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Abstract
We introduce a novel concept of directed communication and a related connect-
edness in directed graphs, and apply this to model certain cooperation restrictions 
in cooperative games. In the literature on communication in directed networks or 
directed graphs, one can find different notions of connectedness, and different ways 
how directed communication restricts cooperation possibilities of players in a game. 
In this paper, we introduce a notion of connectedness in directed graphs that is based 
on directed paths. We assume that a coalition of players in a game can only coop-
erate if these players form a directed path in a directed communication graph. We 
define a restricted game following the same approach as Myerson for undirected 
communication situations, and consider the allocation rule that applies the Shap-
ley value to this restricted game. We characterize this value by extended versions 
of the well-known component efficiency, fairness and balanced contributions axi-
oms. Moreover, using the new notion of connectedness, we apply this allocation 
rule to define network centrality, efficiency and vulnerability measures for directed 
networks.
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1  Introduction

A cooperative game with transferable utility (TU-game, for short) models a situ-
ation in which a finite set of agents (players) can generate worths by cooperation. 
Such a game consists of a set of players and a characteristic function that assigns 
to every coalition of players a real number, called its worth, which is the transfer-
able utility that the players in the coalition can earn when they agree to cooperate. 
In a TU-game, there are no restrictions on coalition formation and every sub-
set of the player set can get together and cooperate. However, in many real-life 
situations, there are restrictions on coalition formation and not every coalition is 
feasible.

One of the most studied restrictions in coalition formation is communication 
restrictions where it is assumed that not every pair of players is able to com-
municate directly with each other. Following Myerson (1977), these communi-
cation restrictions are modeled by an undirected (communication) graph and it 
is assumed that only coalitions that are connected in the graph are feasible and 
the players in these coalitions can cooperate and generate the worth described 
by the game. The resulting model is a triple consisting of a player set, character-
istic function and communication graph on the player set, and is referred to as a 
communication situation. Myerson (1977) proposed to apply the Shapley value 
(Shapley 1953a) to a modified game in which every feasible coalition can earn 
its worth, and every other coalition’s worth equals the sum of the worths of its 
connected components in the original game. This solution is nowadays known as 
the Myerson value. He also showed that this solution is the only one that satisfies 
component efficiency (in every component, the sum of the payoffs assigned to 
the players in that component equals its worth in the original game) and fairness 
(breaking a link between two players has the same effect on the payoffs of these 
two players). Later, Myerson (1980) provided another axiomatization replacing 
fairness by balanced contributions (the effect of isolating a player, in the sens that 
all its links are broken, on the payoff of another player is the same as the effect 
the other way around).

In the Myerson model, it is assumed that the links are symmetric. But, fre-
quently, communication is directed and thus we need alternative models. This 
occurs, for example, when only one of the two players on a link is able to ini-
tiate the communication. To model these situations, in this paper, we intro-
duce directed communication situations where the players in a game belong to 
a directed network that is represented by a directed graph. Although this model 
is not novel, the interpretation in this paper, and therefore the desirable proper-
ties of allocation rules, is. Similar as Myerson (1977), we introduce a restricted 
game that takes account of the communication restrictions. In the literature, there 
are different notions of connectedness in directed graphs, and different ways 
how directed communication restricts cooperation possibilities of players in a 
game where players can only communicate by one direction communication. In 
this paper, we consider a new type of connectedness in directed communication 
situations and apply this to coalition formation in cooperative games, where a 
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coalition of players in a game can only cooperate if these players form a directed 
path in a directed communication graph. We say that a path in a directed graph 
is a connection path of a coalition if all players in this coalition belong to the 
path. In our restricted game, the worth of a coalition is equal to the “sum” of 
the worths of its (path) maximally connected subcoalitions. As allocation rule we 
propose, similar as Myerson (1977), to apply the Shapley value to this restricted 
game. We characterize this value by extended versions of the above mentioned 
component efficiency, fairness and balanced contributions axioms. Fairness and 
balanced contributions are stated the same as for undirected graphs, just that 
the edges are oriented arcs. Component efficiency is modified to reflect our new 
cooperation restrictions.

After introducing the model, solution and axiomatizations, we will apply the pro-
posed method to some issues arising in social networks. Specifically, by taking any 
symmetric game (i.e., a game where all players are identical in their contributions), 
applying our solution to every directed network gives a new centrality measure for 
directed networks. In this way, we obtain a family of (directed) network centrality 
measures that is parameterized by the symmetric game that is used. Moreover, the 
axiomatizations of our allocation rule for directed communication situations can be 
directly applied as an axiomatization for centrality measures for directed networks. 
Whereas all the centrality measures in this family satisfy fairness and balanced con-
tributions, within the family each measure is characterized by the (symmetric) game 
that is used in the connection efficiency axiom. Thus, reflecting the appropriate 
value in a specific application in the (symmetric) game, the axioms provide the cor-
responding centrality measure. We stress the role of the game in this case. Usually, 
TU-games are used to assess the different individual contributions of the players. 
However, since in this application of measuring centrality the game is symmetric, 
it is not assessing the differences between players, but only the overall value that 
can be obtained. The players/nodes only differ in their position in the directed net-
work, as is measured by a network centrality measure. Finally, we illustrate how our 
allocation rule can be applied to measure efficiency and vulnerability in networks. 
Our work on network centrality contributes to the topic of finding game-theoretical 
centrality measures for social networks whose seminal work was due to Grofman 
and Owen (1972). Other contributions in this setting are given in van den Brink and 
Borm (2002), Gómez et al. (2003), Amer et al. (2007), Aadithya et al. (2010), del 
Pozo et  al. (2011), Michalak et  al. (2013), Mazalov and Trukhina (2014), Micha-
lak et al. (2015), Mazalov et al. (2016), Szczepański et al. (2016), Tarkowski et al. 
(2018), Gallardo et  al. (2018) and Navarro (2020). Tarkowski et  al. (2017) is an 
interesting review on game-theoretic network centrality. On the other hand, the pro-
posed measures of efficiency and vulnerability are related to the prominent measure 
of efficiency introduced in Latora and Marchiori (2001). Bell (2003), Gueye et al. 
(2012) and Lee et al. (2018) are also different game-theoretical approaches to meas-
ure efficiency and vulnerability in networks.

We conclude the paper by comparing our approach to other models in which restric-
tions in the communications are given by a directed graph. In fact, for asymmetric 
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directed graphs (i.e., there can be at most one arc between each pair of nodes), our 
model is mathematically equivalent to the games with a permission structure of Gilles 
et al. (1992) and Gilles and Owen (1994). Based on this approach, the conjunctive per-
mission value is proposed by van den Brink and Gilles (1996). For the special class 
of acyclic digraphs, the disjunctive permission value, proposed by vandenBrink, R. 
(1997), satisfies our fairness requirement, but only applied to arcs which head has in-
degree at least 2. The games under precedence constraints of Faigle and Kern (1992) 
are slightly different in the sense that the characteristic function is defined only on the 
set of ‘feasible’ coalitions derived from the digraph. Both models do not generalize the 
Myerson restricted game nor the Myerson value for communication situations. Slikker 
and van den Nouweland (2001) characterized allocation rules for a more general model 
of a directed communication situation consisting of a set of players, a directed reward 
function, and a directed communication network, where the directed reward function 
assigns a value to every possible directed communication network defined on the player 
set. Our model is also related to Khmelnitskaya et al. (2016), and in comparison with 
the solution defined in Li and Shan (2020), our value mainly differs in the type of con-
nectivity that is considered.

The remaining of this paper is organized as follows. After the preliminaries, in 
Sect. 3, we describe the model of directed communication situations and in Sect. 4, 
we introduce our allocation rule which is axiomatized in Sect. 5. In Sect. 6, we dis-
cuss applications to social networks. Section  7 compares our allocation rule with 
other rules in the literature.

2 � Preliminaries

2.1 � CooperativeTU− games

A cooperative game with transferable utility (or a TU-game for short) is a pair (N, v) 
in which N = {1,… , n} is the set of players and v ∶ 2N → ℝ , verifying v(�) = 0 , 
is the characteristic function. In this model, v(S) ∈ ℝ is the payoff that the s = |S| 
members of the coalition  S ∈ 2N = {S | S ⊆ N} can obtain by cooperating. We will 
denote by GN the vector space of all TU-games with player set N. The null game 
(N, 0) is the game with characteristic function given by 0(S) = 0 for all S ⊆ N. Simi-
larly, (N, 1) will be the game with characteristic function defined as 1(S) = 1 for all 
∅ ≠ S ⊆ N . The family of TU-games {(N, uS)}�≠S⊆N with characteristic functions 
given by

is a basis in GN known as the unanimity games basis. As a consequence, given 
(N, v) ∈ GN , its characteristic function v admits the following (unique) expression:

uS(T) =

{
1, if S ⊆ T

0, otherwise

v =
∑

�≠S⊆N

Δv(S)uS,
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where the coordinates {Δv(S)}�≠S⊆N are known as the Harsanyi dividends (Harsanyi 
1959). For each non-empty coalition S:

An allocation rule (or a point solution) on GN is a map � ∶ GN
→ ℝ

n . For each 
(N, v) ∈ GN , �i(N, v) represents the outcome or payoff for player i ∈ N in the game 
(N,  v). Shapley (1953a) proposed a solution for TU-games that still is one of the 
most prominent solutions. It assigns to every player in a TU-game a linear combina-
tion of his marginal contributions to different coalitions as follows:

which coincides with

2.2 � Graphs or networks

A graph or a network is a pair (N, �) with N = {1, 2,… , n} being the set of nodes 
and 𝛾 ⊆ 𝛾N = {{i, j}|i, j ∈ N, i ≠ j} . Each pair {i, j} ∈ � is called an edge or link. We 
often denote a graph (N, �) just by its set of edges � . ΓN denotes the set of all graphs 
with nodes set N.

Two nodes i and j are directly connected in (N, �) , if {i, j} ∈ � . Two nodes i and 
j are connected in � if there exists a sequence of nodes i1, i2,… ik with i1 = i , ik = j 
and {il, il+1} ∈ � , for l = 1,… , k − 1 . The graph (N, �) is connected if all i, j ∈ N 
are connected in � . A set ∅ ≠ S ⊆ N is connected in � if |S| = 1 or every pair of 
nodes in S is connected in (S, �|S ) with 𝛾|S = {{i, j} ∈ 𝛾|{i, j} ⊆ S} . A coalition C is 
a connected component in the graph (N, �) if it is maximally connected, meaning 
that (i) C is connected in the graph and, (ii) for all C′ ⊆ N , if C ⊊ C′ then, C′ is 
not connected. We will denote by N∕� the partition of N in connected components 
induced by (N, �) . We will denote by S∕� the set of the connected components of 
S in (S, �|S ) . A graph (N, � �) with 𝛾 ′ ⊆ 𝛾 is a subgraph of (N, �) . For i ∈ N, (N, �i) is 
given by �i = {l ∈ � | i ∈ l} , and (N, �−i) is given by �−i = �⧵�i.

2.3 � Communication situations and allocation rules

A communication situation is a triple (N, v, �) , where (N,  v) is a TU-game and 
(N, �) is a graph which set of nodes corresponds to the set of players in the game. 
CS

N will denote the set of all communication situations with players-nodes set N. 

Δv(S) =
∑
T⊆S

(−1)s−tv(T).

Shi(N, v) =
∑

S⊆N⧵{i}

(n − s − 1)!s!

n!
[v(S ∪ {i}) − v(S)], i ∈ N,

Shi(N, v) =
∑

i∈S⊆N

Δv(S)

s
, i ∈ N.
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An allocation rule for communication situations is a map � ∶ CS
N
→ ℝ

n , where 
�i(N, v, �) represents the outcome or payoff for player i.

For communication situations (N, v, �) , Myerson (1977) defined the graph-
restricted game (N, v� ) as the TU-game (N, v� ) , given by:

expressing the idea that only coalitions that are connected in the graph can form and 
generate their worth.

As allocation rule for communication situations, Myerson proposed to apply the 
Shapley value to the graph-restricted game, yielding the allocation rule � given by 
�(N, v, �) = Sh(N, v� ) for all (N, v, �) ∈ CS

N . Nowadays, this rule, � , is known as the 
Myerson value. Myerson (1977) showed that the value � is the unique allocation 
rule for communication situations satisfying the following two axioms.

An allocation rule � on CSN satisfies component efficiency (Myerson 1977) if, 
for all (N, v, �) ∈ CS

N and all C ∈ N∕� ,
∑

i∈C �i(N, v, �) = v(C).
An allocation rule � on CSN satisfies fairness (Myerson 1977) if, for all (N, v, �) ∈ CS

N 
and every l = {i, j} ∈ � , �i(N, v, �) − �i(N, v, � ⧵ {l}) = �j(N, v, �) − �j(N, v, � ⧵ {l}).

Later, Myerson (1980) showed that the value � is the unique allocation rule 
for communication situations satisfying component efficiency and balanced 
contributions.

An allocation rule � on CSN satisfies balanced contributions (Myerson 1980) if, 
for all (N, v, �) ∈ CS

N and all i, j ∈ N, �i(N, v, �) − �i(N, v, �−j) = �j(N, v, �) − �j(N, v, �−i).

2.4 � Directed graphs or digraphs

A directed graph or a digraph is a pair (N, D) where N = {1, 2,… , n} is a (finite) 
set of nodes and D ⊆ N × N is a binary relation on N. Each directed edge or arc 
(i, j) ∈ D is an ordered pair of nodes called endpoints of the arc: i is the tail and j 
is the head. We say that an arc is from its tail to its head. Also, if (i, j) ∈ D , then i 
is called a predecessor of j, and j a successor of i. A loop in a digraph is an arc in 
which its endpoints are equal. Multiple arcs are those with identical tails and identi-
cal heads. We will assume the digraph to be (i) irreflexive, i.e., with no loops, and 
(ii) simple, i.e., with no multiple arcs. When there is no ambiguity with respect to N, 
we will simply identify the digraph with its set of arcs D. DN denotes the set of all 
irreflexive, simple digraphs with nodes set N.

Given (N,D) ∈ D
N and i ∈ N , the out-degree, dO

i
(N,D) = ||{j ∈ N ∣ (i, j) ∈ D}|| 

(respectively, the in-degree, dI
i
(N,D) = ||{j ∈ N ∣ (j, i) ∈ D}|| ) is the number of arcs 

with i as the tail (respectively, i as the head). Then, di(N,D) = dO
i
(N,D) + dI

i
(N,D) 

is the degree of node i in (N, D).
For (N,D) ∈ D

N , a graph (N,D�) with D′ ⊆ D , is called a subdigraph of (N, D). 
For each i ∈ N , the subdigraph (N,D−i) of (N, D) is obtained when severing all arcs 
incident with i, i.e. D−i = {(j, k) ∈ D|i ∉ {j, k}} . Moreover, the restriction of (N, D) 
to ∅ ≠ S ⊆ N is the directed graph (S,D|S ) in which D|S = {(i, j) ∈ D|i, j ∈ S} . For 

v𝛾 (S) =
∑

C∈S∕𝛾

v(C), for all S ⊆ N,
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L ⊆ D , we will use the abuse of notation {L} to indicate the nodes corresponding to 
the arcs in L, i.e., {L} = {i ∈ N| there is j ∈ N with (i, j) ∈ L or (j, i) ∈ L} . Notice 
that the restriction ({L},D|{L} ) coincides with ({L},L) . Given a digraph (N,  D), a 
(directed) path from i to j is a sequence of distinct nodes P = (i1, ..., it) with i1 = i , 
it = j and (ik, ik+1) ∈ D for k = 1,… , t − 1 . We assume that (i), i ∈ N , is a path. For 
convenience, we will sometimes identify P with its set of arcs {(i1, i2),… , (it−1, it)}. 
We also will use the abuse of notation {P} to denote the set of nodes of a path P, and 
thus {P} = {i1,… , it} for P = (i1,… , it) . Given two paths P = (i1, ..., it) and 
Q = (j1, ..., jr) in (N, D), we say that P is a subpath of Q, denoted by P�⊆Q , if for each 
k = 1, ..., t − 1 there exists l = 1, ..., r − 1 such that jl = ik and jl+1 = ik+1 . A path P in 
(N, D) is maximal if it is maximal for the defined partial order �⊆ , i.e., if there is no 
other path P′ ≠ P such that P�⊆P′. Given a digraph (N, D), we will denote by P(N,D) 
the set of all maximal paths of (N, D). Given a digraph (N, D) and ∅ ≠ S ⊆ N , we 
say that a path P in (N, D) is a connection path of S in (N, D) if S ⊆ {P} . We say that 
a path P is a minimal connection path of S in (N, D) if P is a connection path of S 
and there does not exist another connection path P′ ≠ P of S such that P′�⊆P. By 
MCP(S,N,D) we will denote the family (occasionally empty) of all minimal 
connection paths of S in (N, D). A Hamiltonian path (or traceable path) is a path in 
which t = n , where n is the cardinality of N, i.e., it is a path that visits each node 
exactly once. Thus, if P is a Hamiltonian path, then {P} = N . A Hamiltonian path in 
a digraph is necessarily maximal.

Given a digraph (N,D) ∈ D
N , its underlying (undirected) graph (N, �D) ∈ ΓN 

is obtained by replacing all directed arcs with corresponding undirected links, i.e. 
�D = {{i, j}|(i, j) ∈ D} . A digraph (N, D) is weakly connected if its underlying graph 
(N, �D) is connected. A weak component of (N,  D) is a component of (N, �D) . A 
digraph (N,D) ∈ D

N , is strongly connected or strong if for every i, j ∈ N there is a 
directed path P starting at i and ending at j. A set of nodes C is a strongly connected 
component of a given digraph (N,  D) if (C,D|C ) is strongly connected, and for 
C′ ⊃ C , (C�,D|C� ) is not strong. Notice that every strongly connected digraph is 
weakly connected.

We illustrate these notions with an example.

1

2 3

4

1

2 3

4

1

2 3

4

D1 D2 D3

Fig. 1   Digraphs (N,D1),(N,D2) and (N,D3) Example 2.1
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Example 2.1  Consider the digraph (N,D1) with N = {1, 2, 3, 4} and D1 = {(1, 2),

(1, 3), (2, 3), (2, 4), (3, 4), (4, 1)} (see Fig. 1). This digraph is strongly connected, and 
((1, 2), (2, 3), (3, 4)) is a Hamiltonian path.

Consider the digraph (N,D2) with N = {1, 2, 3, 4} and D2 = {(1, 2), (1, 3), (2, 3),

(2, 4), (3, 4)} (see Fig. 1). This digraph is weakly connected, but not strongly con-
nected, and ((1,  2),  (2,  3),  (3,  4)) is a Hamiltonian path. This is also a connec-
tion path of S = {1, 2, 4} , but it is not a minimal connection path of S. The path 
((1, 2), (2, 4)) is a minimal connection path of S = {1, 2, 4}.

Finally, consider the digraph (N,D3) with N = {1, 2, 3, 4} and 
D3 = {(1, 2), (1, 3), (2, 3), (2, 4)} (see Fig. 1). This digraph is weakly connected, but 
not strongly connected. It does not have a Hamiltonian path. The path ((1, 2), (2, 4)) 
is a maximal path in (N, D). It is also a minimal connection path of S = {1, 2, 4}.

3 � Directed communication situations

A situation where cooperation among players in a TU-game is limited because of 
restricted directed communication possibilities can be modeled by a directed com-
munication situation.

Definition 3.1  A directed communication situation is a triple (N,  v,  D) in which 
(N, v) is a TU-game and (N, D) is a directed graph, the nodes in the digraph being 
the players in the game.

The set of all directed communication situations with players set N will be 
denoted by DCS

N.
The model of a directed communication situation is mathematically identical to 

other models of a game with an order (or digraph) on the player set (see introduc-
tion), but because of the interpretation of the directed graph as a directed communi-
cation network, we refer to it as a directed communication situation. In the following 
definition, we introduce a modification of the original game to take into account the 
restrictions in the communication given by the digraph. In this modified game, we 
assume that the worth of each coalition is the “sum” of the values of its (path) maxi-
mally connected subcoalitions.1

Definition 3.2  A subcoalition T ⊆ S is a (path) maximally connected subcoalition of 
S in directed graph (N, D) if there is a maximal path P in (S,D|S ) with T = {P}.

For ∅ ≠ S ⊆ N , we denote the family of the maximal paths in (S,D|S ) by P(S,D|S ).
To clarify the previous definition, let us consider the following example.

1  This definition mimics (in some sense) the one introduced by Myerson (1977) for the graph-restricted 
game, where the connectedness of subcoalitions in graphs is replaced by the path-connectedness in 
digraphs.
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Example 3.1  Consider the directed communication situation (N,  v,  D) with 
N={1, 2, 3, 4} , and D = {(1, 2), (1, 3), (2, 4), (3, 4)}. See Fig. 2.

In this case,

Connectedness being related to directed (connection) paths occurs in, for 
example, supply chain management, attribution models and vaccination policy. 
In supply chains, value can be created when a manufacturer (source) is connected 
to a retailer (sink) by a sequence of intermediaries (wholesalers, shipping compa-
nies etc.). In the other direction, to dampen the bullwhip effect2 efficiency gains 
can be reached when the agents on a supply chain share information. In market-
ing attribution, advertisers use ‘attractiveness’ of various advertisement strate-
gies, including online advertising, to decide in which form of advertisement they 
will invest. Typically, the attractiveness of one form of advertisement depends on 
its position in the advertisement channel and the rate to which a customer visit-
ing a path containing multiple ads from the same advertiser (channel) eventually 
results in a conversion. Attribution models assess the ‘value’ of each ad on the 
path leading to conversion. Regarding the third example mentioned above, vacci-
nation was one of the main strategies to ‘beat’ the Covid19 pandemic. To increase 

P(S,D�S ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{(i)}, if S = {i}, i = 1, 2, 3, 4,

{(1, 2)}, if S = {1, 2},

{(1, 3)}, if S = {1, 3},

{(1), (4)} if S = {1, 4},

{(2), (3)} if S = {2, 3},

{(2, 4)}, if S = {2, 4},

{(3, 4)}, if S = {3, 4},

{(1, 2), (1, 3)}, if S = {1, 2, 3},

{(1, 2, 4)}, if S = {1, 2, 4},

{(1, 3, 4)}, if S = {1, 3, 4},

{(2, 4), (3, 4)}, if S = {2, 3, 4},

{(1, 2, 4), (1, 3, 4)}, if S = N.

Fig. 2   Digraph (N,D). Example 3.1 1

2 3

4

2  The bullwhip effect occurs when information about demand becomes less precise when moving up the 
supply chain from retailer to manufacturer.
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the vaccination grade, it is essential to get information about the virus and vacci-
nation policy to members of the society. Problematic was that some parts of soci-
ety was difficult to reach, for example because of language problems or distrust in 
government organizations. To get information from the government to those parts 
of society a chain of intermediary social clubs, doctors, etc., helped in passing the 
information from government to the people.

Notice that the maximal paths might have players/nodes in common, who will 
contribute only once in the coalition, and therefore, we must use the classical 
inclusion–exclusion principle to respect that coalitions cannot obtain more under 
the restrictions than in the original game. This brings us to the following defini-
tion of the modified game, taking account of the cooperation restrictions.

Definition 3.3  Given (N, v,D) ∈ DCS
N , the digraph restricted game is defined as the 

TU-game (N, vD) with characteristic function given by:

where for ∅ ≠ S ⊆ N , P(S,D|S ) = {PS
1
,⋯ ,PS

r(S)
} is the family of the maximal paths 

in (S,D|S ) , and vD(�) = 0.

Example 3.2  Consider the directed communication situation (N,  v,  D) of Exam-
ple 3.1. Using the (path) maximally connected sets given in Example 3.1,

Notice that in determining the worth of the grand coalition N, we use the worth 
of coalition {1, 4} although {1, 4} is not connected. Since worth is generated by 
directed paths, players 1 and 4 cooperate in the coalition/path {1, 2, 4} , as well as in 
{1, 3, 4} . To avoid that the worth generated by cooperation of 1 and 4 would be dou-
ble counted, we subtract the worth of {1, 4}.

Remark 3.1  Given (N, v,D) ∈ DCS
N , the characteristic functions vD and v coincide 

if for all S ⊆ N , the digraph restricted to S, (S,D|S ) , has a Hamiltonian path. As an 
example, the digraphs (N, D) with N = {1, 2, 3} and D = {(1, 2), (1, 3), (2, 3)} and 

vD(S) =

r(S)∑
i=1

v({PS
i
}) −

r(S)−1∑
i=1

r(S)∑
j=i+1

v({PS
i
} ∩ {PS

j
})

+

r(S)−2∑
i=1

r(S)−1∑
j=i+1

r(S)∑
k=j+1

v({PS
i
} ∩ {PS

j
} ∩ {PS

k
}) +⋯+

+ (−1)r(S)−1v({PS
1

} ∩⋯ ∩ {PS
r(S)

}),

vD(S) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

v({i}), if S = {i}, i = 1, 2, 3, 4,

v({1}) + v({4}) if S = {1, 4},

v({2}) + v({3}) if S = {2, 3},

v({1, 2}) + v({1, 3}) − v({1}), if S = {1, 2, 3},

v({2, 4}) + v({3, 4}) − v({4}), if S = {2, 3, 4},

v({1, 2, 4}) + v({1, 3, 4}) − v({1, 4}), if S = N

v(S) otherwise .
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(N,D�) with N = {1, 2, 3, 4} and D� = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 1)} satisfy 
such a condition (see Fig. 3). For the digraph of Example 3.1, the digraphs restricted 
to the coalitions S ∈ {{1, 4}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}} do not have a 
Hamiltonian path.

Remark 3.2  Given (N,  v,  D), the characteristic functions vD and v�D coincide if 
for all S ⊆ N , there exists a Hamiltonian path in each element of S∕(�D)|S , i.e., in 
each component of S. As an example, the digraph (N,  D) with N = {1, 2, 3} and 
D = {(1, 2), (2, 3)} satisfies such a condition. Specifically, every line-digraph, i.e., 
rooted tree with a single sink, satisfies this condition.

In the following proposition, we obtain an expression of the digraph restricted 
game of unanimity games.

Proposition 3.1  Given (N, uS,D) ∈ DCS
N with ∅ ≠ S ⊆ N , if MCP(S,N,D) = {QS

1

,⋯ ,QS
t(S)

} ≠ � , 
then

and uD
S
≡ 0 otherwise.

Proof  Suppose that ∅ ≠ S ⊆ N and MCP(S,N,D) = {QS
1
,⋯ ,QS

t(S)
} ≠ � . Let T ⊆ N . 

For T = � , trivially uD
S
(�) = 0 =

[
1 −

t(S)∏
i=1

(1 − u{QS
i
}(�))

]
, since u{Q}(�) = 0 for all 

Q ∈ MCP(S,N,D) . For T ≠ ∅ , let P(T ,D|T ) = {PT
1
,⋯ ,PT

r(T)
} be the family of the 

maximal paths in (T ,D|T ) . Then, by the definition of the digraph restricted game,

uD
S
= 1 −

t(S)∏
i=1

(1 − u{QS
i
}),

Fig. 3   Digraphs (N,D) and 
(N,D’) Remark 3.1

1

2 3

1

2 3

4
D D′
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We consider the following two cases with respect to r�(T) , the cardinality of the sub-
set of P(T ,D|T ) with nodes set containing S, i.e., we assume there are r�(T) maximal 
paths in (T ,D|T ) which nodes set contains S.

Case (i) Suppose 1 ≤ r�(T). Then,

where the first equality follows since uS({PT
1
} ∩⋯ ∩ {PT

k
}) , 1 ≤ k ≤ r(T) , equals 1 

if the set of nodes S belongs to every path in {PT
1
} ∩⋯ ∩ {PT

k
} , and equals 0 other-

wise, and the third equality follows from the binomial formula.
Case (ii) If, on the other hand, r�(T) = 0 , then uD

S
(T) = 0.

Thus, we can conclude that

Similarly, 

[
1 −

t(S)∏
i=1

(1 − u{QS
i
}(T))

]
= 1 if there is i = 1, ..., t(S) such that 

(1 − u{QS
i
}(T)) = 0 , or equivalently u{QS

i
}(T) = 1 , i.e., if there is a path with nodes set 

containing S and contained in T.
Finally, if for ∅ ≠ S ⊆ N , MCP(S,N,D) = �, by the definition of uD

S
 , uD

S
(T) = 0 

for all T ⊆ N , as the nodes in the elements of P(T ,D|T ) cannot contain S since S has 
no minimal connection paths in (N, D). This completes the proof. 	�  ◻

4 � A value for directed communication situations

First of all, we introduce the definition of a value or allocation rule on DCS
N . As 

usual, an allocation rule assigns a payoff vector to every, in this case, directed com-
munication situation.

uD
S
(T) =

r(T)∑
i=1

uS({P
T
i
}) −

r(T)−1∑
i=1

r(T)∑
j=i+1

uS({P
T
i
} ∩ {PT

j
})

+

r(T)−2∑
i=1

r(T)−1∑
j=i+1

r(T)∑
k=j+1

uS({P
T
i
} ∩ {PT

j
} ∩ {PT

k
}) + (−1)r(T)−1uS({P

T
1
} ∩⋯ ∩ {PT

r(T)
}).

uD
S
(T) =

(
r�(T)

1

)
−

(
r�(T)

2

)
+⋯ + (−1)r

�(T)−1

(
r�(T)

r�(T)

)

= −

(
r�(T)

0

)
+

(
r�(T)

1

)
−

(
r�(T)

2

)
+⋯ + (−1)r

�(T)

(
r�(T)

r�(T)

)
+

(
r�(T)

0

)

= (1 − 1)r
�(T) +

(
r�(T)

0

)
= 1,

uD
S
(T) =

{
1 if there exists at least one path in P ∈ P(T ,D|T ) with S ⊆ {P}

0 otherwise .
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Definition 4.1  A value or an allocation rule on DCS
N is a function � ∶ DCS

N
→ ℝ

n . 
For (N, v,D) ∈ DCS

N , �i(N, v,D) represents the outcome for player i, i ∈ N , in the 
directed communication situation (N, v, D).

Following Myerson (1977) for undirected communication situations, we define 
an allocation rule that assigns to every directed communication situation, the Shap-
ley value of the corresponding digraph restricted game.

Definition 4.2  The Directed Communication-value (or DC-value for short) �d is 
given by �d(N, v,D) = Sh(N, vD) , for all (N, v,D) ∈ DCS

N , where vD is given by 
Definition 3.3.

Remark 4.1  Taking Remark  3.1 into account, given (N, v,D) ∈ DCS
N , 

�d(N, v,D) = �(N, v, �D)=Sh(N,v) if for all S ⊆ N , the digraph restricted 
to S, (S,D|S ) , has a Hamiltonian path. Moreover, representing � ∈ ΓN as 
D� = {(i, j), (j, i) ∣ {i, j} ∈ �} , it is clear that D� has a Hamiltonian path if � is con-
nected, and thus �d(N, v,D� ) = �(N, v, �) in that case.

The digraph restricted game for a directed communication situation 
(N, v,D) ∈ DCS

N coincides with the graph-restricted game of the communication 
situation (N, v, �D) ∈ CS

N if in (N, v, D) each “component” has a Hamiltonian path.

Example 4.1  Consider the directed communication situation (N,  v,  D) in which 
(N, D) is as in the Example 3.1 and (N, v) is the messages game (see Gómez et al. 
(2003)), i.e., the worth of a coalition is the number of pairs, with the interpretation 
that this is the number of messages that can be sent between members of the coali-
tion. Its characteristic function is

Particularizing the expression of vD obtained in Example 3.2, we have

which in terms of the unanimity basis is

Thus, the DC-value in this case is

(1)v(S) =

{
s(s−1)

2
if s ≥ 2

0 otherwise .

vD(S) =

⎧
⎪⎪⎨⎪⎪⎩

0 if S = �, s = 1, S = {1, 4} or S = {2, 3}

1 if S = {1, 2}, S = {1, 3}, S = {2, 4}orS = {3, 4}

2 if S = {1, 2, 3}orS = {2, 3, 4}

3 if S = {1, 2, 4}orS = {1, 3, 4}

5 if S = N,

vD(S) = u{1,2} + u{1,3} + u{2,4} + u{3,4} + u{1,2,4} + u{1,3,4} − uN .
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5 � Characterizations of the DC‑value

In this section, we characterize the DC-value with modifications of properties as 
component efficiency, fairness and balanced contributions for directed networks. 
First, connection efficiency expresses that worth is generated by (maximal) paths. 
This occurs, for example, in marketing attribution or supply chains, where worth is 
generated when, through a sequence of advertisements, respectively a sequence of 
intermediary retailers and other agents on the supply chain, a conversion takes place 
when a consumer (sink of the path) buys a product that is produced by a producer 
(source of the path). Another situation where this occurs is in communications (e.g., 
sending messages) when the only thing that matters is whether a message from a 
sender reaches the intended receiver, possibly through a chain of intermediaries. As 
we will see in Sect. 6 this notion of connection efficiency can be used to introduce 
game-theoretical measures of efficiency and vulnerability for directed networks.

Definition 5.1  An allocation rule � on DCS
N satisfies connection efficiency if, 

for all (N, v,D) ∈ DCS
N and all C ∈ N∕�D,

∑
i∈C �i(N, v,D) = vD(C).

Connection efficiency reflects our new cooperation restrictions and requires that 
the sum of the payoffs of the players in a component is equal to the "sum" of the 
worths of the (path) maximally connected subcoalitions in this component. This 
emphasizes our idea of connectedness that is needed to generate worth. Notice that 
the axiom of connection efficiency explicitly uses the worth vD(C) of components 
C. In terms of the original game v and digraph D, this means that the total payoff 
in every component is equal to the worth generated by all directed paths in D in the 
original game v.

Fairness and balanced contributions are expressed the same as in Myerson 1977, 
1980) (see preliminaries), but for digraphs, requiring that the payoffs of two nodes 
on a directed arc change by the same amount when the arc is deleted.

Definition 5.2  An allocation rule � on DCS
N satisfies fairness if, for all (N, v,D) ∈ DCS

N 
and every e = (i, j) ∈ D , �i(N, v,D) − �i(N, v,D ⧵ {e}) = �j(N, v,D) − �j(N, v,D

⧵{e}).

Notice that fairness is more or less stated the same way as Myerson’s fairness 
for undirected communication situations (as mentioned in the preliminaries), just 
replacing undirected graphs and undirected edges by directed networks and arcs.

Finally, balanced contributions requires that the effect of isolation of a player on 
the payoff of another player, is equal to the effect the other way around, that is the 
effect on the payoff of this player of the isolation of the other player.

�d(N, v,D) = Sh(N, vD) =
(
17

12
,
13

12
,
13

12
,
17

12

)
.
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Definition 5.3  An allocation rule � on DCS
N satisfies balanced contributions if, for all 

(N, v,D) ∈ DCS
N and all i, j ∈ N, �i(N, v,D) − �i(N, v,D−j) = �j(N, v,D) − �j(N, v,

D−i).

In the following propositions, we prove that the DC-value �d is the unique con-
nection efficient rule that satisfies either fairness or balanced contributions. Notice 
that this mimics other results in the literature on undirected graph games, starting 
with the results of Myerson (1977) and Myerson (1980), that characterize a value 
by an efficiency and a fairness or balanced contributions property. Since uniqueness 
follows similar as in Myerson (1977) or Myerson (1980), we first prove that �d satis-
fies the three previous properties.

Proposition 5.1  The DC-value, �d , satisfies connection efficiency.

Proof  Let (N, v,D) ∈ DCS
N . Suppose that C ∈ N∕�D is a weak component in (N, D). 

Then,

the first equality holding by the definition of �d , the second one as the Shapley value 
of a player in (N, vD) only depends on the component to which he belongs,3 the third 
one by the efficiency of the Shapley value, and the fourth one by the definition of the 
restriction of a game to a coalition. 	� ◻

Proposition 5.2  The DC-value, �d , satisfies fairness.

Proof  As �d is clearly linear in the game, it is sufficient to prove the result 
for directed communication situations of the form (N, uS,D) with ∅ ≠ S ⊆ N . 
Suppose that i, j ∈ N are such that (i, j) ∈ D . If MCP(S,N,D) = � , then 
�d
k
(N, uS,D) = �d

k
(N, uS,D�{(i, j)}) = 0 , for k = i, j , by connection efficiency, and 

thus the result is proved in this case.
If, on the other hand, MCP(S,N,D) = {QS

1
,⋯ ,QS

t(S)
} ≠ � then, for k = i, j , 

�d
k
(N, uS,D) = Shk[N, 1 −

∏t(S)

l=1
(1 − u{QS

l
})] , by Proposition 3.1.

Since MCP(S,N,D�{(i, j)}) ⊆ MCP(S,N,D) , suppose, without loss of general-
ity, that MCP(S,N,D�{(i, j)}) = {QS

1
,⋯ ,QS

t�(S)
} with t�(S) ≤ t(S) . The case 

t�(S) = t(S) is trivial. Therefore, suppose that t�(S) < t(S) , i.e., QS
t�(S)

,⋯ ,QS
t(S)

 are the 
paths in MCP(S,N,D) to which the arc (i, j) belongs.

Then, for k=i, j,

∑
i∈C

�d
i
(N, v,D) =

∑
i∈C

Shi(N, v
D) =

∑
i∈C

Shi(C, (v
D)|C) = (vD)|C(C) = vD(C),

3  This follows from the Shapley value satisfying marginality or strong monotonicity as discussed in 
Young (1985), and the fact that changes in the directed graph outside the component of a player, does not 
affect the marginal contributions of that player in the digraph restricted game vD.
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where the second equality follows from linearity of the Shapley value. The charac-

teristic function 1 −
t(S)∏

l=t�(S)+1

(1 − u{QS
l
}) can be written as a linear combination of una-

nimity games as follows

Notice that players i and j belong to every coalition in {{QS
t�(S)

},⋯ , {QS
t(S)

}} , and 
thus both players belong to every unanimity coalition in this expression. As a 

consequence, 
t(S)∏
l=1

(1 − u{QS
l
})(1 −

t(S)∏
l=t�(S)+1

(1 − u{QS
l
})) is also a linear combination of 

unanimity games uT with i, j ∈ T  . Given the symmetry of the Shapley value, we 
have that

and thus the result follows with (2). 	�  ◻

Proposition 5.3  The DC-value, �d , satisfies balanced contributions.

Proof  Again, as �d is linear in the game, it is sufficient to prove that �d satisfies 
the property for directed communication situations of the form (N, uS,D) with 
∅ ≠ S ⊆ N.

�d
k
(N, uS,D) − �d

k
(N, uS,D�{(i, j)})

= Shk[N, 1 −

t(S)∏
l=1

(1 − u{QS
l
})] − Shk[N, 1 −

t�(S)∏
l=1

(1 − u{QS
l
})]

= Shk

[
N,

(
t�(S)∏
l=1

(1 − u{QS
l
}) −

t(S)∏
l=1

(1 − u{QS
l
})

)]

(2)= Shk

[
N,

(
t�(S)∏
l=1

(1 − u{QS
l
})

)(
1 −

t(S)∏
l=t�(S)+1

(1 − u{QS
l
})

)]
,

(3)

t(S)∑
l=t�(S)+1

u{QS
l
} −

t(S)−1∑
l=t�(S)+1

t(S)∑
m=l+1

u{QS
l
}∪{QS

m
}

+⋯ + (−1)t(S)−t
�(S)−1u{QS

t�(S)+1
}∪⋯∪{QS

t(S)
}.

Shi[N,

t�(S)∏
l=1

(1 − u{QS
l
})(1 −

t(S)∏
l=t�(S)+1

(1 − u{QS
l
}))]

= Shj[N,

t�(S)∏
l=1

(1 − u{QS
l
})(1 −

t(S)∏
l=t�(S)+1

(1 − u{QS
l
}))],



600	 E. C. Gavilán et al.

1 3

Suppose i, j ∈ N . If MCP(S,N,D) = � , then uD
S
= u

D�Di

S
= u

D�Dj

S
≡ 0 , and thus 

�d
i
(N, uS,D) = �d

j
(N, uS,D) = �d

i
(N, uS,D−j) = �d

j
(N, uS,D−i) = 0 by connection 

efficiency, and then, the result is proved in this case.
Consider, then, the case in which MCP(S,N,D) = {QS

1
,⋯ ,QS

t(S)
} ≠ � and (with-

out loss of generality) MCP(S,N,D�Dj) = {QS
1
,⋯ ,QS

t�(S)
} with t�(S) ≤ t(S) . Again 

(similar as in the proof of Proposition 5.2) the case t�(S) = t(S) is trivial. Therefore, 
suppose that t�(S) < t(S).

Then, in a parallel way to the proof of the previous proposition,

but now the sets in {QS
1
,⋯ ,QS

t�(S)
} are the minimal connection paths in D∖Dj , and 

thus is the Shapley value of player i in a linear combination of unanimity games uT 
with j ∈ T  (and not necessarily i ∈ T  ). Similar as in the proof of Proposition 5.2, 
this expression can be written in a form as (3), but with coalitions {QS

l
} containing j 

(but not necessarily containing i).
On the other hand, �d

j
(N, uS,D) − �d

j
(N, uS,D−i) is the Shapley value of player j in 

a linear combination of unanimity games uT with i ∈ T (but not necessarily j ∈ T).
By the null player property of the Shapley value, in both expressions, we can 

ignore the unanimity games of coalitions not containing player i, respectively, player 
j, and thus both �d

i
(N, uS,D) − �d

i
(N, uS,D−j) as well as �d

j
(N, uS,D) − �d

j
(N, uS,D−i) 

can be expressed as sum of unanimity games of coalitions containing both i and j, 
and thus, by the symmetry of the Shapley value,

which completes the proof. 	�  ◻

In the next two theorems, we obtain two characterizations of �d.

Theorem 5.1  The DC-value �d is the unique allocation rule on DCS
N satisfying con-

nection efficiency and fairness.

Proof  It is already proved that �d satisfies connection efficiency and fairness, see 
Propositions  5.1 and  5.2. Reciprocally, suppose that � is an allocation rule on 
DCS

N satisfying connection efficiency and fairness. We will prove that �(N, v,D) is 
uniquely determined for all (N, v,D) ∈ DCS

N , by induction on the cardinality of D.
If |D| = 0 , then clearly every singleton {i}, i ∈ N , is a weak component, and thus 

by connection efficiency, �i(N, v,D) = vD({i}) = v({i}) = �d
i
(N, v,D).

Proceeding by induction, suppose that the result holds for (N, v,D�) ∈ DCS
N such 

that |D′| ≤ k and consider (N, v, D) with |D| = k + 1 . Let C ∈ N∕�D be a weak com-
ponent of (N, D), and let (C, TC) be a spanning tree in (C, (�D)|C ).

�d
i
(N, uS,D) − �d

i
(N, uS,D−j)

= Shi

[
N,

t�(S)∏
l=1

(1 − u{QS
l
})

(
1 −

t(S)∏
l=t�(S)+1

(1 − u{QS
l
})

)]
,

�d
i
(N, uS,D) − �d

i
(N, uS,D−j) = �d

j
(N, uS,D) − �d

j
(N, uS,D−i),
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Then, for every {i, j} ∈ TC , fairness implies that

where t(e) denotes the tail of arc e ∈ D , while h(e) denotes the head of arc e ∈ D.
Notice that |TC| = |C| − 1 . Moreover, for every weak component C ∈ N∕�D , con-

nection efficiency implies that

Since �i(N, v,D ⧵ {(t({i, j}), h({i, j})}) and �j(N, v,D ⧵ {(t({i, j}), h({i, j})}) are 
uniquely determined by the induction hypothesis, the (|C| − 1) + 1 = |C| linear 
equations (4) and (5) are independent. Thus, the numbers (payoffs) �i(N, v,D) , 
i ∈ C , are uniquely determined.

Since we have shown that �d satisfies connection efficiency and fairness, it must 
hold that �(N, v,D) = �d(N, v,D) for all (N, v,D) ∈ DCS

N , which completes the 
proof. 	�  ◻

Looking at the two axioms in Theorem 5.1, it is interesting to observe that fair-
ness has a symmetric flavor in the sense that it seems not to take account of the 
orientation of the arcs. Although in the model the arcs are oriented, this axiom 
expresses that both players on an arc benefit equally from building the arc. So, 
in the axiomatization, the impact of the arc orientation fully comes from connec-
tion efficiency which, although it is an axiom requiring an efficiency for the total 
payoff in a component, takes account of the orientation of the arcs in determining 
what a component can earn.

Theorem 5.2  The DC-value is the unique allocation rule on DCS
N satisfying con-

nection efficiency and balanced contributions.

Proof  It is already proved that �d satisfies connection efficiency and balanced con-
tributions, see Propositions 5.1 and 5.3. Reciprocally, suppose that � is an allocation 
rule in DCS

N satisfying connection efficiency and balanced contributions. Consider 
(N, v,D) ∈ DCS

N and i ∈ N . We will prove that �i(N, v,D) = �d
i
(N, v,D) by induc-

tion on the cardinality of D. If |D| = 0 , then i is an isolated node in the digraph and 
by connection efficiency, �i(N, v,D) = vd({i}) = v({i}) = �d

i
(N, v,D).

Proceeding by induction, suppose that �(N, v,D�) is uniquely determined for 
directed communication situations (N, v,D�) such that |D′| ≤ k and consider (N, v, D) 
with |D| = k + 1 . Let Ci be the weak component of (N,  D) to which i belongs. If 
|Ci| = 1 , then connection efficiency implies that �i(N, v,D) = vD({i}) =�d

i
(N, v,D) . 

Next, suppose |Ci| > 1 , and consider j ∈ Ci , j ≠ i . As � satisfies the balanced con-
tributions property,

(4)
�i(N, v,D) − �i(N, v,D ⧵ {(t({i, j}), h({i, j})})

= �j(N, v,D) − �j(N, v,D ⧵ {(t({i, j}), h({i, j})}),

(5)
∑
i∈C

�i(N, v,D) = vD(C).

�i(N, v,D) − �i(N, v,D�Dj) = �j(N, v,D) − �j(N, v,D�Di),
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or equivalently,

Since |D∖Di| ≤ k and |D∖Dj| ≤ k , by the induction hypothesis, 
�i(N, v,D�Dj) − �j(N, v,D�Di) is uniquely determined., Moreover, for the weak 
component Ci , connection efficiency implies that

Since the (|Ci| − 1) + 1 = |Ci| linear Eqs. (6) and (7) are independent, the numbers 
(payoffs) �j(N, v,D) for j ∈ Ci , are uniquely determined.

Since we have shown that �d satisfies connection efficiency and balanced contri-
butions, it must hold that �(N, v,D) = �d(N, v,D) for all (N, v,D) ∈ DCS

N , which 
completes the proof. 	�  ◻

Remark 5.1  We remark that, instead of the sum of the payoffs of the players in a 
component being equal to the “sum” of the worths of the (path) maximally con-
nected subcoalitions in this component (i.e. vD(C) ), we could use other definitions of 
efficiency. For example, we could require the sum of the payoffs in a component to 
be equal to the maximum worth of any connection path in the coalition, or the maxi-
mum sum of the connection paths over every partition of the coalition (and thus 
every player contributing to at most one path). From the proofs of Theorems  5.1 
and 5.2, it is easy to see that combining such an alternative efficiency with either 
fairness or balanced contributions also gives a unique allocation rule. What version 
of efficiency is most appropriate depends on the application one has in mind. We 
considered connection efficiency as defined in Definition 5.1 since it seems appro-
priate for the applications mentioned in the paragraph after Example 3.1.

This also shows the ‘power’ of Myerson’s fairness and balanced contributions 
axioms in models where efficiency is less obvious than in the undirected communi-
cation situations. Although, contrary to undirected communication situations, effi-
ciency in directed communication situations is not obvious, fairness and balanced 
contributions stated in their original form (but in a different, more general, model) 
give c − 1 linear independent equations for every component with c players in every 
induction step of the proof for every component which, with an efficiency condition, 
give unique payoffs. In particular, for directed communication situations, this gives 
the possibility to express the desired efficiency requirement, to get a unique alloca-
tion rule that satisfies fairness or balanced contributions.

6 � Applications to directed network centrality

In this section, we discuss several applications of the new allocation rule for directed 
communication situations to centrality in directed networks.

(6)�i(N, v,D) − �j(N, v,D) = �i(N, v,D�Dj) − �j(N, v,D�Di).

(7)
∑
j∈Ci

�j(N, v,D) = vD(Ci).



603

1 3

Directed communication in games with directed graphs﻿	

6.1 � Connection and betweenness centrality

The defined DC-value can be used to introduce game-theoretical centrality meas-
ures for directed networks. A (directed) network centrality measure p is a mapping 
that assigns to every directed network (N, D) an n-dimensional vector measuring the 
centrality of nodes in some way. In the literature, there are many concepts of central-
ity and corresponding centrality measures. Social networks theorist have developed 
relevant centrality measures as degree (Shaw, 1954; Nieminen 1974), closeness 
(Beauchamp, 1965; Sabidussi, 1966), betweenness (Bavelas, 1948; Freeman, 1977) 
and eigenvector centrality (Bonacich, 1972,1987).

Suppose that (N, v, D) is a directed communication situation in which (N, v) is 
a symmetric game. Following Gómez et al. (2003), for all i ∈ N , since the Shapley 
value assigns equal payoff v(N)

n
 to every player in a symmetric game, the difference

can be viewed as the advantages (or disadvantages)that the (directed) communica-
tions present in the network (and the restrictions) provide to player i. Adding v(N)

n
 

to the measure of each player-node, we can use �d
i
(N, v,D) as a centrality measure. 

This gives rise to the following family of centrality measures for directed networks.

Definition 6.1  Given a symmetric game (N, v), the centrality measure �d
v
 is defined 

as �d
v
(N,D) = �d(N, v,D) for every directed network (N, D).

Remark 6.1  Definition 6.1 defines a family of centrality measures for directed net-
works that is parameterized by a symmetric game. This implies that each centrality 
measure in this family is determined by the symmetric game that is used. The appro-
priate game depends on what kind of centrality one wants to measure. The game 
reflects (economic or social) interests that motivate the interactions among the play-
ers/nodes. But, since it is a symmetric game, differences between the nodes is fully 
determined by the differences in network positions.

Since in this section, we will only use symmetric games, we denote the class of 
directed communication situations where the game (N, v) is symmetric by DCSS

N . 
If there is no confusion about the game (N, v), in the following, we will shortly write 
connection efficiency instead of connection efficiency (with respect to (N, v)).

We can decompose, for each i ∈ N , the characteristic function v in vi + v−i with

and v−i = v − vi . The game (N, vi) represents the productivity of i via the charac-
teristic function v, whereas in the game (N, v−i) , i is a null player. Notice that 
(N, vi) and (N, v−i) are not symmetric games, but for different i, j ∈ N , the games 
(N, vi) and (N, vj) are isomorphic (similar for (N, v−i) and (N, v−j) ). Then, given the 

�d
i
(N, v,D) − Shi(N, v) = �d

i
(N, v,D) −

v(N)

n

vi =
∑
S∶i∈S

Δv(S)uS
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obvious linearity (in the game) of the defined centrality measure, we have, for each 
(N, v,D) ∈ DCSS

N , and each i ∈ N,

The game (N, v) being symmetric, �d
i
(N, vi,D) represents player i′s productivity in 

the characteristic function that is preserved by the digraph. Since the productivity 
of all players in the unrestricted game is the same, �d

i
(N, vi,D) can be viewed as 

the part of i′s centrality due to his communication possibilities in the graph. Even 
though �d

i
(N, vi,D) itself is not a centrality measure, it defines part of the centrality 

of the nodes in a directed communication network.
On the other hand, as i is a null player in (N, v−i) , it is obvious that �d

i
(N, v−i,D) 

exclusively depends on the ability of i to intermediate between others, improving 
their communication and, thus, it can be viewed as a contribution to its between-
ness centrality. This motivates the following definitions.

Definition 6.2  Given a symmetric game (N, v), we define the connection centrality 
of i in directed network (N, D) as

Definition 6.3  Given a symmetric game (N, v), we define the betweenness centrality 
of i in directed network (N, D) as

A nice feature of Myerson (1977)’s characterization of his value by compo-
nent efficiency and fairness, is that it also gives uniqueness on smaller classes of 
games, specifically even on classes that contain only one game. As can be seen 
from the proofs of Theorems 5.1 and 5.2, the same holds for the characterizations 
given by these results. Specifically, considering the class that consists of a single 
symmetric game (N, v), we can obtain the following characterization of the cen-
trality measure �d

v
.

Definition 6.4  A centrality measure p for directed networks satis-
fies fairness if, for every directed network (N,  D) and every e = (i, j) ∈ D , 
pi(N,D) − pi(N,D ⧵ {e}) = pj(N,D) − pj(N,D ⧵ {e}).

Definition 6.5  A centrality measure p for directed networks satisfies bal-
anced contributions if, for every directed network (N,  D) and all i, j ∈ N, 
pi(N,D) − pi(N,D−j) = pj(N,D) − pj(N,D−i).

Notice that the above two axioms do not depend on the specific symmetric 
game that is used. These axioms are satisfied by every centrality measure �d

v
 

defined in this section. A specific measure is obtained by applying connection 
efficiency with respect to a specific symmetric game.

�d
v,i
(N,D) = �d

i
(N, vi,D) + �d

i
(N, v−i,D).

�d,C

v,i
(N,D) = �d

i
(N, vi,D).

�d,B

v,i
(N,D) = �d

i
(N, v−i,D).
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Definition 6.6  Let (N, v) be a symmetric game. A centrality measure p for directed 
networks satisfies connection efficiency (with respect to v) if, for every directed net-
work (N, D) and all C ∈ N∕�D , 

∑
i∈C pi(N,D) = vD(C).

Theorem 6.1  Let (N, v) be a symmetric game. 

	 (i)	 �d
v
 is the unique centrality measure for directed networks satisfying connection 

efficiency (with respect to (N, v)) and fairness.
	 (ii)	 �d

v
 is the unique centrality measure for directed networks satisfying connection 

efficiency (with respect to (N, v) and balanced contributions.

Since this theorem is an application of Theorems 5.1 and 5.2 on a smaller class 
of games, the measure �d

v
 satisfying the axioms is a corollary from Theorems 5.1 

and 5.2. Uniqueness is not a corollary, but can be proved in the same way as Theo-
rems 5.1 and 5.2, and the proof is therefore omitted.

Since all centrality measures in our family satisfy fairness and balanced contri-
butions, it can be seen from these characterizations that the choice of the symmet-
ric game v determines the specific centrality measure by connection efficiency. For 
example, when it is about connecting pairs of nodes, then the messages game seems 
appropriate.

6.2 � Out‑ and in‑centrality in unanimity game

By linearity of the allocation rule �d , for any symmetric game (N, v), the centrality 
measure �d

v
 can be decomposed into separate ‘centralities’ related to the possibility 

to generate connection in any subset or coalition of nodes S ⊆ N . This also makes it 
possible to specifically take account of nodes’ possibilities to send or receive mes-
sages in their communication by distinguishing their out- and in-degree. We can do 
this both for connection and for betweenness. We define the following new measures 
for directed networks using unanimity games. They are extended by linearity. Recall 
that dO

i
(N,D) and di(N,D) are the out-degree and the degree of node i ∈ N in the 

digraph (N, D), respectively.

Definition 6.7  Consider a symmetric game (N,  v). The out-connection centrality 
(with respect to (N, v)) of i in (N, D) is defined as,

where denoting MCP(S,N,D) = {QS
1
,⋯ ,QS

t(S)
} ≠ � for every S ⊆ N , �d,CO

uS ,i
(N,D) is 

given by

𝜅
d,CO

v,i
(N,D) =

∑
S⊆N

Δvi
(S)𝜅

d,CO

uS ,i
(N,D),
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Notice that �d,CO

uS
 is not a centrality measure in our family, since uS is not a sym-

metric game. But this is used to define the centrality measure �d,CO

v  which is in our 
family. A similar remark applies to the following definitions. Recall that dI

i
(N,D) 

and di(N,D) are the in-degree and the degree of node i ∈ N in the digraph (N, D), 
respectively.

Definition 6.8  Consider a symmetric game (N, v). The in-connection centrality (with 
respect to (N, v)) of i in (N, D) is defined as,

where denoting MCP(S,N,D) = {QS
1
,⋯ ,QS

t(S)
} ≠ � for every S ⊆ N , �d,CI

uS ,i
(N,D) is 

given by

Definition 6.9  Consider a symmetric game (N, v). The out-betweenness centrality 
(with respect to (N, v)) of i in (N, D) is defined as,

where denoting MCP(S,N,D) = {QS
1
,⋯ ,QS

t(S)
} ≠ � for every S ⊆ N , �d,BO

uS ,i
(N,D) is 

given by

�
d,CO

uS ,i
(N,D) =

t(S)∑
j=1

Shi(N, u{QS
j
})
dO
i
(N,QS

j
)

di(N,Q
S
j
)

−

t(S)−1∑
j=1

t(S)∑
k=1

Shi(N, u{QS
j
}∪{QS

k
})
dO
i
(N,QS

j
∪ QS

k
)

di(N,Q
S
j
∪ QS

k
)

+⋯ + (−1)t(S)−1Shi

[
N, u

∪
t(S)

j=1
{QS

j
}

]
dO
i
(N,∪

t(S)

j=1
QS

j
)

di(N,∪
t(S)

j=1
QS

j
)
.

𝜅
d,CI

v,i
(N,D) =

∑
S⊆N

Δvi
(S)𝜅

d,CI

uS ,i
(N,D),

�
d,CI

uS ,i
(N,D) =

t(S)∑
j=1

Shi(N, u{QS
j
})
dI
i
(N,QS

j
)

di(N,Q
S
j
)

−

t(S)−1∑
j=1

t(S)∑
k=1

Shi(N, u{QS
j
}∪{QS

k
})
dI
i
(N,QS

j
∪ QS

k
)

di(N,Q
S
j
∪ QS

k
)

+⋯ + (−1)t(S)−1Shi

[
N, u

∪
t(S)

j=1
{QS

j
}

]
dI
i
(N,∪

t(S)

j=1
QS

j
)

di(N,∪
t(S)

j=1
QS

j
)
.

𝜅
d,BO

v,i
(N,D) =

∑
S⊆N

Δv−i
(S)𝜅

d,BO

uS ,i
(N,D),
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Definition 6.10  Consider a symmetric game (N,  v). The in-betweenness centrality 
(with respect to (N, v)) of i in (N, D) is defined as,

where denoting MCP(S,N,D) = {QS
1
,… ,QS

t(S)
} ≠ � for every S ⊆ N , �d,BI

uS ,i
(N,D) is 

given by

Notice the differences between these four definitions. On one hand, the two con-
nection centralities ( �d,CO

v,i
 and �d,CI

v,i
 ) use the game (N, vi) , while the two betweenness 

centralities ( �d,BO

v,i
 and �d,BI

v,i
 ) use the game (N, v−i) . On the other hand, the two ‘out’ 

centralities ( �d,CO

v,i
 and �d,BO

v,i
 ) use the out-degree dO

i
 , while the two ‘in’ centralities ( �d,CI

v,i
 

and �d,BI

v,i
 ) use the in-degree dI

i
 . To clarify these ideas of distinguishing the centrality 

in a digraph into four components based on out- and in-connection, and out- and in-
betweenness centralities, let us consider the following example.

Example 6.1  Consider again the directed communication situation (N,  v,  D) in 
Example 4.1 in which N = {1, 2, 3, 4} , (N, v) is the messages game given by (1) and 
D = {(1, 2), (1, 3), (2, 4), (3, 4)}.

Then, the characteristic function v in terms of the unanimity basis is

We have:

�
d,BO

uS ,i
(N,D) =

t(S)∑
j=1

Shi(N, u{QS
j
})
dO
i
(N,QS

j
)

di(N,Q
S
j
)

−

t(S)−1∑
j=1

t(S)∑
k=1

Shi(N, u{QS
j
}∪{QS

k
})
dO
i
(N,QS

j
∪ QS

k
)

di(N,Q
S
j
∪ QS

k
)

+⋯ + (−1)t(S)−1Shi

[
N, u

∪
t(S)

j=1
{QS

j
}

]
dO
i
(N,∪

t(S)

j=1
QS

j
)

di(N,∪
t(S)

j=1
QS

j
)
.

𝜅
d,BI

v,i
(N,D) =

∑
S⊆N

Δv−i
(S)𝜅

d,BI

uS ,i
(N,D),

�
d,BI

uS ,i
(N,D) =

t(S)∑
j=1

Shi(N, u{QS
j
})
dI
i
(N,QS

j
)

di(N,Q
S
j
)

−

t(S)−1∑
j=1

t(S)∑
k=1

Shi(N, u{QS
j
}∪{QS

k
})
dI
i
(N,QS

j
∪ QS

k
)

di(N,Q
S
j
∪ QS

k
)

+⋯ + (−1)t(S)−1Shi

[
N, u

∪
t(S)

j=1
{QS

j
}

]
dI
i
(N,∪

t(S)

j=1
QS

j
)

di(N,∪
t(S)

j=1
QS

j
)
.

v = u{1,2} + u{1,3} + u{1,4} + u{2,3} + u{2,4} + u{3,4}.
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Then, for player 1, we have

and thus, as can be expected, all the centrality of player 1 is out-connection central-
ity. He does not intermediate between the communication of the others and he is tail 
in all the arcs he is involved in.

The out-connection centrality of player 2 is

and the in-connection centrality of player 2 is

The out-betweenness of player 2 is

MCP({1, 2},N,D) = {(1, 2)}

MCP({1, 3},N,D) = {(1, 3)}

MCP({1, 4},N,D) = {(1, 2, 4), (1, 3, 4)}

MCP({2, 3},N,D) = �

MCP({2, 4},N,D) = {(2, 4)}

MCP({3, 4},N,D) = {(3, 4)}

�
d,CO

v,1
(N,D) = �

d,CO

u{1,2},1
(N,D) + �

d,CO

u{1,3},1
(N,D)

+ �
d,CO

u{1,4},1
(N,D) = Sh1(N, u{1,2})

dO
1
(N, (1, 2))

d1(N, (1, 2))
+ Sh1(N, u{1,3})

dO
1
(N, (1, 3))

d1(N, (1, 3))

+ Sh1(N, u{1,2,4})
dO
1
(N, (1, 2, 4))

d1(N, (1, 2, 4))
+ Sh1(N, u{1,3,4})

dO
1
(N, (1, 3, 4))

d1(N, (1, 3, 4))

− Sh1(N, u{1,2,3,4})
dO
1
(N, (1, 2, 3, 4))

d1(N, (1, 2, 3, 4))
=

1

2
⋅

1

1
+

1

2
⋅

1

1
+

1

3
⋅

1

1
+

1

3
⋅

1

1
−

1

4
⋅

1

1
=

17

12
,

�
d,CO

v,2
(N,D) = �

d,CO

u{1,2},2
(N,D) + �

d,CO

u{2,3},2
(N,D)

+ �
d,CO

u{2,4},2
(N,D) = Sh2(N, u{1,2})

dO
2
(N, (1, 2))

d2(N, (1, 2))
+ Sh2(N, u{2,4})

dO
2
(N, (2, 4))

d2(N, (2, 4))

=
1

2
⋅ 0 +

1

2
⋅

1

1
=

1

2
,

�
d,CI

v,2
(N,D) = �

d,CI

u{1,2},2
(N,D) + �

d,CI

u{2,3},2
(N,D)

+ �
d,CI

u{2,4}2
(N,D) = Sh2(N, u{1,2})

dI
2
(N, (1, 2))

d2(N, (1, 2))
+ Sh2(N, u{2,4})

dI
2
(N, (2, 4))

d2(N, (2, 4))

=
1

2
⋅

1

1
+

1

2
⋅ 0 =

1

2
.
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and the in-betweenness centrality of player 2 is

and thus, the total centrality of player 2, which is 13
12

 , can be obtained by adding 
1

2
,
1

2
,

1

24
 and 1

24
 that are, respectively, his out-connection centrality, his in-connection 

centrality, his out-betweenness centrality and his in-betweenness centrality.

Remark 6.2  Comparing the obtained results for centrality of nodes in Example 6.1 
with the ones obtained using the measure, � , defined (for undirected graphs) in 
Gómez et al. (2003) we have �(N, v, �D) = (

3

2
,
3

2
,
3

2
,
3

2
) in which the part correspond-

ing to communication centrality is ( 17
12
,
17

12
,
17

12
,
17

12
) , whereas, the betweenness central-

ity of nodes is ( 1

12
,

1

12
,

1

12
,

1

12
) . In such a situation the symmetry in the game and in 

the graph gives the same figures for all players. Then, they have the same ability to 
communicate and to intermediate in the communication of messages of the others. 
Let us recall that for the directed communication situation in the Example 6.1 given, 
the directed edges players 1 and 4 cannot intermediate among the others. For the 
nodes intermediating the proportion of his centrality due to intermediation is 1

13
 in 

(N, v, D) and 1
17

 in (N, v, �D).

6.3 � An application to efficiency and vulnerability in directed networks

Finally, in this section, we illustrate how the obtained DC-value �d can be used to 
define game-theoretical measures of efficiency and vulnerability for directed net-
works, in which players have (economic or social) interests given by a TU-game. As 

�
d,BO

v,2
(N,D) = �

d,BO

u{1,3},2
(N,D) + �

d,BO

u{1,4},2
(N,D)

+ �
d,BO

u{3,4},2
(N,D) = Sh2(N, u{1,3})

dO
2
(N, (1, 3))

d2(N, (1, 3))
+ Sh2(N, u{1,2,4})

dO
2
(N, (1, 2, 4))

d2(N, (1, 2, 4))

+ Sh2(N, u{1,3,4})
dO
2
(N, (1, 3, 4))

d2(N, (1, 3, 4))
− Sh2(N, u{1,2,3,4})

dO
2
(N, (1, 2, 4) ∪ (1, 3, 4))

d2(N, (1, 2, 4) ∪ (1, 3, 4))

+ Sh2(N, u{3,4})
dO
2
(N, (3, 4))

d2(N, (3, 4))
= 0 ⋅ 0 +

1

3
⋅

1

2
+ 0 ⋅ 0 −

1

4
⋅

1

2
+ 0 ⋅ 0 =

1

24
,

�
d,BI

v,2
(N,D) = �

d,BI

u{1,3},2
(N,D) + �

d,BI

u{1,4},2
(N,D)

+ �
d,BI

u{3,4},2
(N,D) = Sh2(N, u{1,3})

dI
2
(N, (1, 3))

d2(N, (1, 3))
+ Sh2(N, u{1,2,4})

dI
2
(N, (1, 2, 4))

d2(N, (1, 2, 4))

+ Sh2(N, u{1,3,4})
dI
2
(N, (1, 3, 4))

d2(N, (1, 3, 4))
− Sh2(N, u{1,2,3,4})

dI
2
(N, (1, 2, 4) ∪ (1, 3, 4))

d2(N, (1, 2, 4) ∪ (1, 3, 4))

+ Sh2(N, u{3,4})
dI
2
(N, (3, 4))

d2(N, (3, 4))
= 0 ⋅ 0 +

1

3
⋅

1

2
+ 0 ⋅ 0 −

1

4
⋅

1

2
+ 0 ⋅ 0 =

1

24
,
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mentioned in the previous subsection, given a directed communication situation 
(N, v, D), and i ∈ N , vi gives the productivity of player i via the characteristic func-
tion; whereas in v−i , player i is null. Then, in a connected directed network, ∑
i∈N

�d
i
(N, vi,D) can be seen as the part of the total worth, v(N), of the grand coalition 

that players can preserve given the existing communications in the network and 
thus,

can be used as a measure of the efficiency of the directed network to preserve the 
interests of the players.

Similarly,

is a vulnerability network measure that represents the part of the total worth v(N) 
corresponding to intermediation costs. These costs must be payed by coalitions to 
unproductive players that permit members in the coalition to be connected. The 
vulnerability of the network increases with these intermediation costs because the 
members of the coalitions are more dependent on other members.

We illustrate these measures with the following example.

Example 6.2  Let (N, v, T) be a directed communication situation in which v is the 
messages game and T is an oriented tree (Harary and Sumner 1980). Then, for each 
i ∈ N , vi =

∑
j∶j≠i

u{i,j} . As T is an oriented tree for j ≠ i , MCP({i, j},N,D) = {Q{i,j}} 

or is equal to the emptyset. Let us denote the geodesic distance between i and j by 
d(i, j), i.e., the number of arcs in Q{i,j} if such arcs exist, and d(i, j) = ∞ , otherwise. 
Then,

As a consequence,

which is very similar to the expression for the average efficiency of Latora and 
Marchiori (2001). Indeed, the only difference is that in our proposal, the measure 
is defined in terms of the distance geodesic plus 1 whereas the average efficiency is 
measure in terms of geodesic.

E(N, v,D) =

∑
i∈N

�d
i
(N, vi,D)

v(N)
=

∑
i∈N

�d,C

v,i
(N,D)

v(N)

V(N, v,D) =

∑
i∈N

�d
i
(N, v−i,D)

v(N)
=

∑
i∈N

�d,B

v,i
(N,D)

v(N)
=

vD(N)

v(N)
− E(N, v,D)

�d
i
(N, vi, T) =

∑
j∶j≠i

Shi(N, u{Q{i,j}}) =
∑
j∶j≠i

1

d(i, j) + 1
.

E(N, v,T) =
2

n(n − 1)

∑
i<j

1

d(i, j) + 1
=

1

n(n − 1)

∑
i≠j

1

d(i, j) + 1
,
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Example 6.3  For the communication situation (N, v, D) of Example 4.1 (and Exam-
ple 6.1) we have4

Five of the six total possible messages can be sent using this (directed) network. Only 
the communication between 1 and 4 is vulnerable because of players 2 and 3 must 

be rewarded with 1

12
 each. Then, the network efficiency is 5

6
−

2⋅
1

12

6
=

29

36
= 0.806 , 

measuring the fraction of the total worth (6) that players can retain given the restric-
tions in the connection, and after paying the intermediation fees. The proportion 
corresponding to these intermediation fees can be seen as a vulnerability measure.

7 � The defined value versus other allocation rules

In this section, we illustrate our defined value �d and compare it with some other 
values from the literature. To obtain some numerical comparisons, we will use the 
examples in Khmelnitskaya et al. (2016) that are also used in Li and Shan (2020).

Consider the directed communication situations (N, v,D1) , (N, v,D2) and 
(N, v,D3) with N = {1, 2, 3, 4, 5} , v(S) = s2 for all S ⊆ N and

see Fig. 4.

As v =
5∑
i=1

u{i} + 2
∑

S⊆N,s=2

uS , each player can generate a dividend equal to 1 on his 

own, and each couple generates a dividend of 2 if both players can communicate.

7.1 � Illustration of �d

The digraph restricted game defined in this paper, for these directed communication 
situations, is given by5

E(N, v,D) =

∑
i∈N

�d
i
(N, vi,D)

v(N)
=

∑
i∈N

�d,C

v,i
(N,D)

v(N)
=

17

12
+ 1 + 1 +

17

12

6
=

29

36

V(N, v,D) =

∑
i∈N

�d
i
(N, v−i,D)

v(N)
=

∑
i∈N

�d,B

v,i
(N,D)

v(N)
=

0 +
1

12
+

1

12
+ 0

6
=

1

36
.

D1 = {(1, 2), (3, 5), (4, 5)}

D2 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

D3 = {(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 5)},

4  The contribution to the network efficiency (centrality) is equal for players 2 and 3 and it is also equal 
for 1 and 4 (they differ in the in-and out-communication centrality)
5  Notice that these games are not zero-normalized.
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and, finally

In game vD3 , for example, the coalition S = {3, 4, 5} obtains vD3(S) = 9 given that all 
the subcoalitions {3, 4}, {3, 5} and {4, 5} can communicate (players 3 and 5 using 
4 as intermediary). However, coalition S = {1, 4, 5} only obtains vD3(S) = 7 as the 
connection between players 1 and 5 is unfeasible, since there is no path within S 
connecting these three players. Regarding our value, we have,

and

Connection efficiency of �d in these examples says that in (N, v,D1) player 1 and 
2 can communicate and, then, they preserve the 4 units of v({1, 2}) . On the other 
hand, in the coalition {3, 4, 5} (the other weak component) only the couples {3, 5} 
and {4, 5} can communicate, as there is no directed path connecting 3 and 4. There-
fore, this coalition loses 2 units, preserving only 7 units of the initial 9.

In (N, v,D2) and (N, v,D3) all couples can communicate and thus, connection effi-
ciency requires the usual efficiency in these two cases.

vD1 =

5∑
i=1

u{i} + 2u{1,2} + 2u{3,5} + 2u{4,5},

vD2 =

5∑
i=1

u{i} + 2u{1,2} + 2(u{1,2,3} + u{1,3,4,5} − u{1,2,3,4,5}) + 2(u{1,2,3,4} + u{1,4,5}

− u{1,2,3,4,5}) + 2u{1,5} + 2u{2,3} + 2(u{2,3,4} + u{1,2,4,5} − u{1,2,3,4,5}) + 2(u{1,2,5}

+ u{2,3,4,5} − u{1,2,3,4,5}) + 2u{3,4} + 2(u{3,4,5} + u{1,2,3,5} − u{1,2,3,4,5}) + 2u{4,5},

vD3 =

5∑
i=1

u{i} + 2u{1,2} + 2u{1,3} + 2u{1,4} + 2u{1,2,3,4,5} + 2u{2,3}

+ 2(u{2,3,4} + u{1,2,4} − u{1,2,3,4}) + 2u{2,3,4,5} + 2u{3,4} + 2u{3,4,5} + 2u{4,5}.

�d(N, v,D1) = Sh(N, vD1) = (2, 2, 2, 2, 3)

�d(N, v,D2) = Sh(N, vD2) = (5, 5, 5, 5, 5)

�d(N, v,D
3

) = Sh(N, vD3) =
(
137

30

,

142

30

,

172

30

,

192

30

,

107

30

)
.

1

2

34

5

12

3 4 5

1

2

3 4

5

D1 D2 D3

Fig. 4   The examples of Khmelnitskaya et al. (2016)
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7.2 � Comparison with other values

Next, we compare our value �d with some other values from the literature for this 
example.

7.2.1 � Myerson value for undirected communication situation

Although the Myerson value is not defined for games with digraphs but for games 
with graphs, we can compare the obtained figures with the corresponding Myer-
son values for the (undirected) communication situations (N, v, �D1

) , (N, v, �D2
) and 

(N, v, �D3
) . We have

and

As the Myerson value is component efficient, the only case in which players cannot 
obtain v(N) is (N, v, �D1

) : 
∑
i∈N

𝜇i(N, v, 𝛾D1
) = v({1, 2}) + v({3, 4, 5}) < v(N) , as play-

ers in the coalition {1, 2} cannot communicate with players in {3, 4, 5}.
As mentioned, in �(N, v, �D2

) and in (N, v, �D3
) all couples can communicate. 

Nevertheless, �d ≠ � . In our model this occurs as the communication induced by 
a digraph needs a higher level of intermediation, which generates a different alloca-
tion between players. As an example, in (N, �D3

) the connection between players 1 
and 5 only needs the intermediation of player 4, whereas in (N,D3) it also needs the 
collaboration of 2 and 3. The corresponding dividend (equal to 2) is divided among 
1, 4 and 5 in the case of the Myerson value but among players 1, 2, 3, 4 and 5 in our 
proposal. The difference between both allocation rules is due to the intermediation 
costs.

7.2.2 � Permission values

In Gilles et  al. (1992) and Gilles and Owen (1994), the digraph in the model 
(N, v, D) is interpreted as a permission structure that restricts the cooperation pos-
sibilities because some players need permission from other players before they are 
allowed to cooperate in a coalition. In the conjunctive approach, every player i needs 
permission from all its predecessors being the players j such that (j, i) ∈ D.6 This 

�(N, v, �D1
) =

(
2, 2,

8

3
,
8

3
,
11

3

)

�(N, v, �D2
) = (5, 5, 5, 5, 5)

�(N, v, �D3
) =

(
296

60
,
266

60
,
296

60
,
406

60
,
236

60

)
.

6  Although games with a permission structure are defined only for asymmetric digraphs, the definition 
can directly be extended to all digraphs. In that case, when (i, j), (j, i) ∈ D then players i and j veto each 
other in the sense that one cannot cooperate in a coalition without the other.
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yields the following conjunctive restricted games vD
c
 for (N, v,D1), (N, v,D2) and 

(N, v,D3):

and

This results in the following conjunctive permission value payoff vectors:

Notice that, digraph (N,D2) having a Hamiltonian cycle, and v being a symmetric 
game, results in an equal payoff v(N)

n
 for all players according to the conjunctive per-

mission value, as is also the case in our value �d . The conjunctive permission value 
yields this equal allocation for any game, while our value might assign different pay-
offs to the players in case the game is not symmetric.

On the other hand, in the disjunctive approach for acyclic permission structures, 
every player needs permission from at least one of its predecessors (if it has any). 
Since D1 is an acyclic digraph, we compute the disjunctive restricted game and dis-
junctive permission value for this digraph, yielding restricted game

giving the disjunctive permission value payoff vector:

In the permission approach to games with a digraph, cooperation is restricted by 
players needing permission from other players before being allowed to cooper-
ate. Since the grand coalition contains all players that can generate worth as well 
as give permission, the two permission values are efficient, meaning that the total 

vD1

c
= u{1} + u{1,2} + u{3} + u{4} + u{3,4,5}

+ 2u{1,2} + 2u{1,3} + 2u{1,4} + 2u{1,3,4,5} + 2u{1,2,3}

+ 2u{1,2,4} + 2u{1,2,3,4,5} + 2u{3,4} + 4u{3,4,5},

vD2

c
=

(
5 + 2

(
5

2

))
u{1,2,3,4,5} = 25u{1,2,3,4,5},

v
D3

c = 4u{1,2,3,4} + u{1,2,3,4,5} + 2

(
4

2

)
u{1,2,3,4} + 4 ⋅ 2u{1,2,3,4,5}

= 16u{1,2,3,4} + 9u{1,2,3,4,5}.

�c(N, v,D1) =
1

30
(202, 97, 187, 187, 77), �c(N, v,D2) = (5, 5, 5, 5, 5),

and �c(N, v,D3) =
1

5
(29, 29, 29, 29, 9).

v
D1

d
= u{1} + u{1,2} + u{3} + u{4} + (u{3,5} + u{4,5} − u{3,4,5})

+ 2u{1,2} + 2u{1,3} + 2u{1,4} + 2(u{1,3,5} + u{1,4,5} − u{1,3,4,5})

+ 2u{1,2,3} + 2u{1,2,4} + 2(u{1,2,3,5} + u{1,2,4,5} − u{1,2,3,4,5})

+ 2u{3,4} + 2u{3,5} + 2u{4,5},

�d(N, v,D1) =
1

30
(218, 103, 153, 153, 123).
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unrestricted worth v(N) of the grand coalition will be allocated. How this is allo-
cated over the players depends on the cooperation restrictions. The disjunctive per-
mission value satisfies a weaker fairness axiom, where we only delete arcs such that 
the head/successor has at least one more ingoing arc, i.e., the payoff of the two play-
ers i,  j on an oriented arc (i,  j) change by the same amount if the deleted arc (i,  j) 
satisfies #{h ∈ N ∣ (h, i) ∈ D} ≥ 2.

The conjunctive permission value satisfies the alternative fairness axiom where 
the deletion of an arc has the same effect on the payoff of the head/successor of 
the arc and any other predecessor of this head. Notice that this also fits with the 
difference in interpretation of conjunctive and disjunctive permission. Every arc 
(i,  j) in the conjunctive approach restricts the cooperation possibilities of the head 
j. But, in case a player j is the head of at least one arc, adding more arcs with j as 
head increases the disjunctive cooperation possibilities of j, as is also the case in the 
directed communication situations considered in this paper. This is also reflected in 
the weak fairness that these values have in common.

7.2.3 � The value of Li and Shan (2020)

Comparing our value with the Myerson value for digraphs introduced in Li and Shan 
(2020), the more important difference is the type of efficiency used (which depends 
on the type of connection that is considered) as both rules satisfy fairness and bal-
anced contributions. Their strong component efficiency is a property that assumes 
a high connection requirement for generating worth which, usually, implies a low 
level of cooperation. As a consequence, a lot of value of the original coalitions can 
be lost. Specifically this occurs in directed communication situations (N, v,D1) and 
in (N, v,D3) where Li and Shan (2020)’s Myerson value for digraphs assigns, respec-
tively, (1, 1, 1, 1, 1) and (9/2, 9/2, 9/2, 5/2, 1) (see Li and Shan (2020)). From the 
total initial worth of 25, the players can only retain a value of 5 in the first case and a 
value of 17 in the second case. For (N, v,D2) , our value coincides with Li and Shan 
(2020)’s Myerson value for digraphs. This follows since the presence of a Hamilto-
nian cycle and the game being symmetric results in payoffs v(N)/n for each player in 
both values, as is also the case in the conjunctive permission value above.7

If the game is not symmetrical, the allocation according to our rule and Li and 
Shan (2020)’s Myerson value can differ, as is shown in the following example.

Example 7.1  Consider (N,  v,  D) with N = {1, 2, 3} v = u{1,2} + u1,3 − u{1,2,3} and 
D = {(1, 2), (2, 3), (3, 1)} as in Fig. 5.

Then Li and Shan (2020)’s Myerson value for digraphs gives ( 1
3
,
1

3
,
1

3
) whereas 

�d(N, v,D) = (
2

3
,
1

6
,
1

6
).

7  The restricted game introduced by Li and Shan (2020) in the example of this section is 
n∑
i=1

u{i} + (v(N) − n)uN in such a case. In our proposal elementary considerations of symmetry permit us 

to conclude that players must be equally rewarded.
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