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Abstract
Energy forecasting has attracted enormous attention over the last few decades, with 
novel proposals related to the use of heterogeneous data sources, probabilistic fore-
casting, online learning, etc. A key aspect that emerged is that learning and forecast-
ing may highly benefit from distributed data, though not only in the geographical 
sense. That is, various agents collect and own data that may be useful to others. 
In contrast to recent proposals that look into distributed and privacy-preserving 
learning (incentive-free), we explore here a framework called regression markets. 
There, agents aiming to improve their forecasts post a regression task, for which 
other agents may contribute by sharing their data for their features and get monetar-
ily rewarded for it. The market design is for regression models that are linear in their 
parameters, and possibly separable, with estimation performed based on either batch 
or online learning. Both in-sample and out-of-sample aspects are considered, with 
markets for fitting models in-sample, and then for improving genuine forecasts out-
of-sample. Such regression markets rely on recent concepts within interpretability 
of machine learning approaches and cooperative game theory, with Shapley additive 
explanations. Besides introducing the market design and proving its desirable prop-
erties, application results are shown based on simulation studies (to highlight the 
salient features of the proposal) and with real-world case studies.
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1 Introduction

Renewable energy forecasting has evolved tremendously over the last 10–20 years, 
with a strong evolution towards probabilistic forecasting, cutting-edge statistical 
and machine learning approaches, the use of large amounts of heterogeneous and 
distributed data, etc. For a recent and compact review of the state of the art within 
energy forecasting, the reader is referred to Hong et al. (2020). Especially when 
it comes to the use of heterogeneous and distributed data sources, numerous 
works support the idea that forecasting quality may be substantially improved, 
see Andrade and Bessa (2017), Cavalcante et  al. (2017) and Messner and Pin-
son (2019) among others. These works have shown that improvements may be 
obtained by using offsite information (e.g., power and meteorological measure-
ments) as well as weather forecasts over neighboring grid points, for areas cover-
ing tens to a few hundreds of kilometers. Improvements are observed for forecasts 
in the form of conditional expectations, but also for probabilistic forecasts, e.g., 
quantiles, intervals and predictive densities. When using the term distributed, we 
here mean both in the geographical and ownership sense, i.e., the data potentially 
valuable to a given agent of the energy system is actually collected and owned by 
other agents. Therefore, some have pushed forward proposals towards distributed 
and privacy-preserving learning (Zhang and Wang 2018; Sommer et al. 2021), as 
a way to get the benefits from such distributed data, without revealing the private 
information of the agents involved. Beyond energy applications, this approach is 
generally known as federated learning (Li et al. 2020), with substantial develop-
ments over the last few years. The alternative that we propose to explore here 
is that of data monetization within a collaborative and market-based analytics 
framework. In the frame of the paper, it is assumed that if remunerated, agents 
are willing to share their actual data with an analytics platform. Privacy-related 
aspects are hence not readily considered, since data is shared with the platform 
but not with other agents. If privacy was to be additionally accommodated in that 
collaborative and market-based analytics framework, alternative approaches rely-
ing on distributed computing, differential privacy, etc. could be employed. As a 
representative example, Gonçalves et al. (2021) analyzed some of these alterna-
tive approaches in a collaborative forecasting context.

Concepts of information sharing have been prevalent in some parts of the 
economics and game-theory focused literature, going as far back as the 1980s 
(Gal-Or 1985). Data monetization and data markets have been increasingly dis-
cussed over the last 5–10 years, with a number of proposals towards algorithmic 
solutions (Agarwal et  al. 2019), as well as fundamental aspects of pricing and 
privacy-preservation (Acemoglou et al. 2019), more generally also with consid-
eration of bilateral exchange of data vs. monetization of data (Rasouli and Jor-
dan 2021). For a recent review of the state of the art related to data markets, see 
Bergemann and Bonatti (2019) and Liang et al. (2018). Approaches that would be 
suitable for renewable energy forecasting and energy applications more broadly 
are scarce though, with the notable recent example of Gonçalves et  al. (2020), 
who adapt and apply an approach in line with the proposal of Agarwal et  al. 
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(2019), restricted to batch learning and in-sample assessment of the value of data 
and features provided. Renewable energy forecasting appears to be an ideal play-
ground to develop, apply and assess data markets, in view of the known value 
of distributed data, the liberalization of energy markets, and potential resulting 
impact. In addition, such data markets can then be developed along the lines 
of cutting-edge forecasting frameworks, where forecasts are thought of within 
a probabilistic framework, the environment is seen as nonstationary, etc. As of 
today, there does not exist such data markets that would jointly look at in-sam-
ple and out-of-sample value of data for forecasting, as well as both batch and 
online learning in underlying regression models. Consequently here, our aim is to 
describe and to analyze a theoretically sound and practical proposal for data mon-
etization within a collaborative and market-based analytics framework, which is 
readily suitable for energy-related forecasting applications and these aforemen-
tioned characteristics. We restrict ourselves to a market with a single buyer and 
multiple sellers. This corresponds to the case where an agent that would like to 
improve the solving of a regression task posts this task on an analytics platform, 
where other agents can come and propose their features and own data. Many tasks 
could be posted in parallel, but buyers or tasks would not compete for the features 
and data to be supplied. However, several tasks could be posted and handled in 
parallel (as in our case-study application) based on the idea that buying the data 
does not bring exclusivity. Exclusivity is here defined as the fact that if data is 
sold to an agent, it cannot be sold to another agent in parallel. In contrast, if aim-
ing for exclusivity, other setups exist for feature allocation among multiple buyers 
and sellers with the aim of maximizing social welfare, as for the example case of 
Cao et al. (2017).

Within energy forecasting applications, one most often finds a regression model 
and a learning process used to fit model parameters. Therefore, we place our focus 
on so-called regression markets. These markets readily build on the seminal work 
of Dekel et al. (2010), who were the first to look at mechanism design aspects for 
a regression setting where agents may be strategic in the way they share private 
information. Here, regression markets are considered in both batch and online ver-
sions, since modern learning and forecasting techniques mostly rely on these two 
approaches. We restrict ourselves to a certain class of regression problems (linear 
in parameters), which allows us to obtain certain market properties. It was already 
shown and discussed by Dekel et al. (2010) that certain properties, especially truth-
fulness (also referred to as incentive compatibility) is difficult to obtain in a more 
general regression setting. Extensions to privacy-constrained truthful regression, 
limited to a linear setting, were also recently discussed (Cummings et al. 2015). The 
quality of the model fitting is assessed by a negatively-oriented convex loss function 
l (lower is better), which may be quadratic in the case of Least-Squares (LS) fitting, 
a smooth quantile loss in the case of quantile regression, a Maximum Likelihood 
(ML) score for more general probabilistic models, etc. That convex loss function 
is at the core of our proposal, since the main idea is that an agent may be able to 
decrease the loss l by using data from other agents. These agents should be mon-
etarily compensated in a fair and efficient way, i.e., in line with their individual and 
marginal contribution to improvements in l. For that purpose, we use some recent 
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concepts related to interpretability in machine learning, following the original pro-
posal of Lundberg and Lee (2017) and the wealth of subsequent proposals, which 
directly connect to a cooperative game-theoretical framework as in Agarwal et  al. 
(2019). Finally, a particular aspect of our contribution is that we consider both in-
sample (i.e., model fitting based on past data) and out-of-sample (i.e., use of those 
models for forecasting based on new data) since in actual energy forecasting appli-
cation, both need to be considered to improve model fitting, but also genuine fore-
cast quality.

The document is structured as follows: first, Sect. 2 describes the agents and pre-
liminaries regarding regression tasks. Subsequently, Sect. 3 introduces our original 
proposal for regression market mechanisms, where agents are monetarily rewarded 
for their contribution to improving the solving of a given regression task, in the 
sense of lowering the convex loss function l. The overall concept is presented for 
both batch and online setups, also with a description of feature valuation and alloca-
tion policies. The extension to the out-of-sample regression and forecasting case is 
also covered. The properties of our regression market mechanisms are finally pre-
sented and proven. The approach is illustrated based on a set of simulation studies, 
which are gathered in Sect. 4, for a broad range of models and cases. Section 5 then 
describes and discusses an application to real-world forecasting case-studies, with 
both mean and quantile forecasting problems, as well as batch and online learning. 
Finally, Sect. 6 gathers a set of conclusions and perspectives for future work.

2  Setup, regression and estimation

2.1  Central and support agents

Consider a set of agents A = {a1, a2,… , am} . Out of this set of agents, one of the 
agents ai ∈ A is referred to as central agent, in the sense that this agent has an ana-
lytics task at hand, in the form of a regression problem for an eventual forecasting 
application. We refer to the other agents aj, j ≠ i , as support agents, since they may 
be supporting the central agent with the analytics task at hand. The central agent 
has a target variable {Yt} , seen as a stochastic process, i.e., a succession of random 
variables Yt indexed over time, with t the time index. Eventually, a time-series {yt} 
is observed, which consists of realizations from {Yt} , one per time index value. For 
simplicity, we consider that realizations of Yt can take any value in ℝ , even though 
in practice, it is also fine if restricted to a subset of it (positive values only, or within 
the unit interval [0, 1], for instance).

The central agent aims at obtaining a model that can describe some given charac-
teristics zt of Yt , e.g., its mean �t or a specific quantile q(�)t  with nominal level � . This 
description relies on a set Ω = {xk, k = 1,… ,K} of input features (also referred 
to as explanatory variables). These features and their observations are distributed 
among all agents. We denote by xk,t the observation of feature xk at time t. As for 
the target variable, we consider for simplicity that xk,t ∈ ℝ, ∀t, k , though in practice 
these may also be restricted to a subset of ℝ.
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All features and target variable are observed at successive time instants, 
t = 1,… , T  , such that we eventually have time-series of those. Let us write 
�k = [xk,1 … xk,T ]

⊤ the vector of values for the feature xk , �t = [x1,t … xK,t]
⊤ the 

vector of values for all features at time t, while � = [y1 … yT ]
⊤ gathers all target 

variable observations, over the T time steps. In the case only a subset of features 
𝜔 ⊂ Ω is used, the vector of feature values at time t is denoted by ��,t . In practice 
such features may be observations (meteorological, power measurements, etc.) or 
forecasts (e.g., for weather variables). We write �� ∈ ℝ

T×|�| the design matrix, the 
tth row of which is �⊤

𝜔,t
.

The features are distributed among all agents in A as following: the central agent 
ai owns a set �i (of cardinal |�i| ) of features, 𝜔i ⊂ Ω , as well as the target variable 
y; the support agents, gathered in the set A−i = {aj, j ≠ i} , own the other input fea-
tures, which could be of relevance to the central agent for that regression task. Each 
agent aj has a set �j with |�j| features, 𝜔j ⊂ Ω , such that ��i� +∑

j ��j� = K . We 
write Ω−i the set that contains the features of support agents only, Ω−i = Ω⧵�i.

2.2  Regression framework

2.2.1  Regression models that are linear in their parameters

Generally speaking, based on temporally index data, collected at regular time inter-
vals, a regression problem aims at describing the mapping f between a set 𝜔 ⊂ Ω of 
explanatory variables, and the target variable z, i.e.,

In principle f may be linear or nonlinear, and a wealth of approaches can be consid-
ered for its modeling. We restrict ourselves to the case of parametric regression in 
the sense that

Consequently, given a structural choice for f, the regression may be fully and 
uniquely described by the set of parameters �𝜔 = [𝛽0 𝛽1 … 𝛽n]

⊤ , n ≥ |�| + 1 . 
In the linear regression case, n = |�| + 1 , while n > |𝜔| + 1 for nonlinear regres-
sion. We additionally restrict ourselves to the case of regression models that can be 
expressed as linear in their parameters �� , since if using convex loss functions the 
resulting estimation problem is convex too. That class of regression problems is not 
limited to linear regression only though, since also covering nonlinear regression 
problems such as polynomial regression, local polynomial regression, additive mod-
els with splines, etc. This therefore means the model in (2) can be expressed as

where �̃𝜔,t ∈ ℝ
n is the observation at time t of the augmented feature vector 

�̃𝜔 . For instance if having K = 2 features x1 and x2 and considering polynomial 
regression of order 2, the augmented feature vector at that time can written as 

(1)f ∶ ��,t ∈ ℝ
|�|

→ zt ∈ ℝ.

(2)zt = f (��,t; ��), ∀t.

(3)zt = �⊤
𝜔
�̃𝜔,t, ∀t,
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�̃𝜔,t = [1 x1,t x2,t x
2
1,t

x1,tx2,t x
2
2,t
] . The vector of parameters �� hence has dimension 

n = 6.
In the following, to place ourselves in the most generic framework, we focus 

on the regression problems as in (3), as they also encompass basic linear regres-
sion when �̃𝜔 = �𝜔 . We write �̃𝜔 ∈ ℝ

T×n the design matrix, the tth row of which 
is �̃⊤

𝜔,t
.

2.2.2  Separable and non‑separable regression problems

Consider the general case for which a linear regression model f uses features xk 
within a set 𝜔 ⊂ Ω as input (so, possibly from both central and support agents), to 
describe a characteristic zt of Yt . Linear regression relies on the following model for 
Yt,

where �t is a centred noise with finite variance. This readily translates to

For instance, if zt is the expectation of Yt , this means that this expectation is modeled 
as a linear function of the input feature values at time t.

In the special case where only the features of the central agent ai are used, 
one has

i.e., only considering the features owned by the central agent, xk ∈ �i . The �k ’s are 
hence the coefficients in the linear model corresponding to the features owned by the 
central agent. In contrast, if the features of all support agents were also considered, 
the corresponding linear model would be

where the �k ’s (related to xk ∈ Ω−i ) are the coefficients in the linear model cor-
responding to the features owned by the all support agents. In principle, �0 could 
be taken aside since not relating to a feature owned by neither central nor support 
agents. For simplicity in the following, we consider that the central agent also has a 
unit feature, that hence corresponds to that intercept. As can be seen from (7), such 
linear regression models are separable, in the sense that we can separate blocks of 

(4)Yt = �0 +
∑

k|xk∈�
�kxk,t + �t, ∀t,

(5)zt = �0 +
∑

k|xk∈�
�kxk,t, ∀t.

(6)zt = �0 +
∑

k|xk∈�i

�kxk,t, ∀t,

(7)
zt = �0 +

K∑
k=1

�kxk,t = �0 +
∑

k|xk∈�i

�kxk,t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
central agent

+
∑
j∈A−i

∑
k|xk∈�j

�kxk,t

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
support agents

, ∀t,
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terms that relate to the individual features of each agent. Similarly, additive models 
with splines are separable, since these may be written as

where

In the above, the Bi ’s denotes the basis functions, while gk is the spline basis expan-
sion relying on nk basis functions. In addition, nk is the number of degrees of free-
dom, being itself a function of spline type and the number of knots. By combin-
ing (8) and (9), one sees that additive models with a spline basis take the form of the 
generic parametric regression model (3), and that these are separable.

In contrast, if using polynomial regression (as well as local polynomial regres-
sion) with a degree greater than 1, the regression models are not separable, since 
interaction terms in the form of direct multiplication of features owned by dif-
ferent agents will be present. Consequently, one cannot have this separation in 
blocks as for linear regression and additive models with splines. To illustrate 
those situations, two examples are gathered below.

Example 2.1 (ARX model for the mean) The central agent may want to learn 
an Auto-Regressive with eXogenous input (ARX) model, to describe the mean 
�t of Yt , based on lagged values of the target variable (say, one lag only), as 
well as lagged input features from the support agents. A first support agent 
owns feature x1 while a second support agent owns feature x2 . This yields

Example 2.2 (Polynomial quantile regression of order 2) In a quantile regression 
problem, for a given nominal level � (say, for instance, � = 0.9 ), to describe the 
quantile q(�)t  of Yt , the central agent owns feature x1 . In parallel, two support agents 
own two relevant features x2 and x3 . Those are overall considered within the follow-
ing polynomial quantile regression problem or order 2:

(8)
zt = �0 +

K∑
k=1

gk(xk,t) = �0 +
∑

k|xk∈�i

gk(xk,t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
central agent

+
∑
j∈A−i

∑
k|xk∈�j

gk(xk,t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
support agents

, ∀t,

(9)gk(xk,t) =

nk∑
i=1

�k,iBi(xk,t), ∀k, t.

(10)
�t = �0 + �1 yt−1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
central agent

+ �2 x1,t−1
⏟⏟⏟

first support agent

+ �3 x2,t−1
⏟⏟⏟

second support agent

.



540 P. Pinson et al.

1 3

2.3  Estimation problems

For the regression problems above, one eventually has to estimate the parameter 
vector � based on available data. We differentiate two cases: batch and online, which 
are further described in the following.

2.3.1  Residuals and loss functions

Eventually, based on those collected data, one aims at finding the “best” mapping 
f that describes the relationship between the input features and the target vari-
able. Given a chosen regression model for f (within our restricted class of regres-
sion models), this is done by minimizing a chosen loss function l of the residuals 
𝜀t = yt − �⊤�̃t in expectation, to obtain the optimal set of parameters �̂ , i.e.,

Common loss functions include the quadratic loss l(�) = �2 for mean regression, the 
absolute loss l(�) = |�| for median regression and more generally the quantile loss 
l(�; �) = �(� − �{�≤0}) for quantile regression. In all cases, l is a negatively-oriented 
proper scoring rule, with a minimum value at � = 0 . It is negatively oriented since 
lower values are preferred (in other words, the model more accurately describes the 
data at hand in the sense of l). It is a strictly proper scoring rule since the best score 
value is only given to the best outcome (in principle, � = 0 ) (Gneiting and Raftery 
2007). In the following, we will use the notation l(�) instead, since given the explan-
atory and response variable data, the loss actually is a direct function of the vector 
of coefficients � only.

The quadratic loss function readily allows for both batch and online estimation 
approaches, though the online case is not straightforward if considering absolute and 
quantile loss functions. Indeed, to use the type of gradient-based approach described 
hereafter, the following assumption is necessary.

Assumption 1 Loss functions l are twice differentiable everywhere and continu-
ous, l ∈ C

2.

Absolute and quantile loss functions do not satisfy Assumption 1. However, one 
can use the smooth quantile loss introduced by Zheng (2011) instead (also covering 
the absolute case for � = 0.5 ). The smooth quantile loss function is defined as

(11)

q
(�)
t = �0 + �1x1,t + �2x

2
1,t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
central agent

+ �3x2,t + �4x
2
2,t

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
first support agent

+ �5x3,t + �6x
2
3,t

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
second support agent

+ �7x2,tx3,t + �8x1,tx2,t + �9x1,tx3,t
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

interaction terms

.

(12)�̂ = argmin ��[l(𝜀)].



541

1 3

Regression markets and application to energy forecasting  

where � is the nominal level of the quantile of interest, � ∈ [0, 1] , while � ∈ ℝ
+
∗
 is a 

smoothing parameter. A number of interesting properties of such loss functions, as 
well as relevant simulation studies, are gathered in Zheng (2011).

2.3.2  Batch estimation

In the batch estimation case, the parameters of the regression model  (3) are esti-
mated once for all based on observations gathered for times t = 1… , T  . Given a 
choice of a regression model based on a set of features 𝜔 ⊆ Ω , we write �� the vec-
tor of parameters corresponding to the potentially augmented vector of features �̃ . 
Given a loss function l, the vector of parameters can be obtained as

where L�(��) is an in-sample estimator for �
[
l�(��)

]
 , defined as

and where �̃𝜔,t is the augmented feature vector value at time t. We denote by L∗
�
 the 

value of the loss function estimate L� at the estimated �̂𝜔 , L∗
𝜔
= L𝜔(�̂𝜔) . Interesting 

special cases then include the estimation of �̂𝜔i
 , i.e., using the features of the central 

agent only with loss function value estimate L∗
�i

 , as well as the case for which all 
features are considered (from both central and support agents) yielding the estimated 
coefficients �̂Ω and loss function value estimate L∗

Ω
 . The overall added value of 

employing features from support agents can then be quantified as L∗
�i
− L∗

Ω
 . One may 

intuitively expect that all potential features xk ∈ Ω−i contribute to lowering the loss 
function estimate from L�i

 to L∗
Ω

 . However, such features will contribute to a varied 
extent, with possibly some that provide a negative contribution, i.e., in practice, they 
make the loss function estimate worse. It is a general problem in statistical learning 
and forecasting to select the right features to lower the loss function at hand.

An important property of the batch estimation problems, with model types and 
loss functions we consider is described in the following proposition.

Proposition 1 Given a convex loss function l and a parametric regression model of 
the form of (3), the vector �̂𝜔 of optimal model parameters, as in (14), exists and is 
unique.

We do not give a formal proof of Proposition 1 here, as it is a straightforward and 
key result of convex optimization: the optimization problem in (14), based on con-
vex loss functions (as used in the regression model estimation, e.g., quadratic, quan-
tile, etc.), relies on a continuous and strictly convex function L� . Hence, its solution 
exists and is unique.

(13)l(�; �, �) = �� + � log
(
1 + exp

(
−
�

�

))
,

(14)�̂𝜔 = argmin �𝜔
L𝜔(�𝜔),

(15)L𝜔(�𝜔) =
1

T

T∑
t=1

l(yt − �⊤
𝜔
�̃𝜔,t) =

1

T

T∑
t=1

l𝜔,t(�𝜔),
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Depending on the loss function l and its in-sample estimate L, the estimation 
problem in (14) may have a closed-form solution (as for the quadratic loss case), or 
may require the use of numerical methods (i.e., for absolute and quantile loss func-
tions, possibly Huber loss (Huber 1964) and more general convex loss functions).

2.3.3  Online estimation

So far, it was assumed that the regression model parameters do not change with time. 
However, due to nonstationarity in the data and underlying processes, and possibly 
to lighten the computation burden, it may be relevant to consider that these model 
parameters vary in time. In that case, we also use a time index subscript for ��,t . The 
estimation of ��,t in a recursive and adaptive manner is referred to as online learn-
ing. For a thorough recent coverage of approaches to online learning, the reader is 
referred to Orabona (2020).

In the online learning setup, recursivity translates to the idea that the model 
parameter estimates at a given time t can be obtained based on the previous model 
parameter estimates (hence, at time t − 1 ) and the new available information at time 
t. That newly available information at time t typically is a function of the latest 
residual, i.e., the difference between the latest regression output (for time t, based on 
model parameters from time t − 1 ) and the observation at time t. In parallel, adaptiv-
ity is linked to the use of a forgetting scheme, so that higher weight is given to the 
most recent information. The most usual approach is exponential forgetting, where 
the importance given past information decreases exponentially. It uses a forgetting 
factor � ∈ [0, 1) , with values close to 1. Past information is then weighted by ��t 
where �t denotes the age of information compared to current time t. Eventually, the 
optimization related to the estimation of model parameters at time t can be formu-
lated as

where

In the above, �t = t − ti , and n� is the effective window size, n� = (1 − �)−1 . It is a 
scaling parameter for the loss function estimate similar to the number of observa-
tions T in the case of the batch estimator. L�,t is to be seen as a time-varying estima-
tor of the loss function l at time t.

As a proxy to solving (16), one can use a fairly straightforward trick for recursive 
updates of all quantities involved. Given that Assumption  1 is satisfied, recursive 
updates can be obtained based on a Newton–Raphson step. Considering a model 
based on the set of features � , and with loss function l (and estimator L), that New-
ton–Raphson step forms the basis for the update of model parameters ��,t−1 from 
time t − 1 to time t, with

(16)�̂𝜔,t = argmin �𝜔,t
L𝜔,t(�𝜔,t),

(17)L𝜔,t(�𝜔,t) =
1

n𝜆

∑
ti<t

𝜆t−ti l(yti − �⊤
𝜔,t
�̃𝜔,ti) =

1

n𝜆

∑
ti<t

𝜆t−ti l𝜔,ti (�𝜔,t).
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In practice, this means that, if having the set of optimal model parameters �̂𝜔,t−1 at 
time t − 1 , one can use the above update to obtain the optimal model parameters �̂𝜔,t 
at time t. Obviously, there may be a tracking error involved, which is today com-
monly studied in terms of regret—see Orabona (2020) for instance.

Considering both quadratic loss and smooth pinball loss functions, we have the 
following general results for online learning based on a Newton–Raphson step for 
regression models that are linear in their parameters. In both cases, online learn-
ing based on a Newton–Raphson step requires a memory in the form of a matrix 
��,t ∈ ℝ

n×n , directly relating to the Hessian ∇2L�,t for the loss function considered, 
and at time t.

Proposition 2 Given a loss function l,   l ∈ C
2, and a regression model as in (3), 

with a set � of parameters, the Newton–Raphson step at time t is given by

with, if l is the quadratic loss, 

and if l is the smooth quantile loss, given the smoothing parameter � and nominal 
level �,

There also, the proof of Proposition 2 is omitted, since only relying on calculating 
relevant derivatives and Hessian of loss functions, to be plugged in (18). Similar der-
ivations can be performed for other types of loss functions that meet Assumption 1, 

(18)�̂𝜔,t = �̂𝜔,t−1 −
∇L𝜔,t(�̂𝜔,t−1)

∇2L𝜔,t(�̂𝜔,t−1)
.

(19a)𝜀𝜔,t = yt − �̂
⊤

𝜔,t−1
�̃𝜔,t,

(19b)�𝜔,t = 𝜆�𝜔,t−1 + �̃𝜔,t�̃
⊤
𝜔,t

h2(𝜀𝜔,t),

(19c)�̂𝜔,t = �̂𝜔,t−1 +�−1
𝜔,t
�̃𝜔,t h1(𝜀𝜔,t).

(20a)h1(��,t) = ��,t,

(20b)h2(��,t) = 1,

(21a)h1(��,t) = � +
� − exp

(
−

��,t

�

)

1 + exp
(
−

��,t

�

) ,

(21b)h2(��,t) =
(1 + �) exp

(
−

��,t

�

)

(
1 + exp

(
−

��,t

�

))2
.
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as well as for special cases of loss functions that do not meet Assumption 1, e.g., the 
Huber loss. Similarly to the batch case, that approach enjoys the interesting property 
of existence and uniqueness of the Newton–Raphson step.

Proposition 3 Given a loss function l that meets Assumption 1, and a regression 
model as in (3), with a set � of parameters, the Newton–Raphson step is always 
feasible, while the updated vector of estimated model parameters �̂𝜔,t exists and is 
unique.

The proof of Proposition 3 readily relies on Assumption 1, since for loss func-
tions l ∈ C2 , both gradient ∇L𝜔,t(�̂𝜔,t−1) and Hessian ∇2L𝜔,t(�̂𝜔,t−1) are always 
well-defined.

The recursive updates given in Proposition 2 are for a given time t. However, it 
does not tell us how such an online learning scheme should be initialized. In prac-
tice, one generally uses batch estimation with a small sample of data (say, 50–100-
time points) to obtain initial parameter estimates for the online learning scheme. 
Alternatively, all parameter estimates may be initialized to 0 (or any other relevant 
expert guess) and the online learning scheme applied from the start. In that case 
though, one would need to wait for some steps (again, say, 20–100-time points) 
before to inverse a matrix in (19c), as those may be (close to) singular.

2.4  Defining regression tasks

Let us close this section related to regression by defining regression tasks, in both 
batch and online versions. The reason why we need to define those tasks is that these 
will be the tasks that central agents may post on a collaborative analytics platform, 
within the market frame to be described in the following section. Another type of 
task is finally defined for the out-of-sample regression case, when the models and 
estimated parameters (from either batch or online learning stage) are to be used for 
out-of-sample genuine forecasting.

Definition 1 (Batch regression task) Given the choice of regression model f and 
loss function l, as well as data collected for a set of input features xk ∈ 𝜔 ⊆ Ω and 
a target variable y over a period with T time steps, a batch regression task can be 
represented as

i.e., as a mapping from those data to a set of coefficients �̂𝜔 ∈ ℝ
n such that the loss 

function estimate is minimized (and with a minimum value L∗
�
).

Definition 2 (Online regression task) At time t, given a regression model f, a loss 
function l and a forgetting factor � , as well as newly collected data at time t for a set 
of input features xk ∈ 𝜔 ⊆ Ω and a target variable y, the online regression task relies 
on the following mapping

(22)F
b
l
∶
(
�̃𝜔, �

)
→

(
�̂𝜔, L

∗
𝜔

)
,
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where as input �̂𝜔,t−1 is the previous set of estimated model parameters (from time 
t − 1 ), L�,t−1 is the loss function estimate value at time t − 1 , ��,t−1 ∈ ℝ

n×n is the 
memory of the regression task, while �̃𝜔,t ∈ ℝ

n and yt ∈ ℝ are the new data (for 
both input features and target variable) at time t. Based on those, the regression task 
F

o
l,t

 updates the memory to yield ��,t , the estimated model parameters to yield �̂𝜔,t , 
as well as the loss function estimate L∗

�,t
.

Note that the choice of regression model for f and a loss function l leads to a 
unique mapping Fb

l
 and Fo

l,t
 for both batch and online regression tasks, based on 

Propositions 1 and 3, respectively. In a last stage, let us define in the following the 
out-of-sample regression task.

Definition 3 (Out-of-sample regression task) At time t, given a choice of regres-
sion model f and estimated parameters available at that time (from either batch or 
online regression tasks, which we write �̂𝜔,t ), as well as data collected for a set of 
input features �̃𝜔,t+h , the out-of-sample regression task maps those to a h-step ahead 
forecast for a characteristic z of the target variable y, i.e.,

There again, the mapping exists and is unique (unless the parameters are equal to 
0), since dealing with regression models that are linear in their parameters.

3  Introducing regression markets

3.1  General considerations

Emphasis is placed on a market with a single buyer and multiple sellers. This market 
is hosted by an analytics platform, handling both the collaborative analytics and the 
market components. This is in line with other works that look at data markets with 
some form of collaborative analytics involved as for, e.g., Agarwal et al. (2019) and 
Gonçalves et al. (2020).

On this platform, a central agent ai posts a regression task (either batch or 
online, as defined in the above), which therefore implies a choice for a regres-
sion model f. This choice for f is to be understood as choosing a class of poten-
tial regression models, e.g., plain linear regression or additive spline regression, 
based on features that may be provided. The central agent additionally declares 
a willingness to pay �i for improving model fitting, or forecast accuracy, in the 
sense of a loss function l. The willingness to pay may be readily linked to the 
perceived cost of modeling and forecasting errors in some decision process, for 
instance if trading in electricity markets. �i is expressed in monetary terms (e.g., 
€, £ or $) per unit improvement in l and per data point provided. If support agents 

(23)F
o
l,t
∶
(
�̂𝜔,t−1, L

∗
𝜔,t−1

,�𝜔,t−1, �̃𝜔,t, yt

)
→

(
�̂𝜔,t, L

∗
𝜔,t
,�𝜔,t

)
,

(24)F
oos
t

∶
(
�̃𝜔,t+h, �̂𝜔,t

)
→ ẑt+h|t.
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were to provide relevant additional features, the loss function l (or its estimate in 
practice) may be lowered, and the support agents remunerated based on the valu-
ation of their features, relatively to others’ features and to the overall improve-
ment in the loss function l. Obviously, a general problem for any statistical and 
machine learning setup is to select features that are valuable, here within the 
class of regression models considered. Otherwise, the loss function l will worsen. 
Consequently, those features have no value to the central agent, and the support 
agents should not be remunerated for features that are not valuable. Within the 
class of regression models chosen by the central agent, the analytics platform 
performs the necessary feature selection, based on cross-validation for instance. 
Consequently, we formulate the following crucial assumption.

Assumption 2 Within our regression markets, given that central agents have 
expressed a choice for a class of regression models, the analytics platform is 
entrusted with the feature selection process, for instance based on cross-validation, 
so that only valuable features (in the sense that using them lowers the loss function 
l) are considered.

It should be noted regression markets could endogenously perform the feature 
selection process, since, as will be described in the following, features that are 
not valuable will yield null or even negative payments. Hence, at this stage such 
features could be removed and the regression market run again without them. 
Alternatively, regression markets could rely on penalized regression problems, 
e.g., lasso (Tibshirani 1996) and elastic nets (Zou and Hastie 2005). This would 
have the advantage of endogenously selecting features, though decreasing overall 
benefits and potential distorting payments as the price to pay for that penalization.

All agents involved, i.e., both central and support agents, are to be seen as 
opportunistic. By this, we mean that they all hope to have a gain or a payment 
from participation in the regression market, although no gain or payment is guar-
anteed. In practice, the central agent cannot know in advance whether support 
agents may bring valuable features and data which would improve model fitting 
and improve forecast accuracy (in the sense of lowering a loss function l). Simi-
larly, support agents cannot know in advance whether their data and features will 
be selected, and what potential payment they may receive. This aspect actually is 
in line with other proposals for data markets with central analytic components, 
e.g., Agarwal et al. (2019) and Gonçalves et al. (2020). There, the buyers place a 
bid and the payment to the support agents (referred to as data sellers) is readily 
linked to the market-clearing price. Then, if the price out of the market clear-
ing is higher than the price offered by the buyer, the value of their input data is 
altered by adding a noise to it (the variance of which is proportional to the dif-
ference between the bid and actual market price). Importantly also, the market 
price in each trade is purely dependent on the value of the data in the previous 
trades, hence set before the current buyer enters the market with a specific analyt-
ics task. In the case where support agents would like to condition their participa-
tion to a minimum payment, one could also use the concept of “reservation to 
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sell” placed within a lasso-based regression framework, as recently proposed by 
Han et  al. (2021). More generally, minimum gain and payments for all agents 
involved could also be considered at the feature selection stage. This reservation 
to sell and minimum requested payment may reflect perceived privacy loss, a loss 
of competitive advantage, the cost of acquiring and storing the data, etc.

In the following, we first consider the batch setup, which allows to introduce the 
relevant markets concepts and its desirable properties. It is then extended to the 
online case, for which the data is streaming. Hence, the regression model param-
eters, allocation policies and payments are updated each and every time t, when new 
data becomes available. In both cases, these markets are for an in-sample assess-
ment of the value of the features and data of the support agents. This in-sample 
assessment is only a proxy for what their value may be out-of-sample when used 
for genuine forecasting. In practice, there may be substantial differences between 
in-sample and out-of-sample estimates for a chosen loss function l, and this is why 
we consider here complementary regression markets for the in-sample and out-of-
sample stages. However, it is clear that such out-of-sample forecasts can only be 
issued if the features and data of support agents have already been used to train rel-
evant regression models. This is why, in our proposal for regression markets, one 
needs to combine an in-sample assessment of improvements in l (based on the batch 
or online regression market) and an out-of-sample assessment of l (based on an out-
of-sample regression market). Our proposal for the definition of payments then rely 
on considerations related to quality, i.e., in-sample and out-of-sample reduction in a 
loss function l, and volume since the payment will be proportional to the quantity of 
data being shared by the support agents. Especially in a data streaming and online 
environment, this volumetric side of the payment is important to ensure that the data 
is continuously being shared by support agents.

3.2  Batch regression market

In a batch regression market, the central agent has a willingness to pay �i for improv-
ing the value of the loss function l, for instance expressed in € per time instant (or 
data point) and per unit decrease in l. Obviously, l is in practice replaced by its esti-
mate L. And, the process is based on a batch of data for the time instants between 
times 1 and T. In principle, the support agents have a willingness to sell �j ( ∀j ≠ i ), 
for instance expressed in € per data point shared, which may be a function of the 
cost of collecting the data, privacy-related considerations, etc. However here, we 
consider that their willingness to sell is � = 0 , i.e., they are happy to receive any 
possible payment for their features and data.

The central agent communicates the loss function l, regression model for f, length 
of dataset T (and the actual time period it corresponds to), owns set �i of features, as 
well as willingness to pay �i , to the analytics platform. The mapping Fb

l
 is then well-

defined within that analytics platform. In parallel, interested support agents share 
the data for their sets �j of features (so, T data points per feature) with the analytics 
platform. Within that framework, let us formally define a batch regression market.
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Definition 4 (Batch regression market) Given a regression model f, a loss func-
tion l and a batch period with T time steps, a batch regression market mechanism 
is a tuple ( Ry , Rx , � ) where Ry is the space of the target variable, Ry ⊆ ℝ

T , Rx is 
the space of the input features, R� ⊆ ℝ

T , and � is the vector of payout functions 
Πk ∶

(
{�k}k ∈ R

K
x
, � ∈ R�

)
→ �k ∈ ℝ

+.

Based on all features provided, and based on the mapping Fb
l
 , the analytics platform 

deduces the overall improvement in the loss function estimate L as L∗
�i
− L∗

Ω
 . This 

yields the payment �i of the central agent

which is a direct function of the quantity of data, improvement in loss function l 
(as estimated over the data used for estimated the model parameters) and the will-
ingness to pay the central agent. As mentioned previously, the payment has a volu-
metric component, since one buys a quantity of T data points at once and a quality 
component, since the payment is conditioned by the decrease in the loss function 
estimate by using the features and data of the support agents.

In parallel, the batch regression market relies on allocation policies �k(l) to define 
the payment for any feature xk of the support agents, xk ∈ Ω−i . We write �k(l) the allo-
cation policy value for feature xk for the loss function l, corresponding to its marginal 
contribution to the overall decrease of the loss function S. We therefore intuitively 
expect the following desirable properties for allocation policies.

Property 1 Allocation policies �k(l) are such that

 (i) �k(l) ∈ [0, 1], ∀k

 (ii) 
∑

k �k(l) = 1.

Those desirable properties for allocation policies are crucial for some of resulting 
inherent properties of the regression markets to be introduced and discussed later on. 
Eventually, the payment for feature xk is

so that, overall, the payment to agent j is

The payment is both volumetric since the quantity of data T is accounted for and 
linearly influences the payment, as well as quality driven. On that last point, it is a 
function of the overall improvement in l by considering the support agents’ features 
(i.e., L∗

�i
− L∗

Ω
 ), and the marginal contribution of each and every feature xk to that 

improvement (through the allocation policy �k(l)).

(25)�i = T (L∗
�i
− L∗

Ω
)�i,

(26)�k = T (L∗
�i
− L∗

Ω
)�i �k(l), ∀k ∈ Ω−i,

(27)�(aj) = T (L∗
�i
− L∗

Ω
)�i

⎛
⎜⎜⎝
�

k�xk∈�j

�k(l)

⎞
⎟⎟⎠
, ∀aj ∈ A−i.
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The key question is then about how to value each and every feature from the sup-
port agents within the regression task at hand (and hence, for the central agent). This 
is the aim of the allocation policies �k in (26) and (27).

In the simplest case where the input features are independent, the regression 
model separable and linear, and a quadratic loss is considered, one may actually 
consider the coefficient of determination as a basis for determining the �k’s. We 
refer to this approach as a “leave-one-out” policy.

Definition 5 (Leave-one-out allocation policy) For any feature xk ∈ Ω−i , and loss 
function l, the leave-one-out allocation policy � loo

k
(l) can be estimated as

In the above, both estimators are scaled by the loss estimate improvement when 
going from the central agents features only ( �i ) to the whole set of features Ω . The 
difference between the two estimators is in the numerator. In the first case, L∗

Ω⧵{xk}−L
∗
Ω

 
is for the decrease in the loss estimate when going from the full set of features minus 
xk to the full set of features. And, in the second case, L∗

�i
− L∗

�i∪{xk}
 is for the decrease 

in the loss estimate when going from the set of features of the central agent only, to 
that set plus xk . This leave-one-out policy may be seen as a simple case of a Vick-
rey–Clarke–Groves (VCG) mechanism, and for instance considered by Agarwal 
et al. (2019) and Rasouli and Jordan (2021).

For the special case where l is a quadratic loss function, one can take a variance-
decomposition point of view to observe that

with Var[.] the variance operator. Hence, � loo
k

(l) readily translates to the share of 
the variance in the target variable explained by the feature xk . Consequently, both 
estimators are equivalent and one readily verifies that allocation policies fulfil 
Property 1.

Strictly speaking, the leave-one-out allocation policies do not meet the desira-
ble properties expressed in Property  1, unless Assumption  2 is respected. It may 
not even be appropriate in the case where the features are not independent, when 
the regression model is non-separable and nonlinear, and if the loss function is not 
quadratic. In that more general case, a Shapley-based approach can be used instead. 
Shapley values and related allocation are well-known concepts in cooperative game 
theory with many desirable properties, while essentially providing a fair compensa-
tion for an agent’s contribution to the collective value creation. For a compact intro-
duction, the reader is referred to Winter (2002), while the application of Shapley 
value for data valuation is covered by Ghorbani and Zou (2019).

Allocation values are consequently defined by the marginal value of the various 
features in a Shapley sense, hence yielding the Shapley allocation policy.

(28)� loo
k

(l) =
L∗
Ω⧵{xk}

− L∗
Ω

L∗
�i
− L∗

Ω

, or � loo
k

(l) =
L∗
�i
− L∗

�i∪{xk}

L∗
�i
− L∗

Ω

.

(29)� loo
k

(l) =
�2
k
Var[Xk]∑

j∈Ω−i
�2
j
Var[Xj]

,
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Definition 6 (Shapley allocation policy) For any feature xk ∈ Ω−i , and loss func-
tion l, the (original) Shapley allocation policy � sh

k
(l) is given by

In the case where features are independent, considering a linear regression and 
a quadratic loss function, one has � sh

k
(l) = � loo

k
(l) . Even in the linear case and with 

quadratic loss, if features are not independent, spurious allocation may be obtained 
when employing the leave-one-out strategy, as hinted by Agarwal et  al. (2019). 
For instance, consider two features xk and xk′ being correlated perfectly, the mar-
ginal value of each feature as given by � loo

k
(l) and � loo

k�
(l) would be 0 if using the 

first estimator in (28). In contrast if using the second estimator in (28), � loo
k

(l) and 
� loo
k�

(l) would correctly reveal their marginal value, but one would eventually have ∑
j 𝜓

loo
k

(l) > 1 (since considering twice the same marginal feature value in the over-
all picture), which does not respect the basic definition such that allocations should 
sum to 1. The reason why we introduce here those two types of allocations is that in 
practice, various allocations could be used alternatively, as long as allocation poli-
cies are positive and sum to 1. Despite the fact Shapley allocations should be seen 
as the most relevant one, these are notoriously computationally heavy to calculate as 
the number of features n increases. This is a general problem known and addressed 
by the computer science and algorithmic game theory communities, see e.g., Jia 
et al. (2019) for a recent example also related to data markets.

A more important issue with the Shapley allocation policy is that it may violate 
one of the desirable basic properties of allocation policies, i.e., such that �k ∈ [0, 1] . 
This is since, as indicated in Sect.  2.3.2, certain features may actually make the 
loss function estimate worse when they provide no (or very little, compared to the 
batch sample size) valuable information. For those features, readily using a Shapley 
allocation policy would yield negative values for �k . This problem was for instance 
recently identified and discussed by Liu (2020), who then proposed to use zero-
Shapley and absolute-Shapley values instead.

Definition 7 (Zero-Shapley and absolute-Shapley allocation policies) For any fea-
ture xk ∈ Ω−i , and loss function l, the zero-Shapley allocation policy � sh

k
(l) is given 

by

while the absolute-Shapley allocation policy � sh
k
(l) is defined as

It is unclear today what approach to correcting Shapley allocation policies 
may be more appropriate when looking at data important and valuating it in the 

(30)𝜓 sh
k
(l) =

1

L∗
𝜔i
− L∗

Ω

∑
𝜔⊆Ω−i⧵{xk}

|𝜔|!(|Ω−i| − |𝜔| − 1)!

|Ω−i|!
(
L∗
𝜔i∪𝜔

− L∗
𝜔i∪𝜔∪{xk}

)
.

(31)

𝜓 sh
k
(l) =

1

L∗
𝜔i
− L∗

Ω

∑
𝜔⊆Ω−i⧵{xk}

|𝜔|!(|Ω−i| − |𝜔| − 1)!

|Ω−i|! max
{
0, L∗

𝜔i∪𝜔
− L∗

𝜔i∪𝜔∪{xk}

}
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(32)𝜓 sh
k
(l) =

1

L∗
𝜔i
− L∗

Ω

∑
𝜔⊆Ω−i⧵{xk}

|𝜔|!(|Ω−i| − |𝜔| − 1)!

|Ω−i|!
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context of regression markets. At least, both definitions ensure that the result-
ing allocation policies are positive—they may not sum to 1 though. In our case, 
by using Assumption  2, the original Shapley allocation policy can be readily 
employed, while meeting Property  1. The zero-Shapley and absolute-Shapley 
allocation policies may be useful instead for the out-of-sample regression mar-
kets, where the inherent value of the features and data provided by the support 
agents may not necessarily be positive.

Finally, let us compile here the important properties of the batch regression mar-
ket mechanism introduced in the above, which we look at in a way that is fairly 
similar to the case of wagering markets as in Lambert et al. (2008) as well as data 
markets as in Agarwal et al. (2019).

Theorem  1 Batch regression markets, using the proposed regression framework 
and payout functions based on (original) Shapley allocation policies, yield the fol-
lowing desirable properties: 

 (i) Budget balance: the sum of revenues is equal to the sum of payments
 (ii) Symmetry: the market outcomes are independent of the labelling of the support 

agents
 (iii) Truthfulness: support agents only receive their maximum potential revenues 

when reporting their true feature data
 (iv) Individual rationality: the revenue of the support agents is at least 0
 (v) Zero-element: a support agent that does not provide any feature, or provide a 

feature that has no value (in terms of improving the loss estimate L�), gets a 
revenue of 0

 (vi) Linearity: for any two set of features � and �′, the revenue obtained by sharing 
� ∪ �� is equal to the sum of the revenues if having shared � and �′ separately.

Note that Lambert et al. (2008) also mentions sybilproofness, normality and mono-
tonicity, which are not seen as relevant here. Those properties may be investigated in 
the future though. Linearity is an interesting property which ensures that support agents 
will not be strategic in packaging their features since, whatever the way they submit 
features to the regression market (individually or as a bundle), the overall revenue 
obtained will be the same. Note also that, similarly to the case of Agarwal et al. (2019), 
the batch regression markets inherit the additive property from the additivity axiom 
defining Shapley values. The proofs are gathered in Appendix A. Truthfulness can only 
be ensured up to sampling uncertainty since, as discussed in the proof, it would strictly 
hold if having access to the actual loss l—in practice, however, only an in-sample esti-
mate is available. For the case of using leave-one-out allocation policies instead, the 
same properties are obtained for plain linear regression models, a quadratic loss, and 
independent features. This relies on the law of total variance, of which the variance 
decomposition of  (28) is an example consequence. Truthfulness may not be verified 
in the more general case, though the other properties will hold. These properties are 
obviously interesting—still, they may not prevent some potential challenges with data 
duplication. For strategic behavior such as data replication, we have to use other payoff 
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allocation mechanisms, such as the Shapley Approximation proposed by Agarwal et al. 
(2019), at the cost of loosing budget balance.

Finally, it should be noted that such a setup for batch regression market may be read-
ily extended to the case of batch learning based on sliding windows, since payments 
would only be due for the new data points being used.

3.3  Online regression market

To adapt to the fact data is naturally streaming, and also that the analytics approaches 
may require to continuously learn from data in an online environment, we propose here 
an online version of the regression market introduced above. The base considerations 
are the same. The central agent has a willingness to pay �i for improving the value of 
the loss function l (in € per time instant and per unit decrease in l). This agent com-
municates the loss function l, regression model for f, her own set �i of features, as well 
willingness to pay �i , to the analytics platform. Most likely, the central agent also needs 
to inform about the duration over which the process will be re-iterated, as it may not 
make sense to only try and learn in a single instant. On the other side, interested sup-
port agents aj share the data for their sets �j of features with the analytics platform, 
by delivering a new set of feature data at each and every time t, as time passes. At 
each time t, the mapping Fo

l,t
 is well-defined within that analytics platform. Within that 

framework, let us formally define an online regression market.

Definition 8 (Online regression market) Given a regression model f, a loss 
function l and a given time t, an online regression market mechanism is a 
tuple ( Ry , Rx , � ) where Ry is the space of the target variable, Ry ⊆ ℝ , Rx is 
the space of the input features, R� ⊆ ℝ , and � is the vector of payout functions 
Πk ∶

(
{�k}k ∈ R

K
x
, � ∈ R�

)
→ �k,t ∈ ℝ

+.

In the batch regression case, one has a single estimate of the loss l over the batch 
period (with T data points), hence allowing to define a payment (for example for a 
given feature k in (26)) that combines the contribution to the loss improvement and the 
volume of data. In an online regression case, however, the loss estimator varies with 
time. It is hence not possible to define a single payment over a period with T data points 
based on a single loss function value. Instead, one needs to track the loss estimates 
through time, and use the loss estimate at time t to value the data points provided at that 
time. In a way, in the batch case, one could also consider that the payment �k,t to a sup-
port agent for the data point at a time t for feature k is

while the overall payment of the central agent at a given time t is

(33)�k,t = (L∗
�i
− L∗

Ω
)�i�k(l),

(34)�i,t = (L∗
�i
− L∗

Ω
)�i.
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These payments are the same for all t, and by summing up over time ( t = 1,… , T  ), 
one retrieves the payments defined in (25) and (26). Now, we will extend this idea of 
having payments at each and every time t to the case of time-varying loss estimates.

In an online learning environment, it is the loss estimators L�,t that vary with 
time. They will impact the allocation policies and make them time-varying too. 
By first observing that (17) can be decomposed as

loss function estimates can be readily updated at each and every time t. Conse-
quently, at a given time t, the payment �i,t of the central agent is

Compared to the batch case in  (25), T has disappeared since the payment is for a 
single time instant, while the loss estimates are specific to time t. This represents a 
time-varying generalization of the payment for the batch case.

To obtain the payments to the support agents, the only aspect missing is to 
determine the allocation policies. In line with the online estimation in Sect. 2.3.3, 
which is recursive and time-adaptive, it would be ideal to have a recursive and 
simple approach to update allocation policies.

Proposition 4 At any given time t,  both leave-one-out and (original) Shapley allo-
cation policies can be updated in a recursive fashion, with

This means that, for a given feature xk and both types of allocation policies, the 
allocation at time t can be obtained based on the previous allocation at time t − 1 
and on the allocation specific to the loss l(yt − �⊤

𝜔
�̃t) for the new residual at time t. 

Consequently, a payment �k,t (for feature xk ) is made at each and every time step 
t based on the time-varying loss function estimates and allocation policies. This 
yields

Similar to the case of the model parameter estimates in online learning, a legitimate 
question is about how to initialize payments. Since the allocation policies and pay-
ments are readily obtained from the loss estimates (and hence model parameter esti-
mates), the approach to model parameter initialization will drive the initialization of 
the payments.

Finally, online regression markets have the same properties as the batch ones.

Corollary 1 Online regression markets, using the proposed regression framework 
and payout functions based on Shapley allocation policies, yield the properties of (i) 
budget balance, (ii) symmetry, (iii) truthfulness, (iv) individual rationality, (v) zero-
element, and (vi) linearity.

(35)L∗
�,t
(��) = �L∗

�,t−1
(��) +

1

n�
l�,t(��),

(36)�i,t = (L∗
�i,t

− L∗
Ω,t
)�i.

(37)�k,t(l) = ��k,t−1(l) + (1 − �)�k(lt).

(38)�k,t = (L∗
�i,t

− L∗
Ω,t
)�i�k,t(l).
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The proof for that corollary is omitted since similar to that for Theorem 1.

3.4  Extension to forecasting and out‑of‑sample loss function assessment

Both of the above markets, in batch and online versions, relate to a learning problem 
and the in-sample assessment of a loss function l. In many practical cases, however, 
such models are then to be used out of sample, for forecasting purposes for instance. 
There may hence be a discrepancy between the in-sample loss estimate and the out-
of-sample one. This is while, if forecasts are to be used as a basis for decision mak-
ing, the actual perceived cost induced by the deviation between forecast and realiza-
tion is represented by the out-of-sample loss, not the in-sample one.

Consequently, besides the batch and online regression markets that relate to the 
learning task, those should be complemented by out-of-sample payments. One can 
here make a direct comparison with the case of electricity markets, where one usu-
ally first has a forward (e.g., day-ahead) mechanism leading to resource allocation 
and payments, and then a balancing mechanism to update and correct the outcomes 
from the forward mechanism. In the present case, the learning process is first nec-
essary to fit a regression model and assess the in-sample value of the features of 
support agents. Then, out of sample, the input features of those agents are used for 
genuine forecasting, and payments are to be based on the contribution to a decrease 
in the loss function l and its out-of-sample estimate. Let us formally define the out-
of-sample regression manner in the following.

Definition 9 (Out-of-sample regression market) Given a regression model f and its 
parameters estimated through either batch or online regression markets, a loss func-
tion l and a out-of-sample period with |To| time steps, an out-of-sample regression 
market mechanism is a tuple ( Ry , Rx , � ) where Ry is the space of the target vari-
able, Ry ⊆ ℝ

T , Rx is the space of the input features, R� ⊆ ℝ
T , and � is the vector of 

payout functions Πk ∶
(
{�k}k ∈ R

K
x
, � ∈ R�

)
→ �k ∈ ℝ

+.

Consider being at a time t, having to use some of the regression models trained 
based on a batch of past data, or online. The estimated parameters are here denoted 
by �̂𝜔,t to indicate that they are those available at that time. In the batch case, these 
might be older since estimated once for all on older data, unless a sliding window 
approach is used. In the online case instead, those may be the most recent param-
eters available based on the latest updated at time t. That model is used to issue 
a forecast yt+h|t for lead time t + h for the target variable of interest, or possibly a 
nowcast (i.e., with h = 0 ) in the case y is not observed in real-time. We write To the 
set of time instants over which forecasts are being issued. The out-of-sample loss 
estimate over To is

Such an estimator is separable in time, i.e.,

(39)Lo
𝜔
(�̂𝜔,t) =

1

|To|
∑
t∈To

l
(
yt+h − �̂

⊤

𝜔,t
�̃t+h

)
.
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Again, considering the linearity property of both leave-one-out and Shapley alloca-
tions, this translates to having over the out-of-sample period

where �k,t(l) is an allocation based on the evaluation of the loss function l at time 
t only. Such time-dependent allocation are then directly linked to the idea of using 
Shapley additive explanation (Lundberg and Lee 2017) for interpretability purposes. 
However here, such allocations aim at defining the contribution of the various fea-
tures to the loss for a given forecast at time t. Eventually, the payment for feature xk 
at time t (and linked to the forecast for time t + h ) is

Those payments can be summed over the out-of-sample period To , i.e.,

On the central agent side, the payment at each time instant is

to them be summed over the period To.
Finally, based on those concepts, the out-of-sample regression markets enjoy the 

same desirable properties as the batch and online regression markets.

Corollary 2 Out-of-sample regression markets, using the proposed regression 
framework and payout functions based on Shapley allocation policies, yield the 
properties of (i) budget balance, (ii) symmetry, (iii) truthfulness, (iv) individual 
rationality, (v) zero-element, and (vi) linearity.

The proof for that corollary is omitted since similar to that for Theorem 1.

4  Illustrative examples based on simulation studies

To illustrate the various regression markets, we first concentrate on a number of exam-
ples and related simulation studies. Obviously, these are simplified versions of what 
would be done with real-world applications, since for instance, the models of the cen-
tral agent are well specified. In parallel, we focus on the batch and online regression 

(40)Lo
𝜔
=

∑
t∈To

l𝜔,t
(
�̂𝜔,t

)
, where l𝜔,t =

1

|To| l
(
yt − �̂

⊤

𝜔,t
�̃t

)
.

(41)�k(l) =
∑
t∈To

�k,t(l),

(42)�k,t = (l�i,t
− lΩ,t)�i�k,t(l).

(43)�k =

T∑
t=1

�k,t.

(44)�i,t = (l�i,t
− lΩ,t)�i,
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markets only, since the use of out-of-sample markets will be more interesting and rel-
evant when focusing on a forecasting application with real data later on.

4.1  Batch regression market case

To underline the broad applicability of the presented regression market approach, 
emphasis is placed on three alternative cases: plain linear regression with a quadratic 
loss, polynomial regression with a quadratic loss, and an autoregression with exoge-
nous input with quantile loss.

4.1.1  Case 1: Plain linear regression and quadratic loss

First, emphasis is placed on the simplest case of a plain linear regression problem, for 
which the central agent a1 focuses on the mean z of a target variable Y, while owning 
feature x1 . A quadratic loss function l is used. The willingness to pay of a1 is �1 = 0.1 € 
per time instant and per unit improvement in l. In parallel, two support agents a2 and a3 
own relevant features x2 (for a2 ), x3 and x4 (for a3 ). The regression chosen by the central 
agent (which is well specified in view of the true data generation process) and posted 
on the analytics platform relies on a model of the form

where �t is a realization of a white noise process, centred on 0 and with finite 
variance.

Let us for instance consider a case where the true parameter values are 
�⊤ = [0.1 −0.3 0.5 −0.9 0.2] . For all features, the values of the input features are 
sampled from a Gaussian distribution, xj,t ∼ N(0, �2

j
) , with �j = 1, ∀j . In addition, 

�t ∼ N(0, �2
�
), ∀t , with �� = 0.3.

We simulate that process for T = 10,000 time steps and learn the model parameters 
� based on that period. The in-sample loss function estimates considering the central 
agent features only (so, an intercept and x1 ), and then with features from the additional 
support agents ( x2 , x3 and x4 ) are gathered in Table 1. For this specific run and example, 
the overall value of the support agents is (1.191 − 0.087) = 1.104.

Since in this simple setup, we use linear regression, have independent input features 
and a quadratic loss function, both leave-one-out and Shapley allocation policies are 
equivalent. Those are gathered in Table 2. This table also gathers the payments received 
by agents a2 and a3 for their features. The values for both allocation policies are the 
same, up to some rounding. The overall payment from the central to the support agents 
is of 1104€ (i.e., 1.104 × 0.1 × 10,000).

Note that this is the only case where leave-one-out allocation policies are used, 
since this will not make sense for the other case studies which are more advanced, e.g., 

(45)Yt = �0 + �1x1,t + �2x2,t + �3x3,t + �4x4,t + �t,

Table 1  In-sample loss 
estimates with and without the 
support agents

Agents {a1} {a1, a2, a3}

In-sample loss estimate 1.191 0.087
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with non-separable and nonlinear regression models, and/or loss functions that are not 
quadratic.

4.1.2  Case 2: Polynomial regression (order 2) and quadratic loss

We generalize here to a polynomial regression of order 2, with the same number of 
agents, a quadratic loss and the same willingness to pay ( �1 = 0.1 € per time instant 
and per unit improvement in l). The central agent a1 focuses on a target variable y, 
while owning feature x1 . The two support agents a2 and a3 own relevant features x2 
(for a2 ) and x3 (for a3 ). The regression chosen by the central agent and posted on the 
analytics platform relies on the following model:

where �t is a realization of a white noise process, centred on 0 and with finite vari-
ance. It is well-specified and hence corresponds to the true data generation process. 
The true parameter values are �⊤ = [0.2 −0.4 0.6 0.3 0 0.1 0 0 −0.4 0] . For all 
features, the values of the input features are sampled from a Gaussian distribution, 
xj,t ∼ N(0, �2

j
) , with �j = 1, ∀j . In addition, �t ∼ N(0, �2

�
), ∀t , with �� = 0.3.

The process is simulated over T = 10,000 time steps to estimate the regression 
model parameters, as well as to compute Shapley allocation policies and payments. 
Following Assumption 2, feature selection is performed and only the relevant terms 
in the polynomial regression (i.e., those with non-zero parameters, and contribut-
ing to lowering loss function estimates) are retained. It should be noted that there is 
additional subtlety in the case of interaction terms, making that one should obtain 
Shapley allocation policies (and payments) at the feature level (so, here, x1 , x2 and 
x3 ), and not based on individual components in the regression model. This is since 
these terms in the regression model may come as a bundle. For instance, if starting 
with a coalition with x3 only, and aiming to assess the value from adding x2 to that 
coalition, it brings 2 additional terms ( x2 and x2

2
 ) at once. And, if starting from a 

coalition with x1 only, and aiming to assess the value from adding x3 to that coali-
tion, it adds 2 additional terms x3 and x1 x3 too. However, it also means that one 
should look at it the other way around, and recognize that x1 contributes to the value 
brought by the term x1 x3.

Eventually here, the in-sample loss function estimates based on the central 
agent features only (so, the intercept and x1 ) is of 0.72. With features from the 

(46)
Yt = �0 + �1x1,t + �2x2,t + �3x3,t + �4x

2
1,t

+ �5x
2
2,t

+ �6x
2
3,t

+ �7x1,tx2,t + �8x1,tx3,t + �9x2,tx3,t + �t,

Table 2  Leave-one-out and 
Shapley allocation policies, on 
both per-feature and per-agent 
basis, as well as payments to the 
support agents

Feature/agent x
2

x
3

x
4

a
2

a
3

� loo
k

 (%) 22.7 73.4 3.9 22.7 77.3

� sh
k

 (%) 22.7 73.4 3.9 22.7 77.3

�loo
k

 (€) 250.7 810 43.3 250.7 853.3

�sh
k

 (€) 250.7 810 43.3 250.7 853.3
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additional support agents, it decreases to 0.09. The value of support agents is then 
of 0.63 in terms of the reduction of the loss function, though part of it also comes 
from the central agent’s feature x1 through the interaction term. The Shapley allo-
cation policy values for the various features are gathered in Table 3, as well as 
related payments. The contribution of feature x2 comes from both x2 and x2

2
 , while 

that of feature x3 comes from the x3 and x1 x3 terms. However, the sum of the 
Shapley allocation policies is not of 1 (it is of 0.65), since part of the overall 
improvement comes from the central agent’s feature x1 through the interaction 
term x1 x3 . The overall payment from the central agent is of 520.42€. The pay-
ment would have been of 630€ if all improvements came from the feature and 
data of the support agents alone (hence, no interaction term).

4.1.3  Case 3: Quantile regression based on an ARX model

In the third case, the central agent wants to learn an Auto-Regressive with eXog-
enous input (ARX) model with a quantile loss function (with nominal level � ), 
based on lagged values of the target variable (say, one lag only), as well as lagged 
input features from the support agents. The setup with agents and features is the 
same as for case 1. The willingness to pay is of �1 = 1 € per time instant and 
per unit improvement in the quantile loss function. The underlying model for the 
regression reads

where �t is a realization of a white noise process, centred on 0 and with finite 
variance.

The central agent is interested in 2 quantiles, with nominal levels 0.1 and 
0.75, hence requiring 2 batch regression tasks models in parallel. Support agent 
features are sampled similarly as in case 1 (from a standard Normal), and the 
characteristics of the noise term are also the same. The true parameter values are 
�⊤ = [0.1 0.92 −0.5 0.3 −0.1].

We simulate that process for 10,000-time steps. The quantile loss estimates 
based on the central agent features only are 0.086 and 0.152 for the 2 nominal 
levels of 0.1 and 0.75. In parallel, when using the support agent features, these 
decrease to 0.052 and 0.096, respectively. The improvements are hence 0.034 and 
0.056 for those 2 nominal levels. The Shapley allocation policy values and pay-
ments to the support agents are gathered in Table 4.

(47)Yt = �0 + �1yt−1 + �2x2,t−1 + �3x3,t−1 + �4x4,t−1 + �t,

Table 3  Shapley allocation 
policies, on both per-feature 
and per-agent basis, as well as 
payments to the support agents

Feature (/agent) x
2
 (/a

2
) x

3
 (/a

3
)

�k (%) 44.36 20.59
�k (€) 355.44 164.98
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4.2  Online regression market case

4.2.1  Case 1: Recursive least squares with an ARX model

We use as a basis the same underlying model as in  (47) and with the same agent 
setup. The central agent aims at using online learning with a quadratic loss for that 
ARX model and with a willingness to pay of �1 = 0.1 € per time instant and per unit 
improvement in the quadratic loss function. The major difference here is that the 
parameters vary in time, i.e.,

as illustrated in Fig. 1a.
The central agent posts the task on the analytics platform, with online learning 

over a period of T = 10,000 times steps, and defines a forgetting factor of 0.998. 
Since the online regression market relies on an online learning component, the 
parameters are tracked in time (see Fig. 1b), and with the payments varying accord-
ingly. Such online learning schemes are very efficient in tracking parameters in the 
types of regression models considered here, i.e., linear in their parameters and with 
parameters changing smoothly in time. The payments made for the 3 features of the 
support agents ( x2 for a2 , as well as x3 and x4 for a3 ) are depicted in Fig. 2, both 
in terms of instantaneous payments, and cumulative ones over the period. Since 
the model parameters (and their estimates) vary in time, the contributions of the 

(48)Yt = �0 + �1,tyt−1 + �2,tx2,t−1 + �3,tx3,t−1 + �4,tx4,t−1 + �t,

Table 4  Shapley allocation 
policies, on both per-feature 
and per-agent basis, as well as 
payments to the support agents

� Feature/agent: x
2

x
3

x
4

a
2

a
3

0.1 �k (%) 66 6.7 27.3 66 34
�k (€) 218.14 22.17 90.2 218.17 112.37

0.75 �k (%) 63.3 7.5 29.2 63.3 36.7
�k (€) 354.41 42.01 163.72 354.41 205.73

Fig. 1  Temporal evolution of ARX model parameters over the period considered
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various features to the improvement in the loss function also vary accordingly. This 
is reflected by the temporal evolution of instantaneous payments. Here, for instance, 
since the estimated parameter 𝛽4 is getting closer to 0 as time passes, its relative 
importance is decreasing. In contrast, the estimate 𝛽3 is going up and down, and this 
yields a similar trajectory of the related instantaneous payments for the feature x3 . 
Finally, as the importance of x2 grows with time (since even if 𝛽2 is negative, the 
contribution of x2 to explaining the variance in the response variable increases), one 
observes a sharp rise in the corresponding instantaneous payment. Evidently, since 
cumulative in nature, the cumulative payments are non-decreasing with time (they 
can only increase or reach a plateau).

4.2.2  Case 2: Online learning in a quantile regression model

For this last simulation case, let us consider a linear quantile regression model, 
hence with a central agent aiming to perform online learning with a smooth quantile 
loss function. The underlying model for the process is such that

where x1,t , x2,t and x3,t are sampled from a standard Gaussian N(0, 1) , x4,t is sampled 
from U[0.5, 1.5] and the noise term �t is sampled from N(0, 0.3) . It should be noted 
that the standard deviation of the noise is then scaled by �4x4,t . Thinking about the 
distribution of Yt , that means that x1,t , x2,t and x3,t are important features to model 
its mean (or median), while x4,t will have an increased importance when aiming to 
model quantiles that are further away from the median (i.e., with nominal levels 
going towards 0 and 1). The temporal variation of the true model parameters are 
depicted in Fig. 3.

The central agent posts the task on the analytics platform, with online learning 
over a period of T = 10,000 time steps, and defines a forgetting factor of 0.999. The 
parameter � of the smooth quantile loss function is set to � = 0.2 . The payments 
made for the 3 features of the support agents ( x2 for a2 , as well as x3 and x4 for a3 ) 

(49)Yt = �0 + �1x1,t + �2x2,t + �3x3,t + �4x4,t�t,

Fig. 2  Temporal evolution of the payments (instantaneous and cumulative) for the various features of the 
support agents over the period considered
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are depicted in Fig. 4, both in terms of instantaneous payments, and cumulative ones 
over the period. These are for a choice of a nominal level of � = 0.9 for the quantile 
of interest.

To illustrate the previous points made such that the relative value of the various 
features may depend on the nominal level � , Table 5 gathers the payments obtained 
per feature and per agent in the cases of focusing on quantiles with nominal levels 
0.1, 0.25, 0.5, 0.75 and 0.9. Particularly one retrieves the fact that the payment for 
feature x4 is 0 when looking at the median. This is in line with the definition of the 

Fig. 3  Temporal evolution of the process parameters over the period considered

Fig. 4  Temporal evolution of the payments (instantaneous and cumulative) for the various features of the 
support agents over the period considered. These results are for a nominal level � = 0.9

Table 5  Final payments �k in € 
after T = 10,000 time steps in 
the online regression market, as 
a function of the nominal level 
of the quantile of interest

� x
2

x
3

x
4

a
2

a
3

0.1 712.82 705.71 332.78 712.82 1038.49
0.25 751.19 748.03 112.81 751.19 860.84
0.5 747.63 749.59 0 747.63 749.59
0.75 658.78 666.06 150.21 658.78 816.27
0.9 519.37 531.04 341.72 519.37 872.76
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data generation process, for which x4 is only supposed to have value to model and 
predict quantiles away from the median.

5  Application to real‑world forecasting problems

The regression market approach we proposed is originally developed with energy 
forecasting applications in mind. Besides the simulation-based case studies consid-
ered in the above to illustrate the workings and applicability of regression markets, 
we focus here on real-world applications using data from South Carolina (USA). 
Regression models are used as a basis for forecasting, hence with a learning stage 
(batch and online) and an out-of-sample stage (for genuine forecasting). We restrict 
ourselves to a fairly simple setup with 1-hour ahead forecasting, though other lead 
times could be similarly considered (possibly requiring different input data and 
regression models). The aim is certainly not to develop a forecasting approach which 
is to be better than the state-of-art, but to show how our regression market mecha-
nism (i) incentivizes data sharing, (ii) yields improved forecasts, and (iii) appropri-
ately compensates support agents for their contribution to improvement in the loss 
function (and the forecasts) of the central agent.

5.1  Data description and modeling setup

To ensure that the application to real-world data can be reproduced and comprises a 
good starting point for others, we use a dataset from an open database for renewable 
energy data in the USA. The wind power generation data for a set of 9 wind farms 
in South Carolina (USA) was extracted from the Wind Integration National Dataset 
(WIND) Toolkit described in Draxl et al. (2015). The data are hence not completely 
real, but still very realistic in capturing the local and spatio-temporal dynamics of 
wind power generation within an area of interest. It is owing to such spatio-temporal 
dynamics that one expects to see benefits in using others’ data to improve power 
forecasts—see Cavalcante et al. (2017) and Messner and Pinson (2019) for instance. 
An overview of the wind farms and of their characteristics is given in Table 6. These 
are all within 150 km of each other. Wind power measurements are available for a 
period of 7 years, from 2007 to 2013, with an hourly resolution. For the purpose of 
the regression and forecasting tasks, all power measurements are normalized and 
hence take values in [0,  1]. An advantage of this type of data is that there is no 
missing and no suspicious data point to be analyzed and possibly to be removed. 
In this setup, each wind farm may be seen as an agent. We, therefore, have 9 agents 
a1,… , a9 who can take the role of either central or support agent. Let us write yj,t the 
power measurement of agent aj at time t, which is a realization of the random vari-
able Yj,t.

Emphasis is placed on very short-term forecasting (i.e., 1  h ahead) as a basis 
for illustration of regression markets for a real-world setup. This allows us to use 
fairly simple time-series modeling and forecasting approaches. Those may read-
ily extended to the case of further lead time, possibly using additional input 
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features, e.g., from remote sensing and weather forecasts. More advanced modeling 
approaches could additionally be employed, e.g., if aiming to account for the nonlin-
earity and double-bounded nature of wind power generation (Pinson 2012).

For a given central agent ai and support agents aj, j ≠ i , the basic underlying 
model considered for the regression markets writes

which is simply an ARX model with maximum lag Δ . In principle, one would run 
a data analysis exercise to pick the number of lags, or alternatively cross-validation. 
We assume here that expert knowledge, or such an analysis, allowed to conclude for 
the use of 2 lags for the central agent, and 1 lag only for the support agents.

For both cases in the following, we place ourselves within a simplified electricity 
market setup, where it is assumed that wind farms have to commit to a scheduled 
power generation 1-h ahead. They then get a set price per MWh scheduled (e.g., 
40$), though with a penalization afterwards for deviation from schedule. This penal-
ization is proportional to a chosen loss function. In the first case, for the batch and 
out-of-sample regression markets, a quadratic loss function is used. This translates 
to the agents assessing their forecasts in terms of Mean Square Error (MSE) and 
aiming to reduce it. In the second case, we envision an asymmetric loss as in Euro-
pean electricity markets (with 2-price imbalance settlement), where agents then aim 
to reduce a quantile loss, with the nominal level � of the quantile being a direct func-
tion of the asymmetry between penalties for over- and under-production (Morales 
et al. 2014). In both cases, agents could perform an analysis to assess the value of 
forecasts in those markets, as well as their willingness to pay to improve either quad-
ratic of quantile loss. Here, we consider that all agents have valued their willingness 
to pay, denoted � and expressed in $ per percent point improvement in their loss 
function and per data point, to be shared between in-sample (batch or online) and 

(50)Yi,t = �0 +

Δ∑
�=1

yi,t−� +
∑
j≠i

Δ∑
�=1

yj,t−� + �i,t,

Table 6  Sites considered in South Carolina, USA, with data available for a period of 7  years (2007–
2013)

Notations: Cf for capacity factor, Pn for nominal capacity. The “id” is that from the Wind Toolkit data-
base

Agent id Cf (%) Pn (MW) Lat./long. County Elevation (m)

a1 4456 34.11 1.75 34.248/− 79.75 Florence 36.17
a2 4754 35.75 2.96 34.02/− 79.537 Florence 17.5
a3 4934 36.21 3.38 33.925/− 79.958 Florence 36.2
a4 4090 26.6 16.11 34.732/− 82.122 Laurens 219.73
a5 4341 28.47 37.98 34.556/− 81.889 Laurens 182.31
a6 4715 27.37 30.06 34.334/− 82.133 Laurens 164.07
a7 5730 34.23 2.53 33.136/− 80.857 Colleton 42.75
a7 5733 34.41 2.6 33.112/− 80.665 Colleton 27.0
a9 5947 34.67 1.24 32.641/− 80.504 Colleton 5.4
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out-of-sample regression markets. We use percent point improvement as those loss 
functions are normalized.

5.2  Batch and out‑of‑sample regression markets

In the batch and out-of-sample case, the first 10,000-time instants (so, a bit more 
than a year) are used to train the regression models within the batch regression mar-
ket, while the following 10,000 time instants are for the out-of-sample forecasting 
period, hence for the out-of-sample regression market.

Let us first zoom in on the case of agent a1 , splitting her willingness to pay as 
� = 0.5 $ per percent point improvement in quadratic loss and per data point within 
the batch regression market, and � = 1.5 $ for the out-of-sample regression market. 
In that case, in-sample through the batch regression market, the quadratic loss is 
reduced from 2.82% of nominal capacity to 2.32% thanks to the data of the support 
agents. And, out-of-sample, that loss decreases from 3.09 to 2.53% when relying 
on the support agents. The allocation policies �j as well as payments �j are gath-
ered in Table 7. The overall payment of central agent a1 for the two markets is of 
10,855.98$. As mentioned when introducing regression markets, there may obvi-
ously be disparities between the value of features and data of support agents at the 
batch and out-of-sample stages. It is clear here for instance if looking at the Shapley 
allocation for support agent a3 , where the in-sample allocation is of 32.35% and then 
dropping to 22.27% out-of-sample. For all other support agents, the Shapley alloca-
tion values increase when going from batch to out-of-sample regression markets, 
somewhat compensating for the substantial change observed for a3.

First of all, agents a2 and a3 provide the features that make the strongest contribu-
tion towards lowering the quadratic loss, both in-sample in the batch regression mar-
ket and for genuine forecasting through the out-of-sample regression market. How-
ever, one of them ( a3 ) has higher Shapley allocation policy values in-sample, and 
the other one ( a2 ) out-of-sample. It is then reflected by the payments. Eventually, 
from the perspective of the support agents, those total payments should be divided 
by 20,000, to reflect the unit value of each data point provided for their features. For 
instance, the value of an individual data point of a2 is of 14¢, and of only 2.3¢ for a9.

Since we have 9 agents in this South Carolina case study, they can all play the role 
of the central agent, and use data from other agents to improve their forecasts. This 
means, for instance, that eventually the revenue of a9 comes from parallel regression 

Table 7  Payments �j and Shapley allocation policies �j in both batch and out-of-sample regression mar-
kets, with a

1
 being the central agent and all others being support agents

Market a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

Batch �j (%) 23.17 32.35 9.75 8.24 7.92 6.36 6.84 3.81
�j ($) 574.29 801.72 241.52 204.12 196.19 157.71 169.42 94.38

Out-of-sample �j (%) 26.96 22.27 10.74 11.47 9.33 7.15 7.07 4.34
�j ($) 2284.52 1887.31 909.83 972.02 790.49 605.65 599.15 367.66

Total payment ($) 2858.81 2689.03 1151.35 1176.14 986.68 763.36 768.57 462.04
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markets where agents a1,… , a8 play the role of central agent and pay a9 for her data. 
For simplicity, we rely on the same setup and willingness to pay for all agents. The 
cumulative revenues of the 9 agents are depicted in Fig. 5, for both batch and out-
of-sample regression markets. The value of the data of the different agents varies 
significantly depending on the central agent considered. As an example, the data of 
a1 is highly valuable to agents a2 and a3 both in batch and out-of-sample regression 
markets, but not so much to the other agents. The heterogeneity of those payments 
and revenues certainly reflects the geographical positioning and prevailing weather 
conditions in this area of South Carolina. Looking at the cumulative revenues for all 
agents, it is also clear that the data of agents a4 and a9 carries much less value over-
all than the data of the others. For instance for the out-of-sample regression market 
(over a period of 10,000-time instants), by providing data to all other agents, the unit 
value of a single data point of the agents vary from 46¢ for a9 to 99¢ for a3 . In the 
batch regression case, the in-sample and out-of-sample assessment of the loss func-
tion and resulting Shapley allocation policies may be fairly different, since based on 
different time periods and since quality of model fitting may not always be reflective 
of genuine contribution to forecast quality. This is observed here based on the differ-
ences in payment and revenues for the batch and out-of-sample regression markets.

The payments of a central agent towards support agents is proportional to forecast 
improvements in terms of a quadratic loss. The normalized MSE of 1-step ahead 
forecasts (score consistent with the quadratic loss) are gathered in Table 8, over both 
batch learning and out-of-sample forecasting periods. As expected, the normalized 
MSE values are always lower when the agents have used the regression markets 
since, if there were no improvement in terms of a quadratic loss, there would be no 
payment to support agents.

5.3  Online and out‑of‑sample regression markets

In the online case, we do not have a clear separation between the batch learning and 
out-of-sample forecasting periods, in the sense that at each time instant t, when new 

Fig. 5  Cumulative revenues of all agents in both batch and out-of-sample regression markets
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data becomes available, one may assess the forecast issued at time t − 1 for time t 
(for the out-of-sample regression market), and in parallel update the parameter esti-
mates for the regression model through the online regression market. Then, a new 
forecast (for time t + 1 ) is issued.

We consider here a setup that is similar to the batch case above, i.e., with a will-
ingness to pay the agent split between the online regression market ( � = 0.2 $ per 
percent point improvement in the loss function and per data point) and the out-of-
sample regression market ( � = 0.8 $ per percent point improvement in the loss func-
tion and per data point). Instead of the quadratic loss function, emphasis is placed 
on quantile regression instead, hence using the smooth quantile loss. We arbitrarily 
choose the nominal level of the quantile to be � = 0.55 , to reflect the asymmetry of 
penalties in an electricity market with 2-price imbalance settlement at the balanc-
ing stage. This corresponds to the case of an electricity market that penalizes wind 
power producers slightly more for over-production than for under-production. The 
smoothing parameter for the smooth quantile loss is set to � = 0.2 , while the forget-
ting factor is set to � = 0.995 . Note that these are not optimized parameters. These 
could be optimized through cross-validation for instance.

In contrast to the batch and quadratic loss case, not all agents’ features may be 
valuable. We use a screening approach: if the Shapley allocation policies values are 
negative after the burn-in period, those agents are removed. The burn-in period is 
based on the first 500 time instants.

Let us first concentrate on agent a6 for instance, who, after the burn-in period, 
only uses data from agents a1 , a4 , a5 and a8 . The cumulative payments of a6 to these 
agents are depicted in Fig. 6 as a function of time, for both online and out-of-sam-
ple regression markets. Clearly, a4 and a5 receive significantly higher payments than 
the other two agents. Also, there are periods with higher and lower payments, since 
these cumulative payment lines are not straight lines. Over the first 1.5 years (app. 
13,000 h) the data from a1 leads to higher payments than the data from a8 , while it is 
the opposite situation for the remaining 5.5 years.

Finally, we perform the same study for all agents acting as central agents, and 
aiming to improve their quantile forecasts based on the data of others. They engage 
in both online and out-of-sample regression markets, under the exact same condi-
tions (i.e., model, willingness to pay, hyperparameters, etc.). The overall revenues 
obtained after the 7-year period are depicted in Fig. 7, for both regression markets. 
The differences in the value of the data of the various agents is even higher than 
in the batch case with a quadratic loss function. Certain agents like a4 , a6 and a9 

Table 8  Normalized MSE for all agents (expressed in % of nominal capacity), during both batch learning 
and out-of-sample forecasting phases, also with and without the use of data from the support agents

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

Batch Without 2.82 2.90 2.88 3.51 3.35 3.19 2.76 2.86 2.33
With 2.32 2.38 2.22 3.18 2.83 2.78 2.20 2.31 2.12

Out-of-sample Without 3.09 2.78 3.12 3.48 3.33 3.27 3.05 3.13 2.78
With 2.53 2.51 2.44 3.19 2.75 2.84 2.51 2.60 2.52
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receive payments from 3 or 4 other agents only, and with much lower revenues over-
all. And, while a3 was the agent who obtained the highest revenue in the previous 
study, it is now a8 who obtains the highest revenue.

There are also some consistent results with the previous case, for instance with a1 
giving large payments to a2 and a3 , as well as a7 receiving large payments from a8 . 
For the agents that have the most valuable data, the overall revenues over the 7-year 
period are quite sizeable, for instance reaching 200,000$ for a8 . This represents a 
unit value of 3.26$ per data point being shared with the other agents.

Interestingly, one can observe from Fig.  7 that the distribution of revenues 
and payments is very similar between the in-sample and out-of-sample regres-
sion market cases. This is in contrast with what was observed for the batch. This 
can be explained by the fact that, in an online learning framework, the same 

Fig. 6  Evolution of the cumulative payments of a
6
 towards agents a

1
 , a

4
 , a

5
 and a

8
 , in both online and 

out-of-sample regression markets, over a period of 7 years

Fig. 7  Final cumulative revenues of all agents in both online and out-of-sample regression markets, after 
7 years
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forecast errors are iteratively used for (i) out-of-sample assessment of loss func-
tion and Shapley allocation policies, and (ii) in-sample assessment within the 
recursive updates of model parameters. These two assessments and related Shap-
ley allocations are very close to each other since the time-varying loss estimates 
in online learning, for instance at time t, are very close estimates of the forecast 
accuracy to be expected when issuing a forecast at that time.

6  Conclusions and perspectives

The digitalization of the energy system has brought in a lot of opportuni-
ties towards improving the operations of energy systems with increased pen-
etration of renewable energy generation, decentralization and more proactive 
demand, liberalization of energy markets, etc. For many operational problems, 
it is assumed that data can be shared and centralized for the purpose of solv-
ing the analytics task at hand. However, in practice, it is rarely the case that 
the agents are willing to freely share their data. With that context in mind, we 
have proposed here a regression market approach, which may allow to incen-
tivize and reward data sharing for one family of analytics task, regression, for 
instance widely used as a basis for energy forecasting. Obviously, in the future, 
the concepts and key elements of the approach should be extended to the case 
of other analytics tasks, e.g. classification, filtering, etc., and to the nonlinear 
case. In addition, the properties of the various regression markets may be further 
studied, for instance in a regret analysis framework, to provide some interesting 
bounds and potential fairness implications.

Mechanism design for data and information has specifics that differ from the 
case of considering other types of commodities. For instance, the value of infor-
mation carried by data is a function of the analytics task at hand, timeliness in 
the data sharing, possibly data quality, among other aspects. Therefore, this trig-
gers the need to rethink some of the basic concepts of mechanism design within 
that context. Importantly, even with a mechanism exhibiting desirable properties 
being in place, it may be difficult for all agents involved to assess their willing-
ness to buy and willingness to sell. On the buying side, this quantification most 
likely relies on a decision process and a related loss function. However, if dif-
ferent decision processes are intertwined and possibly in a sequential manner, 
that willingness to pay might be more difficult to reveal. On the selling side, the 
willingness to sell may be affected by the actual cost of obtaining the data (as 
well as storing and sharing it), plus possibly privacy-related and competition-
related aspects. Indeed, imagining the case of renewable energy producers all 
participating in the same electricity market, sharing data could eventually affect 
an existing competitive advantage, by making other market participants more 
competitive. From an overall societal perspective, one would expect increased 
social welfare though, since such a mechanism would allow for making optimal 
use of all available information.
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Appendix: Proof of Theorem 1

Let us give a proof in the following for all the properties covered in Theorem 1, 
on a point by point basis.

(i) Budget balance
A property of the Shapley allocation policies is that they are balanced, i.e., 

whatever the regression model, loss function l and batch of data used for estima-
tion, one has

Consequently,

Hence, the sum of the revenues of the support agents is equal to the payment of the 
central agent.

(ii) Symmetry
Assume that 2 support agents have identical features xk and x′

k
 . This would 

then imply that

One can therefore deduce that these two features will have the same Shapley alloca-
tion policy, i.e., �k(l) = �k� (l) . In view of the payment definition in (26), they will 
also receive the same payment, �k = �k� . It also means that any permutation of indi-
ces will yield the same payments.

(iii) Truthfulness, i.e., support agents only receive their maximum potential 
revenues when reporting their true feature data

We consider here models that are linear in their parameters. Fundamentally, 
the estimation problem boils down to

where the expectation is eventually replaced by the batch in-sample estimator 
in (15). In the case one of the support agents does not truthfully report data, the data 
that enters the estimation problem is �̃t + 𝜂t, ∀t (where the noise only affects the 
feature of that support agent). If �t is a constant, the solution of (14) is not affected, 
hence the support agent cannot obtain increased revenues. If instead �t is a centred 
noise with finite variance, one would solve instead

∑
k

�k(l) = 1.

∑
k

�k =
∑
k

T(L∗
�i
− L∗

Ω
)�i�k(l)

= T(L∗
�i
− L∗

Ω
)�i

∑
k

�k(l)

= T(L∗
�i
− L∗

Ω
)�i.

S∗
�i∪�∪k

= S∗
�i∪�∪k

� , ∀� ∈ Ωj⧵k, k
�.

(51)�̂𝜔 = argmin �𝜔
�
[
l
(
Yt − �⊤

𝜔
�̃t
)]
,
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which will yield a vector of model parameters �̂𝜔 + 𝛿�̂𝜔 that is different from �̂𝜔 . 
The expected loss function at that point can be written as

Since the expectation of a convex function is a convex function and (�̂𝜔 + 𝛿�̂𝜔)
⊤𝜂t is 

a noise term, one has

And then, since we know that �̂𝜔 is the solution of (51), it follows that

As a consequence, looking at the payment for feature xk based on Shapley allocation 
policies,

we expect that the loss function when using altered feature xk + � will be higher than 
if using the non-altered feature xk . The payment will then be less (or equal). One 
should note, however, that this result is valid if one could use the true expected loss. 
In practice, only an in-sample estimator ( L� ) is available and used in the payment 
calculation. The result may then be affected by sampling uncertainty.

(iv) Individual rationality, i.e., the revenue of the support agents is at least 0
Property 1 stipulates that �k(l) ≥ 0 (and less than 1). It readily follows from the 

definition of payments in (26) and (27) that payments can only be such that �k ≥ 0 
and �(aj) ≥ 0.

(v) Zero-element, i.e., a support agent that does not provide any feature, or pro-
vide a feature that has no value (in terms of improving the loss estimate L� ), gets a 
revenue of 0

In the case no feature is provided, there is obviously no payment to the support 
agent for that feature. In parallel, if a feature xk has no value this means that

which hence yield �k(l) = 0 , for both leave-one-out and Shapley allocation policies. 
Consequently, the payment is �k = 0 . Note that in practice, due to sampling effect 
over a limited batch of data, it is highly unlikely that the value of a feature xk is 
exactly 0.

(iv) Linearity, i.e., for any two sets of features � and �′ , the revenue obtained 
by sharing � ∪ �� is equal to the sum of the revenues if having shared � and �′ 
separately

(52)argmin �𝜔
�
[
l
(
Yt − �⊤

𝜔
(�̃t + 𝜂t)

)]
,

�
[
l
(
�̂𝜔 + 𝛿�̂𝜔

)]
= �

[
l
(
Yt − (�̂𝜔 + 𝛿�̂𝜔)

⊤(�̃t + 𝜂t)
)]

= �
[
l
(
Yt − (�̂𝜔 + 𝛿�̂𝜔)

⊤�̃t − (�̂𝜔 + 𝛿�̂𝜔)
⊤𝜂t

)]
.

�
[
l
(
Yt − (�̂𝜔 + 𝛿�̂𝜔)

⊤�̃t − (�̂𝜔 + 𝛿�̂𝜔)
⊤𝜂t

)]
≥ �

[
l
(
Yt − (�̂𝜔 + 𝛿�̂𝜔)

⊤�̃t
)]
.

�
[
l
(
Yt − (�̂𝜔 + 𝛿�̂𝜔)

⊤�̃t
)]

≥ �

[
l
(
Yt − �̂

⊤

𝜔
�̃t

)]
.

(53)𝜋k(l) = T
∑

𝜔⊆Ω−i⧵{xk}

|𝜔|!(n − |𝜔| − 1)!

n!

(
L∗
𝜔i∪𝜔

− L∗
𝜔i∪𝜔∪{xk}

)
,

L𝜔i∪𝜔∪{xk}
− L𝜔i∪𝜔

= 0, ∀𝜔 ⊂ Ω−i,
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The linearity property of the regression markets directly comes from the linearity 
property of Shapley values. I.e., for any two sets of features � and �′ , in terms of 
Shapley allocation policies one readily has that

which necessary implies that, in terms of payments to the support agents for the sets 
of features � and �′,

It should be noted that this property also holds with the leave-one-out allocation 
policies if the input features are independent.
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