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Abstract
Expansion planning models are tools frequently employed to analyze the transi-
tion to a carbon-neutral power system. Such models provide estimates for an opti-
mal technology mix and optimal operating decisions, but they are also often used 
to obtain prices and subsequently calculate profits. This paper analyzes the impact 
of modeling assumptions on convexity for power system outcomes and, in particu-
lar, on investment cost recovery. Through a case study, we find that although there 
is a long-term equilibrium for producers under convex models, introducing realis-
tic constraints, such as non-convexities/lumpiness of investments, inelastic demand 
or unit commitment constraints, leads to profitability challenges. We furthermore 
demonstrate that considering only short-term marginal costs in market-clearing may 
potentially create a significant missing-money problem caused by a missing-market 
problem and dual degeneracy in a 100 percent renewable system.
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1  Introduction

On its path towards carbon neutrality, the European Union has established clear 
long-term goals of reducing emissions (European Commission 2021), and more 
recently of achieving a carbon-neutral economy by 2050 (European Commission 
2019). Carbon neutrality by 2050 is now also the US administration’s goal (Biden 
2021, https://​joebi​den.​com/​clean-​energy/). The goal is clear; however, the path to 
get there is not. A carbon-neutral power sector requires profound changes concern-
ing electricity system and market design, consumer integration and capacity mix. To 
guide us through this transition and to obtain an optimal capacity mix, stakeholders, 
policymakers, market participants, and consumers often employ expansion planning 
models to support optimal decision making.

There exist numerous expansion planning models Hemmati et  al. (2013); Kolt-
saklis and Dagoumas (2018); Dagoumas and Koltsaklis (2019); Gonzalez-Romero 
et al. (2020); Wogrin et al. (2020) that differ with respect to many aspects: whether 
they are static or dynamic, deterministic or stochastic, single-node or network-based, 
optimization or equilibrium models, linear or non-linear etc. A particular aspect 
that we want to assess in this work is the assumption of convexity of these mod-
els, mainly what is considered discrete and what is continuous. These assumptions 
impact corresponding optimization results on both primal variables and potentially 
shadow prices, that is dual variables and what type of costs are accounted for in 
these dual variables. This impact, however, is rarely ever discussed in the literature. 
We, therefore, want to dedicate this work to discuss this exact issue and demonstrate 
that, as a modeler, one has to be careful about the underlying assumptions of con-
vexity of an expansion model and how they impact investment and potential market 
outcomes.

The majority of expansion planning models are in fact Mixed Integer Programs 
(MIPs), which consider discrete investment decisions and possibly discrete operat-
ing decisions such as start-up, shut-down and commitment decisions. When such 
MIPs are used to obtain market prices, as the dual variables of the corresponding 
constraints, long-term investment costs and short-term costs associated with discrete 
decisions are neglected. Only short-term variable costs1 are reflected in these short-
term prices. We want to assess different degrees of convexity of such expansion 
planning models and contrast results such as investments, market prices, and result-
ing cost/benefit of the technologies in the optimal mix , in order to indicate that 
the effect on model results often depends on the source of non-convexity. Economic 
theory states that, under simplifying assumptions Korpås and Botterud (2020), 
short-term prices are sufficient to recover investment costs Rodilla (2010). Some of 
these assumptions, however, are relatively strong and require: a perfectly competi-
tive market (real electricity markets more resemble oligopolies at times Bushnell 
et al. (2008) or monopolistic competition); the convexity of generators’ cost func-
tions (this does not allow to capture discrete unit commitment costs or economies of 
scale); no lumpy investments (in traditional power systems with significant thermal 

1  Long-term (or short-term) costs associated to continuous variables are, however, accounted for in dual 
variables.

https://joebiden.com/clean-energy/
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generators investments are the epitome of lumpy although in large systems this 
becomes less of an issue).

In practice, there exist many power system planning models, such as EMPIRE, 
GenX or LEGO, that do not satisfy all of those assumptions but that are being used 
for decision making. In particular, they have inelastic demand. As a matter of fact, 
we show in the appendix that in such models short-run (SR) marginal costs are not 
uniquely defined due to a missing-market problem and dual degeneracy. In practice, 
numerical solvers adopt solutions where short-run marginal costs only reflect oper-
ating costs and therefore cannot achieve cost recovery. This is to say that the com-
monly adopted approach of estimating market prices by fixing discrete (investment 
or UC) variables and using Lagrange multipliers of the relaxed model is bound to 
lead to a missing-money problem that model users need to be mindful of. Moreover, 
the missing money problem worsens in a 100% renewable power system, a topic of 
rising interest Hansen et al. (2019).

Therefore, in this paper we want to quantify the misalignment between the ideal 
cost recovery and actual results of frequently employed models (that may be affected 
by dual degeneracy in market prices). We also analyze that it largely depends on the 
type of model employed and its degrees of convexity. This convexity issue in pricing 
is explored in Sioshansi et al. (2008); Ruiz et al. (2012); Liberopoulos and Andri-
anesis (2016); Kuang et al. (2019) but mainly revolves around operational problems. 
In this paper, we want to stress that the missing-money problem extends to invest-
ment problems, and that non-convexities can impact optimal capacity investments as 
stated in Mays et al. (2021).

The contributions of this paper are as follows: we present a detailed analysis of 
the impact of different degrees of convexity in planning models on optimal expan-
sion decisions and cost recovery, both in current and future power systems. Our 
results indicate that while in theory, everything works out in terms of recovering 
costs in a convex market, in practice it does not when non-convexities are accounted 
for and demand is inelastic. Moreover, we compare the profitability obtained by 
using either short-term or long-term marginal prices. The latter prices reflect 
both operational and investment costs, and we discuss whether they are necessary 
to recover investment costs. We show that short-term prices are likely to create a 
missing-money problem (due to a missing-market problem and dual degeneracy as 
shown in the appendix), which is exacerbated in future electricity markets with high 
shares of variable renewable energy sources (VRES).

The rest of the paper is organized as follows. Section 2 provides a brief overview 
of the generation expansion planning models used for the analyses and describes 
the model data. In Sect. 3 we propose five model paradigms with varying degrees 
of convexity. Section 4 discusses model results under all five paradigms for a cur-
rent power system. Section 5 carries out similar analyses for future (100% renew-
able) power systems and discusses how this could lead to a missing-money problem. 
Finally, Sect. 6 concludes the paper.
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2 � Expansion planning model and case study data

In this paper, we carry out the case study using the open-source Low-carbon Expan-
sion Generation Optimization (LEGO) model Wogrin et  al. (2022) available on 
GitHub2, stemming from previous research by the authors Wogrin et al. (2020). As 
a brief overview: LEGO is an optimization model that decides generation expan-
sion, production and unit clustered commitment (UC)3 decisions while minimizing 
overall total system cost and accounting for optimal power flow constraints (both 
AC and DC) and inertia requirements. LEGO is very flexible and modular because 
each model block, e.g., inertia considerations, can be included (or not) depending on 
the study of interest. Note that the contribution of this paper is not the mathemati-
cal formulation of a generation expansion planning (GEP) model, but the analysis 
of the impact of convexity in such models on power system results. Therefore, the 
complete formulation of LEGO is omitted here, and the interested reader is referred 
to Wogrin et al. (2020). However, we provide a stylized formulation of the model 
below to facilitate the exposition in the paper.

To that purpose, we introduce the nomenclature of the stylized4 model in Table 1. 
The standard (primal) model outputs are: investment decisions xg , production deci-
sions per generator pg , and UC decisions ( ut, yt, zt ) per generator. The model allows 
the option to shed load through variable power non-supplied pns at a high cost Cpns 
that is set at 10000 €. In the case studies presented later, however, no non-supplied 
energy appears and therefore it is not discussed further.

We now briefly discuss the stylized model formulation given in (1). Note that we 
present this formulation for one representative hour h, 5 in order to avoid additional 
indices; however, in the full LEGO model multiple time periods and chronological 
constraints (e.g., ramping) are represented, and shadow prices are obtained corre-
spondingly (e.g., � for each time period). In the objective function (1a) we minimize 
total system cost as given by: operation and maintenance cost; fixed costs includ-
ing commitment costs, startup and shutdown costs of thermal generators; reserve 
costs; and, investment costs. We furthermore consider upper and lower bounds (1b) 
on production, storage units (1c), and specific upper and lower bounds for thermal 
constraints including the technical minimum (1d). In order to establish the logic 
between commitment ut , startup yt and shutdown zt decisions, we need temporal 
chronology and to that purpose we have included an h − 1 where necessary, such 
as constraints (1e), ramping constraint (1f) and the definition of the storage6 state 
of charge (1g). Constraint (1h) represents the demand balance constraint and (1i) 

2  https://​github.​com/​IEE-​TUGraz/​LEGO
3  In a clustered UC a la Palmintier and Webster (2015), investment variables are integer as opposed to 
binary. However, if the user limits the maximum number of new investments of this particular generator 
to 1 in the data file, then the model would resemble a binary UC.
4  Many realistic constraints have been omitted here for the sake of simplicity. For example, we have 
omitted: downward reserve; the formulation of the power grid; the fact that the upper bound of renewa-
bles depends on time as well as on the units, etc.
5  Power production in MW is therefore converted to energy by multiplying with a factor of 1 (hour). 
Since this multiplication is trivial, it is not explicitly stated in the model formulation.
6  We also impose a cyclic constraint setting equal the initial and the final state of charge.

https://github.com/IEE-TUGraz/LEGO
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enforces the minimum reserve requirement. Finally, constraint (1j) defines UC and 
investment variables as discrete.

Table 1   Nomenclature of relevant indices, variables and parameters of LEGO model

Indices Description

g Set of all generating units (t, s, v)
t Set of thermal generation units
s Set of storage generation units
v Set of renewable generation units

Parameters Description

CF
t
() Affine fixed cost (incl. start up, shut down) function 

of thermal units [€/p.u.]
COM
g

Operation and maintenance cost [€/MWh]

C
RES+∕−
g

Reserve up/down cost [€/MWh]

CINV
g

Investment cost [€/p.u.]
Cpns Cost of power non-served [€/MW]

Pg
Maximum production [MW]

P
t

Technical minimum production for thermal units 
[MW]

RAt Ramping limit [MW]
EUg Number of existing units [p.u.]
R Reserve requirement percentage [MW]
FCg Firm capacity coefficient of generator [p.u.]
FP Minimum firm capacity percentage [p.u.]
D Active power demand [MW]
DPeak Peak power demand [MW]

Variables Description

pg Power generation of the unit [MW]
rg Reserve provided by unit [MW]
pns Power non-supplied [MW]
css Power consumption of storage unit (charging) 

[MW]
socs State of charge (energy) of storage unit [MWh]
yt Startup decision of the thermal unit (integer) [p.u.]
zt Shutdown decision of the thermal unit (integer) 

[p.u.]
ut Dispatch commitment of the thermal unit (integer) 

[p.u.]
xg Investment in generation capacity (integer) [p.u.]
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LEGO is designed as a Mixed Integer Problem (MIP); the non-convexities are due 
to the integrality of planning variables (i.e., investment ( xg ) and operational (e.g., 
unit commitment, UC ( ut, yt, zt )) decisions. Relaxing integrality on these two sets of 
variables renders a relaxed-MIP (rMIP) framework that still has physical meaning. 
This also brings us to some (dual) model outputs such as prices and profits. How 
do we use LEGO to obtain prices and to calculate generator profits? If integrality in 
LEGO is relaxed, then the model becomes a linear program (LP), and dual variables 
are uniquely defined due to the strong duality of LPs. However, in a MIP framework, 
this is not the case. A common practice Levin et al. (2019) to obtain prices for MIP 
models, which has also been adopted in this article, is to: (1) run the MIP, (2) fix all 
integer variables to their optimal value, and (3) then re-run the model as an LP. This 
method determines equilibrium prices for a given solution. With this in mind, prices 
are obtained as the dual variables of the corresponding constraints, i.e., the spot mar-
ket price, � , is the dual variable of the demand balance constraint (1h), reserve mar-
ket prices are obtained as dual variables, � of reserve constraint (1i). The technique 
of fixing unit commitment variables and then obtaining duals can lead to generators 

(1a)

min
∑

g

COM
g

⋅ pg +
∑

t

CF
t
⋅ (yt, zt, ut) +

∑

t∕s

CR
⋅ rt∕s

+
∑

g

CINV
g

⋅ xg + Cpns
⋅ pns

(1b)0 ≤ pg ≤ Pg ⋅ (EUg + xg) ∀g

(1c)ps − css + rs ≤ Ps ⋅ (EUs + xs) ∀s

(1d)P
t
⋅ ut ≤ pt + rt ≤ Pt ⋅ ut ∀t

(1e)ut − ut,h−1 = yt − zt ∀t

(1f)pt − pt,h−1 ≤ RAt ∀t

(1g)socs = socs,h−1 + css − ps ∀s

(1h)
∑

g

pg −
∑

s

css + pns = D ∶ (�)

(1i)
∑

t∕s

rt∕s ≥ RD ∶ (�)

(1j)pns ∈ ℝ
+
, ut, yt, zt, xg ∈ ℤ

+ ∀g, t
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running a loss (in the short term) as mentioned in Bothwell and Hobbs (2017). This 
has led to the use of “make-whole” payments in the US. However, in this paper we 
want to focus on total cost recovery, including investment costs (not only operating 
costs). Therefore, make-whole payments would likely have limited impact on our 
analysis.

Defining capacity credits for renewables Bothwell and Hobbs (2017) or storage 
technologies Mertens et al. (2021) is a challenging and ongoing topic of research. 
While exploring all possible policy measures for remunerating installed capacity is 
outside the scope of this paper, we have included on specific example of such a pol-
icy scheme. Inspired by Gerres et al. (2019), we also have introduced a firm capacity 
constraint in LEGO:

where g is the index for generators, FCg is the firm capacity coefficient. 7 by technol-
ogy and FP is the percentage of firm capacity required by the system (e.g., 110% 
here) both have been taken from Gerres et  al. (2019), Pg is the maximum power 
output per generator, xg is the discrete investment variable, EUg is the number of 
existing generators (which we do not consider in this case), and finally, Dpeak is the 
hourly system peak demand. Essentially this constraint enforces that firm system 
capacity is at least 110% of system peak demand. In the rMIP framework, the dual 
of this constraint, � , yields a firm capacity price in €/MW of firm capacity, which is 
used in firm capacity payments.

In this paper, generator profitability is calculated as follows: spot market revenues 
minus spot market purchases (the latter can only occur for storage units); reserve 
market revenues minus reserve market O&M cost; minus operating costs (variable 
and fixed); minus investment costs; plus firm capacity payments (should there be 
any). We assume truthful bidding and no strategic considerations from participants.

The main purpose of the case studies in this article is to assess the impact of the 
degrees of convexity of expansion planning models on (primal and dual) power system 
results. In particular, we investigate whether the importance of convexity of power system 
modeling changes, especially when migrating from current to future power systems with 
a high share of VRE sources. However, this is a model-based exercise, and we are not 
claiming that the same results will necessarily happen in reality. Moreover, we have not 
analyzed the impact of price-responsive demand and demand-side management (DSM) 
on model results. In future power systems with a high penetration of VRES, DSM might 
play a very important role and have significant impact on market prices. We plan to assess 
this topic in future research. This is, however, out of the scope of this paper.

The basic data set covers a time horizon of one static year in the future, which has been 
approximated by seven representative days. Using representative periods is a common 

(2)
∑

g

FCg ⋅ Pg ⋅ (xg + EUg) ≥ Dpeak
⋅ FP ∶ (�),

7  This factor describes the percentage of the installed capacity for each technology that is considered 
firm. In this context, firm means the capacity available for production or transmission which can be (and 
in many cases must be) guaranteed to be available at any given time. These coefficients are almost 100% 
for dispatchable technologies, and usually much lower for VREs where they could also be a function of 
the system portfolio
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practice in expansion planning, as pointed out in Gonzalez-Romero et al. (2020). The com-
plete data set used in this paper is available online8 and is based on the StarNet Lite demo 
version9.

As a brief overview of the case study, in this paper, we consider a 9-bus power 
system depicted in Figure 1. This system has 13 existing transmission lines with an 
800 MW transmission capacity, no existing generation capacity, and candidate gen-
erators from different technologies. The technologies considered include combined-
cycle gas turbines (500 MW units), open-cycle gas turbines (400 MW units), battery 
energy storage systems (50 MW units), solar and wind (100 MW units). Note that 
when solving LEGO as a MIP, investment decisions are lumpy with the unit sizes 
specified above; however, when investment decision variables are relaxed, then invest-
ments are considered continuous variables. For the case studies in this paper, we use 
LEGO under a DC-OPF framework and without inertia considerations (for simplic-
ity). We consider operating reserve requirements of 3% of demand and a firm capacity 
requirement of 110% of maximum system demand. The specific data are available on 
Github10. Let us now discuss the different degrees of convexity possible in LEGO. 
Note that non-convexity issues are likely amplified in a small test-system like this one.

Solar Gas

Wind BESS

4

5

3

2

1

9

8

7

6
15%

7%

10% 20%

5%

25%

8%

5%

5%

Fig. 1   9-bus network, candidate generation units and nodal demand indicated in percent

8  https://​github.​com/​IEE-​TUGraz/​LEGO
9  https://​www.​iit.​comil​las.​edu/​aramos/​starn​et.​htm
10  https://​github.​com/​IEE-​TUGraz/​LEGO

https://github.com/IEE-TUGraz/LEGO
https://www.iit.comillas.edu/aramos/starnet.htm
https://github.com/IEE-TUGraz/LEGO
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3 � Degrees of convexity of power system models

In the previous section, we have discussed how we define profits in the LEGO 
framework, and what revenue and cost concepts are accounted for. However, in 
this section, we want to raise another important issue related to expansion plan-
ning and profitability: the convexity of the expansion model in question and the 
corresponding definition of meaningful prices; in particular, should market prices 
reflect long-term investment costs or not?

Economic theory states, and many works in the literature confirm Korpås and 
Botterud (2020); Rodilla (2010) that under perfect competition and a cost-mini-
mal generation expansion mix, every technology recovers investment costs from 
the resulting market clearing prices. An underlying assumption to these results is 
the need for convexity: convex cost functions, a convex model etc. Real life deci-
sions, however, are not convex. Apart from considering non-convex cost func-
tions, realistic generation expansion models in power systems often have inelastic 
demand and have a source of non-convexity that is the discrete nature of unit 
commitment and lumpy investment decisions (among other possibly integer varia-
bles). Disregarding the integrality of these decisions (by relaxing them, for exam-
ple) might confirm theoretical statements. However, with the following example, 
we would like to showcase that theory might diverge from reality in terms of the 
profitability of individual generators under different convexity assumptions due 
to a missing-market problem and dual degeneracy as we illustrate in the appen-
dix. In the paper, we want to quantify these impacts depending on the different 
degrees of non-convexities, which have other impacts on dual variables.

To that purpose, using the exact same data we run the LEGO model under five 
different paradigms (most convex to the most non-convex):

–	 rMIP: the relaxed Mixed-Integer Program (rMIP) version, where both sources 
of integrality (investment and UC decisions) have been relaxed, thereby ren-
dering a completely convex model. Hence, the Lagrange multipliers of the 
corresponding constraints are used as prices and reflect both short-run (such 
as UC) and long-run (such as investment) costs.

–	 rMIP-SR: the short-run (SR) rMIP is when we first solve the rMIP; then fix 
investment decisions and re-run the rMIP. Nothing will change in the primal 
variables; however, since we fix investment decisions, the obtained prices only 
reflect short-run (operational and UC costs) but not long-run investment costs.

–	 rUC: this corresponds to the MIP where UC decisions are relaxed whereas 
GEP decisions are considered discrete. Prices therefore reflect only short-run 
costs (but include UC costs) but not long-run investment costs.

–	 rGEP: this model is a Mixed integer Program (MIP) in which only generation 
expansion (GEP) decisions have been relaxed; therefore, prices only reflect 
long-run investment costs and variable short-run costs but not UC (fixed, 
start-up nor shut-down) costs. This is a somewhat artificial case (as GEP is 
relaxed and corresponding UC are discrete) but it only serves as a transition 
towards full non-convexity.
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–	 MIP: prices from the full MIP version of LEGO only reflect variable short run 
costs but no long-run costs nor UC-related short-run costs.

In Table  2 we provide an overview of how specific variables are considered 
(binary/fixed/relaxed) in each type of model paradigm. Costs associated with vari-
ables considered binary or fixed are not reflected in the corresponding dual vari-
ables11. In the following sections we analyze both primal and dual power system 
outputs under all 5 different convexity paradigms to draw meaningful conclusions.

4 � Current power system: GEP results and impacts of convexity

In Table 3 we present the GEP investments per technology under the different mod-
eling paradigms. While most technologies under rMIP are within a +/- one unit 
change, e.g., 2020.3 MW of Wind (rMIP) versus 2,100 MW (MIP) with 100 MW 
Wind units, 1417.6 MW of Solar (rMIP) versus 1500 MW of Solar (MIP) with 100 
MW individual Solar units, 3216.2 MW of CCGT (rMIP) versus 3000 MW (MIP) 
with 500 MW units, 1185.1 MW of OCGT (rMIP) versus 1200 MW (MIP) with 400 
MW units, BESS diverges from this trend (50 MW units). From a relative point of 
view, BESS is the technology most affected by the level of convexity of the model. 
In this case, the lumpiness of thermal power plant investments (especially CCGTs) 
in the model is compensated for by BESS units.

Table 2   Types of variables 
under different model paradigms

Model Binary Fixed Relaxed

rMIP – – p, r, cs, soc, y, z, u, x
rMIP-SR – x p, r, cs, soc, y, z, u
rUC x – p, r, cs, soc, y, z, u
rGEP y, z, u – p, r, cs, soc, x
MIP y, z, u, x – p, r, cs, soc

Table 3   Capacity investments 
(MW) per technology under 
different modeling paradigms

rMIP rMIP-SR rUC rGEP MIP

BESS 382.6 382.6 550.0 618.6 600.0
Wind 2020.3 2020.3 2200.0 2057.9 2100.0
Solar 1417.6 1417.6 1600.0 1556.3 1500.0
CCGT​ 3216.2 3216.2 3000.0 3000.0 3000.0
OCGT​ 1185.1 1185.1 1200.0 1142.3 1200.0
Total 8221.8 8221.8 8550.0 8375.2 8400.0

11  Note that when referring to the "duals" of a model containing binary variables, we really mean solv-
ing the MIP, then fixing the binaries and re-solving the LP.
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Before assessing the corresponding profits per technology, note that the payment 
for firm capacity is obtained as the dual of the firm capacity constraint. This dual, 
however, only exists in models where the capacity decisions are modeled as con-
tinuous variables, i.e., there is no such dual in the MIP model. Also note that in 
the rMIP-SR case the presented profits include the firm capacity payments from the 
rMIP case, which are 25,814 €/MW-year of firm capacity.

We first observe that, using marginal cost pricing in a completely convex model 
(rMIP) allows all generators, including BESS, to recover all costs and obtain exactly 
zero profit, as shown in Table 4 and predicted by economic theory. In Table 5 we 
show the detailed elements that have been used to calculate the profits for each tech-
nology. However, note that the prices that have been used to calculate profits under 
rMIP included, among other things, long-run investment costs. In order to assess 
how profits would evolve if only short-run marginal costs were to be used, we focus 
on rMIP-SR. All primal variables are exactly the same as in the rMIP case; however, 
dual variables (prices) change and do no longer reflect long-run dynamics (For an 

Table 4   Annual profits (M€) 
per technology under different 
modeling paradigms

rMIP rMIP-SR rUC rGEP MIP

BESS 0.00 −0.15 −2.02 0.00 −13.73
Wind 0.00 −0.30 −9.44 0.00 −15.19
Solar 0.00 0.09 −2.55 0.00 5.33
CCGT​ 0.00 −0.44 28.94 49.83 −62.53
OCGT​ 0.00 0.00 0.00 2.33 −4.11
Total 0.00 −0.80 14.93 52.16 −90.23

Table 5   Annual profit (M€) elements per technology in rMIP case

CCGT​ OCGT​ BESS Wind Solar

Spot market revenues 1177.45 11.87 31.71 152.65 114.62
Spot market purchases 0 0 −17.46 0 0
Reserve market revenues 0.59 0.14 4.39 0 0
Reserve market costs −0.59 −0.08 −1.43 0 0
O&M costs −1122.66 −11.93 −1.85 −9.54 0
Investmentcosts −134.50 −29.37 −24.85 −146.75 −119.74
Firm capacity payments 79.70 29.37 9.48 3.65 5.12
Total profits 0 0 0 0 0

Table 6   Spot market prices (€/
MWh) under different modeling 
paradigms

rMIP rMIP-SR rUC rGEP MIP

Average 47.05 47.03 47.97 49.08 44.77
Maximum 86.84 86.84 88.26 195.15 64.00
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illustrative example the reader is referred to the appendix, where we point out the 
fact that there is a missing-market problem and dual degeneracy in market prices). 
In practice, numerical solvers choose the simplest market price solutions (only 
including SR costs). The result is that the system is 0.8 million € short in total. Most 
technologies actually incur losses if only short-run marginal prices are used except 
for solar and OCGTs that break even. This is mirrored by the fact that average spot 
market prices, as shown in Table 6 are also slightly lower under rMIP-SR because 
they no longer account for long-run investment costs. However, comparing the rMIP 
and rMIP-SR case, one might be inclined to believe that accounting for investment 
costs in the market prices does not matter much, as 0.8 M€ of losses are relatively 
small in comparison to a 1603 M€ total system cost. In that case, one may argue that 
the current practice of determining prices based on short-run marginal cost (SRMC) 
works well for the current system with a significant share of resources with a posi-
tive SRMC.

In the rUC case (where prices only reflect short-run costs, including UC costs), 
there is no dual for the firm capacity constraint as GEP decisions are discrete. 
Hence, we have taken the value for firm capacity in €/MW from the rMIP case and 
applied it to the investments here12, just to be able to compare the numbers to other 
cases. Under this case, OCGT breaks even exactly, BESS, wind and solar are net 
losers, and CCGTs obtain profits. In total, the market makes almost 15 million € of 
profit, due to the fact that average prices increase substantially with respect to the 
rMIP case. This is because prices reflect that, to provide an additional MW, a new 
unit might have to be switched on.

In the rGEP case (where prices do not reflect UC costs), we observe that tech-
nologies that do not have discrete UC variables actually break even exactly. The con-
ventional generation that involves UC variables (such as CCGTs and OCGTs) end 
up making profits. The reason for this are the prices. Average spot prices increase 
with respect to the rMIP case. Under rMIP it was possible to dispatch a fraction of 
a conventional plant. Hence, the price only reflects this additional fraction. Under 
rGEP this is no longer possible, as UC decisions are considered discrete. Hence, 
the model prices reflect investment costs rather than start-up or fixed costs, which 
end up being more expensive when having to price dispatching an additional MW. 
Again, the rGEP case is a somewhat artificial case.

Finally, considering the most realistic expansion planning model, the MIP, prices 
no longer reflect long-run investment costs nor UC costs. Note that the firm capacity 
constraint does not have a dual in the MIP due to the discrete nature of investment 
decisions. As an approximation, we have used the payments derived in the rMIP 
framework. Hence, MIP profits contain a firm capacity payment with rMIP prices 
(without these payments, losses would be even higher). The prices that have been 
extracted in the MIP only reflect short-run variable costs (no GEP nor UC costs are 
included), which means that they are lower than prices observed in the other cases. 

12  Note that since investment variables are discrete in the rUC model, the firm capacity constraint does 
not have a dual. The authors are aware that assuming the €/MW firm capacity payment obtained under 
the rMIP is not completely coherent for the rUC. However, given that there is no correct way of getting 
this number, it seems like a reasonable approximation.
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In general, all technologies incur losses, and only the solar becomes positive after 
the firm capacity payments, while the remaining technologies are not profitable. 
These results seem to indicate that the combination of integrality and disregarding 
investment costs in prices has a negative effect on the system’s overall profitability. 
While the rMIP-SR was only 0.8 M€ short, the full MIP is 90.2 M€ short.

In order to demonstrate that the total cost recovery (operation & investment costs) 
issues are not triggered by the firm capacity constraint only, we have repeated this 
case study omitting the firm capacity constraint. We obtain the following results 
of total annual profits: 0 M€(rMIP); -108.6 M€(rMIP-SR); and, -165.7 M€(MIP). 
While optimal investments are different, the fact that SRMCs are not enough to 
recover investment costs in this case, remains true.

The takeaway of these results is that convexity of expansion planning decisions 
matters. While it might be more convenient to resort to a simplified but convex rMIP 
model where shadow prices can be easily calculated, we have shown that as soon 
as one steps away from convexity and towards more realistic models, pricing issues 
occur, which can lead to an arbitrary distribution of losses and profits. However, in 
the cases that we have observed, BESS have been on the losing end of the pricing 
implications of non-convexity. Allowing for long-term costs to be reflected in mar-
ket prices also has an impact, although our results indicate that this effect is very 
limited in the current system.

5 � Future power system (100% VRE): GEP results and impacts 
of convexity

In this section, we assess expansion planning and profitability for the future power 
system assuming 100% VRE sources. Currently, many power systems all over the 
world are transitioning towards decarbonization. The number of conventional plants 
(with UC-type decisions and large individual units) is declining. The number of 
renewable energy resources and energy storage systems, which do not require UC 
variables and have small individual units, is increasing. Therefore, one might argue 
that convexity in mathematical formulations is becoming less of an issue. In order to 
discuss this in more detail, we repeat the above experiment but now enforce a 100% 
renewable penetration by not including thermal candidate units.

Indeed, as can be observed in Table 7 in a system with a 100% renewable mix, 
the total investments between the fully convex model (rMIP) and the non-convex 
(due to lumpiness of investments) model (MIP) differ very little. The difference in 

Table 7   Capacity investments 
(MW) per technology under 
different modeling paradigms 
under 100% VRE penetration

rMIP rMIP-SR MIP

BESS 8871.2 8871.2 8900.0
Wind 7045.0 7045.0 7000.0
Solar 17118.1 17118.1 17200.0
Total 33034.2 33034.2 33100.0
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total system capacity is only 66MW which is 0.2% of total capacity. Note that the 
rUC case is obsolete here since we do not have any UC variables and it hence coin-
cides with MIP, while the rGEP case coincides with rMIP.

Before we discuss profits, we have to analyze prices, given in Table  8. In the 
rMIP prices reflect long-run investment costs, and average prices are quite high, 
i.e., 103.6€/MWh; however, when only short-run costs are accounted for (in the 
rMIP-SR and the MIP cases), prices only reflect variable costs, which are on aver-
age 3.05€/MWh. Note that in this particular case, there is no scarcity, so the SR 
prices are not inflated by a large penalty for non-supplied energy (NSE)13. Figure 2 

Table 8   Spot market prices (€/
MWh) under different modeling 
paradigms under 100% VRE 
penetration

rMIP rMIP-SR MIP

Average 103.60 3.05 3.05
Maximum 2078.01 6.22 6.22
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Fig. 2   Average price duration curve (overall curve and detail) in rMIP model under 100% VRE penetra-
tion

13  The fact that there is no scarcity in this case is mainly due to the number of representative days cho-
sen, and to the cost assigned to NSE. In particular, investing in additional units is a ‘cheaper’ solution 
than having non-supplied energy because the weight of the representative days is sufficiently large. In 
reality, when every individual hour of the year is considered, some NSE in specific high-demand hours 
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contains a price duration curve for the rMIP case. Note that this price is a nodal 
average weighted by demand, and shows that there are 700 hours in which invest-
ment costs impact spot market prices, i.e., the spot price is above 6€/MWh which 
is the highest operating marginal cost in the generation fleet. On the other hand, in 
the rMIP-SR and MIP cases there is no price instance that exceeds 6€/MWh. This, 
leads to the apparent problems with long-term cost recovery that we analyze in the 
remainder of this section.

Profits per technology under a 100% renewable penetration are presented in 
Table 9. Table 10 contains the BESS profit breakdown for the rMIP case. Note that, 
in this case, the firm capacity constraint is not binding in the rMIP, and hence there 
is no firm capacity remuneration. This constraint requires a minimum firm capac-
ity of 110% of hourly system peak demand; however, this amount is way less than 
the total capacity required actually to satisfy demand overall. In particular, in a 
100% renewable system, only BESS and potentially wind (if there is any) can serve 
demand during the night hours. Therefore, a large amount of BESS capacity needs 
to be installed, to be charged during the day to provide sustained energy through the 
night. The amount of BESS capacity necessary to achieve this, i.e., almost 9GW, by 
far exceeds the 110% of peak demand of 4.5 GW. This result raises the question of 
whether a firm capacity constraint, as it is proposed in the literature, really serves its 
purpose in a 100% VRE power systems, in which this constraint is inactive.

While every technology recovers costs in the fully convex rMIP model, this does 
not apply in the rMIP-SR or the MIP. In summary, if market prices do not reflect 

Table 9   Annual profits (M€) 
per technology under different 
modeling paradigms under 
100% VRE penetration

rMIP rMIP-SR MIP

BESS 0.00 −576.26 −578.13
Wind 0.00 −506.15 −502.92
Solar 0.00 −1425.64 −1432.47
Total 0.00 −2508.05 −2513.52

Table 10   Annual profit (M€) 
elements per technology in 
rMIP case under 100% VRE 
penetration

BESS Wind Solar

Spot marketrevenues 1532.92 528.01 1445.92
Spotmarket purchases −920.75 0 0
Reserve market revenues 5.37 0 0
Reserve market costs − 1.52 0 0
O&M costs −39.76 − 16.25 0
Investment costs −576.26 − 511.76 −1445.92
Firm capacity payments 0 0 0
Total profits 0 0 0

would likely occur. In future research we plan to analyze this issue in more depth.
Footnote 13 (Continued)
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long-run investment costs, then no technology recovers costs14. This is much more 
problematic in the 100% VRE power system than in the current power system. 
While with long-run costs, i.e., the rMIP case, all technologies recover costs in both 
the current and the future power system, when long-run costs are no longer reflected 
in prices the missing money problem is large in a 100% VRE power system, even 
in a relaxed model such as rMIP-SR. Comparing profits under rMIP with rMIP-SR 
clearly shows the impact of no longer accounting for investment costs in prices, 
which is much worse (2508 M€ losses) in the 100% VRE system than in the current 
one (only 0.8 M€ losses).

In the MIP model, and for BESS in particular, there were a total of 13.73 M€ 
losses for 600 MW installed in the current power system, which are relative losses 
of 22.9 M€/GW. In the future power system, there are relative losses of 64.9 M€/
GW, which is worse by a factor close to 315. This seems to indicate that there might 
be a problem with the assumed market design, as short-term spot and reserve market 
revenues are not enough to offset costs. Finally, as mentioned previously, there are 
no firm capacity payments in the 100% VRE case as meeting system energy demand 
is the main investment driver here.

Adequate capacity remuneration for low-carbon power systems is a very interest-
ing but still ongoing topic of research Bothwell and Hobbs (2017); Mertens et al. 
(2021). The firm capacity constraint implemented here is one particular example or 
such a policy measure. However, we want to stress that the firm capacity constraint 
does not affect the profit results of the 100% VRE case presented here (as it is not 
binding). This would suggest that, here, the long-run cost recovery problems are not 
triggered by the policy instrument.

6 � Conclusions

As long as we have a significant fraction of conventional thermal plants in our 
technology mix, the convexity of expansion models is more important in order to 
approximate the optimal technology mix adequately. In the future power system, 
relaxing integrality in investment variables actually yields a fairly accurate approx-
imation of the optimal mix. However, our analysis of convexity in GEP formula-
tions reveal challenges regarding prices and profitability, and whether or not long-
run investment costs are to be reflected in market prices. Disregarding long-term 
costs in market prices cause relatively mild profitability issues in the current power 
system in our analysis, even though they deteriorated in combination with integral-
ity. However, in the future power system, our results indicate that only accounting 
for short-term costs in prices causes a serious missing money problem, and correct 

14  The presented case study uses representative days to approximate the whole year, and no hours of 
scarcity occur. We have repeated this study running the expansion model for the whole year (8760 
hours), and we observe scarcity hours, but the overall conclusion does not change. Even for the hourly 
model, short-run marginal costs are not enough to recover investment costs in the 100% VRE case.
15  We have run a sensitivity analysis adding different types of batteries, in particular, BESS with a 
longer discharge duration. However, overall results were similar and are hence not reported here in detail.
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remuneration of generators becomes more challenging. In future work, we will 
investigate adequate pricing and compensation schemes in fully decarbonized elec-
tricity markets. Moreover, we want to assess the impact of price-responsive demand 
and demand-side management on our results.

Appendix

In this appendix we want to showcase, for a simple example, what is happening with 
long-run marginal cost and short-run marginal cost for power system planning mod-
els with inelastic demand. For simplicity, we consider one one time step, only one 
generator, no UC decisions or constraints, and continuous variables. With that, prob-
lem (1) reduces to problem (3) with positive variables p, x: 

As the above problem is convex, we replace it with its KKT conditions (4), where 
(4a)-(4b) correspond to the derivatives of the Lagrangian, (4c)-(4e) are the comple-
mentary slackness conditions, (4f) the non-negativity of Lagrange multipliers and 
(4g)-(4h) the original constraints of the problem. 

If we consider investments x to be a variable (with its corresponding derivative 
of the Lagrangian), we get that CINV

= � from(4b). Substituting this into (4a), we 
get that marginal cost (or market spot price) � is equal to COM + CINV − � . If we 

(3a)min COM
⋅ p + CINV

⋅ x

(3b)0 ≤ p ≤ x ∶ (�,�)

(3c)p = D ∶ (�)

(4a)COM − � + � − � = 0

(4b)CINV − � = 0

(4c)p ⋅ � = 0

(4d)(p − x) ⋅ � = 0

(4e)(p − D) ⋅ � = 0

(4f)� ≥ 0,� ≥ 0

(4g)0 ≤ p ≤ x

(4h)p = D
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consider a non-trivial solution, i.e., p > 0 , then complementary slackness yields 
that � = 0 , which yields that market price � = COM + CINV includes short-run 
operating costs and long-run investment costs. It is trivial to see that with such a 
market price, both operating and investment costs are recovered.

Now let us briefly analyze the case, where we fix investment decisions and re-
run the model. The resulting optimization model is almost identical to (3) with 
the only difference that investments x are now considered parameters. To indicate 
this, let us write investment capacities as capital letters, i.e., X. If we were to take 
corresponding KKT conditions of this problem, they would be: 

Again, assuming a non-trivial solution ( p > 0 ) we derive that � = 0 . With that, 
market price � equals COM + � . Let us distinguish two cases now: first, if p < X 
then complementary slackness would yield that market price is only the short-run 
operating cost COM ; second, if p = X the Lagrangian multiplier � is not uniquely 
defined. That is the crux of the matter. In the long-run problem (3) investments 
x are also binding ( p = x ), but since x is a variable, the Lagrange multiplier � 
reflects investment costs. Now, in the short-run problem, investments are con-
sidered constant. Therefore, Lagrange multiplier � no longer reflects investment 
costs. As a matter of fact, there are infinite solutions for the pair (�,�) that satisfy 
the KKT conditions. This a missing-market problem in the sense that the opera-
tional problem (5) has no information about the investment cost and thus it can-
not reflect them in the dual/price. There also exists dual degeneracy. In practice, 
numerical solvers yield � = 0 and � = COM , which is a valid solution to the KKT 
conditions. However, as a consequence investment cost recovery is not achieved 
in this case.
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