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Abstract
In this paper, reliability properties of a system that is subject to a sequence of shocks 
are investigated under a particular new change point model. According to the model, 
a change in the distribution of the shock magnitudes occurs upon the occurrence of 
a shock that is above a certain critical level. The system fails when the time between 
successive shocks is less than a given threshold, or the magnitude of a single shock 
is above a critical threshold. The survival function of the system is studied under 
both cases when the times between shocks follow discrete distribution and when the 
times between shocks follow continuous distribution. Matrix-based expressions are 
obtained for matrix-geometric discrete intershock times and for matrix-exponential 
continuous intershock times, as well.
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1  Introduction

Although the event of system failure is defined through the magnitudes of ran-
dom shocks in classical shock models, according to the delta shock model, the 
system fails if the length of the times between two successive shocks is less than 
a given fixed threshold. Such a model has been studied by Li (1984), Li and Kong 
(2007), Li and Zhao (2007) when the shocks occur according to a Poisson pro-
cess, i.e. the interarrival times between shocks are exponentially distributed. Tun-
cel and Eryilmaz (2018) obtained the survival function and the mean time to fail-
ure of the system when intershock times follow proportional hazard rate model. 
Eryilmaz (2017) studied reliability properties of a system under the delta shock 
model when the shocks occur according to a Polya process. Under the assumption 
of Polya process, the interarrival times between successive shocks are no longer 
independent.

Various modifications and generalizations of delta shock (or simply, �-shock) 
models have been introduced to represent real life systems and processes. Mallor 
and Santos (2003) studied a general shock model that generalizes the extreme, the 
cumulative and the run shock models. Wang and Zhang (2005) defined a mixed 
shock model. According to their model, the system fails if either the time between 
two successive shocks is less than a given threshold or the magnitude of a single 
shock exceeds a given threshold. This is a mixed model that combines delta and 
extreme shock models. See also Parvardeh and Balakrishnan (2015) for mixed 
shock models. Eryilmaz (2012) extended the delta shock model to the case when 
the system fails if a specified number of consecutive interarrival times are less 
than a threshold delta. Jiang (2020) defined and studied a generalized delta shock 
model with multi-failure thresholds. Goyal et  al. (2022a) introduced a general 
δ-shock model when the recovery time depends on both the arrival times and the 
magnitudes of shocks. See also Lorvand et al. (2019), Poursaeed (2021), Goyal 
et al. (2022b) and Lorvard and Nematollahi (2022) for other types of extensions 
and generalizations of the delta shock model.

Shock models have wide applications for modeling various real-life processes 
and systems. The term shock is generic, and it can be replaced by an appropriate 
concept depending on the process under concern. For example, in a certain spare 
parts inventory management system, demands arrive randomly with random size. 
In this case, the interarrival times are the times between successive demands. The 
size of a demand coincides with the magnitude of a shock. In a certain portfolio 
of an insurance company, claims occur randomly over time. In this case, the inter-
arrival times are the times between successive claims and the magnitudes of the 
shocks are the sizes of the claims.

In most real-life situations, after a shock that is above a certain level, the char-
acteristics, e.g., distribution of the shocks may change. For example, if the shock 
is a kind of environmental effect, e.g., pressure, temperature, and wind, then a 
harsher environment might be available after the shock that is significantly differ-
ent from the previous shocks. Eryilmaz and Kan (2021) studied reliability and 
optimal replacement policy for an extreme shock model when the distribution of 
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the shock size changes after a random number of shocks following a particular 
distribution. In particular, for a sequence of shock sizes denoted by Y1 , Y2 , ⋯ , they 
considered the case when Y1 , Y2 , ⋯ , YM are independent and identically distributed 
(iid) with common distribution G1 and YM+1 , YM+2 , ⋯ are iid with common distri-
bution G2 , where M is a positive discrete random variable independent of Yi ’s and 
follows a particular distribution. Also, Eryilmaz and Kan (2021), studied the reli-
ability of an extreme shock model when there is a change in the shock size distri-
bution. According to their model, the change in shock size distribution occurs 
upon the occurrence of a shock that is above a fixed warning threshold. They 
assumed that the distribution of the magnitudes of shocks changes after the first 
shock of size at least d1 a given level. That is, if Nd1

 denotes the number of shocks 
until the first shock of size at least d1 , then it is assumed that Y1 , Y2 , ⋯ , YNd1

 have 
common distribution G1 , and YNd1

+1 , YNd1
+2 , ⋯ have another common distribution 

G2 . In this case, the random variable Nd1
 denotes the number of shocks until the 

change point depends on Y1 , Y2 , ⋯ . Applications of this model to statistical con-
trol processes and wind turbines are given by Eryilmaz and Kan (2021).

In this paper, we study a new mixed shock model that combines extreme and 
delta shock models under the change point model proposed by Eryilmaz and 
Kan (2021). Such a model is useful for modeling various real-life systems or 
processes. In general, this proposed new change point setup is useful to model 
the situation when there is a change in behavior of the system/process upon the 
occurrence of an unexpected event, e.g., a sudden change in environmental condi-
tion, a large claim due to an extreme event, an enormous demand shock for health 
care systems and ventilators due to COVID-19. Such changes ensure the change 
in probability distribution of the shock/claim/demand. Also, this model is use-
ful for insurance portfolio management. Consider a heterogeneous portfolio of 
losses and/or payments of an insurance company. Expected losses are defined by 
a threshold, say d1 , and are such that the loss sizes do not exceed the threshold d1 . 
An unexpected future loss, (with loss size exceeding the value of the threshold) 
could be used as a warning for an approaching high-risk situation for the portfo-
lio since the distribution of the claim sizes may change after an unexpected loss. 
This may occur if the portfolio is affected by a random event such as explosion, 
breakdown that influence all policies. A plausible criterion to confer that a high-
risk situation is approaching for the insurance company would be to observe at 
least two unexpected losses that are very close to each other or more generally 
to observe least two unexpected losses which are separated by at most � expected 
losses (this corresponds to the classical �-shock model) as well as the size of a 
unexpected catastrophic loss is at least d > d1 (this corresponds to the extreme 
shock model).

The findings of the paper can be summarized as follows:

•	 The probability generating function (Laplace-Stieltjes transform) of the sys-
tem’s lifetime is obtained when the times between shocks follow discrete 
(continuous) distribution
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•	 The matrix-based expressions for the survival function of the system are obtained 
when the times between shocks follow discrete matrix-geometric (continuous 
matrix-exponential) distribution.

In mixed shock models, system failure results from the competing failure crite-
ria. Indeed, in most real-life processes, the system failure occurs with respect to the 
occurrence of two or more different events. The novelty of the present paper lies 
in combining the mixed shock model previously studied in the literature with the 
change point-based model. Such a combined model is flexible and can be used in a 
more general setting.

The paper is organized as follows. In Sect. 2, the model is described, and some 
preliminary results are presented. In Sect. 3, the reliability properties of the system 
are investigated under both cases when the interarrival times between successive 
shocks follow discrete and continuous probability distributions. Section 4 contains 
numerical illustrations.

2 � Description of the model and preliminary results

We consider a system that is subject to random shocks. Let X1 , X2 , ⋯ be the interar-
rival times between successive shocks, with common distribution function (df) 
F(x) = 1 − F(x) = Pr(X ≤ x) , where X denotes a generic random variable of Xi s. 
Also, let Y1 , Y2 , ⋯ be the random magnitudes of the shocks. It is assumed that the 
distribution of the magnitudes of shocks changes after the first shock of size at least 
d1 > 0 . That is, the random shock magnitudes Y1 , Y2 , ⋯ , YNd1

 have common df G1 , 
and YNd1

+1 , YNd1
+2 , ⋯ have common df G2 , where Nd1

 denotes the random number of 
shocks until the first shock of size at least d1 . The system fails when the time 
between successive shocks is less than a given threshold 𝛿 > 0 , or the magnitude of 
a single shock is at least d , where d > d1 . Let also Nd denotes the number of shocks 
for which the time between successive shocks is less than a given threshold � , or the 
magnitude of a single shock is at least d . Then, the lifetime of the system is 

T =
Nd∑
i=1

Xi , Hence, T  is a random sum and has a compound distribution.

For simplicity, let us denote by:
p1 = G1

(
d1
)
 : the probability that the magnitude of a shock before the change in 

shock size distribution is below d1,
p2 = G1(d) : the probability that the magnitude of a shock before the change in 

shock size distribution is below d,
p3 = G2(d) : the probability that the magnitude of a shock after the change in 

shock size distribution is below d.
It should be noted that the mixed shock model considered in the present paper 

coincides with the model studied by Eryilmaz and Kan (2021) when � → 0.
In the following Lemma 1 we obtain the joint probability mass function (pmf) of 

the random vector (Nd1
 , Nd).
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Lemma 1.  The joint pmf of the random variables Nd1
 and Nd is

Proof.  For n > m we have

and

For n = m we have

and

	�  ◻

Using Lemma 1, we can easily obtain the marginal pmfs of the random variables 
Nd1

 and Nd , given in the following:

Corollary 1.  (i) The marginal pmf of Nd1
 is given by.

(ii) The marginal pmf of Nd is given by

(1)Pr(Nd1
= m,Nd = n) =

⎧
⎪⎨⎪⎩

�
p2 − p1

�
pm−1
1

pn−m−1
3

F
n−1

(𝛿)
�
1 − p3F(𝛿)

�
, n > m

pn−1
1

F
n−1

(𝛿)
�
1 − p2F(𝛿)

�
, n = m

.

{N
d1
= m,N

d
= n} = {X1 > 𝛿, Y1 < d1,⋯ ,X

m−1 > 𝛿, Y
m−1 < d1,Xm

> 𝛿, d1 ≤ Y
m
< d,

X
m+1 > 𝛿, Y

m+1 < d,⋯ ,X
n−1 > 𝛿, Y

n−1 < d,X
n
≤ 𝛿}

∪ {X1 > 𝛿, Y1 < d1,⋯ ,X
m−1 > 𝛿, Y

m−1 < d1,Xm
> 𝛿, d1 ≤ Y

m
< d,

X
m+1 > 𝛿, Y

m+1 < d,⋯ ,X
n−1 > 𝛿, Y

n−1 < d,X
n
> 𝛿, Y

n
≥ d}

Pr(Nd1
= m,Nd = n) = F

n−1
(�)Gm−1

1

(
d1
)[
G1(d) − G1

(
d1
)]
Gn−m−1

2
(d)F(�)

+ F
n
(�)Gm−1

1

(
d1
)[
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(
d1
)]
Gn−m−1
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(d)

[
1 − G2(d)

]

= F
n−1

(�)pm−1
1

(
p2 − p1

)
pn−m−1
3

F(�)

+ F
n
(�)pm−1

1

(
p2 − p1

)
pn−m−1
3

(
1 − p3

)

=
(
p2 − p1

)
pm−1
1

pn−m−1
3

F
n−1

(�)
[
1 − p3F(�)

]
.

{Nd1
= n,Nd = n} = {X1 > 𝛿,Y1 < d1,… ,Xn−1 > 𝛿,Yn−1 < d1,Xn ≤ 𝛿}

∪ {X1 > 𝛿,Y1 < d1,… ,Xn−1 > 𝛿,Yn−1 < d1,Xn > 𝛿,Yn ≥ d}

Pr(Nd1
= n,Nd = n) = F

n−1
(�)Gn−1

1

(
d1
)
F(�) + F

n
(�)Gn−1

1

(
d1
)[
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= F
n−1
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n
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F
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1 − p2F(�)
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(2)Pr
(
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=
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1 − p1F(�)

]
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1

F
m−1

(�)
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for p1 ≠ p3, and

for p1 = p3.

Proof.  (i) Using (1) we get

(ii) Similarly, from (1) we obtain

Now, the result follows immediately, since

(3)

Pr
(
Nd = n

)
=

(
p3 − p2

p3 − p1

)[
p1F(�)

]n−1[
1 − p1F(�)

]
+

(
p2 − p1

p3 − p1

)[
p3F(�)

]n−1[
1 − p3F(�)

]
,

(4)

Pr
(
Nd = n

)
=

((
p2 − p3

)
F(�)

1 − p3F(�)

)
(n − 1)

[
p3F(�)

]n−2[
1 − p3F(�)

]2

+

(
1 − p2F(�)

1 − p3F(�)

)[
p3F(�)

]n−1[
1 − p3F(�)

]

Pr
(
Nd1

= m
)
= Pr(Nd1
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∞∑
n=m+1

Pr
(
Nd1
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)

= pm−1
1

F
m−1

(�)
[
1 − p2F(�)

]

+
(
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)
pm−1
1

[
1 − p3F(�)
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pn−m−1
3

F
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1

F
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(�)
[
1 − p2F(�)

]
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(
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)
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1

F
m
(�)

=
[
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1
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(
Nd1

= m,Nd = n
)
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(
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	�  ◻

Remark 1. (i) From Eq. (2), we have that the random variable Nd1
 follows the geo-

metric distribution with parameter 1 − p1F(�).
(ii) Let p1 ≠ p3.
Let also

and consider the geometric random variables W1 and W2 having probability mass 
functions

and

respectively. Note that W1 ≜ Nd1
 , where the symbol ≜ means equality in distribution.

Then Eq. (3) can be rewritten as

Therefore, the distribution of the random variable Nd is a mixture of two geomet-
ric distributions. It should be noted that the weights � and 1 − � may take negative 
values and hence, Eq. (8) is a generalized mixture of two geometric distributions.

(iii) Let p1 = p3.
Then, Eq. (4) can also be rewritten as

where

Pr
(
W2 = n

)
 is given by (7), and the random variable U1 has the negative binomial 

distribution with probability mass function

n−2�
m=0

�
p1

p3

�m

=

⎧
⎪⎨⎪⎩

p3

p3−p1

�
1 −

�
p1

p3

�n−1
�

n − 1, ifp1 = p3

, ifp1 ≠ p3.

(5)� =
p3 − p2

p3 − p1
and 1 − � =

p2 − p1

p3 − p1

(6)Pr
(
W1 = n

)
=
[
p1F(�)

]n−1[
1 − p1F(�)

]
, n = 1, 2,…

(7)Pr
(
W2 = n

)
=
[
p3F(�)

]n−1[
1 − p3F(�)

]
, n = 1, 2,…

(8)Pr
(
Nd = n

)
= �Pr

(
W1 = n

)
+ (1 − �)Pr

(
W2 = n

)
, n = 1, 2,…

(9)Pr
(
Nd = n

)
= � Pr

(
U1 = n

)
+ (1 − �)Pr

(
W2 = n

)
, n = 1, 2,…

(10)� =

(
p2 − p3

)
F(�)

1 − p3F(�)
, 1 − � =

1 − p2F(�)

1 − p3F(�)

(11)Pr
(
U1 = n

)
= (n − 1)

[
p3F(�)

]n−2[
1 − p3F(�)

]2
, n = 2, 3,… .
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Therefore, since the weights � and 1 − � may take negative values, Eq.  (9) is a 
generalized mixture of negative binomial and geometric distributions.

3 � Reliability of the system

For our system, the following two dependent lifetime random variables are of 
interest

Note that T1 and T  are compound random variables (or random sums), T1 
denotes the time until the first shock is of size at least d1 , i.e., it is the time until 
the change point and the random variable T  denotes the lifetime of the system.

In the sequel, we examine two cases according to which the interarrival times 
X1 , X2 , ⋯ between successive shocks have a discrete or a continuous distribution.

3.1 � The discrete case

Suppose that the interarrival times X1 , X2 , ⋯ between successive shocks have a 
discrete distribution with an arbitrary common df F . Let f (t) = Pr(X = t) be the 
pmf of X and fT (t) = Pr(T = t) be the pmf of the lifetime T  . Define the probabil-
ity generating functions (pgf) of the conditional random variables X|X ≤ � and 
X|X > 𝛿 by

and

Then, we have the following.

Theorem 1.  Let PT1,T

(
u1, u

)
= E

[
u
T1
1
uT
]
 be the joint pgf of the random vector 

(
T1, T

)
. Then, it holds.

T1 =

Nd1∑
i=1

Xi, T =

Nd∑
i=1

Xi.

PX,�(u) = E
(
uX|X ≤ �

)

PX,𝛿(u) = E
(
uX|X > 𝛿

)
.

PT1,T
(

u1, u
)

=
PX,�(u)F(�)

(

p2 − p1
)

PX,�
(

u1u
)

F(�) + PX,�(u)
(

p2 − p1
)(

1 − p3
)

PX,�
(

u1u
)

(F(�))2
[

1 − p3F(�)PX,�(u)
][

1 − p1F(�)PX,�
(

u1u
)

]

+
PX,�

(

u1u
)

F(�) + PX,�
(

u1u
)

F(�)
(

1 − p2
)

1 − p1F(�)PX,�
(

u1u
)

.
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Proof.  By conditioning on 
(
Nd1

,Nd

)
 we get

The result follows using the details in the proof of Lemma 1. 	�  ◻

By letting u = 1and u1 = 1 in Theorem 1 we obtain the marginal pgfs of the life-
times T1and T , respectively. Thus, we have the following:

Corollary 2.  (i) The pgf PT1
(u) = E

[
uT1

]
 of the lifetime random variable T1is.

(ii) The pgf PT (u) = E
[
uT
]
 of the lifetime random variable T  is

Using that E
[
T1
]
= P

�

T1
(1) and E[T] = P

�

T
(1) and Corollary 2, we can obtain the 

means of the random variables T1 and T  . Thus, we have the following:

Corollary 3.  The mean of T1 is

and the mean time to failure (MTTF) of the system is

PT1,T

�
u1, u

�
=

∞�
m=1

∞�
n=m+1

E

⎡
⎢⎢⎢⎣
u

Nd1∑
i=1

Xi

1
u

Nd∑
i=1

Xi ���Nd1
= m, Nd = n

⎤
⎥⎥⎥⎦
Pr(Nd1

= m,Nd = n)

+

∞�
n=1

E

⎡
⎢⎢⎢⎣
u

Nd1∑
i=1

Xi

1
u

Nd∑
i=1

Xi ���Nd1
= n, Nd = n

⎤
⎥⎥⎥⎦
Pr(Nd1

= n,Nd = n)

(12)

PT1
(u) =

F(�)
(
p2 − p1

)
PX,�(u)F(�) +

(
p2 − p1

)(
1 − p3

)
PX,�(u)(F(�))

2

[
1 − p3F(�)

][
1 − p1F(�)PX,�(u)

]

+
PX,�(u)F(�) + PX,�(u)F(�)

(
1 − p2

)

1 − p1F(�)PX,�(u)
.

(13)

PT (u) =
PX,�(u)F(�)

(
p2 − p1

)
PX,�(u)F(�) + PX,�(u)

(
p2 − p1

)(
1 − p3

)
PX,�(u)(F(�))

2

[
1 − p3F(�)PX,�(u)

][
1 − p1F(�)PX,�(u)

]

+
PX,�(u)F(�) + PX,�(u)F(�)

(
1 − p2

)

1 − p1F(�)PX,�(u)
.

E
[
T1
]
=

1

1 − p1F(�)
E[X]

E[T] =
1 +

(
p2 − p1 − p3

)
F(�)[

1 − p1F(�)
][
1 − p3F(�)

]E[X].
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For some specific distributions of the random variable X we can obtain analytical 
results for the evaluation of the distributions of the lifetime random variables T1 and T.

At first, we consider the particular case when the interarrival times between suc-
cessive shocks follow the geometric distribution with common pmf

and we represent the random variables T1 and T  as matrix-geometric 
distributions.

A discrete random variable W with zero pmf at zero that has a probability gener-
ating function in the form

for some m ≥ 1 and real constants c1,… , cm and d1,… , dm , is said to have a 
matrix-geometric distribution (see, e.g. Bladt and Nielsen (2017)). In this case, the 
probability mass function and the survival function of the random variable T

�
 can be 

represented, respectively, as

and

where � = (1, 0,… , 0) is a 1 × m row vector, Im is the identity matrix of order m , 
and the m × m matrix Q and the m × 1 column vector u′ are given by

We write W ∼ MGm(Q,u) , to represent that the random variable W has matrix-
geometric distribution.

Theorem 2.  Let the interarrival times between successive shocks follow the geomet-
ric distribution with common pmf given by (14). Then

(i) The random variable T1 ∼ MG
�+1(Q, u) , where Q∶ � + 1× � + 1 and u′

∶ � + 1 × 1 are given by (18) with

(14)f (t) = p(1 − p)t−1, t = 1, 2… ,

(15)E
[
uW

]
=

c1u +…+ cmu
m

1 + d1u +…+ dmu
m

(16)P(W = n) = �Qn−1u�

(17)P(Wn) = �Qn
(
Im − Q

)−1
u�,

(18)Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 ⋯ 0 1

−dm 0 0 ⋯ 0 0

−dm−1 1 0 ⋯ 0 0

−dm−2 0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−d2 0 0 ⋯ 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, u� =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1
cm
cm−1
cm−2
⋮

c2

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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(ii) The random variable T ∼ MG2�+2(Q,u) , where Q∶ 2(� + 1) × 2(� + 1) and u′
∶ 2(� + 1) × 1 are given by (18) with

Proof.  Under the assumptions of the Theorem,

and

(i) Using Eq. (12), the pgf of T1 is obtained as

and hence the result follows directly from (15).
(ii) Using Eq, (13), the pgf of T  can be written as

where the coefficients ci and di are as given in the theorem. Since PT (u) is of the 
form of Eq. (15), the result follows immediately. 	�  ◻

c1 = p; ci = 0, 2 ≤ i ≤ �; c
�+1 = −p1pq

�;

d1 = −q, di = 0, 2 ≤ i ≤ �; d
�+1 = −p1pq

� .

c1 = p; c2 = −pq;

ci = 0; 2 < i ≤ 𝛿;

c
𝛿+1 = −p2pq

𝛿
; c

𝛿+2 = p2p
2q𝛿 − p1p

2q𝛿 + p2pq
𝛿+1 − p3p

2q𝛿;

ci = 0, 𝛿 + 2 < i ≤ 2𝛿 + 1; c2𝛿+2 = p1p3p
2q2𝛿;

d1 = −2q; d2 = q2;

di = 0; 2 < i ≤ 𝛿;

d
𝛿+1 = −

(
p1pq

𝛿 + p3pq
𝛿
)
;d

𝛿+2 = p1pq
𝛿+1 + p3pq

𝛿+1
;

di = 0, 𝛿 + 3 < i ≤ 2𝛿 + 1;

d2𝛿+2 = p1p3p
2q2𝛿 .

PX,�(u) = E
(
uX|X ≤ �

)
=

pu
(
1 − (qu)�

)

(1 − qu)
(
1 − q�

) ,

PX,𝛿(u) = E
(
uX|X > 𝛿

)
=

1

q𝛿

[(
pu

1 − qu

)
− PX,𝛿(u)

(
1 − q𝛿

)]
.

PT1
(u) =

pu − p1pq
�u�+1

1 − qu − p1pq
�u�+1

,

PT (u) =

(
2(�+1)∑
i=1

ciu
i

)
∕

(
1 +

2(�+1)∑
i=1

diu
i

)
,
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3.2 � The continuous case

Now suppose that the interarrival times X1 , X2 , ⋯ between successive shocks have a 
continuous distribution with an arbitrary common df F(t) = Pr(X ≤ t) and let 
f (t) = F�(t) denotes its common probability density function (pdf). Also, let 
f̂ (u) = E

[
e−uX

]
=

∞

∫
0

e−utf (t)dt be the Laplace–Stieltjes transform (LST) of X . Simi-

lar to the proof of Theorem 2, we can obtain the joint LST f̂T1,T
(
u1, u

)
= E

[
e−u1T1−uT

]
 

of the random vector 
(
T1, T

)
 given in the following Theorem 3. Define the LSTs of 

the random variables X|X ≤ � and X|X > 𝛿 by

and

respectively, then we have the next.

Theorem 3.  The joint LST f̂T1,T
(
u1, u

)
= E

[
e−u1T1−uT

]
 of the random vector 

(
T1, T

)
 

is.

Using the LST of Theorem  3, we get the marginal LSTs f̂T1(u) = E
[
e−uT1

]
 and 

f̂T (u) = E
[
e−uT

]
 of the random variables T1 and T .

Corollary 4.  The marginal LSTs corresponding to T1 and T  are given, respectively, 
by.

and

f̂X,𝛿(u) = E
(
e−uX|X ≤ 𝛿

)

ĝX,𝛿(u) = E
(
e−uX|X > 𝛿

)
,

f̂T1 ,T
(

u1, u
)

=
f̂X,�(u)F(�)

(

p2 − p1
)

ĝX,�
(

u1 + u
)

F(�) + ĝX,�(u)
(

p2 − p1
)(

1 − p3
)

ĝX,�
(

u1 + u
)

(F(�))2
[

1 − p3F(�)ĝX,�(u)
][

1 − p1F(�)ĝX,�
(

u1 + u
)

]

+
f̂X,�

(

u1 + u
)

F(�) + ĝX,�
(

u1 + u
)

F(�)
(

1 − p2
)

1 − p1F(�)ĝX,�(u)
.

f̂T1(u) =
F(�)

(

p2 − p1
)

ĝX,�(u)F(�) +
(

p2 − p1
)(

1 − p3
)

ĝX,�(u)(F(�))2
[

1 − p3F(�)
][

1 − p1F(�)ĝX,�(u)
]

+
f̂X,�(u)F(�) + ĝX,�(u)F(�)

(

1 − p2
)

1 − p1F(�)ĝX,�(u)
.

f̂T (u) =
f̂X,�(u)F(�)

(

p2 − p1
)

ĝX,�(u)F(�) + ĝX,�(u)
(

p2 − p1
)(

1 − p3
)

ĝX,�(u)(F(�))2
[

1 − p3F(�)ĝX,�(u)
][

1 − p1F(�)ĝX,�(u)
]

+
f̂X,�(u)F(�) + ĝX,�(u)F(�)

(

1 − p2
)

1 − p1F(�)ĝX,�(u)
.
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It should be noted that using the relations E
[
T1
]
= −f̂

�

T1
(0) , E[T] = −f̂

�

T
(0) and 

Corollary 4, we can obtain the means of the random variables T1 and T  . Their 
expressions are the same with those given in Corollary 3 for the discrete case.

As in the discrete case, by considering specific distributions of the random vari-
able X , we can obtain analytical results for the evaluation of the distributions of 
the lifetime random variables T1 and T  . We consider the particular case when the 
interarrival times between successive shocks follow the exponential distribution with 
common pdf

In this case, we have

and

Using Corollary 3, the LSTs of the random variables T1 and T  are found to be

and

Corollary 5  Let Xi have the exponential distribution with parameter 𝜆 > 0. If � → ∞

, then the distribution of the random variables T1 and T  approaches the exponential 
distribution with parameter �, that is.

Proof.  The result follows immediately from (19) and (20), since

and �∕(� + u) is the LST of the exponential distribution with parameter � . 	�  ◻
A continuous random variable W is said to have a matrix-exponential distribu-

tion, if its distribution function is given by

f (t) = �e−�t, t ≥ 0, � ≥ 0.

f̂X,𝛿(u) = E
(
e−uX|X ≤ 𝛿

)
=

1

1 − e−𝜆𝛿
𝜆

u + 𝜆

[
1 − e−(u+𝜆)𝛿

]
,

ĝX,𝛿(u) = E
(
e−uX|X > 𝛿

)
=

𝜆

u + 𝜆
e−𝛿u.

(19)f̂T1(u) =
𝜆
[
1 − p1e

−(u+𝜆)𝛿 − p3e
−𝜆𝛿 + p1p3e

−(u+2𝜆)𝛿
]

𝜆 + u − 𝜆p1e
−(u+𝜆)𝛿 − (𝜆 + u)p3e

−𝜆𝛿 + 𝜆p1p3e
−(u+2𝜆)𝛿

,

(20)

f̂T (u) =
𝜆(𝜆 + u)

(
1 − p2e

−(u+𝜆)𝛿
)
+ 𝜆

2p1p3e
−2(u+𝜆)𝛿 + 𝜆

2(p2 − p1 − p3)e
−(u+𝜆)𝛿

(𝜆 + u)2 − 𝜆(𝜆 + u)p3e
−(u+𝜆)𝛿 − 𝜆(𝜆 + u)p1e

−(u+𝜆)𝛿 + 𝜆2p1p3e
−2(u+𝜆)𝛿

.

lim
𝛿→∞

(
T1 > t

)
= lim

𝛿→∞
(T > t) = e−𝜆t.

lim
𝛿→∞

f̂T1(u) =
𝜆

𝜆 + u
and lim

𝛿→∞
f̂T (u) =

𝜆(𝜆 + u)

(𝜆 + u)2
=

𝜆

𝜆 + u
,

(21)FW (t) = Pr (W ≤ t) = 1 − FW (t) = 1 + aTexp(St)S−1s,
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where a is a p × 1 vector, S is a p × p matrix (which is called a companion matrix) 
and s is a p × 1 vector. We write W ∼ MEp(a,S,s), to present that the random varia-
ble W has a matrix-exponential distribution with parameters (a,S,s) . The common 
probability density function is computed from fW (t) = aTexp(St)s . If 
f̂W (u) = E

[
e−uX

]
=

∞

∫
0

e−utf (t)dt denotes the Laplace–Stieltjes transform of X , then 

f̂W (u) can be computed from

where Ip is the identity matrix of order p.
The non-centralized moments of W can be computed from

Asmussen and Bladt (1997) showed that if W ∼ MEp(a , S , s) , then the LST f̂W (u) 
is rational and can be written as

where ai , bi , 1 ≤ i ≤ n are real numbers. It should be noted that Eq. (22) holds true 
when there is no point mass at zero. Then, the representation (a , S , s) is given by

For a comprehensive review of matrix-exponential distributions and their sub-
class of phase-type distributions, we refer to Bladt and Nielsen (2017).

As it is clear from (19) and (20), the LSTs of the random variables T1 and T  are 
not in the form of (22). That is, the numerator and denominator are not polynomial 
functions. Therefore, the random variables T1 and T  do not have matrix-exponen-
tial distributions. However, using the Taylor expansion for the exponential terms 
involved in (19) and (20), the LSTs and hence the survival functions of T1 and T  can 
be approximated by matrix-exponential distributions. Such a method has been used 
by Kus et al. (2022) and Chadjiconstantinidis and Eryilmaz (2022). To obtain the 
approximated values of the survival functions, we first represent (19) and (20) in the 
form of (22) via Taylor expansion of the exponential terms and then use (23).

For illustration purposes, let us consider the LST of the random variables T1 . 
Multiplying both the numerator and the denominator of the right-hand side of (19) 
by eu� , we get

f̂W (u) = aT
(
uIp − S

)−1
s,

E
[
Wn

]
= n!aT (−S)−(n+1)s.

(22)f̂W (u) =
b1 + b2u +⋯ + bpu

p−1

a1 + a2u +⋯ + apu
p−1 + up

,

(23)aT = (b1, b2,… , bp), S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ⋯ 0

0 0 1 0 ⋯ 0

0 0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ 1

−a1 −a2 −a3 −a4 ⋯ −ap

⎤
⎥⎥⎥⎥⎥⎥⎦

, s =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

⋮

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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For sufficiently large q , using the Taylor expansion 
q−1∑
i=0

(�u)i

i!
 for the term e�u the 

LST of T1 can be approximated by the rational LST

where

Therefore, the approximated random variable T̃1 of T1 has a matrix-exponential 
distribution, and hence, using these coefficients, the survival function of T1 can be 
approximated by

where

and bi’s, ai ’s are given as above.
By a similar way, using (20) we can approximate the LST of T  by a rational LST, 

and hence we can approximate the distribution of T  by a matrix-exponential distri-
bution. Using Corollary 4, this approach can be easily applied and for the more gen-
eral case when the interarrival times between successive shocks have a matrix-expo-
nential distribution. The details are omitted (see, for example in Kus et al. (2022) 
and Chajiconstantinidis and Eryilmaz (2022)).

f̂T1(u) =
−𝜆p1e

−𝜆𝛿 + e𝛿u

−𝜆p1e
−𝜆𝛿 + 𝜆e𝛿u + ue𝛿u

.

f̂T̃1(u) =
b1 + b2u +⋯ + bqu

q−1

a1 + a2u +⋯ + aqu
q−1 + uq

,

b1 =
(
1 − �p1e

−��
) (q − 1)!

�q−1
; bi = (q − 1)!∕�q−i(i − 1)!, 2 ≤ i ≤ q − 1

a1 =
�
(
1 − p1e

−��
)
(q − 1)!

�q−1
; ai =

(
�

(i − 1)!
+

1

�(i − 2)!

)
(q − 1)!

�q−i
, 2 ≤ i ≤ q.

Pr
(
T̃1 > t

)
= −aT exp (St)S−1s,

aT = (b1, b2 … bq), S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ⋯ 0

0 0 1 0 ⋯ 0

0 0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ 1

−a1 −a2 −a3 −a4 ⋯ −aq

⎤
⎥⎥⎥⎥⎥⎥⎦

, s =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

⋮

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, q × 1,
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4 � Numerical illustrations

In this section, we present some illustrative computational results. First, consider 
the case when the intershock times follow the geometric distribution with mean 1

p
 

and when � = 2 and p1 = 0.7, p2 = 0.9, p3 = 0.6 . In Table 1, we present the sur-
vival functions of T1 and T  for selected values of t  . Clearly, the survival functions 
are decreasing in p since we expect more frequent shocks with an increase in p.

Table 2 contains approximated values of the survival functions when the inter-
shock times have exponential distribution with mean 1

�
 when p2 = 0.9, p3 = 0.6 and 

� = 2 . As expected, an increase in � leads to a decrease in survival probabilities.

Table 2   Survival functions 
when the intershock times have 
exponential distribution

� p1 t Pr
(
T1 > t

)
Pr (T > t)

0.1 0.7 5 0.7324 0.7746
10 0.6061 0.6810
15 0.5016 0.6033
20 0.4153 0.5256

0.8 5 0.7546 0.7715
10 0.6454 0.6871
15 0.5560 0.6078
20 0.4818 0.5366

0.2 0.7 5 0.5263 0.5744
10 0.3384 0.4107
15 0.2170 0.2895
20 0.1390 0.2019

0.8 5 0.5469 0.5711
10 0.3765 0.4147
15 0.2564 0.2965
20 0.1790 0.2096

Table 1   Survival functions 
when the intershock times have 
geometric distribution

p t Pr
(
T1 > t

)
Pr (T > t)

0.1 5 0.7283 0.7676
10 0.5979 0.6772
15 0.4910 0.5931
20 0.4032 0.5162

0.2 5 0.4997 0.5489
10 0.3093 0.3802
15 0.1915 0.2586
20 0.1185 0.1735
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5 � Reliability application

Kus et  al. (2022) used the mixed �-shock model to represent a repairable system 
consisting of active and cold standby components. As noted by Kus et al. (2022), at 
time t = 0, both of the components are new, and component 1 starts operation first, 
while component 2 is in a cold standby state. The standby component is switched 
into operation when the active component (component 1) fails, and a repair action is 
immediately taken for component 1. Suppose that the repair time for a failed com-
ponent is fixed as δ, and the component is as good as new after repair. A damage of 
random size occurs upon the failure of a component. Let Yi+1 denote the magnitude 
of the damage for the component who livesXi , i = 0, 1, 2, …. If the size of the dam-
age is above d, then the unit cannot be repaired and hence the system fails after the 
failure of the standby component. Such a repairable system fails either if one of Xi s 
is less than or equal to δ or the size of the damage for a failed component is above d. 
The lifetime of the system is then represented as

Under the change point setup considered in the present paper, the random vari-
able Nd1

 denotes the number of component failures until the first damage that is at 
least d1. Assume that the size of the damage is determined by a certain environmen-
tal factor. Thus, the probabilistic law of the damage size changes after the damage 
above the threshold d1.

Suppose that there is a desired level for the mean time to failure (MTTF) of the 
system. If the MTTF of the system is below a given specified level, then an addi-
tional standby component may be added to increase the performance of the system. 
The MTTF of the system can be computed from

where F(x) = Pr(X ≤ x) is the time to failure distribution of the component. The dis-
tribution F(x) may be either discrete or continuous depending on the system. If the 
lifetime of the component corresponds to the number of cycles, then F(x) should 
be modeled as discrete. For example, the lifetimes of batteries may be measured 
in terms of how many times their charge–discharge processes have been repeated. 
In this case, a cycle is one complete use of the battery to store power and release it 
(Willis and Scott (2000)).

T =

Nd∑
i=0

Xi.

E[T] =

⎡
⎢⎢⎢⎣
1 +

1 +
�
p2 − p1 − p3

�
F(�)�

1 − p1F(�)
��
1 − p3F(�)

�
⎤
⎥⎥⎥⎦
E[X],
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6 � Summary and conclusions

In this paper, a mixed shock model that combines extreme and delta shock models has 
been studied when there is a change in shock size distribution. Computationally effi-
cient matrix-based expressions were obtained for the survival function and mean time 
to failure of the system. The results extend and generalize the previous results mainly 
in two directions. First, the model of Eryilmaz and Kan (2021) has been extended to 
a mixed model. Second, discrete intershock times have also been considered for reli-
ability evaluation of the system. The latter one is also new for the extreme shock model 
with a change point studied in Eryilmaz and Kan (2021). As a future work, more 
general models and extensions can be considered. For example, a mixed model that 
combines run and delta shock models can be studied. The dependence between shock 
magnitude and the intershock time may be considered as well. The consideration of the 
change point in the interarrival times is also worthy to investigate since it is applicable 
to real life systems.
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