that the exact probability distribution of the load factors is not known, but it 
belongs to the ambiguity set �. This set includes all the probability distributions within 
a predefined distance to a reference/nominal distribution, denoted by p∗. To define the 
distance between probability distributions, we use the Wasserstein metric of order 1. 
This metric is defined as:

where J(p, q) is the set of all joint probability distributions k with marginal distribu-
tions p and q. Thus, k�′� is the joint probability of occurrence of scenarios � and �′ 
in distributions p and q, respectively. This metric is then used to build an ambiguity 
set composed by the set of probability distributions p such that the distance to the 
reference distribution p∗ does not exceed a given �, W1(p, p

∗) ≤ � . Such an ambigu-
ity set is the well-known Wasserstein ambiguity set, also known as the Kantorovich 

(12)
∑
i∈N0

∑
k∈K

tki∑
t=1

(
xkt
ij

)
= 1, j ∈ N

(13)
∑
i∈N0

∑
k∈K

tki∑
t=1

(
t ⋅ xkt

ij

)
=
∑
i∈N

K∑
k=1

tkj∑
t=1

(
t ⋅ xkt

ji

)
+ 1, j ∈ N

(14)xkt
ij
∈ {0, 1}, i ∈ N0, j ∈ N, k ∈ K, t = 1,… , tki

(15)tki =

{
mk, i = 0

mk − 1, i ∈ N

W1(p, q) = min
k∈J(p,q)

∑
�,��∈Ω

∥ � − �� ∥1 k���
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ambiguity set. To model this set, we consider the classical formulation of a feasible 
set from a transportation problem where the variables are the mass probabilities p� 
and transportation variables k�′� representing the amount of mass to transport from 
the reference probability distribution ( p∗

�� ) to probability distribution ( p�). This set 
is modeled as follows:

Constraints (16) limit the total distance between p and p∗ (that is, the effort to trans-
port the probability mass of p∗ to the probability mass of p). Constraints (17) state 
that the mass transported to each scenario � coincides with p�, which correspond 
to the demand constraints in a transportation problem. Constraints (18) state that 
the mass transported from scenario �′ coincides with p∗

�� , corresponding to the sup-
ply constraints. Constraints (19) state that the total mass transported is 1, which, 
together with non-negativity constraints, ensures the resulting p defines a probability 
distribution.

4.2.1  Recourse function R(x ,!)

For a given topology x and a scenario � ∈ Ω, the value of the active and reactive 
losses cost, given by R(x,�), can be computed using the following equation:

where ce is the energy cost, h is the number of hours during the expected lifetime, 
Pkw
ij
(x) and Qkw

ij
(x) are the active power losses and reactive power losses. For each 

branch (i, j) and cable type k,  these losses are obtained from equations (5) and (6), 
written for each scenario � as follows:

(16)𝔸 =

{
p ∈ ℝ

|Ω| ∶
∑
�∈Ω

∑
��∈Ω

∥ � − �� ∥1 k��� ≤ �

(17)
∑
��∈Ω

k��� = p�, � ∈ Ω,

(18)
∑
�∈Ω

k��� = p∗
�� , �� ∈ Ω,

(19)
∑
�∈Ω

p� = 1,

(20)p� ≥ 0, � ∈ Ω,

(21)k��� ≥ 0, �,�� ∈ Ω}.

(22)R(x,�) =
∑
i∈N0

∑
j∈N

∑
k∈K

(
tki∑
t=1

xkt
ij

)(
ce ⋅ h ⋅ P

kw
ij
(x) +

ce

2
⋅ h ⋅ Qkw

ij
(x)

)
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Note that in (22) the factor 
�∑tki

t=1
xkt
ij

�
 is either zero or one, depending on the given 

topology x.

5  Decomposition algorithm

To solve the distribution robust problem, we propose a decomposition algorithm. 
First, we rewrite the problem as follows:

where variable � gives the worst expected value for the cost of the active and reac-
tive losses and is defined by constraints (25). This formulation raises two issues. The 
first is the number of constraints (25), which is infinite. To circumvent this issue, 
we generate these inequalities dynamically. This leads to a decomposition algo-
rithm where, in each iteration, a master problem, obtained by considering a subset 
of inequalities (25), is solved, and a topology x is obtained. Then, for that topology, 
the algorithm verifies whether there is a violated inequality (25) or proves that no 
such inequality exists and terminates with the optimal solution. If a violated inequal-
ity is found, then the inequality is added to the master problem, and the process is 
repeated. The second issue is related to the nature of the recourse function. When 
R(x,�) is modeled as a linear problem, then the linear problem can be dualized and 
R(x,�) can be replaced in (25) by the linear objective function of the dual problem 
using the optimal multipliers, see Esfahani and Kuhn (2018) for details. However, 
here R(x,�) is computed using a dynamic program. Thus, we propose a different 
approach where a set of feasibility cuts imposes the value of R(x,�) . Suppose rx,� 
gives the value of R(x,�). For a given solution x obtained by the master problem, we 
write inequalities (25) as follows:

Since any topology has n links, inequalities (26) become active only when

(23)Pk�
ij
(x) = 3 ⋅

𝓁ij ⋅ Rk

103
⋅

( ∑
l∈Si(x)

Ir ⋅ l
�

fl

)2

,

(24)Qk�
ij
(x) = 3 ⋅

𝓁ij ⋅ � ⋅ Lk

104
⋅

( ∑
l∈Si(x)

Ir ⋅ l
�

fl

)2

.

(25)

min ctx + �

� ≥
∑
�∈Ω

p�R(x,�) ∀p ∈ �

x ∈ X

(26)� ≥
�
�∈Ω

p�rx,�

⎛⎜⎜⎝
�

j∈N0,i∈N,k∈K,�∈{1…tkj}�xk�ji =1
xk�
ji
− (n − 1)

⎞⎟⎟⎠
∀p ∈ �
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That is, the bound � ≥
∑

�∈Ω p�rx,� is active only when the topology x is considered, 
otherwise, the right-hand side is non-positive.

In order to add inequalities (26) for a given first stage solution x, we follow the 
steps: 

1. Compute R(x,�) for each scenario � ∈ Ω to obtain rx,�.
2. Solve the separation problem: 

Next, we discuss these two steps.

5.1  Computing the recourse function R(x,!)

For a given topology x and a scenario � ∈ Ω , we need to compute the value of the 
active and reactive losses cost, given by R(x,�). Here, we propose a recursive func-
tion fi to compute the factor 

�∑
l∈Si(x)

Ir ⋅ l
�
fl

�
 in Eqs. (23) and (24). Let fi(x,�) denote 

the current going to turbine i toward the substation when topology x and the sce-
nario of load factor � are realized. It includes the current generated by the immedi-
ately previous turbines on the paths to the substation, set N−

i
 , and the current flow-

ing into them generated by all their downstream turbines. This current can be 
obtained recursively as follows:

where N−

i
=

�
j ∈ N � ∑tki

t=1

∑
k∈K xkt

ij
= 1

�
.

5.2  The distribution separation problem

The distribution separation problem is to find the probability distribution p ∈ � that 
maximizes the expected active and reactive losses:

This problem is the variant of the transportation problem where the objective func-
tion is given by max

∑
�∈Ω p�rx,�, and the additional constraint (16) is considered.

∑
j,i∈N,k∈K,�∈{t…tkj}|xk�ji =1

xk�
ji

= n.

(27)max

{∑
�∈Ω

p�rx,� | p ∈ �

}

fi(x,�) =
∑
j∈N−

i

(
l�
j
⋅ Ir + fj(x,�)

)
.

(28)max

{∑
�∈Ω

p�rx,� | p ∈ �

}
.
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5.3  The full decomposition algorithm

Now, we are at position to describe the full decomposition algorithm. The algorithm 
iterates between solving the master problem, denoted for iteration i by Mi, and solv-
ing the distribution separation problem. Initially, the master problem M0 is the deter-
ministic model with the objective function replaced by ctx + � with � ≥ 0. In each 
iteration i,  the master problem Mi includes all the inequalities (26) added in all the 
previous iterations. Notice that the value of the optimal solution to a master problem 
gives a lower bound to the optimal value since we are omitting many constraints 
(25), thus providing an underestimation of optimal value. On the other hand, the 
value of the separation problem given by (28) gives an upper bound of the optimal 
value because it provides the correct (worst) expected cost of a feasible topology 
(not necessarily the optimal one). Hence, the algorithm provides both a lower bound 
(LB) and an upper bound (UB) in each iteration. The algorithm terminates when the 
difference between these bounds is small enough (smaller than the tolerance tol) or 
other criteria are met, such as a maximum number of iterations, maxiter, is reached 

Algorithm  1  Decomposition algorithm for the distributionally robust wind farm layout optimization 
problem under uncertainty



1 3

Wind farm layout optimization under uncertainty  

or a predefined time limit, maxtime, is exceeded. The detailed description of the 
algorithm is given by Algorithm 1.

It is easy to verify that the algorithm has a finite number of steps since the num-
ber of topologies and cables is finite.

6  Enhancement of the decomposition algorithm

Preliminary results showed that Algorithm 1 has a very slow convergence. The main 
reason is the nature of inequalities (26), which are active only if the solution to the 
master problem x is one of the solutions already generated. Therefore, if in each 
iteration a different solution x is generated (even with a higher infrastructure cost), 
the constraints (26) become redundant, and the losses expected cost will not be 
counted in the objective function. Notice that the solution to the master problem is 
given by variables xkt

ji
. Hence, a change in the value of these variables can be moti-

vated by a change in the cable type k, not necessarily in the physical topology. Thus, 
the decomposition algorithm may perform an exhaustive search in the neighborhood 
of the topologies with low infrastructure cost. Nevertheless, as the infrastructure 
cost is not underestimated, the algorithm is able to avoid generating high-cost topol-
ogies for the master problem. From these observations, we propose three 
improvements.

The first enhancement consists of replacing constraints (26) with the following 
constraints:

With this replacement, the inequality remains active whenever the topology is the 
same, that is, whenever the change is on the cable type or on the number of down-
stream wind turbines. This change implies that in each iteration of Algorithm 1 a 
different topology is tested. However, with this replacement of constraints, the cost 
may be underestimated if the changes are in the cable type.

The second improvement is related to the previous one. In fact, one can expect 
(as observed during the computational test) that from one iteration to the next one 
there is a small change in the master solution leading to a small increase of the lower 
bound. Hence, to speed up the decomposition approach, we perform a local search 
procedure in the first iterations, with the exception of the first one, which is used to 
determine a good initial solution. This local search is performed by imposing the 
following constraint on the master problem:

(29)

� ≥
�
�∈Ω

p�rx,�

⎛⎜⎜⎜⎝

�
j∈N0,i∈N�∑k∈K,�∈{1…tkj}

x
k�
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�
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xk�
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This constraint ensures that at most � variables can change their value from the cur-
rent best solution.

In the computational tests, we split the running time limit into two equal parts. In 
the first one, we run the heuristic (master model with the additional constraint), and 
in the second part, we run the master problem without the additional constraint. For 
� , we take value 10.

The third improvement results from observing that there will be active and reactive 
losses in all possible scenarios. Hence, we would like to include some of these losses in 
all the master problems. That is, the amount of losses given by � is split into two 
amounts, one that does not depend on the scenario is added in each iteration and the 
other that results from inequalities (26). If there exists a most favorable scenario regard-
ing the losses, then we could include the corresponding losses into all the master prob-
lems and add the remaining losses (counted as excess to the losses of the most favora-
ble scenario) through inequalities (26). However, in general, for practical problems, 
there may be no such favorable scenario, as the wind direction that is more favorable 
for certain wind turbines may not be the most favorable for the remaining ones. Thus, 
we opted to generate an artificial scenario, �0 , considering for all WT a fixed load fac-
tor l0

f
 , that is, lf j = l0

f
, j ∈ N. Thus, the initial master problem M0 is exactly the deter-

ministic model assuming the constant load factor l0
f
. So, for each scenario, � and tur-

bine j, Δl�
j
 is considered as the variation, from the reference scenario �0 , of the load 

factor in turbine j under scenario � . Therefore, the load factor of turbine j under sce-
nario � is l0

f
+ Δl�

j
.

So, the current leaving turbine j toward the substation, under scenario � , denoted by 
I+�
j

, is obtained from the following equation:

where I0
j
 is the current going to turbine j for scenario �0 and ΔI�

j
 is the variation on 

this value considering scenario � . In the calculation of active and reactive losses 
costs, Eqs. (7) and (8), the current is squared. By developing the square, one obtains

where IF =

(
l0
f
⋅ Ir + I0

j

)2

 does not depend on the scenario and I� is given by

The values of I0
j
 and Δl�

j
 are computed using fj(x,�0) and fj(x,�) , respectively.

(30)

�
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x
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ji
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ji
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(31)I+�
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f
+ Δl�
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(32)
(
I+�
j
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= IF + I�

2 ⋅ l0f ⋅ Δl
�
j ⋅ I2r + Δl�j

2 ⋅ I2r + 2 ⋅ Δl�j ⋅ Ir ⋅ I0j + 2 ⋅ l0f ⋅ Ir ⋅ ΔI
�
j

+ 2 ⋅ Δl�j ⋅ Ir ⋅ ΔI�j + 2 ⋅ I0j ⋅ ΔI
�
j + ΔI�j
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7  Case studies and computational results

The proposed models, algorithm approach, and enhances were applied to three Por-
tuguese WFs: Montalegre with 25 WTs, Alto da Coutada with 50 WTs and Gar-
dunha with 57 WTs, the two last among the largest existing WFs in Portugal.

Table 1 presents the set of nk = 12 cable types used in the computational results. 
Each cable type k ∈ K = {1, 2, ..., nk} is characterized by its section size, its cur-
rent rating Ik (representing its maximum supported electrical current), its electri-
cal inductance Lk and resistance Rk , and its price per meter Ck . The thicker cables 
are more expensive but have lower resistance and inductance, which lead to lower 
energy losses by (5) and (6). So, for a connection requiring to support an electrical 
current I, all cable types k can be used such that Ik ≥ I , and these cable types rep-
resent different trade-offs between the acquisition cost and energy losses cost over 
time. We have considered 20 years as the expected WF lifetime corresponding to 
h = 20 ⋅ 24 ⋅ 365 h.

To generate the ambiguity set, we consider ten scenarios of load factors for each 
WF. These scenarios were randomly generated taking into account the geographical 
location of the WTs (WTs located at the same altitude and close to each other have 
similar load factors) and in such a way that the average load factor coincides with 
the constant load factor considered for this WF. The scenarios also differ in their 
average value, which attempts to simulate the cases where the wind speed varies.

The computational results obtained for each WF are presented in the next subsec-
tions. The proposed decomposition algorithm involves three optimization models: 
the master problem, the second-stage problem, and the distributionally separation 
problem. It was considered a global time limit of 4 h. In the computational experi-
ments, we present the partial times of the three optimization subproblems, the num-
ber of iterations, and the obtained upper bounds. For the third improvement, two 
situations are considered for the energy loss component independent of the scenario. 

Table 1  Electrical characteristics of unipolar cables (LXHIOV) 18/30kV

Type k Section (mm2)  Max. current 
I
k
 (A)

Inductance L
k
 

(mH/km)
Electrical resist-
ance R

k
(Ω / km)

Price, C
k
 (€/ m)

1 25 122 0.60 1.2000 4.50
2 35 144 0.60 0.8680 5.30
3 50 170 0.58 0.6410 6.80
4 70 209 0.55 0.4430 7.12
5 95 249 0.53 0.3200 7.98
6 120 283 0.52 0.2530 8.70
7 150 316 0.51 0.2060 12.77
8 185 357 0.50 0.1640 13.23
9 240 413 0.47 0.1250 14.89
10 300 463 0.46 0.1000 17.50
11 400 526 0.45 0.0778 21.09
12 500 592 0.44 0.0605 23.77
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One considers the losses corresponding to the first quartile of load factors, and the 
other considers the losses corresponding to the minimum of load factors. A time 
limit of 2 h is considered for each situation. The final lower bound is considered the 
maximum of the lower bounds obtained, and the final upper bound is the minimum 
of the upper bounds obtained.

7.1  Montalegre wind farm

The Montalegre WF, located in the north of Portugal, has a total nominal power 
of 50 MW having n = 25 Enercon WTs, model E82/2000, with the rated power of 
Pr = 2 MW, interconnected by a U = 20 kV grid. With these settings, the rated cur-
rent drawn by each WT is Ir = 57.735A (using (1)) and, taking into account the cable 
properties in terms of maximum electrical current (Table 1), the maximum number 
of WTs per branch line is 10.

In Table 2, the computational results for Montalegre WF are presented for differ-
ent values of � , without and with the enhancements described in Sect. 6. For each 
case, it is presented the upper bound, “UB”, the time spent in the master problems 
“Tm”, in the second-stage problems “Tss”, and in the separation problems “Tsp”, the 
total time “Total”, and the number of iterations, “# iter.”.

For the Montalegre WF, the ground solution, i.e., the solution actually installed 
is known. Considering the different values of � for the ambiguity set radius, the total 
ground structure costs are shown in Table 3. As we can see, the costs of the ground 

Table 2  Computational results—Montalegre WF (Tm master; Tss second-stage; Tsp separation)

Algorithm LB (€) UB (€) Gap (%)  Time (s) # iter.

Tm Tss Tsp Total

With enhancements
� = 0 2,231,705.8 2,268,792.1 1.6 8711 1622 4092 14,425 485
� = 1 2,231,790.2 2,289,348.5 2.5 8695 1718 4037 14,450 481
� = 5 2,231,705.8 2,298,014.8 2.9 8694 1354 4395 14,443 534
� = 10 2,231,458.7 2,298,014.8 2.9 8675 1705 4066 14,446 488
Without enhancements
� = 0 1,049,948.3 2,447,431.9 57.1 9126 1681 3640 14,447 484
� = 1 1,049,842.3 2,624,605.7 60.0 9214 1557 3634 14,406 483
� = 5 1,050,220.6 2,793,139.8 62.4 9222 1571 3608 14,401 482
� = 10 1,050,220.6 2,793,139.8 62.4 9231 1536 3662 14,430 487

Table 3  Total costs of 
Montalegre WF ground solution

� = 0 � = 1 � = 5 � = 10

Total cost (€) 2,473,721.1 2,499,642.6 2,522,101.2 2,522,101.2
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solution are higher. The solutions obtained with the proposed approach lead to gains 
of around 9%.

7.2  Alto da Coutada wind farm

The Alto da Coutada WF, located in the north of Portugal, has n = 50 Enercon WTs, 
model E82/2300, with a rated power Pr = 2.3 MW, interconnected by a U = 20 kV 
grid. With these settings, the rated current drawn by each WT is Ir = 66.795A , and 
the maximum number of WTs per branch line is 8. The computational results for 
Alto da Coutada WF are presented in Table 4.

7.3  Gardunha wind farm

The Gardunha WF, located in the center of Portugal, has n = 57 WTs (55 Ener-
con E82/2000 and 2 Enercon E70/E4) all with Pr = 2 MW of rated power, intercon-
nected by a U = 30 kV grid. With these settings, the rated current drawn by each 
WT is Ir = 38.49 A, and, consequently, the maximum number of WTs per branch 
line is 15. The total nominal power of the wind farm is 114 MW. The computational 
results for Gardunha WF are presented in Table 5.

From the computational results, we can draw several conclusions. First, the 
results clearly show that the enhancements are very important to improving the 
algorithm’s performance since the final gaps with enhancements are much lower 
than those without enhancements. With enhancements, the decomposition algo-
rithm provides very low gaps for the Montalegre case, while for the Alto da Coutada 
and Gardunha, the final gaps are still large, being bigger in the Alto da Coutada. 
The last two wind farms have at least twice as many turbines as the first one, which 
will greatly increase the size of the models involved. Furthermore, the substation in 

Table 4  Computational results—Alto da Coutada WF ( Tm
0
 master initial; Tm master; Tss second-stage; 

Tsp separation)

Algorithm LB (€) UB (€) Gap (%) Time (s) # iter.

Tm Tss Tsp Total

With enhancements
� = 0 10,754,980.3 11,389,693.7 5.6 6990 5088 2394 14,472 218
� = 1 10,766,917.7 11,915,486.2 9.6 7196 5014 2318 14,528 211
� = 5 10,766,917.7 12,295,397.6 12.4 7095 5124 2269 14,488 206
� = 10 10,755,024.4 12,296,490.3 12.5 6776 5493 2195 14,464 205
Without enhancements
� = 0 6,475,971.1 14,295,742.0 54.7 9354 4021 1062 14,437 125
� = 1 6,479,302.7 15,138,557.8 57.2 9238 4076 1102 14,416 128
� = 5 6,469,358.7 15,702,326.9 58.8 9119 4513 1080 14,712 107
� = 10 6,469,358.7 15,702,326.9 58.8 8784 4891 854 14,529 98
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Montalegre and Gardunha WF has a central location, while in the Alto da Coutada 
WF, the substation has a peripheral location, which could explain higher final gaps 
for Alto da Coutada WF.

We also observe that the final gaps tend to increase when the value of � increases. 
That means the problem becomes more difficult to solve for large values of �, thus 
when the ambiguity set is large and easier in the pure stochastic optimization case 
(with � = 0). Finally, we can also observe that most of the running time is spent 
solving the master problem. This behavior should be expected, as the deterministic 
problem is already hard to solve.

8  Conclusions

This paper addresses the problem of designing a wind farm layout, taking into 
account the uncertain nature of the wind. A major indirect cost in wind farm design 
is related to the energy losses, which depend on the energy produced at each turbine 
that ultimately results from the wind direction and speed. We show with an example 
based on real data that, given fixed turbines and substation positions, the optimal 
layout depends on the energy produced at each turbine, which is uncertain. That 
means the layout design should take into account uncertain parameters such as the 
energy produced at the turbines. To handle this issue, we propose a new model fol-
lowing the recent advances in distributionally robust optimization, where the proba-
bility distribution of the uncertain parameters is assumed to belong to an uncertainty 
set. This model generalizes the models resulting from stochastic programming and 
robust optimization approaches and allows the decision-maker to devise different 
solutions (layout configurations) according to the degree of uncertainty considered 
for the probability distributions.

Table 5  Computational results—Gardunha WF (Tm master; Tss second-stage; Tsp separation)

Algorithm LB (€) UB (€) Gap (%) Time (s) # iter.

Tm Tss Tsp Total

With enhancements
� = 0 4,635,204.3 4,827,348.6 4.0 8473 4845 1253 14,571 102
� = 1 4,635,479.6 5,001,514.5 7.3 8799 4662 1053 14,514 91
� = 5 4,636,603.4 5,238,306.6 11.5 8975 4572 1072 14,619 90
� = 10 4,636,603.4 5,238,306.6 11.5 8935 4645 1064 14,644 90
Without enhancements
� = 0 2,942,185.0 6,340,915.9 53.6 21,505 60 4 21,569 1
� = 1 2,945,966.3 6,680,195.7 55.9 31,773 62 4 31,839 1
� = 5 2,945,862.8 7,132,839.6 58.7 16,919 62 4 16,985 1
� = 10 2,945,862.8 7,132,839.6 58.7 16,886 62 4 16,952 1
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A decomposition algorithm is introduced. However, the algorithm solves a mas-
ter problem at each iteration, corresponding to solving the deterministic model with 
additional constraints (optimality cuts). The decomposition algorithm becomes even 
harder because the deterministic model is already computationally hard to solve. 
Moreover, we observe that the optimality cuts are weak in the sense that they act as 
feasibility cuts that are active just for a single topology design (first-stage solution). 
Consequently, the decomposition tends to have many iterations. However, despite 
being an exact algorithm, the algorithm can be stopped at each iteration, providing, 
in that case, a feasible solution and a lower bound. In order to enhance the algo-
rithm, three improving strategies are discussed: one to reduce the number of itera-
tions by generating stronger optimality cuts, other to solve intermediate master prob-
lems heuristically, and the last one to improve the lower bounds.

Computational results are reported on data from real wind farm case studies. 
These results show that the proposed improvement strategies are essential to speed 
up the decomposition algorithm, allowing the easiest instances to obtain solutions 
with very small gaps. Thus, the approach can be used to devise real topologies, tak-
ing into account the wind speed and direction uncertainty and allowing the decision-
maker to control the degree of conservatism by controlling a single parameter that 
defines the ambiguity set.

As future research, we aim to address the more complex case of solving the prob-
lem where the position of the turbines is not previously known.
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