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Abstract
The energy consumption of large-scale data centers or server clusters is expected to 
grow significantly in the next couple of years contributing to up to 13% of the world-
wide energy demand in 2030. As the involved processing units require a dispropor-
tional amount of energy when they are idle, underutilized, or overloaded, balanc-
ing the supply of and the demand for computing resources is a key issue to obtain 
energy-efficient server consolidations. Whereas traditional concepts mostly consider 
deterministic predictions of the future workloads or only aim at finding approxi-
mate solutions, in this article, we propose an exact approach to tackle the problem 
of assigning jobs with (not necessarily independent) stochastic characteristics to a 
minimal amount of servers subject to further practically relevant constraints. As a 
main contribution, the problem under consideration is reformulated as a stochas-
tic bin packing problem with conflicts and modeled by an integer linear program. 
Finally, this new approach is tested on real-world instances obtained from a Google 
data center.
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1 Introduction

1.1  Motivation and problem statement

Nowadays, data centers are representing one of the most significant elements in 
the next stage of growth for the information and communication technology (ICT) 
industry (Corcoran and Andrae 2013). By way of example, as the importance 
of cloud computing has been steadily increasing over the past couple of years, 
already today a considerable portion of the global IP traffic is processed and 
stored in data centers. According to a forecast made by Cisco Systems (Barnett 
et al. 2018), the global data center IP traffic is expected to grow more than three-
fold between 2017 and 2022, leading to a compound annual growth rate (CAGR) 
of 26%, see also Fig. 1 for a general overview and Fig. 2 for some of the key rea-
sons of this considerable increase.

Naturally, to cope with this huge amount of traffic, a very large number of pro-
cessing and storage servers is required in the data centers. More problematically, 
already nowadays these computational units inevitably consume a significant 
amount of energy (Arjona et al. 2014; Koomey 2008), which is going to increase 
exponentially over the next couple of years, see Fig. 3. From an overall point of 
view, in a pessimistic scenario, data centers will contribute to about 13% of the 
global energy demand in 2030 (compared to roughly 1.5% in 2010), see (Jones 
2018).

Trying to keep the environmental consequences of this increase within a toler-
able limit, concepts and measures to reduce energy consumption and emissions 
[such as the integration of renewable energies in data centers (Goiri et al. 2015; 
Oro et al. 2015)] have been extensively dealt with in the literature, see (Andrae 
and Edler 2015) and further references therein. However, note that most of these 

Fig. 1  Predicted data center IP traffic. The figure is taken from Barnett et al. (2018)
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“green energy” approaches are not designed for (and thus not successful in) 
reducing the absolute energy demand.

Another approach to improve the energy efficiency of data centers or server 
clusters is motivated by the observation that processing units consume a 

Fig. 2  Some of the main drivers for the increasing IP traffic. The figure is taken from Barnett et  al. 
(2018)

Fig. 3  Three predictions for the energy consumption in terawatt-hours (TWh) of data centers. The figure 
is taken from (Andrae and Edler 2015, Fig. 4), but also recently appeared in a modified form in Jones 
(2018)
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disproportional amount of energy whenever they are idle, underutilized, or over-
loaded, see (Hähnel et  al. 2018) or (Wu 2013, Fig.  2.2). Moreover, independ-
ent studies revealed that existing servers are typically not used optimally for fear 
of not being able to guarantee high availability during peak times (Dargie 2015; 
Manvi and Krishna Shyam 2014; Möbius et  al. 2014). Consequently, efficient 
server consolidation strategies are a key element to obtain an improved resource 
utilization. In recent years, several approaches have been presented in the litera-
ture, but all of them share the challenging task to accurately estimate the future 
workloads to balance the demand for and the supply of computing resources. 
Whereas traditional strategies tend to allocate the given services with respect to 
a deterministic prediction of the expected workloads, see (Wang et al. 2011) and 
references therein, recent measurements and studies suggest that a considerable 
amount of data center workload for different applications is highly volatile (Ben-
son et al. 2010; Kandula et al. 2009), see also Fig. 4 for the fluctuations of a real-
world example.

However, reliable and reasonable deterministic estimators are difficult to find 
without running the risk of wasting resources based on too pessimistic predictions 
(Chen et al. 2011; Wang et al. 2011). To better display the uncertainty of the future 
resource demands, characterizing the services in a probabilistic way turned out to 
be a more promising approach (Hähnel et al. 2018; Monshizadeh Naeen et al. 2020; 
Wang et al. 2011; Yu et al. 2020). More precisely, we consider the following offline 
scenario: Given a fixed number n of jobs (services, tasks, etc.) whose resource 
demands are described as a stochastic process X ∶ � × T → ℝ

n , where (�,A,ℙ) is 
a probability space and T ∶= [0, �] describes a bounded time horizon with 𝜏 > 0 . 
We aim at computing the lowest number of servers (machines, processors, cores, 
etc.) of capacity C > 0 that is able to accommodate all jobs subject to further con-
straints, the most important of which separating conflicting jobs and ensuring that 

Fig. 4  An exemplary traffic pattern of Google Videos Germany from February 1 to March 1, 2019. The 
picture was generated by means of https:// trans paren cyrep ort. google. com/ traffi c/ overv iew

https://transparencyreport.google.com/traffic/overview
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overloading a single server is allowed (in a probabilistic sense) up to a maximal tol-
erable limit of 𝜀 > 0 at any instant of time t ∈ T .

Remark 1 Tailoring the amount of active computing devices is not only a large-scale 
problem in data centers. By way of example, it is also an important cornerstone 
within the leading European research project “HAEC”, see (Fettweis et  al. 2019), 
dealing with the architecture and pathways toward highly adaptive energy-efficient 
computing.

Note that a preliminary version of this research, containing much less theoreti-
cal results and only a very limited number of computations, was presented at the 
International Conference on Operations Research 2019 (OR 2019, Dresden) as Mar-
tinovic et al. (2020).

1.2  Related literature and contributions

From a mathematical point of view, the setup mentioned above can basically be 
referred to as a stochastic bin packing problem (SBPP). In that interpretation, the 
items would have nondeterministic item lengths, while the bin capacity is fixed to 
some constant. The ordinary bin packing problem (BPP), or the neighboring cut-
ting stock problem (CSP), is one of the most important classical representatives in 
combinatorial optimization and still attracts significant scientific interest according 
to several data bases, see (Delorme et  al. 2015, Fig.  1) for a trend of the related 
publications. Starting with early works (Gilmore and Gomory 1961; Kantorovich 
1960), over the last decades, the BPP and the CSP have been studied extensively 
within the literature. By way of example, we refer the reader to some (by far not 
exhaustive) surveys (Delorme et  al. 2016; Scheithauer 2018; Valério de Carvalho 
2002) and standard references about approximation algorithms (Coffman et al. 2013, 
1984), branch-and-bound based techniques (Belov and Scheithauer 2006; Valério 
de Carvalho 1999; Vance 1998; Vance et  al. 1994), classical pseudo-polynomial 
integer linear programming (ILP) formulations (Dyckhoff 1981; Martinovic et  al. 
2018; Valério de Carvalho 2002), or modern and advanced approaches (Brandão 
and Pedroso 2016; Clautiaux et al. 2017; Delorme and Iori 2020; Wei et al. 2020). 
Moreover, in the last couple of years, (deterministic) generalizations with respect to 
a temporal dimension have been proposed in various articles (Aydin et al. 2020; de 
Cauwer et al. 2016; Dell’Amico et al. 2020).

As regards the stochastic bin packing problem, probably two of the earliest refer-
ences are given by Coffman et al. (1980) and Shapiro (1977). Therein, the item sizes 
are once drawn according to a specific probability distribution, and then exemplarily 
scheduled based on a next-fit heuristic. Whereas a true time dimension or the vola-
tility of item sizes over time is not considered in these works, the potential applica-
bility of bin packing (or related problems) to multiprocessor scheduling is already 
pointed out with respect to makespan minimization (Coffman et al. 1978). In recent 
years, also server consolidation or load balancing has been addressed in connection 
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with the SBPP. However, the approaches presented in the related literature are dif-
ferent from our’s because of:

– In many cases, specific assumptions on the distributions of the given workloads 
are explicitly required, see, e.g., Kleinberg et al. (2000) for Bernoulli-type ran-
dom variables or Goel and Indyk (1999) for exponentially distributed workloads.

– The stochastic independence of the workloads is often assumed (Cohen et  al. 
2019; Monshizadeh Naeen et al. 2020; Wang et al. 2011; Yu et al. 2020).

– A significant amount of publications deals with the so-called effective item sizes 
(Kleinberg et al. 2000; Wang et al. 2011), meaning that again the random vari-
ables are replaced by an appropriately defined deterministic value (that tries to 
use information provided by the distribution). Sometimes, these effective item 
sizes are still too difficult to handle, so that (easier) lower and upper bounds for 
these values are considered instead.

Moreover, whichever the case may be, all of these articles only address the approxi-
mate solution based on heuristics rather than providing models or strategies to 
exactly solve the problem under consideration. To the best of our knowledge, the 
latter has first been attempted by Martinovic et  al. (2019), where two exact solu-
tion approaches for normally distributed and independent workloads have been pre-
sented. Note that, as extensively described by Martinovic et  al. (2019), the intro-
duced approach can also be applied to handle a wide variety of other distributions, 
as long as they are somewhat “stable” under convolution. However, many of these 
other distributions would lead to ordinary bin packing problems with possibly modi-
fied (deterministic) item sizes or bin capacity (Martinovic et al. 2019, Remark 1). 
Hence, also in this work, we will focus on normally distributed workloads which is 
a common approach (Cohen et al. 2019; Jin et al. 2012; Wang et al. 2011) or rea-
sonable approximation, see (Martinovic et al. 2019, Remark 3) or (Yu et al. 2020, 
Fig.  4), and also warrantable for many real-world data, see also Fig.  5. To say it 
more clearly: in this paper, the given real workloads are approximated by a normal 

Fig. 5  An exemplary schematic of four real-world CPU utilization characteristics. Obviously, approxi-
mating these workloads by perfect normal distributions will lead to sufficiently accurate descriptions of 
the jobs
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distribution by matching the first two moments. Then, the assignment is calculated 
based on the idealized workloads. In general, this does not necessarily have to result 
in reasonable approximations for the original data—but since, in our scenario, the 
true workloads can be approximated very well by a normal distribution, it is permis-
sible to proceed in this way.

Recently, the method from Martinovic et al. (2019) has been compared to other 
consolidation strategies with respect to different performance and execution metrics 
(e.g., job completion time, system overload probability), see (Hähnel et  al. 2018). 
In each category, our approach (Martinovic et al. 2019) incurred a modest penalty 
with respect to the best performing approach in that category, but overall resulted 
in a remarkable performance clearly demonstrating its capacity to achieve the best 
trade-off between resource consumption and performance. Given the fact that exact 
formulations for server consolidation are currently (still) limited to moderately sized 
instances, the main challenge in this area is scalability. Hence, it is of paramount 
importance to foster theoretical approaches contributing to further increase the size 
of problems that can be solved in a reasonable amount of time, even if their numeri-
cal properties do not yet allow an instantaneous and unrestricted application in fast 
real-time scheduling for large server clusters. Moreover, from a practical perspec-
tive, knowing the exact solution is a requirement to accurately judge the quality of 
lower bounds and heuristic strategies.

Remark 2 From an overall point of view, the applicability of exact approaches 
mainly depends on the precise characteristics of the considered data center. For 
example, as reported in Dargie (2019), the Enterprise Cloud Infrastructure (ECI) at 
the Centre for Information Services and High Performance Computing (ZIH Dres-
den)1 consists of 59 computing servers and additional 29 storage servers. Last year, 
it was hosting 1100 commercial virtual machines (i.e., jobs in a more abstract sense). 
The virtual machines were compute-intensive and their computation time was rela-
tively long. By comparison, one of the Alibaba’s Production Clusters (APC)2 hosted 
more than 44000 Linux Containers on 3985 servers. Comparing the ratio of jobs to 
servers, the first yields 12.6, whereas the second is around 11. That means, as far 
as the server workload was concerned, we can consider both systems large scale. 
Indeed, server consolidation on the first makes sense, because (the total number of 
jobs is not too large and more importantly) the execution duration was significantly 
long justifying all the computation costs, whereas almost all the jobs on the Ali-
baba servers were short-lived making long-term consolidation difficult to achieve. 
In the latter case, a fast heuristic solution is definitely required. Altogether, the exact 
methods presented in this article are particularly intended for data centers being pre-
dominantly confronted with rather long-lasting jobs, as, in this scenario, the costs of 
calculating an optimal solution will be recouped by the resulting savings (over the 
long period of execution).

1 https:// tu- dresd en. de/ zih/
2 https:// github. com/ aliba ba/ clust erdata/ tree/ master/ clust er- trace- v2018

https://tu-dresden.de/zih/
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
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Whether one regards an entire server with a large number of processor cores or 
a single multi-core processor, it is imperative to co-locate virtual machines (or sim-
ply jobs, to use a more abstract term) in such a way that they neither contend for 
resources unnecessarily nor underutilize them considerably. Indeed, ideally, the co-
located jobs should complement one another (such as one is active when another is 
inactive). While, in our previous paper (Martinovic et al. 2019), we addressed the 
optimal assignment of jobs to processor cores by assuming that each job generates a 
stochastic workload, we did not, however, regard the mutual interactions of the jobs. 
This resulted in a very extended selection process when dealing with a large number 
of jobs. In this paper, we, among others, also take the mutual characteristics of the 
workloads of co-located jobs into account, especially to identify pairs of jobs having 
overlapping resource utilization characteristics which must not be co-located. Such 
exclusion not only facilitates the consolidation of a large number of jobs, but also 
avoids contentious jobs from sharing a processor core or server. More precisely, the 
main contributions (in particular, compared to Martinovic et al. (2019)) of this arti-
cle are the following:

– We consider a more general and application-oriented scenario, where the given 
workloads do not have to be stochastically independent.

– We present the concept of overlap coefficients to reduce the number of conflict-
ing jobs being allocated to the same server.

– The computational experiments are based on real data from a Google data center 
(Reiss et al. 2011). By theoretical and numerical arguments, we particularly dis-
cuss the optimal choice of a parameter determining how many pairs (of jobs) are 
forbidden to be co-located.

As we will show within the paper, we can take into account these contributions by 
considering a stochastic bin packing problem with conflicts (SBPP-C). Moreover, 
the new exact ILP model can cope with much larger instance sizes than the less 
general formulation from Martinovic et al. (2019). This can be used in particular to 
assess the quality of heuristic approaches for a larger class of instances.

This article is structured as follows: In the next section, we properly introduce the 
concept of overlap coefficients and present the mathematical basics of our approach. 
Afterward, in Sect.  3, an exact ILP formulation as well as a lower and an upper 
bound are proposed. In Sect. 4, we present the results of numerical simulations and 
explain the methodology and assumptions used therein. Finally, we give some con-
cluding remarks and an outlook on future research.

2  Preliminaries and notation

Throughout this work, we will consider a given number n ∈ ℕ of jobs (or services, 
tasks, items), indexed by i ∈ I ∶= {1,… , n} , whose workloads can be described by 
a stochastic process X ∶ � × T → ℝ

n , where (�,A,ℙ) is a probability space and 
T ∶= [0, �] , 𝜏 > 0 , represents a time horizon (i.e., an activity interval for the jobs). 
Moreover, as motivated in the previous section, the jobs are assumed to follow 
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a normal distribution. More formally, we have Xt ∼ Nn(�,�) for all t ∈ T , where 
� ∶= (�i)i∈I and � ∶= (�ij)i,j∈I are a known mean vector and a known positive semi-
definite, symmetric covariance matrix, respectively, of an n-dimensional multivariate 
normal distribution Nn . In particular, this implies that any individual workload (Xt)i , 
i ∈ I , t ∈ T , follows the one-dimensional normal distribution (Xt)i ∼ N(�i, �ii).

Remark 3 For the sake of completeness, observe that the opposite is not true, in gen-
eral. More precisely, a vector formed by n normally distributed random variables 
does not have to be normally distributed (in dimension n).

These jobs shall once be assigned to a minimal number of servers (or machines, 
processors, cores) with given capacity C > 0 , i.e., it is not allowed to reschedule 
the jobs at any subsequent instant of time.3 Similar to the ordinary BPP, we use 
incidence vectors a ∈ �

n to display possible item combinations. Here, ai = 1 holds 
if and only if job i, i ∈ I , is part of the considered subset. To represent a feasible 
combination of jobs (for a single server), this vector has to satisfy two important 
conditions: 

(A) (stochastic) capacity constraint: For a given threshold 𝜀 > 0 , we have to demand 
ℙ[X⊤

t
a > C] ≤ 𝜀 for all t ∈ T  to limit the probability of overloading the bin 

capacity, see also Fig. 6.

Fig. 6  The consolidation of two (independent) normally distributed workloads on one processor. This 
assignment satisfies the capacity constraint (A) whenever 𝜀 > 0.082 is considered

3 Due to this assumption, it is not imperative that the considered jobs will have exactly the same execu-
tion interval. While we will take care in the construction of our instances in Sect.  4 that the activity 
intervals are at least approximately identical, it is sufficient as a minimum requirement for the theory that 
there is a time window in which all considered jobs are active simultaneously. By this common interval, 
all feasibility conditions for the consolidation will be contained in the optimization problem—even if 
single jobs start a little earlier or stop a bit later. A more detailed investigation with distinct job-specific 
start and end times would result in a stochastic version of the Temporal Bin Packing Problem (TBPP), 
see (Aydin et al. 2020; de Cauwer et al. 2016; Dell’Amico et al. 2020; Martinovic et al. 2021). For this 
purpose, however, the basics of the ordinary stochastic BPP must first be derived, and this is precisely the 
aim of the present article.
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(B) non-conflict constraint: Let F ⊂ I × I describe a set of forbidden item combina-
tions (to be specified later). Then, ai + aj ≤ 1 has to be true for all pairs (i, j) ∈ F . 
The motivation behind this constraint is to basically separate those pairs of jobs, 
which are likely to influence each other’s performance.

Definition 1 Any vector a ∈ �
n satisfying Conditions (A) and (B) is called a (feasi-

ble) pattern or a (feasible) consolidation. The set of all patterns is denoted by P.

In what follows, we aim at finding a more convenient and computationally 
favorable description of the pattern set P. To this end, knowing the distribution 
of the random variable X⊤

t
a , t ∈ T  , is required in Condition (A). Fortunately, for 

any t ∈ T  , this linear transformation of the normally distributed random vector 
Xt ∼ Nn(�,�) is again normally distributed (even if the individual components of 
Xt are not stochastically independent!) (Balakrishnan and Nevzorov 2003, Chap-
ter 26), see also Fig. 6, meaning that

holds for all t ∈ T  . Consequently, we obviously have

for all t ∈ T  , where c
L
=Xt ∼ Nn(�,�) , t ∈ T  , is a representative random vector (in 

terms of the distribution) for the workloads. Hence, from now on, we do not always 
have to explicitly mention the time indices t ∈ T  (or the time horizon T, in general) 
in the following formulas and discussions.

Based on these observations, it is possible to briefly refer to the server consoli-
dation problem as a stochastic bin packing problem with conflicts (SBPP-C). To 
this end, we introduce the following term.

Definition 2 A tuple E = (n, c,C,�,�,F, �) consisting of

– a deterministic server (bin) capacity C ∈ ℕ,
– an error bound � ∈ (0, 1) for the violation of the bin capacity,
– n ∈ ℕ jobs (items) with (not necessarily independent) normally distributed 

workloads (weights) c ∼ Nn(�,�),
– a set F of forbidden item combinations

is called an instance of the SBPP-C.

Remark 4 Obviously, we have to demand ℙ[ci > C] ≤ 𝜀 for all i ∈ I to ensure the 
solvability of E. Moreover, without loss of generality, the bin capacity (and the 
workloads) can be normalized to C = 1.

Thus, we can state

(1)X
⊤
t
a ∼ N(�⊤

a, a⊤𝛴a)

ℙ[X⊤
t
a > C] ≤ 𝜀 ⟺ ℙ[c⊤a > C] ≤ 𝜀
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Lemma 1 Let E be an instance of the SBPP-C. Then, a ∈ �
n satisfies Condition (A) 

if and only if

holds, where q1−� is the (1 − �)-quantile of the standard normal distribution N(0, 1).

Proof Due to (1) and the definition of the quantile function, we obviously have 
ℙ[c⊤a > C] ≤ 𝜀 if and only if C ≥ �

⊤
a + q1−𝜀 ⋅

√
a⊤𝛴a .   ◻

Hence, it is possible to rephrase Condition (A) as a deterministic (but still nonlin-
ear) inequality; a fact already recognized in very early publications on chance con-
straints, see (Hillier 1967, p.37) or (Kataoka 1963, p.184). At least for some values 
of � , an easier representation can be obtained by the following observation:

Lemma 2 Let E be an instance of the SBPP-C with 0 < 𝜀 ≤ 0.5 . Then, a ∈ �
n satis-

fies Condition (A) if and only if �⊤
a ≤ C and

hold.

Proof Let a ∈ �
n satisfy (2) which is equivalent to Condition (A). Due to 

0 < 𝜀 ≤ 0.5 , we certainly have q1−� ≥ 0 , so that (2) directly leads to

Moreover, by squaring this inequality, we obtain

Rearranging the terms leads to

where ai = a2
i
 for ai ∈ � and �ij = �ji have been used in the last line.

In the reverse direction, basically, the same steps can be applied. Here, 
the property C ≥ �

⊤
a is important to take square roots on both sides of 

(C − �
⊤
a)2 ≥ q2

1−𝜀
a
⊤𝛴a without causing a case study.   ◻

Consequently, as already seen for a less general case in (Martinovic et  al. 
2019,  Theorem  2), Condition (A) can be expressed as a pair of one linear and 

(2)�
⊤
a + q1−𝜀 ⋅

√
a⊤𝛴a ≤ C

(3)
∑
i∈I

(2C𝜇i + q2
1−𝜀

𝜎ii − 𝜇2
i
)ai + 2

∑
i∈I

∑
j>i

aiaj
(
q2
1−𝜀

𝜎ij − 𝜇i𝜇j

)
≤ C2

C − �
⊤
a ≥ q1−𝜀 ⋅

√
a⊤𝛴a ≥ 0.

C2 − 2C�⊤
a + a

⊤
��

⊤
a ≥ q2

1−𝜀
a
⊤𝛴a.

C2 ≥ 2C�⊤
a + a

⊤
(
q2
1−𝜀

𝛴 − ��
⊤
)
a

=
∑
i∈I

2C𝜇iai +
∑
i∈I

∑
j∈I

aiaj
(
q2
1−𝜀

𝜎ij − 𝜇i𝜇j

)

=
∑
i∈I

(
2C𝜇i + q2

1−𝜀
𝜎ii − 𝜇2

i

)
ai + 2

∑
i∈I

∑
j>i

aiaj
(
q2
1−𝜀

𝜎ij − 𝜇i𝜇j

)
,
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one quadratic constraint. Moreover, note that the assumption 0 < 𝜀 ≤ 0.5 does not 
incur an actual restriction, since, typically, only a modest error bound � is given 
for practically meaningful instances (Hähnel et al. 2018).

As regards Condition (B) from the feasibility definition, we only have to clar-
ify how to obtain an appropriately chosen set F of forbidden item combinations. 
To this end, note that demanding Condition (A) only states an upper bound for 
the overloading probability of a server. However, this does not mean that for a 
specific realization � ∈ � , the consolidated jobs cannot have a workload c(w)⊤a 
larger than C. In particular, this can happen (even for all instants of time t ∈ T  ) 
if many workloads are larger than their expectations, i.e., if ci(𝜔) > 𝜇i is true for 
several i ∈ I with ai = 1 . Practically, this would then lead to some latency in the 
execution of the services. Hence, it is desirable to somehow “avoid” these perfor-
mance-degrading situations. To tackle this problem, as already mentioned in the 
introduction, one of the main novelties of our approach is given by the considera-
tion of overlap coefficients.

Definition 3 For given random variables Y , Z ∶ � → ℝ with mean values 
�Y ,�Z ∈ ℝ and variances 𝜎Y , 𝜎Z > 0 , the overlap coefficient �YZ is defined by

with �[⋅] denoting the expected value and

Example 1 To demonstrate the intention of the overlap coefficient by means of a 
preferably simple introductory example, let us first define a uniformly distributed 
random variable � ∈ U([0, 2)) . Then, we consider the three following random 
variables:

where 1A is the indicator function of A ⊆ ℝ . Obviously, any of these variables rep-
resents a Bernoulli trial with probability p = 0.5 , so that the mean value and the 
variance are given by 0.5 and 0.25, respectively. It can easily be calculated that we 
obtain �X,Y1

= −1 and �X,Y2
= −0.9 for the respective overlap coefficients, meaning 

that the level of interaction between X and Y1 is lower. On the other hand, we also 
have

since X + Y1 = 2 is impossible, whereas X + Y2 = 2 holds precisely for � ∈
[
0,

1

10

)
 . 

Altogether, both combinations would be feasible for � ≥ 0.05 , but the situation is 

(4)�YZ ∶=
�
�
(Y − �Y ) ⋅ (Z − �Z) ⋅ R(Y − �Y , Z − �Z)

�
√
�Y ⋅

√
�Z

(5)R(y, z) ∶=

{
−1 if y < 0, z < 0,

1 otherwise .

X(�) = 1[0,1)(�), Y1(�) = 1[1,2)(�), Y2(�) = 1[
0,

1

10

)(�) + 1[ 11

10
,2
)(�),

P[X + Yi > 1] = P[X + Yi = 2] =

{
0, for i = 1,

0.05, for i = 2,
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much better for the less interactive pair {X, Y1} (compared to {X, Y2} ) with the lower 
overlap coefficient, because here the capacity is never exceeded.

Lemma 3 Given two random variables Y,  Z as described above, then we have 
�YZ ∈ [−1, 1].

Proof This is an immediate consequence of the Cauchy–Schwarz inequality and the 
fact that we have R2(y, z) = 1 for all y, z ∈ ℝ . Indeed, we obtain

  ◻

Remark 5 Contrary to the ordinary correlation coefficient �YZ , defined by

the new value �YZ does not “penalize” the situation, where both jobs Y and Z pos-
sess a relatively small workload (compared to the expectations �Y and �Z ), since 
this situation is less problematic in server consolidation. This means that only those 
cases where both Y and Z require more resources than expected will contribute to a 
positive overlap coefficient.

Based on these observations, we intend to limit the (pairwise) overlap coeffi-
cients of services that are executed on the same server by some value S ∈ [−1, 1] . 
Since we would like to exclude situations where the considered jobs are both 
operating above their expectations, a small value of S seems to be preferable. 
However, this could lead to too strong restrictions, meaning that the required 
number of servers becomes much larger.

As it will turn out, choosing S ≈ 0 can be considered reasonable (for the 
numerical data and the intended application dealt with in this article) for sev-
eral reasons. While the practical reasons will be discussed in more detail in the 

��YZ� =
����
�
(Y − �Y ) ⋅ (Z − �Z) ⋅ R(Y − �Y , Z − �Z)

����√
�Y ⋅

√
�Z

≤

�
�
�
(Y − �Y )

2
�
⋅

�
�
�
(Z − �Z)

2
⋅ R2(Y − �Y , Z − �Z)

�
√
�Y ⋅

√
�Z

=

�
�
�
(Y − �Y )

2
�
⋅

�
�
�
(Z − �Z)

2
�

√
�Y ⋅

√
�Z

=

√
�Y ⋅

√
�Z√

�Y ⋅

√
�Z

= 1.

(6)�YZ ∶=
�
�
(Y − �Y ) ⋅ (Z − �Z)

�
√
�Y ⋅

√
�Z

,
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computational part (see Sect. 4), the main theoretical justification is based on the 
following observation.

Theorem 1 Let (Y , Z)⊤ ∼ N2(�,𝛴) denote a normally distributed two-dimensional 
random vector with 𝜎Y ∶= Var[Y] > 0 and 𝜎Z ∶= Var[Z] > 0 . Then, we have 
�YZ ≤ 0.

Proof Without loss of generality, we can assume � = (0, 0)⊤ . Otherwise, we could 
continue with the centered random variables Y − �Y and Z − �Z without changing 
the covariance structure � of the random vector. At first, we note that the function R 
(from the definition of the overlap coefficient) can be expressed as a combination of 
indicator functions 1A (with 1A(x) = 1 iff. x ∈ A and 1A(x) = 0 otherwise)

Furthermore, we know that (Y , Z)⊤ is symmetric in a sense that we have

This observation leads to

and analogously to

By putting together all the previous mathematical ingredients, we finally obtain

where the latter holds due to YZ ≤ 0 on {Y ≥ 0} ∩ {Z < 0} . Having in mind that 
𝜎Y ⋅ 𝜎Z > 0 is satisfied, the claim follows by rearranging the terms.   ◻

Consequently, the overlap coefficient of normally distributed random variables 
is always less than or equal to 0. Observe that, in the computational experiments, 
the overlap coefficients are attached to the real workloads of the jobs (which do not 
follow an ideal normal distribution), whereas the assignment of the jobs is calcu-
lated based on the normal approximation of the jobs. Hence, our input data will also 
contain positive overlaps, but choosing a threshold S = 0 (or at least S ≈ 0 ) does 

(7)
R(y, z) = 1[0,∞)(y) ⋅ 1[0,∞)(z) − 1(−∞,0)(y) ⋅ 1(−∞,0)(z)

+ 1[0,∞)(y) ⋅ 1(−∞,0)(z) + 1(−∞,0)(y) ⋅ 1[0,∞)(z).

(Y ,Z)⊤ ∼ N2(�,𝛴) ⟹ (−Y ,−Z)⊤ ∼ N2(�,𝛴).

�
[
Y ⋅ Z ⋅ 1{Y≥0} ⋅ 1{Z≥0}

]
= �

[
(−Y) ⋅ (−Z) ⋅ 1{−Y≥0} ⋅ 1{−Z≥0}

]

= �
[
Y ⋅ Z ⋅ 1{Y≤0} ⋅ 1{Z≤0}

]

= �
[
Y ⋅ Z ⋅ 1{Y<0} ⋅ 1{Z<0}

]

�
[
Y ⋅ Z ⋅ 1{Y≥0} ⋅ 1{Z<0}

]
= �

[
Y ⋅ Z ⋅ 1{Y<0} ⋅ 1{Z≥0}

]
.

𝛺YZ ⋅ 𝜎Y ⋅ 𝜎Z = �[Y ⋅ Z ⋅ R(Y , Z)]

(7)
= �

[
Y ⋅ Z ⋅ 1{Y≥0} ⋅ 1{Z≥0}

]
− �

[
Y ⋅ Z ⋅ 1{Y<0} ⋅ 1{Z<0}

]

+ �
[
Y ⋅ Z ⋅ 1{Y≥0} ⋅ 1{Z<0}

]
+ �

[
Y ⋅ Z ⋅ 1{Y<0} ⋅ 1{Z≥0}

]

= 2 ⋅ �
[
Y ⋅ Z ⋅ 1{Y≥0} ⋅ 1{Z<0}

]
≤ 0,
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not affect those pairs that are formed by jobs (almost) following a perfect normal 
distribution.

Example 2 In addition to the highly simplified scenario considered in Example 1, we 
would now like to look at a more interesting case for our purposes. To this end, for 
two normally distributed random variables X, Y, we study the relationship between 
the overlap coefficient �XY and the probability ℙ[X + Y > 1] to exceed the capac-
ity of a server. More precisely, we randomly pick the parameters � = (𝜇1,𝜇2)

⊤ and 
� = (�ij) of a bivariate normally distributed random vector (X, Y)⊤ according to uni-
form distributions4 �1,�2 ∈ [0.3, 0.4] and 

√
�11,

√
�22 ∈ [0.05, 0.15] . Moreover, 

based on the previous choices, the covariance �12 = �21 is randomly drawn from 
an interval symmetric to zero, so that the positive definiteness of � is ensured. The 
results of a total of 500 test runs are summarized in Fig. 7. We can clearly see that 
(in the vast majority of cases) small values of �XY correspond to small probabilities 
ℙ[X + Y > 1] , so the general trend observed in Example 1 also applies to normally 
distributed input data. Finally, we note that indeed all �XY were negative, just as pre-
dicted in the previous theorem.

For a given threshold S ∈ [−1, 1] , the set of forbidden item combinations 
F ∶= F(S) , that is

Fig. 7  For each test run, a ⋆ is 
drawn at position (x, y) , where 
x represents the overlap coef-
ficient and y represents the prob-
ability to exceed the capacity of 
the server

4 Note that the probability of negative item sizes is very small when choosing these parameters, since the 
mean value is at least twice as large as the standard deviation.
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where �ij represents the overlap coefficient between distinct jobs i ≠ j ∈ I , can be 
computed beforehand, since any required information are input data of an instance.

The following result now summarizes the main observations of this section and 
states an appropriately convenient description of the pattern set P.

Lemma 4 Let E be an instance of the SBPP-C with 0 < 𝜀 ≤ 0.5 . Then, 
a = (ai)i∈I ∈ P holds if and only if the following constraints are satisfied:

Note that the quadratic terms aiaj appearing in (9) can be replaced by additional 
binary variables (and further linear constraints) to obtain a fully linear description 
of the pattern set. To this end, different reformulation techniques have recently been 
investigated from a theoretical and practical point of view, see Furini and Traversi 
(2019). In that article, the approach originally presented by Glover and Woolsey 
(1974) is shown to offer a good balance in terms of computational properties (e.g., 
the strength of the obtained LP bounds) and modeling aspects (e.g., the numbers of 
required additional variables and constraints). Consequently, we only consider this 
linearization strategy in the next section.

3  An exact solution approach

To model the SBPP-C, we propose an integer linear program (ILP) with binary vari-
ables that is similar to the Kantorovich model (Kantorovich 1960) of the ordinary bin 
packing problem. More formally, given an upper bound u ∈ ℕ for the required num-
ber of servers (bins), we introduce decision variables yk ∈ � , k ∈ K ∶= {1,… , u} , 
to indicate whether server k is used ( yk = 1 ) or not ( yk = 0 ). Moreover, we require 
assignment variables xik ∈ � , (i, k) ∈ Q , to model whether job i is executed on 
server k ( xik = 1 ) or not ( xik = 0 ), where

Remark 6 Obviously, the x-variables could be defined for any pair (i, k) ∈ I × K , but 
to reduce the number of symmetric solutions, we implicitly renumber the servers in 
such a way that job i = 1 is scheduled to server k = 1 , job i = 2 is either scheduled 

F ∶= F(S) ∶=
{
(i, j) ∈ I × I | i ≠ j, 𝛺ij > S

}
,

(8)
∑
i∈I

�iai ≤C,

(9)
∑
i∈I

(2C𝜇i + q2
1−𝜀

𝜎ii − 𝜇2
i
)ai + 2

∑
i∈I

∑
j>i

aiaj
(
q2
1−𝜀

𝜎ij − 𝜇i𝜇j

)
≤C2,

(10)∀ (i, j) ∈ F ∶ ai + aj ≤1.

Q ∶= {(i, k) ∈ I × K | i ≥ k}.
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to server k = 1 or to a new server k = 2 , and so on. With this approach, considering 
index set Q is sufficient.

Similar to this preprocessing of some x-variables, a lower bound � ∈ ℕ for the opti-
mal objective value can be used to define y1 = y2 = … = y� = 1 in advance.

As already pinpointed at the end of the previous section, the quadratic terms in (9) 
will be replaced by additional binary variables �k

ij
 with k ∈ K and (i, j) ∈ Tk where

to only consider those index tuples (i, j, k) that are compatible with the indices of the 
x-variables.

Remark 7 For each quadratic term xikxjk appearing in the feasibility conditions of 
pattern xk = (xik) , the three constraints �k

ij
≤ xik , �kij ≤ xjk , and xik + xjk − �k

ij
≤ 1 have 

to be added to ensure xikxjk = 1 if and only if �k
ij
= 1.

Altogether, with the abbreviated coefficients

for i ∈ I and j > i appearing in (9), the exact model for the SBPP-C results in

Tk ∶= {(i, j) ∈ I × I | (i, k) ∈ Q, (j, k) ∈ Q, j > i},

�i ∶= 2C�i + q2
1−�

�ii − �2
i

and �ij ∶= q2
1−�

�ij − �i�j

������ ���������� ����� ��� �� − �

z =
∑
k∈K

yk → min

(11)s.t.
∑

(i,k)∈Q

xik = 1, i ∈ I,

(12)
∑

(i,k)∈Q

�ixik + 2
∑

(i,j)∈Tk

�ij�
k
ij
≤ C2

⋅ yk, k ∈ K,

(13)
∑

(i,k)∈Q

�ixik ≤ C ⋅ yk, k ∈ K,

(14)xik + xjk ≤ 1, k ∈ K, (i, j) ∈ F,

(15)�k
ij
≤ xik, k ∈ K, (i, j) ∈ Tk,

(16)�k
ij
≤ xjk, k ∈ K, (i, j) ∈ Tk,

(17)xik + xjk − �k
ij
≤ 1, k ∈ K, (i, j) ∈ Tk,
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Although this model seems to be quite complex, its structure is easily understanda-
ble. The objective function minimizes the sum of all y-variables, that is the number 
of servers required to execute all jobs feasibly. Conditions (11) ensure that each job 
is assigned exactly once. According to Lemma 4, for any server k ∈ K , conditions 
(12)–(14) guarantee that the corresponding vector xk = (xik) represents a feasible 
pattern. Remember that here we already replaced the quadratic terms xik ⋅ xjk by the 
new binary variables �k

ij
 , so that conditions (15)–(17) have to be added to couple the 

x- and the �-variables. Based on the observations made at the beginning of this sec-
tion, conditions (18) already fix some of the appearing variables to reduce the num-
ber of symmetric solutions.

Remark 8 Of course, having O(n3) binary variables and O(n3) linear constraints, the 
above model can be considered relatively difficult to solve. However, in the previous 
publication (Martinovic et  al. 2019, Tables  2–4), dealing with a less general sce-
nario, it was shown on the basis of extensive tests that this additional effort in mod-
eling offers significant numerical advantages compared to a nonlinear formulation. 
For this reason, we limit ourselves in this article to the examination of the linearized 
approach.

For a given instance E, there are different ways to obtain lower and upper 
bounds that can be used to formulate the assignment model. Whereas upper 
bounds for minimization problems are usually found by heuristics, lower bounds 
can be obtained by (combinatorial) investigations of the input data. Here, we 
choose an (adapted) material bound and the First Fit Decreasing (FFD) heuristic 
to compute the values � and u, since (among other possibilities) especially the 
latter (i.e., the FFD approach) turned out to usually lead to good approximations, 
see (Martinovic et al. 2019) for a preliminary study on their performances for a 
less general related problem.

Lemma 5 Let E be an instance of the SBPP-C. Then, the value

defines a lower bound for the optimal objective value z⋆ of the SBPP-C.

(18)yk = 1, k ∈ {1,… , �},

(19)yk ∈ �, k ∈ K,

(20)xik ∈ �, (i, k) ∈ Q,

(21)�k
ij
∈ �, k ∈ K, (i, j) ∈ Tk.

(22)� ∶= �(E) ∶=

�∑
i∈I �i

C

�
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Proof Let z⋆ denote the optimal value of the given instance E. Then, any pattern aj , 
j = 1,… , z⋆ (that is used in this solution) has to satisfy the feasibility conditions 
presented in Lemma 4. By representing a pattern with its corresponding set of active 
indices Ij ∶= {i ∈ I ∶ aij = 1} , we obtain a partition I1,… , Iz⋆ of I with

for all j ∈ {1,… , z⋆} . An aggregation of all these inequalities finally leads to

  ◻

As regards the ordinary BPP, this bound is known to lead to rather poor 
approximations of the true optimal value, in general, since the absolute difference 
between both values can become arbitrarily large. Having the BPP as a special 
case of the SBPP-C, a similarly bad performance of � should be expected in our 
calculations.

Remark 9 Actually, in the stochastic setting with conflicts, the situation is even 
worse. While we have a worst-case performance ratio of 2 in the BPP case, here the 
statement

holds. This can be verified by considering an instance with n deterministic jobs hav-
ing �i = 1∕n (for all i ∈ I ∶= {1,… , n} ). Assuming that every combination of the 
items belongs to the set F, then we have z⋆ = n and � = 1 . Hence, for n → ∞ , the 
performance ratio can become arbitrarily large.

However, finding more appropriate lower bounds is not straightforward. By 
way of example, a reasonably performing combinatorial lower bound (known 
from stochastic bin packing (Martinovic et  al. 2019)) cannot be applied in our 
scenario.

Remark 10 Contrary to Martinovic et al. (2019), it is not possible to use the lower 
bound

in this setting. By way of example, let us consider an instance with n = 2 items sat-
isfying �1 = �2 = 0.5 , �11 = �22 = 0.1 , and �12 = �21 = −0.1 . Moreover, we assume 

∑
i∈Ij

�i ≤ C

z⋆�
j=1

�
i∈Ij

𝜇i ≤ z⋆ ⋅ C ⟺ z⋆ ≥

�∑
i∈I 𝜇i

C

�
.

sup
E

z⋆(E)

𝜂(E)
= ∞

�̃ ∶=

⌈
1

C

(∑
i∈I

�i + q1−�

√∑
i∈I

�ii

)⌉
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C = 1 and � = 0.1 . This leads to z⋆ = 1 , since all jobs can be assigned to one server. 
However, we also obtain �̃ = 2 , so that this term cannot be a valid lower bound, in 
general.

To obtain an upper bound, we construct one feasible solution based on the fol-
lowing FFD algorithm, where the items are sorted with respect to non-increasing 
mean values.

Note that, for many cutting and packing problems, feasible solutions based 
on FFD heuristics are known to lead to reasonable approximations with respect 
to the optimal value, see (Dósa et  al. 2013; Martinovic et  al. 2019). By way of 
example, we have

for any instance E of the ordinary bin packing problem (Dósa et al. 2013). However, 
the question whether the generally favorable performance of FFD also applies to the 
optimization problem investigated here can only be answered with the help of either 
good lower bounds or by knowing the actual optimum value. Since, as explained 
before, lower bounds of reasonable quality are missing so far, the possibility to 
calculate exact solutions is needed to evaluate the quality of heuristic approaches. 
Thus, the presentation of an exact formulation is useful even if the heuristic numeri-
cally proves to be nearly equivalent (in terms of the objective value), because with-
out the knowledge of an exact solution, the very good approximation could not be 
manifested.

Before we finally move on to the test calculations, we would like to briefly 
discuss the fact that the previously mentioned heuristics and exact approaches 
determine assignments based on idealized normal distributions. We have already 
collected many theoretical arguments for the validity of this approximation in 
the previous sections, but now we would also like to shortly address the practi-
cal perspective at least by a numerical example. In that regard, we are primarily 
concerned with the question of whether the calculated assignments might not be 
applicable to the original workloads at all, because (in contrast to the perfect nor-
mal distribution used for the calculation) they could exceed the server capacity 
with a higher probability. As a conclusion of this section, this issue will now be 
investigated numerically. The necessary theoretical explanations can be found in 
Appendix A.

OPT(E) ≤ FFD(E) ≤
⌊
11

9
⋅ OPT(E) +

6

9

⌋
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Example 3 Let us assume that the original workloads X,  Y are given by corre-
lated lognormally distributed random variables. For the sake of completeness, 
we mention that any lognormally distributed random variable W is defined by 
W = exp(� + � ⋅ G) , where G is a standard normal distribution, see Appendix A for 
more details. Obviously, it is possible to approximate the pair (X, Y) by a bivariate 
normal vector (NX ,NY ) by matching the first two moments and respecting the covari-
ance structure. Let 𝜀 > 0 be fixed, then it would be interesting to know whether the 
feasibility condition ℙ[NX + NY > 1] ≤ 𝜀 (with respect to the approximated work-
loads) also implies the feasibility condition ℙ[X + Y > 1] ≤ 𝜀 (with respect to the 
original workloads). To this end, we again consider 500 test runs with randomly 
drawn parameters � ∈ [log(0.3), log(0.7)] and � ∈ [0.05, 0.15] appearing in the 
construction exp(� + � ⋅ G) of a lognormal random variable.5 For any of these sce-
narios, we collect the values P1 ∶= ℙ[NX + NY > 1] and P2 ∶= ℙ[X + Y > 1] , the 
last of which can only be evaluated numerically, since the sum of two lognormally 
distributed random variables does not follow any particular known distribution. For 
the concrete details of this calculation, we refer again to Appendix A, where we also 
justify that our approximations are warrantable for the input data described here. A 
visualization of the obtained results can be found in Fig. 8 together with the func-
tion f (x) = x . Here, we clearly see that in almost all cases, P1 is less than or equal to 
P2 underlining that our approach to deal with perfect normal distributions does not 

Fig. 8  For each test run, a ⋆ 
is drawn at position (x, y) , 
where x and y represent the 
probability P

1
 and P

2
 to exceed 

the server capacity when using 
the approximated and original 
workloads, respectively. (The 
red line represents the function f 
with f (x) = x)

5 Note that parameters � are selected from this rather untypical interval, because we have to make sure 
that the mean values of the approximated normally distributed workloads are in a reasonable subinterval 
of (0, 1) .
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effect the feasibility of the obtained solutions when (instead) the original workloads 
would have been considered.

4  Computational experiments

4.1  Data set and methodology

To better highlight the computational properties of the presented approach, we pro-
vide the results of numerical experiments. To this end, we consider real-world data 
based on 500 workloads (jobs) appearing in a Google data center. These measure-
ments were conducted over a period of 30 days (in May 2011), see (Reiss et  al. 
2011), and comprise a total number of roughly 12500 physical machines (or servers 
in our terminology) and 24′281′242 tasks (i.e., jobs). The most important character-
istics of all jobs (e.g., start and stop time, resource consumptions, memory access, 
etc.) form a csv-file of roughly 167 GB and can be accessed online, see (Reiss et al. 
2011) for the details. Obviously, considering all jobs would be too data-intensive, so 
that a reasonable subset of these tasks has to be chosen. Here, particularly, the fol-
lowing criteria were applied in the selection process:

– As the jobs published in Reiss et al. (2011) have been collected over a period of 
30 days, given a fixed job i, many of the other jobs were not executed at the same 
time. More precisely, there are many jobs j ≠ i starting after i has already been 
executed or terminating before i has actually begun. Consequently, such jobs can 
run on the same server, because they are operating in different time intervals 
and do neither influence each other nor the server capacity at the same instant of 
time.

– The vast majority of the given jobs only possess very low resource consump-
tions, so that they hardly influence the total energy demand of the data center. 
By way of example, only 0.0118% (resp. 0.59%) of all jobs are responsible for 
roughly 15% (resp. 80%) of the CPU utilization.

Based on these properties, we first selected a (preliminary) subset containing the 
2857 most resource-intensive jobs causing approximately 15% of the total CPU uti-
lization in the data center. Hence, an efficient consolidation of these tasks could 
already improve the overall energy consumption significantly. As observed in Patel 
et al. (2015), the workloads from the Google data center can be partitioned into a 
small number of different groups of jobs, meaning that the jobs within one and the 
same group only differ slightly in terms of their characteristics (e.g., �i and �ii ). 
Hence, we selected a final subset of 500 representative jobs (from the 2857 jobs 
chosen before) whose time intervals are still similar, so that they could indeed influ-
ence each other if executed on the same server. This set of 500 jobs, the precise 
characteristics of which can be found in two histograms in Fig. 11 in Appendix B, 
forms the data basis for the computations reported in the next subsection. Being 
able to optimally allocate (a subset of) these representative jobs already provides 
valuable information to efficiently group the remaining (similar) jobs.
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In our numerical experiments, for given n ∈ ℕ , we always constructed 20 
instances by randomly drawing n jobs from our data basis. Then, we implemented 
the approaches from Sect. 3 in MATLAB R2015b and solved the obtained ILP mod-
els by means of its CPLEX interface (version 12.6.1) on an Intel Core i7-8550U 
with 16 GB RAM. Here, particularly the overlap coefficients �ij , i, j ∈ I , and a rea-
sonable threshold S are required. While the values �ij (of the true workloads) are 
input information given by (4), an appropriately chosen parameter S should be in 
accordance with the considered input data. To this end, in Figs. 9 and 10, the distri-
bution of the overlap coefficients is depicted as a histogram6 (for the two data sets 
specified above). Because of these results, a value S ≈ 0 should be chosen to not 
exclude too many item combinations (which leads to servers only containing one 
single job) or to not allow arbitrary pairs (so that the overlap coefficients do not play 
any role). To stress the suitability of this parameter choice, we added an additional 
information (drawn as a red line) to the figures: Of course, it could happen that some 
jobs do not appear at all in the pairs (i,  j) which are satisfying �ij ≤ S for S ≈ 0 . 
Obviously, these jobs would later be exclusively assigned to a separate server so that 
the energy consumption is increased. However, the red line depicted in the figures 
counts the total number of jobs that appear at least once in the pairs (i,  j) used to 
build the histogram. As we can clearly see, choosing S close to zero7 leads to a situ-
ation, where at least one non-conflicting pair for any job i ∈ I is given. Hence, from 
a theoretical point of view, any job can be executed with at least one other job on the 
same server in a feasible consolidation.

Remark 11 This observation does not imply that an optimal consolidation has each 
server equipped with at least two jobs.

However, based on these two arguments (that are in accordance with the consid-
ered data sets) and the theoretical observation from Theorem 1, we will only con-
sider values S ∈ [−0.1, 0.1].

For any instance, we collected the following data:

– �̃, ũ : lower and upper bound (for the approach from Martinovic et al. (2019)),
– �, u : lower and upper bound (as described in Sect. 3)
– z⋆ : optimal value (obtained by the assignment model),
– nv, nc : numbers of variables and constraints (in the assignment model),
– t: time to solve the ILP (in seconds).

Note that the values �̃  and ũ are forming an interval for the optimal objective value z̃  
that would be obtained with the less application-oriented approach from Martinovic 
et al. (2019). For the instance sizes presented in the next subsection, the true optimal 
value of the former approach is not available, since, in Martinovic et al. (2019), only 

7 By way of example, the value where all jobs are involved at least once is roughly S = −0.07 in Fig. 9.

6 Note that we decided to use a finer granularity for the bars in the second histogram to provide a more 
detailed overview on the actual set of jobs we are dealing with in the calculations.
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instances up to n = 18 could be solved to proven optimality while having relatively 
large running times (more than 10 minutes on average for n = 18).

4.2  Results and discussion

Based on the experiences made by Martinovic et  al. (2019), we selected � = 0.25 
within our computations. Moreover, the considered workloads are normalized 
to a server capacity of C = 1 , and a performance threshold of S = 0 is chosen to 

Fig. 9  Distribution of the overlap coefficients for the preliminary set of 2857 jobs

Fig. 10  Distribution of the overlap coefficients for the final set of 500 jobs
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preferably avoid the consolidation of “positively correlated jobs” (in the interpreta-
tion of the overlap coefficients), also taking into account the observation from Theo-
rem 1. Furthermore, we choose a time limit of t(1)max = 300 s within our computations.

In Table  1, we only refer to the average values (based on 20 instances each) 
instead of listing the results of any single instance. Obviously, for increasing values 
of n, the instances become harder with respect to the numbers of variables and con-
straints, so that more time is needed to solve the problems to optimality. However, 
any considered instance could be coped with in the given time limit.

Our main observations are given by:

– Contrary to the results in Martinovic et al. (2019), the quality of the lower bound 
� is much worse in this generalized setting, as we see 2.4 < z⋆∕𝜂 < 2.9 for the 
average values from Table 1. The main reason for this bad performance is given 
by the fact that the lower bound does neither reflect any of the forbidden item 
combinations nor the covariances of the jobs, so that it does not use any of the 
new problem-specific input data.

– The upper bound obtained by the FFD heuristic is still very close to the exact 
optimal value, as already observed in Hähnel et  al. (2018), Martinovic et  al. 
(2019) (or for the ordinary BPP (Dósa et al. 2013)). More precisely, we can state 
u∕z⋆ < 1.05 for the average values in Table 1. Here, the precise pattern defini-
tion (including the covariances and forbidden combinations) is always applied, 
so that the obtained consolidations satisfy all feasibility conditions. We would 
like to emphasize that a valuation of the upper bound u based solely on the value 
� would not lead to any substantial information in this case. Only by knowing the 
actual optimal value z⋆ the good quality of the approximation can be observed.

– In this generalized setting, it is possible to deal with much larger instance sizes. 
Most probably, this is caused by the new set of inequalities (to avoid forbidden 
item combinations) which can be modeled without requiring new variables. 
Hence, if there are many of these constraints, the set of feasible solutions is (con-
siderably) restricted which usually reduces the numerical efforts. Note that these 
additional constraints can also help to fix additional variables in different nodes 
of the branching trees.

Table 1  Average computational 
results for the SBPP-C based on 
20 instances each (with S = 0)

n 25 30 35 40 45 50

�̃ 4.60 5.30 6.05 6.85 7.35 8.15
ũ 6.35 7.85 8.90 9.95 10.85 12.75
� 4.00 4.95 5.50 6.05 6.80 7.50
z⋆ 10.80 12.10 14.30 16.05 19.35 20.30
u 11.10 12.40 14.50 16.55 19.90 21.30
t 0.48 0.91 1.82 5.18 11.56 20.80
nv 2370.95 3865.00 6081.90 8963.00 13119.10 17596.20
nc 8231.90 13238.50 20830.05 30824.50 46037.80 60741.60
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– Having a look at the intervals [�̃, ũ] and the optimal value z⋆ of the generalized 
problem, we can roughly observe z⋆ ≈ 2 ⋅�z  , where z̃ ∈ [�̃, ũ] is the unknown 
optimal value of the less general approach.

– For every n from our table, we see that n∕z⋆ ∈ [2, 3] holds, meaning that (on 
average) a server is equipped with two or three jobs. This observation is in 
accordance with Fig. 11 in Appendix B and strongly related to the fact that we 
are considering the very resource-intensive jobs (and, on top, the further restric-
tions caused by the set F) from the Google data trace. Note that such instances 
are challenging especially due to the large number of binary variables caused by, 
among others, a relatively large cardinality of the set K (that is, a large number of 
possible servers passed to the optimization problem).

Altogether, although a generalized (and more complicated) scenario is consid-
ered here, instances of larger problem sizes can now be solved in reasonably short 
times. Consequently, this new approach does not only contribute to a more realistic 
description of the consolidation problem itself (since additional application-oriented 
properties are respected), but also to a wider range of instances that can be solved to 
optimality.

Remark 12 Obviously, in very large data centers, the challenge is to sometimes 
assign millions of jobs in a relatively short time period, and the approach presented 
here does not easily scale to this complexity. However, as observed earlier, the char-
acteristics of these jobs can typically be grouped into a few different classes. Hence, 
the optimal assignment of a representative set of jobs (which our approach is able to 
compute) can already be very helpful to also schedule the remaining (similar) jobs 
in a reasonable manner.

In a second experiment, we would like to investigate the influence of the new 
threshold parameter S in more detail. So far, we could have got the impression that 
incorporating forbidden item combinations potentially boosts the performance of the 
ILP formulation (compared to the former approach from Martinovic et al. (2019)). 
To this end, for the two exemplary choices8 n ∈ {25, 40} , we consider the instances 
used in the respective column of Table 1, and vary the value of S among five dif-
ferent constellations. Since, for S = 0 , these instances turned out to be quite easy, 
we selected a smaller CPLEX time limit t(2)max = 60 s for all computations of this 
experiment. Moreover, we added an additional indicator opt counting the number of 
instances that could be solved to optimality in that time. If an instance could not be 
solved successfully in 60 s, its data are, however, included in the averages. In these 
cases, we use t = t

(2)
max as the solution time and the best objective value available at 

the end of the time limit as (an approximation for) z⋆ . Hence, for these instances, we 
are underestimating t while possibly overestimating z⋆.

8 The motivation behind this selection is to have both, smaller ( n = 25 ) and larger ( n = 40 ) instances, 
represented in this investigation.
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Based on these computational results, the following main observations can be 
made:

– By construction, the values of � , �̃  , and ũ do not contain any information about 
forbidden item combinations, and hence, they do not change with varying thresh-
old S.

– The surprisingly good performance of the FFD approach (leading to the upper 
bound u) can be noticed for all choices of S.

– Obviously, a larger value of S leads to a reduced number of item conflicts, so 
that a smaller number of servers is required, both in the approximate and exact 
solution obtained by the FFD heuristic and the ILP model, respectively.

– The absolute increase in terms of z⋆ is always the largest for the step from 
S = −0.05 to S = −0.10 . The reason for this observation is related to the red lines 
in Figs. 9 and  10, where we stated that only for S ≥ −0.07 , each job is guaranteed 
to have at least one non-conflicting partner. Hence, the solution for S = −0, 10 
naturally contains some single-job servers (which can mostly be avoided for the 
other values of S), so that the increase in terms of z⋆ is particularly high.

– We can observe that the numbers of variables and constraints become smaller 
when S increases. This is mainly caused by two effects: On one hand, a higher 

Table 2  Average computational 
results for the SBPP-C based on 
the 20 instances from Table 1 
having n = 25

S −0.10 −0.05 0.00 0.05 0.10

opt 16 17 20 20 18
�̃ 4.60 4.60 4.60 4.60 4.60
ũ 6.35 6.35 6.35 6.35 6.35
� 4.00 4.00 4.00 4.00 4.00
z⋆ 15.60 12.70 10.80 9.90 7.75
u 15.90 13.40 11.10 10.20 8.35
t 14.42 9.74 0.48 1.57 7.24
nv 2763.35 2597.50 2370.95 2263.75 2012.65
nc 11303.70 9844.50 8231.90 7516.30 6387.10

Table 3  Average computational 
results for the SBPP-C based on 
the 20 instances from Table 1 
having n = 40

S −0.10 −0.05 0.00 0.05 0.10

opt 2 14 20 17 12
�̃ 6.85 6.85 6.85 6.85 6.85
ũ 9.95 9.95 9.95 9.95 9.95
� 6.05 6.05 6.05 6.05 6.05
z⋆ 23.45 19.05 16.05 14.85 12.50
u 23.95 20.10 16.55 15.30 13.05
t 54.45 20.85 5.18 22.53 42.15
nv 10613.30 9905.65 8963.00 8580.00 7783.35
nc 43414.10 37460.05 30824.50 28327.10 24659.50
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value of S naturally leads to a fewer number of forbidden item combinations, 
so that there is a smaller number of constraints of type (14) in the ILP. On the 
other hand, this less restrictive consolidation strategy leads to a smaller value 
of the upper bound u which determines the size of the set K, and thus strongly 
influences the numbers of variables and constraints.

– However, especially when considering the values opt and t, a lower number of varia-
bles and constraints does not necessarily have to lead to an ILP model easier to solve 
for CPLEX. More precisely, having S = 0 seems to be the most favorable setup for our 
optimization. We attribute this observation to two opposing effects: On one hand, with 
increasing value of S, the optimization problem becomes less restrictive, since more item 
combinations are possible making it harder to solve, in general. On the other hand, we 
empirically noticed that for a given instance, the lower bound � always matches the opti-
mal value of the LP relaxation (at the root node). As the lower bound does not depend on 
S (but the optimal value z⋆ actually does), we conclude that, for decreasing values of S, 
the bounds become worse, so that the branch-and-bound procedure applied by CPLEX 
is impaired. Consequently, in a rough summary, the parameter S manages the trade-off 
between the cardinality of the feasible set of points and the quality of the LP bounds.

– In both tables (but more clearly in Table 3), a “skewness” in terms of the counter 
opt can be observed. More precisely, CPLEX is always possible to solve more 
instances to proven optimality for the positive values of S (compared to their neg-
ative counterparts). We interpret this as an indication that, among the two oppos-
ing effects mentioned in the previous point, the quality of the LP bound seems to 
be more important for the solution of our instances.

Altogether, the choice S = 0 is not only reasonable from a theoretical point of view, 
but also from a practical perspective, since it most probably offers the best compro-
mise between the complexity of the ILP model and the solution times.

Remark 13 As stated in the list above, the test scenarios for Table 2 and Table 3 always 
resulted in an equality between the lower bound � and the optimal value z⋆

LP
 of the LP 

relaxation. However, this does not hold in general. In a further series of 50 instances 
with n = 25 (not reported here), we happened to find an instance having � = 4 and 
z⋆
LP

≈ 4.05272 . Hence, the (rounded-up) LP bound can be strictly larger than � . Given 
the quadratic number of required input data (that is, especially the entries of the covari-
ance matrix) for a complete description, we decided to not present the setup of this single 
instance here. However, for the interested reader, it should be mentioned that the full 
details can be obtained from the authors upon request.

5  Conclusions

In this article, we considered a server consolidation problem with (not necessarily 
independent) jobs whose future workloads are given in a stochastic way. Moreo-
ver, we introduced the concept of overlap coefficients to avoid that mutually influ-
encing jobs are executed on the same server, as this would lead to considerable 
performance degradations, e.g., in terms of latency. From a mathematical point 
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of view, we showed that the problem under consideration can be reformulated 
as a stochastic bin packing problem with conflicts. Within this framework, an 
exact ILP model as well as a lower and an upper bound were presented. Based 
on numerical experiments with real-world data, this new approach was shown to 
outperform an earlier and less general method (Martinovic et al. 2019) in terms 
of the instance sizes that can be solved to optimality within a reasonable amount 
of time. However, it also turned out that for some parameter constellations, the 
solution times may still be too large to be applied in dynamic scenarios, so that 
the practical contributions of our research paper could be summarized as follows:

– In data centers, which are predominantly confronted with very long-lasting jobs, the 
exact procedures can be used, either to handle the complete instance (if the total num-
ber of jobs is moderate) or to find an optimal assignment for a representative set of 
jobs (as it is also alluded to in Remark 12) which can then be used to schedule the 
remaining jobs in the same fashion. In these cases, the additional efforts to compute 
an optimal solution are worthwhile because the optimal solution can then be executed 
for a long time, so that, from an overall point of view, energy will still be saved.

– Heuristics (like the FFD approach presented here) should be used in data cent-
ers that have to deal with either a large fluctuation or a tremendous number 
of jobs. The justification that these heuristics lead to useful approximations, 
however, is based, among other things, on the possibility to calculate exact 
solutions at least for moderate instance sizes. For this reason, exact procedures 
are also valuable (from a theoretical point of view) if heuristics should ulti-
mately be preferred for the concrete practical application.

To tackle the challenge of evaluating heuristic solutions also for larger instance 
sizes, finding improved lower bounds (preferably using all of the problem-specific 
input data) or alternative (pseudo-polynomial) modeling frameworks is part of 
our future research. Moreover, based on the new concept of overlap coefficients, 
we should also think about appropriate means to take the overall interaction of all 
jobs of a server (and not only the pairwise relationship) into account.

The most difficult challenge, however, is to unify the theories for the temporal 
BPP and the stochastic BPP to obtain a fully application-oriented description of the 
job-to-server assignment problem (involving job-dependent activity intervals). To 
this end, an approach taking into account the theory of stochastic processes much 
more than it was introductorily done in this article will be required in addition.

A Technical details for Example 3

Before presenting the actual calculations, we need to state two important auxil-
iary results.

Lemma 6 Let Z = e�Z+�Z ⋅GZ denote a lognormally distributed random variable with 
GZ ∼ N(0, 1) , �Z ∈ ℝ , and 𝜎Z > 0 . Moreover, we define
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Then, the CDF of Z can be approximated by the CDF of NZ ∼ N(mZ , s
2
Z
) , that is, a 

normally distributed random variable.

Proof Let x ∈ ℝ be fixed, then we have

Now, we can use the approximations log (x ⋅ e−�Z ) ≈ x ⋅ e−�Z − 1 (for x ⋅ e−�Z ≤ 2 ) 
and 

√
e�

2
Z − 1 ≈ �Z (for 𝜎2

Z
≪ 1 ) to proceed as follows:

where we again used ey ≈ y + 1 .   ◻

Altogether, for our instances, we typically have x ≤ 1 , 𝜎2
Z
≪ 1 and 𝜇Z <

1

2
 , so that the 

approximation should be very good. Hence, approximating a lognormal distribution by 
a normal distribution (with the same first two moments) is warrantable for our purposes.

In a second step, we want to investigate the CDF of a sum of two lognormal distributions.

Lemma 7 Let (X, Y)⊤ denote a bivariate lognormally distributed random vector with 
X = e�X+�X ⋅GX and Y = e�Y+�Y ⋅GY , where
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Then, the CDF of X + Y  can be approximated by the CDF of Z = e�Z+�Z ⋅GZ with 
GZ ∼ N(0, 1) and

if the argument of that CDF is scaled by a factor of 1
2
.

Proof Let us first note that the function x ↦ ex is convex, so that we have

for all a, b ∈ ℝ . The closer a and b are, the smaller is the difference between both 
sides of this inequality. Now, we obtain

by convexity. On the other hand, please note that 1
2
⋅ (�X ⋅ GX + �Y ⋅ GY ) represents a 

normally distributed random variable with mean value

and variance

i.e., we finally have
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For our instances, we typically have 𝜎X , 𝜎Y ≪ 1 and �X ≈ �Y (see, for instance, 
the histograms in Appendix  B), so the inequality involving the convexity can be 
assumed to be a good approximation, so that we can roughly say

which proves the claim.   ◻

With these ingredients at hand, we can now handle the two probabilities 
appearing in Example 3:

– The lognormally distributed pair (X, Y)⊤ (with the same notation as in Lemma 7) 
can be approximated by a bivariate normal distribution (NX ,NY ) with 

where mX and mY are defined analogously to mZ from Lemma 6. By that, we can 
calculate P1 = ℙ[NX + NY > 1] from Example 3 simply by the CDF of the nor-
mally distributed random variable NX + NY ∼ N(�, �2) with 

 This precisely leads to 

– The calculation of P2 = ℙ[X + Y > 1] requires Lemma  6 and Lemma  7, and 
consequently can only be approximated. However, in the light of our discus-
sions, we saw that these approximations are of reasonable quality for the input 
data appearing in our numerical tests. Altogether, we obtain 

for the lognormally distributed random variable Z = e�Z+�Z ⋅GZ with GZ ∼ N(0, 1) . 
Here, the parameters �Z and �Z are defined as is Lemma 7. Based on these data, 
mZ and sZ are then calculated according to the rules presented in Lemma 6.
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B Characteristics of the 500 jobs

Fig. 11  Distribution of the mean values (upper figure) and variances (lower figure) of the considered set 
of 500 jobs. It is mainly composed of a few groups of rather similar jobs
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