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Abstract
We consider a generalization of the selective traveling salesman problem (STSP) in 
which the benefit of visiting a location changes over time. This new problem, called 
the selective travelling salesman problem with time-dependent profits (STSP-TDP), 
is defined on a graph with time-dependent profits associated with the vertices, and 
consists of determining a circuit of maximal total profit. In the STSP-TDP the tour 
length must not exceed a maximum value, and its starting and ending times must both 
lie within a prespecified planning horizon. This problem arises in planning tourist 
itineraries, mailbox collection, military surveillance, and water sampling, where the 
traveler accumulates different profits upon visiting the locations throughout the day. 
We focus on analyzing several variants of the problem depending on the shape of the 
time-dependent profit function. If this function is not monotonic, it may be worth 
visiting a site more than once. We propose formulations for the single-visit case and 
for when multiple visits are allowed, in which case the problem reduces to an STSP, 
which is adapted to be solved as a longest path problem. These formulations are then 
solved for piecewise-linear profit functions using a general-purpose solver, and tested 
on several artificially created instances and on four TSPLib instances involving up to 
535 vertices. A detailed analysis of the problem and the solution is performed.
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1 Introduction

In several contexts, a traveler holds a list of potential sites of interest, but it may not 
be possible nor desirable to visit all of them. Some sites will be selected and then 
visited by means of a single tour. With each solution is associated a profit derived 
from visiting the sites. One example of this setting occurs in the planning of tourist 
trips. An interesting application cited in Vansteenwegen et al. (2011) is the Mobile 
Tourist Guide of Souffriau et al. (2008). Similar tourist trip problems are mentioned 
by Wang et al. (2008); Schilde et al. (2009) , and da Silva et al. (2018) where the 
profit is measured in terms of the interest associated with visiting the sites. Another 
example arises in the collection of letters from mailboxes. Here the benefit can be 
measured by the mail volume accumulated in the mailbox at each visit. Other appli-
cations are encountered in the surveillance activities of submarines or unmanned 
aircraft (Wang et  al. 2008), and in water sampling Zhang et  al. (2020). A recent 
application arises in the context of a parking warden distributing fines for irregu-
larly parked cars (Bruglieri (2020)), where the profit associated with an inspection 
depends on the time elapsed since the previous inspection.

This problem is known as the selective traveling salesman problem (STSP) 
Laporte and Martello (1990), sometimes called orienteering problem (Golden 
et  al. 1987; Vansteenwegen et  al. 2011), if the profits are time-independent. 
However, there also exist several settings where the profits are time-dependent. 
For example, the pleasure associated with a tourist attraction is often related to 
crowdiness and, therefore, to the time of the day. In postal applications it is clear 
that mail accumulation is time-dependent. In military applications the profit asso-
ciated with surveillance activities may vary over time. Hence, we study an exten-
sion of the STSP with time-dependent profits (STSP-TDP).

We assume that the problem is defined over a given time horizon and that the 
sites are to be visited by a single uncapacitated vehicle during a work shift whose 
length does not exceed that of the planning horizon. Waiting before starting the tour 
is allowed, i.e., the shift does not necessarily start at the beginning of the planning 
horizon. Each site has a time window and a service time, and it may be beneficial 
for the vehicle to wait along its route to let the profit increase at some sites, as is the 
case of the mail collection application. As we will describe, in some versions of the 
problem it may be beneficial to visit the same site more than once.

For reviews of the STSP the interested reader is referred to Feillet et al. (2005), 
Vansteenwegen et al. (2011), Archetti et al. (2014) and Gunawan et al. (2016). Of 
interest in the context of the STSP-TDP is the survey of Gavalas et al. (2014) which 
presents a detailed description of the tourist trip design problem. These authors 
observe that this problem can be viewed as a bicriteria generalization of the TSP, 
i.e., maximizing the collected profit and minimizing the travel cost. Yu et al. (2019b) 
investigate the team orienteering problem with time windows and time-dependent 
scores. In this work, each vertex is associated with a basic score and several recom-
mendation factors that vary depending on the time of visit. The authors propose a 
mathematical formulation and a hybrid artificial bee colony algorithm to compute 
optimal solutions for small instances and near-optimal solutions for larger instances.
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There also exists a rich literature on several variants of the STSP-TDP studied in 
this paper, which is summarized in Table 1 but, to the best of our knowledge, our 
variant is unique and we are the first to provide a formulation solved by means of an 
exact branch-and-cut algorithm capable of solving instances much larger than was 
previously achievable. In our version of the STSP-TDP, the starting time of the route 
is also optimized within the planning horizon and waiting at the sites is allowed in 
order to arrive at a site when the profit to be collected is optimal. Here we introduce, 
model, and solve this problem exactly. We perform tests on artificial instances and 
on TSPLib instances, and we derive insights based on the problem characteristics 
and on the computational results.

The remainder of this paper is organized as follows. In Sect.  2, we formally 
describe the problem and a number of its variants, and we propose corresponding 
mathematical programming models. An analysis of some properties of the problem 
depending on the shape of the profit functions is presented in Sect. 3. This is fol-
lowed by computational results in Sect. 4 and by conclusions in Sect. 5.

2  Formal definition and mathematical models

The STSP-TDP is defined on a directed graph G = (V,A) , where V is the vertex set, 
0 ∈ V is the depot and V� = {1,… , n} is the set of sites. The arc set is defined as 
A = {(i, j) ∶ i, j ∈ V, i ≠ j }. A travel time �ij is associated with each arc (i,  j). The 
problem is defined over a planning horizon of length T, and time can be discretized 
into a set of moments t ∈ T = {1,… , T} . Each site i has an associated profit pi(t) 
that depends on t. A solution is a closed circuit not exceeding L time units ( L ≤ T  ), 
leaving the depot at time td

0
 , returning to the depot at time ta

0
≤ T  and visiting a sub-

set of the sites, where ta
0
− td

0
≤ L . The goal of the problem is to find a solution of 

maximal total profit for the selective traveling salesman problem with time-depend-
ent profits (STSP-TDP). We assume that there are no vehicle capacity constraints 
and that one of the following two time-dependent profits is considered: 

1. Profit is cumulative, i.e., the profit function is monotonically increasing. The later 
a vertex is visited, the higher is the collected profit. It follows that if a vertex is 
visited several times, one can achieve the total profit by performing only the last 
visit. An example of this setting is letter collection in mailboxes.

2. Profit depends just on the time the vertex is visited. The profit function is not 
necessarily monotonically increasing. Then it may be beneficial to visit a vertex 
more than once. Examples include parking tickets, publicity delivery, or fund 
collection by humanitarian organizations.

It follows from the second profit function type that a site may be visited more than 
once, and in both cases imposing a waiting time between successive visits to the 
same site may be appropriate since the collected profit is the one observed upon 
arrival.
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2.1  At most one visit per site allowed

We first model the case in which at most one visit to each site is allowed. The for-
mulation we propose requires that the profit functions be linear or piecewise linear, 
with time as a dependent variable. In this case, a time discretization is not required.

We define variables xij equal to one if and only if arc (i, j) ∈ A is used in the 
solution, and variables ti equal to the time at which vertex i ∈ V

� is visited. In 
what follows, M is a large positive number. The problem for the continuous sin-
gle-visit case (SF) is then formulated as follows:

subject to

The objective function (1) represents the total collected profit to be maximized. 
Constraints (2) are the flow conservation conditions and ensure that there is at 
most one incoming and one outgoing arc for each site. Constraint (3) ensures that 
there is one incoming and one outgoing arc for the depot. Constraint (4) imposes 
a maximal route duration of L (time units). Constraints (5)–(7) ensure that travel 
times are respected and eliminate subtours. Finally, constraints (8) and (9) define 
the domains of the variables.

Note that the case of “exactly one visit” is a particular case arising in the trave-
ling salesman problem with time-dependent profits (TSP-TDP), and hence, its for-
mulation is obtained by just changing “ ≤ 1 ” with “ = 1 ” in constraints (2).

(1)(SF) maximize
∑
i∈V�

pi(ti)

(2)
∑

j∈V,j≠i

xij =
∑

j∈V,j≠i

xji ≤ 1 i ∈ V
�

(3)
∑
j∈V�

x0j =
∑
i∈V�

xi0 = 1

(4)ta
0
− td

0
≤ L

(5)tj ≥ ti + �ij −M(1 − xij) i, j ∈ V�, i ≠ j

(6)tj ≥ td
0
+ �0j −M(1 − x0j) j ∈ V�

(7)ta
0
≥ tj + �j0 −M(1 − xj0) j ∈ V�

(8)ti ∈ [0, T] i ∈ V
�

(9)xij ∈ {0, 1} (i, j) ∈ A.



170 E. Barrena et al.

1 3

We can impose the following bounds on the timing variables, which indicate that 
one cannot arrive at vertex i earlier than �0i:

A similar reasoning can be applied at the end of the planning horizon: one can 
compute the latest arrival time at vertex i such that one still arrives back at the depot 
at time T. The following upper bound on ti can be imposed:

2.2  Multiple visits to sites allowed

There are two main ways to model problems in which multiple visits to the same 
site are allowed. Some models do not replicate the sites and allow multiple vis-
its by controlling the number of times a site is visited (see, e.g., Bruck and Iori 
2017; Salazar-González and Santos-Hernández 2015; Erdoğan and Laporte 2013, 
and Munari and Savelsbergh 2022). The other approach is to make several cop-
ies of the same site (see, e.g., Gribkovskaia et  al. 2007 and Hoff et  al. 2009). 
Here we adopt the second modeling technique. More specifically, we make use 
of an auxiliary two-dimensional directed graph G = (V,A) (see Fig.  1) whose 
x-axis represents the periods of the planning horizon and whose y-axis represents 
the sites and the depot. The graph G extends the graph G = (V,A) , so that for 
every vertex v ∈ V and every period t ∈ T  , there is one vertex v ∈ V identified 
with the pair (t, v) , which is labelled as v = t ⋅ |V| + v . It follows then that, for 
each given vertex v ∈ V we can obtain the corresponding period t and site v in 
graph G as follows: t(v) = ⌊v∕�V�⌋ and v(v) = v∕�V� − ⌊v∕�V�⌋ . We denote by t(i) 
and v(i) the time t ∈ T  and the vertex v ∈ V corresponding to the vertex i ∈ V , 

(10)ti ≥ �0i i ∈ V
�.

(11)ti ≤ T − �i0 i ∈ V
�.

Fig. 1  Auxiliary graph G = (V,A) , where |V| = N
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respectively. Therefore, the profit function at vertex v is pv = pv(t) . Note that not 
all arcs are allowed in G and that the starting and ending vertices must corre-
spond to the depot. After predefining the set A , we need to solve a selective TSP 
with profit on G , with a maximum route length L no larger than the duration T of 
the planning horizon. We have then no predefined starting and ending vertices, 
but these must be selected within a subset {t ⋅ |V| ∶ t = 0, 1, ..., T} ⊂ V represent-
ing the set of depot vertices (T copies of the depot). The set of site vertices is 
V
�
= V ⧵ {t ⋅ |V| ∶ t = 0, 1, ..., T}.
The set of available arcs A is composed of the set A1 of arcs linking vertices 

from the same site at consecutive periods (for waiting times), and the set A2 of arcs 
linking vertices from different sites and whose difference between their periods 
equals the travel time between these sites. Therefore,

and A = A
1
∪A

2
= {(i, j) | ((v(i) = v(j)) ∧ (t(j)= t(i) + 1)

)
∨
(
(v(i) ≠ v(j)) ∧ (t(j) − t(i) = �ij)

)
}.

Note that Fig. 1 shows a representation of the horizontal arcs from the set A1 and 
a partial representation of the set A2 (dashed arcs). For the sake of clarity, from the 
latter we only represent arcs departing from the depot.

Note that if L = T  , the problem over G is very similar to the STSP with profits 
(see Laporte and Martello 1990 and Vansteenwegen et  al. 2011). In the extended 
graph G = (V,A) , the problem is similar to the STSP, where we have a set of 
|V| = N ⋅ (T + 1) − 1 vertices, each with an associated profit.

The difference between our problem in the auxiliary graph and the STSP is that, 
in our case, the starting and end vertices are not fixed, but belong to the set of depot 
vertices with zero profit. In order to obtain the STSP, we add two artificial vertices B1 
and B2 , which will be the starting and ending vertices of the Hamiltonian path, respec-
tively. Accordingly, a set of zero length arcs joining B1 and the depot vertices and the 
latter with B2 is also added. So, from now on, the problem is defined on Ĝ = (V̂ , Â) , 
where V̂ = V ∪ {B1,B2} and Â = A ∪ {(i,B2)|i ∈ V ⧵ V

�
} ∪ {(B1, i)|i ∈ V ⧵ V

�
}.

We use directed continuous variables yij representing the flow over arc (i, j) and 
binary variables �i equal one if the shift starts at vertex i ∈ {0, ..., T − L} . Note that 
the graph Ĝ is a time-ordered graph, which enables us (for fixed depot departure 
and arrival times td

0
 and ta

0
 , being ta

0
− td

0
= L ) to model the problem as a longest path 

problem. In doing so, we transfer the profit associated with a vertex j to its incoming 
arcs in A

2
 . That is, each arc (i, j) ∈ A2 has an associated profit pij = pj . The profit 

associated with the remaining arcs in Â equals zero. The problem for the discretized 
multiple-visit case (MF) over Ĝ is formulated as follows:

subject to

A1 = {(i, j) | ((v(i) = v(j)) ∧ (t(j)= t(i) + 1)
)
},

A2 = {(i, j) | ((v(i) ≠ v(j)) ∧ (t(j) − t(i) = �ij)
)
},

(12)(MF) maximize
∑

(i,j)∈Â

pij ⋅ yij
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The objective function (12) is the total collected profit. Recall that the profit is 
collected when the vehicle arrives at the vertex. Constraints (13), where �+(i) and 
�−(i) are the sets of successors and predecessors of vertex i in graph Ĝ , respectively, 
ensure that exactly one arc departs from the artificial vertex A to the set of depot 
vertices, that one unit of flow arrives at B from the same set, and enforce the flow 
conservation conditions for the remaining vertices, which are the site vertices. Con-
straints (14) and (15) impose a maximal route duration by means of the � variables. 
There are as many �yL variables as T − L time periods. By selecting only one of the 
�yL variables, constraints (16) ensure that the route starts at one time instant and ends 
after exactly L periods. Finally, constraints (17) and (18) impose the binary condition 
of the � variables and the non-negativity condition of the y variables, respectively.

3  Analysis of the problem and shapes of the profit function

As explained in Sect. 2, depending on the shape of the profit function, the problem 
possesses certain characteristics. These will not only be influenced by the monoto-
nicity condition of the profit functions, but also by their specific shape.

Observation 1. Let pi ∶ T → ℝ represent the accumulated profit at vertex 
i ∈ V

� arising from a positive non-cumulative profit function p�
i
∶ T → ℝ

+ , that 
is, the accumulated profit at vertex i during the time interval [0, t] is calculated as 
pi(t) = ∫ t

0
p�
i
(t)dt . Then, pi is a monotonically increasing function and the total profit 

collected visiting vertices i at time t1 and t2 ∈ T  ( t1 < t2 ) equals the profit collected 
by visiting vertices i only once at time t2.

Proof If vertex i ∈ V
� is visited at time units t1 and t2 ∈ T  , the total collected profit 

equals ∫ t1
0
p�
i
(t)dt + ∫ t2

t1
p�
i
(t)dt = ∫ t2

0
p�
i
(t)dt.

(13)
�

j∈�+(i)

yij −
�

j∈�−(i)

yji =

⎧
⎪⎨⎪⎩

1 if i = B1

0 if i ≠ B1,B2

−1 if i = B2

(14)yAi ≤ �t(i), i ∶ v(i) = 0 and t(i) ∈ {0, ..., T − L}

(15)yi+L,B ≤ �t(i), i ∶ v(i + L) = 0 and t(i) ∈ {0, ..., T − L}

(16)
∑

i∈{0,...,T−L}

�i = 1

(17)�i ∈ {0, 1} i ∈ {0, ..., T − L}

(18)yij ≥ 0 (i, j) ∈ Â.
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If vertex V′ is visited only once at time unit t2 , the total collected profit equals 
pi(t2) = ∫ t2

0
p�
i
(t)dt .   ◻

Observation 2. If pi(t) = �i for all i ∈ V
� , �i ≥ 0 , then the STSP-TDP when 

at most one visit per site is allowed obviously becomes the STSP. In this case, 
it does not matter whether L = T  or L < T  since the collected profit is not time 
dependent.

Observation 3. Let us assume that L is large enough to visit all vertices in 
any order and that each site can be visited at most once (following formulation 
(SF) presented in Sect. 2.1). If all profit functions are linear, i.e., pi(t) = �it for all 
i ∈ V

� , �i ≥ 0 , �i ≤ �i+1 , and �0,i ≥ �0,i+1 for all i ∈ V
� ⧵ {N} , then xi,i+1 = 1 for all 

i ∈ V
� ⧵ {N,N − 1} and xN0 = 1 . xi,j = 0 for all j ≠ i + 1 , i ∈ V

� ⧵ {N,N − 1} . That 
is, under the described conditions, if the vertices are labeled in increasing order 
with respect to the slope ( �i ≤ �i+1 ), the visiting order coincides with the labeling 
order.

Proof Given two vertices i and i + 1 ∈ V
� satisfying the above mentioned conditions, 

it is always beneficial to first visit the one with the lower slope (in this case i since 
�i ≤ �i+1).

Let p(i,  j,  t) be the profit collected at vertices i and j if vertex i is vis-
ited at time t and vertex j at time t + �ij . Then, starting from vertex 0, the 
collected profit obtained by visiting first vertex i and then vertex i + 1 is 
p(i, i + 1, �0,i) = �i�0,i + �i+1(�0,i + �i,i+1) . The collected profit if vertex i + 1 is vis-
ited before vertex i is p(i + 1, i, �0,i+1) = �i+1�0,i+1 + �i(�0,i+1 + �i+1,i).

Let us demonstrate that the collected profit is larger if vertex i is visited before 
vertex i + 1 , that is, p(i, i + 1, �0,i) ≥ p(i + 1, i, �0,i+1):

By reductio ad absurdum, if p(i, i + 1, 𝜏0,i) < p(i + 1, i, 𝜏0,i+1) , then

Since �i+1,i = �i,i+1 , the inequality can be written as follows:

which is not respected given that �i,i+1 , �i+1 − �i , and �i+1 + �i are positive values 
and �0,i+1 − �0,i ≤ 0 . Therefore, the left-hand side of the inequality is positive and 
the right-hand side is negative.   ◻

Observation 4. The STSP-TDP can be viewed as a generalization of the STSP 
with time windows by setting the profit function as a stepwise function equal to a 
negative number outside the time window, and equal to a positive constant during 
the time window interval. That is, if

p(i, i + 1, �0,i) = �i�0,i + �i+1(�0,i + �i,i+1) = �i�0,i + �i+1�0,i + �i+1�i,i+1,

p(i + 1, i, �0,i+1) = �i+1�0,i+1 + �i(�0,i+1 + �i+1,i) = �i+1�0,i+1 + �i�0,i+1 + �i�i+1,i.

𝛼i𝜏0,i + 𝛼i+1𝜏0,i + 𝛼i+1𝜏i,i+1 < 𝛼i+1𝜏0,i+1 + 𝛼i𝜏0,i+1 + 𝛼i𝜏i+1,i.

𝜏i,i+1(𝛼i+1 − 𝛼i) < (𝛼i+1 + 𝛼i)(𝜏0,i+1 − 𝜏0,i),
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for all i ∈ V
� , �i ≥ 0 , � ≥ 0 , then the STSP-TDP becomes the STSP with time win-

dows [ai, bi] for all i ∈ V
� . Vertex i would not be visited outside the time window 

since this yields a negative profit and a corresponding decrease of the objective 
function (total collected profit).

Observation 5. A new problem called the STSP-TDP with time windows, [ai, bi] 
for all i ∈ V

� , can be considered if the profit function has the following shape:

for all i ∈ V
� , � ≥ �i ≥ 0 , with fi(t) ≥ 0 being the profit function associated with 

each vertex i ∈ V
� during the time interval [ai, bi] in which the vertex may be visited. 

Since the objective function is to maximize the total collected profit, negative values 
of this profit outside its time window [ai, bi] ensure that vertex i ∈ V

� will not be vis-
ited outside the time window.

Note that Observations 4 and 5 may apply for both the single- and multiple-visit 
cases.

4  Computational results

When the profit functions are linear or piecewise linear functions of time, the for-
mulation (SF) presented in Sect.  2.1 can be directly applied and there is no need 
to discretize the time. In the following, we perform two main types of experiments 
to provide insights into the models: first for artificially created instances defined 
on a mesh network, and second for benchmark instances from the TSPLib, assign-
ing time-dependent profits to each vertex. These experiments were performed on a 
machine equipped with an Intel i7-8700 3.20GHz CPU. The model of Sect. 2.1 was 
implemented in Python 3.8 and solved with Gurobi version 9.1.

4.1  Mesh instances

The first set of experiments is designed to illustrate the behavior of the models when 
changing the maximum length of routes L and the duration of the planning horizon 
T, as well as to assess the solver’s performance for different instance sizes. We have 
considered three instances sizes of 15, 30, and 50 vertices. In all the experiments, the 
network is constructed following a concentric clockwise labelling procedure, start-
ing from vertex number 1, which acts as the depot and increasing the vertex number 
consecutively (see Fig. 2 for an illustration of the 15-vertex network). The horizontal 

pi(t) =

⎧
⎪⎨⎪⎩

−𝛽 if t < ai
𝛼i if ai ≤ t ≤ bi
−𝛽 if bi < t

pi(t) =

⎧
⎪⎨⎪⎩

−𝛽 if t < ai
fi(t) if ai ≤ t ≤ bi
−𝛽 if bi < t
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and vertical distances between vertices are set to 1 and the arcs travel times have been 
obtained considering a travel speed equal to a tenth of the total distance needed to visit 
in order all the vertices, plus the Euclidean distance from the last vertex to the depot, 
ensuring there is no time to visit all vertices in any of the considered instances.

With respect to the piecewise linear profit functions, for each vertex we consider a 
non-cumulative one-peak profit function with the following shape (see Fig. 3):

where ai ≥ 0 , bi ≤ 0 , and t∗
i
 are parameters associated to each vertex i ∈ V

� . Regard-
ing the shape of the profit function, we have divided the first set of experiments into 
two subsets. The first one (experiments 1 to 15) considers values of t∗

i
 following an 

increasing vertex label order, i.e. the peak of the profit function of each vertex is 
proportional to the vertex number. Specifically, t∗

i
= 480∕n × (i − 1) , where n rep-

resents the number of vertices of each instance. Moreover, the slopes of the profit 
function ( ai , bi ) are also proportional to the vertex index: specifically ai = 3 × (i − 1) 
and bi = −3 × (i − 1) . The second subset of experiments (experiments 16 to 30) 
considers values of t∗

i
 following a decreasing order with the index of the vertex, i.e., 

t∗
i
= 480∕n × (n − (i − 1)).

(19)pi(t) =

{
ai ⋅ t if t ≤ t∗

i

bi ⋅ t + t∗
i
⋅ (ai − bi) if t ≥ t∗

i

Fig. 2  Mesh network construc-
tion

Fig. 3  Piecewise linear profit function
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With these artificially created instances we can test the behavior and perfor-
mance of the solver on the models. For the first subset of experiments, depend-
ing on the values of L and T, since the profit peaks increase with the vertex order 
it is expected that the optimal routes for the single-visit case will follow a clock-
wise direction. Alternatively, for the second subset, the optimal routes for the sin-
gle-visit case should follow a counterclockwise direction. For each subset and for 
each size (15, 30 and 50 vertices), five experiments were carried out, considering 
L = 240, 480 and T = 240, 480 and 1440 (which produces the next five combina-
tions 240 − 240, 240 − 480, 240 − 1440, 480 − 480, 480 − 1440 ). The maximum 
computation time was fixed to 60 × n seconds.

Tables  2 and   3 show the results for the mesh shape instances considering the 
single-visit (Formulation (SF)) and the multiple-visit (Formulation (MF)) cases, 
respectively . The table headings are defined as follows:

– Exp. #: experiment number.
– |V| : the size of the instance.
– L: maximum length of the route.
– T: planning horizon.
– Profit: total profit obtained, which is the objective function value.
– td

0
 : departure time from the depot.

– Gap (%): optimality gap calculated as UB−LB
UB

⋅ 100 , where LB and UB = (profit) 
are the best known lower and upper bounds.

– #Vertices visited: number of visited vertices in the solution.
– Time: computation time in seconds.
– Max. time: maximum allowed computation time in seconds.

All instances are solved using the standard truncated branch-and-cut algorithm 
implemented in Gurobi, truncated after a predefined CPU time limit "Max. time”. 
As expected, the collected profit is higher for the multiple-visit case and, for both 
the single- and multiple-visit cases, the collected profit increases with L and T. 
Moreover, for a given value of L the profit tends to increase with T. Note that all the 
instances are selective and that, for each instance and fixed values of T, the number 
of visited vertices in the single-visit case tends to increase with L.

Figures 4 and 5 depict the resulting selective routes for each of the 30 vertices 
instances of Table 2. Observe that in Fig. 4, since the profit peak vertices are dis-
posed in increasing order, not all vertices can be visited and the visited ones are 
those with larger indices, i.e., larger profits. The visiting order follows a clockwise 
direction, except for some instances for which the optimal solution is not achieved 
within Max. time. The behavior in experiments 21 to 25, where profit peaks follow 
a decreasing order, is the opposite. In these experiments, the numbers over the ver-
tices correspond to the profit collected and the visit time. As illustrated, regardless 
of the instance size, the higher the ratio T/L, the higher is the collected profit. When 
T is larger than L, the model can move the starting time of the route (column td

0
 in 

Table  2). Note that for the cases where T = L (240–240, 480–480), the departure 
from the depot occurs at time t = 0.00 , thus using the full route length to visit as 
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many vertices as possible, arriving again to the depot at time t = L . In general, for 
a given size of the instance, the number of visited vertices tends to increase with T  , 
but this is not always true. See, for instance, experiments 1, 2, and 3, with L = 240 : 
although the collected profit increases, the number of visited vertices decreases. 
Since the model can freely move the route duration interval along the planning hori-
zon, a higher profit can be collected visiting fewer but more profitable vertices. This 
behavior can also be observed for experiments 4–5, 9–10, and 11–13 in the case 

Table 2  Mesh shape instances. Formulation (SF)

Exp. # |V| L T Profit t
d

0
Gap (%) #Vertices 

visited
Time Max. time

Peak profit in increasing order of labels
 1 15 240 240 14434.50 0.00 0.00 6 2.6 900
 2 15 240 480 31342.50 239.99 0.00 3 559 900
 3 15 240 1440 34825.50 282.99 0.00 3 610 900
 4 15 480 480 76612.50 0.00 0.00 11 1.5 900
 5 15 480 1440 89025.00 59.50 0.00 10 0.3 900
 6 30 240 240 66702.68 0.00 2.15 12 1800 1800
 7 30 240 480 216056.94 239.99 0.81 9 1800 1800
 8 30 240 1440 248829.87 297.55 0.63 9 1800 1800
 9 30 480 480 299362.05 0.00 2.80 25 1800 1800
 10 30 480 1440 379818.84 68.35 0.00 22 3.5 1800
 11 50 240 240 187330.34 0.00 2.59 19 3000 3000
 12 50 240 480 585414.32 240.00 0.95 17 3000 3000
 13 50 240 1440 608244.64 273.98 0.91 16 3000 3000
 14 50 480 480 944748.27 0.00 0.21 39 3000 3000
 15 50 480 1440 974375.83 55.74 0.19 38 3000 3000

Peak profit in decreasing order of labels
 16 15 240 240 14512.50 0.00 0.00 6 6.1 900
 17 15 240 480 22561.50 197.99 0.00 6 824.3 900
 18 15 240 1440 22561.50 198.00 0.10 6 900 900
 19 15 480 480 41082.00 0.00 0.00 12 34.5 900
 20 15 480 1440 42826.50 22.03 0.00 11 4.6 900
 21 30 240 240 71006.64 0.00 1.22 12 1800 1800
 22 30 240 480 90106.62 89.96 1.32 12 1800 1800
 23 30 240 1440 90106.62 89.96 1.32 12 1800 1800
 24 30 480 480 169988.71 0.00 0.22 25 1800 1800
 25 30 480 1440 181398.50 3.22 0.15 24 1800 1800
 26 50 240 240 168029.25 0.00 1.84 19 3000 3000
 27 50 240 480 183822.86 149.53 2.22 20 3000 3000
 28 50 240 1440 244929.40 120.79 1.42 21 3000 3000
 29 50 480 480 460253.75 0.00 0.29 40 3000 3000
 30 50 480 1440 443507.33 8.86 0.34 38 3000 3000



178 E. Barrena et al.

1 3

of peak profits following an increasing order with time. Similarly, in the opposite 
order of profit peaks, experiments 19–20, 24–25, and 29–30 exhibit this decrease in 
the number of visited vertices. Graphical representations of the remaining instances 
(with 15 and 50 vertices) are provided in the Appendix.

As an illustration of the problem with time windows described in Sect.  3, 
we consider the 15 vertices mesh instances described above but whose vertices 
have negative profit function values outside predefined time windows. We have 

Table 3  Mesh shape instances. Formulation (MF)

Exp. # |V| L T Profit t
d

0
Gap (%) # Vertices 

visited
Time Max. time

Peak profit in increasing order of labels
 31 15 240 240 15948.00 0.00 0.00 4 0.18 900
 32 15 240 480 45018.00 240.00 0.00 3 4.18 900
 33 15 240 1440 50664.00 292.00 0.00 4 172.75 900
 34 15 480 480 92790.00 0.00 0.00 4 0.93 900
 35 15 480 1440 127968.00 218.00 0.00 4 71.77 900
 36 30 240 240 81918.00 0.00 0.00 10 143 1800
 37 30 240 480 227259.00 240.00 0.00 7 19.65 1800
 38 30 240 1440 260679.00 322.00 0.00 7 1131.83 1800
 39 30 480 480 413841.00 0.00 0.00 6 7.59 1800
 40 30 480 1440 617916.00 214.00 0.00 10 161.92 1800
 41 50 240 240 268898.40 0.00 0.00 7 7.35 3000
 42 50 240 480 769442.40 240.00 0.00 6 40.3 3000
 43 50 240 1440 862028.40 342.00 0.00 7 1719.79 3000
 44 50 480 480 1194255.00 0.00 0.00 7 26.63 3000
 45 50 480 1440 1744662.00 210.00 0.00 6 621.96 3000

Peak profit in decreasing order of labels
 46 15 240 240 14265.00 0.00 0.00 4 0.24 900
 47 15 240 480 24084.00 134.00 0.00 5 3.51 900
 48 15 240 1440 24084.00 131.00 0.00 5 27.08 900
 49 15 480 480 42912.00 0.00 0.00 10 1.30 900
 50 15 480 1440 43896.00 47.00 0.00 8 37.31 900
 51 30 240 240 71748.00 0.00 0.00 10 1.31 1800
 52 30 240 480 96168.00 167.00 0.00 11 114.66 1800
 53 30 240 1440 96168.00 168.00 0.00 11 261.68 1800
 54 30 480 480 185502.00 0.00 0.00 19 7.12 1800
 55 30 480 1440 189180.00 19.00 0.00 19 114.27 1800
 56 50 240 240 186520.20 0.00 0.00 15 6.81 3000
 57 50 240 480 277503.00 114.00 0.00 19 57.36 3000
 58 50 240 1440 277503.00 114.00 0.00 19 520.56 3000
 59 50 480 480 491557.79 0.00 0.00 31 26.72 3000
 60 50 480 1440 505301.39 44.00 0.00 34 495.26 3000
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considered piecewise linear profit functions similar to those illustrated in Fig. 3, 
but with time windows around the profit function peaks (see Fig.  6). Table  4 
shows the results obtained for the multiple-visit case. It can be observed that, as 
commented in Observations 4 and 5, the vertices that are visited are indeed vis-
ited within their corresponding time window. Recall that, for these experiments, 
the time windows do not need to be added to the formulation, but they are natu-
rally respected by assigning negative profit function values outside their bounds. 

Fig. 4  Mesh instances. Experiments 6 to 10 with 30 vertices, clockwise order
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Fig. 5  Mesh instances. Experiments 21 to 25 with 30 vertices, counterclockwise order

Fig. 6  Piecewise linear profit functions with negative values outside time windows
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4.2  TSPLib instances

In this section, we consider different TSTLib instances adapted to the characteristics 
of our problem, that is, assigning one-peak time-dependent profit functions see Eq. 
(19) to vertices and considering different space measure scales.

Assuming that the TSPLib coordinates are given in km, we consider constant 
speed and different scales to study the problem resolution. In this way, e.g., a scale 
of 1/1000 means that the coordinates are taken in meters. Tables 5 and 6 illustrate 
the sensitivity of the single- and multiple-visit models, respectively, to different 
scales for instance eil51 and the following parameter values: L = 480 , T = 1440 , 
speed = 35.5 km/h. The CPU time limit has been set as Max. time=7200 seconds for 
these experiments. The table headings are defined as follows:

– Scale: different values are considered to rescale the instance eil51. Scale 1 indi-
cates that distance is taken in kilometers and 1/1000 in meters.

– Profit: total profit obtained, which is the objective function value.
– Total distance: total traveled distance in the corresponding scale measure.
– Total distance (km): total traveled distance in km.
– Time: computation time in seconds.
– Gap (%): optimality gap calculated as UB−LB

UB
⋅ 100.

– td
0
 : departure time from the depot.

– #Vertices visited: number of visited vertices in the solution.

Since we consider a constant speed, the smaller the scale, the smaller the distances 
and, therefore, the more time is available to visit the vertices. It can be observed that 
this effect influences the resulting solutions, mostly in terms of total collected profit 
and computation time. Observe that, for the single-visit case (Table 5), the higher 
the scale, the smaller the total profit obtained and the larger the computing times, 
being even not possible to obtain a feasible solution within the CPU time limit Max. 
time=7200 for scale 1/1. The starting time of the shift also changes with the scale, 
tending to start earlier when the scale is smaller. This is due to the fact that the con-
sidered speed is constant and, therefore, the smaller the scale, the larger the freedom 
to visit the vertices. Table 6, which shows the results obtained for the multiple-visit 
case, exhibits a similar behavior in terms of the objective function. Although, as 
expected, much higher values of the objective function are obtained for the multiple-
visit case, these values also increase as the scale decreases. However, with respect to 
the computing times, for the multiple-visit case, the behavior of the computing times 
is not uniform. In this case, different scales lead to different travel times and, there-
fore, different arc set A2 . Since the model allows to wait at the same site, shorter 
travel times enable to arrive with more flexibility at a site, thus leading to equal or 
better profits but not necessarily better computing times.

Table 7 presents the results obtained for the single- and multiple-visit cases for 
TSPLib instances eil51, st70, a280, and ali535. For these experiments, the maxi-
mum length of the route L = 480 , the planning horizon T = 1440 , the threshold 
on the computing time is Max. time = 7200 s and the scale is 1/1000, which is 
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equivalent to considering the original coordinates in meters instead of in kilometers. 
The table headings are defined as follows:

– TSPLib instance: indicates the name of the benchmark instances.
– Profit: the total profit obtained, which is the objective function value.
– Gap (%): optimality gap calculated as UB−LB

UB
⋅ 100.

– #Vertices visited: number of visited vertices in the solution.
– Time: computation time in seconds.
– Total distance: total traveled distance in meters (corresponding to scale 1/1000).
– td

0
 : departure time from the depot.

As expected, for both cases, the larger the number of vertices, the larger the 
total collected profit and the computation time. For the multiple-visit case, only 
instances eil51 and st70 could be solved to optimality within Max. time. For these 
instances, although the number of visited nodes in the multiple-visit case is con-
siderably lower than for the single-visit case, these nodes are visited several times 
obtaining more than ten times higher values of the objective function (collected 
profit). Figure  7 illustrates the resulting routes with Formulation (SF) for the 
instances presented in Table 7. Since the problem aims at maximizing the total 

Table 5  Variations to scale for instance eil51

Single-visit case (Formulation (SF))

Scale Profit Total distance Total distance (km) Time Gap (%) t
d

0
#Ver-
tices 
visited

1/1 – – – – – – –
1/5 3034136.16 246.34 1231.70 7200 0.40 475.75 51
1/10 3047909.70 131.35 1313.50 9.0 0.00 472.94 51
1/20 3048000.00 65.67 1313.40 0.9 0.00 471.76 51
1/50 3048000.00 26.27 1313.50 0.9 0.00 471.06 51
1/100 3048000.00 13.14 1314.00 0.9 0.00 470.82 51

Table 6  Variations to scale for instance eil51

Multiple-visit case (Formulation (MF))

Scale Profit Total distance Total distance (km) Time Gap (%) t
d

0
#Vertices visited

1/1 – – – – – –
1/5 54331764.71 215.75 1078.74 611.6 0.00 688 3
1/10 54726074.12 108.77 1087.68 281.08 0.00 688 3
1/20 55918907.67 226.14 4522.74 688.92 0.00 692 4
1/50 58765875.17 250.77 12538.24 259.88 0.00 706 3
1/100 58765875.17 125.38 12538.24 431.39 0.00 706 3
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collected profit, the resulting routes differ significantly from those obtained with 
the usual TSP, where the objective is to minimize the total distance traveled.

As expected, when the objective function is to maximize the total collected profit, 
the total distance increases with respect to that obtained from a TSP solution. A 
trade-off analysis between the collected profit and the total distance may shed some 
light on these differences. To this end, it becomes appropriate to use a multi-objec-
tive approach.

4.3  Trade‑off between the collected profit and the total distance. Multi‑objective 
approach

Starting from formulation (SF), we consider the �-constraints method proposed by 
Marglin (1967). That is, we include constraint (20) limiting the total distance of the 
route to a maximum of � and the route is then obtained by maximizing the total col-
lected profit and varying parametrically the maximum total distance �:

Table  8 represents the results obtained by the �-constraints method for the 
TSPLib instance eil51 and the following parameter values: L = 480 , T = 1440 , 
speed = 35.5km/h , scale = 1∕10 . The table headings are defined as follows:

– Threshold � : threshold on the route total distance.
– Profit: total profit obtained, which is the objective function value.
– Total distance: total traveled distance in hectometers (corresponding to scale 

1/10).
– Time: computation time in seconds.
– Gap (%): optimality gap calculated as UB−LB

UB
⋅ 100.

(20)

∑
i, j ∈ V

i ≠ j

�ijxij ≤ �.

Table 7  Results for TSPLib instances for scale 1/1000, L = 480 , T = 1440

TSPLib 
instance

Formulation Profit Gap (%) #Vertices 
visited

Time Total dis-
tance

t
d

0

eil51 (SF) 3048000.00 0.00 51 1.2 1.31 470.61
eil51 (MF) 58765875.17 0.00 3 261.65 12.5 706
st70 (SF) 5779440.00 0.00 70 5.5 3.41 473.18
st70 (MF) 81698999.99 0.00 3 709.09 3.89 710
a280 (SF) 93677040.00 0.00 280 185.4 2.82 478.32
a280 (MF) – – – – – –
ali535 (SF) 342699840.00 0.00 535 499.1 36.99 479.25
ali535 (MF) – – – – – –



185

1 3

Analysis of the selective traveling salesman problem with…

Observe that, except for the first four rows, the value of the total distance tends to 
be similar to that of the upper threshold � . This follows from the fact that the larger 
the total distance, the less constrained is the problem and, therefore, the larger is the 
total collected profit, which is the objective function. The first four rows stand for 
values of � larger than 131.35, which is the total collected profit when no constraints 
on the total distance are imposed (see Table 5, third row). This explains the constant 
values for the first four rows of the third column.

The first and second columns of Table 8 are represented in Figure 8 in the form of 
a Pareto curve for a trade-off between collected profit and maximum total distance. 
It can be observed that, as expected, the total collected profit increases as the thresh-
old on the total distance increases. However, the profit stabilizes when the threshold 
� reaches 130. In fact, if no threshold is imposed and only the total collected profit is 
maximized, then the resulting total collected distance equals 131.35. Therefore, for � 
values larger than 131.35, the total collected profit remains constant.

(c) a280 (d) ali535

(a) eil51 (b) st70

Fig. 7  Representation of the resulting routes for instances of Table 7 with scale 1/1000
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The routes associated with some of the solutions of Table 8 are depicted in Fig-
ure 9. As � decreases, the route length decreases and tends to look like a usual TSP 
solution, in which the total distance is minimized and profit is not considered.

Table 8  Trade-off between 
collected profit and total 
distance for instance eil51 at 
scale 1/10

Threshold � Profit Total distance Time Gap (%)

200 3047909.70 131.35 20.8 0.00
180 3047909.70 131.35 19.8 0.00
160 3047909.70 131.35 19.9 0.00
140 3047909.70 131.35 16.6 0.00
130 3047793.97 129.54 24.5 0.00
120 3044886.66 119.54 1800 0.00
100 3030961.07 99.75 1800 0.01
80 3004438.23 79.93 1800 0.01
60 2922777.87 59.95 1800 0.04
50 2849024.68 49.85 1800 0.07
45 2797871.66 44.92 1800 0.06
44 2785162.11 44.00 1800 0.03
43 2760263.52 42.95 139.5 0.00

Fig. 8  Trade-off between collected profit and total distance for instance eil51 at scale 1/10
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5  Conclusions

We have introduced, modeled, and solved the STSP-TDT. The STSP-TDT is a 
generalization of other well-known variants of the traveling salesman problems 
such as the TSP itself, the STSP, as well as the TSP and the STSP with time win-
dows. Some interesting properties arise in the context of time-dependent profits. 
For example, it sometimes makes sense to visit the same vertex multiple times 
and to optimize the starting time of the tour. We have proposed and tested a for-
mulation of the single-visit problem that can be used if the profit functions are 
linear or piecewise linear.

We have also proposed and tested an extended formulation for the case when 
multiple visits to the same vertex are allowed and desirable. In this case, we for-
mulate the problem by means of an extended graph so that this variant reduces to 
an STSP, adapted to be solved as a longest path problem.

We have analyzed the problem by studying the shape of the time-dependent 
profit functions. We have also performed several experiments on artificially cre-
ated instances and on some TSPLib instances considering the single- and multi-
ple-visit cases. Our results on artificially created instances validate the model per-
formance and highlight the importance of allowing a variable starting time of the 
route. We have considered several scale measures and optimally solved instances 
containing up to 535 vertices for the single-visit case. We have also compared the 
results obtained for the single- and multiple-visit cases and analyzed the results 
of our single-visit case experiments by means of a Pareto frontier representing the 
trade-off between the collected profit and the total distance traveled. We observe 
that these objectives are naturally opposed to one another.

(a) ε = 140 (b) ε = 100 (c) ε = 60

(d) ε = 50 (e) ε = 45 (f ) ε = 43

Fig. 9  Representation of the resulting routes for different values of �
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Appendix. Results of 15 and 50 vertices mesh instances

See Figs. 10, 11, 12 and 13.

Fig. 10  Mesh instances. Experiments 1 to 5. 15 vertices. Clockwise order
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Fig. 11  Mesh instances. Experiments 16 to 20. 15 vertices. Counterclockwise order
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Fig. 12  Mesh instances. Experiments 11 to 15. 50 vertices. Clockwise order
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Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

Fig. 13  Mesh instances. Experiments 26 to 30. 50 vertices. Counterclockwise order

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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