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Abstract
After the 2015 Spanish general election a row erupted over the allocation of physical
seats in the Congress of Deputies, with certain parties left feeling they possessed an
inferior selection of seats compared to other parties. Using this as motivation, this
paper considers how mathematical optimization can be used to generate seating plans
for political chambers, an application that has not been considered before. As well
as being in some way ‘fair’ to all parties, the seating plan should ensure that each
block of seats is well-defined and compact. Two optimization models are formulated
and, due to their complexity, heuristic methods are developed to find ‘good’ solutions.
Analysis shows that the heuristics are able to produce visually appealing seating plans
for basic cases, but problems can occur when there are additional requirements to be
satisfied.

Keywords Seat allocation · Mixed integer programming

Mathematics Subject Classification 90C11 Mixed integer programming · 90C27
Combinatorial optimization · 90C90 Applications of mathematical programming

1 Introduction

In recent years there have been arguments regarding the seating plans in the Spanish
Congress of Deputies, with some parties believing they have been allocated inferior
seats compared to other parties. Indeed, the seating plan following the 2015 general
election, shown in the top left of Fig. 1, prompted Podemos spokesperson Íñigo Erre-
jón to claim that, “They are sending the representatives of five million voters to the
nosebleed section, separated from the rest.” With this in mind, the aim of this paper
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is to investigate how mathematical optimization can assist with decisions regarding
how representatives should be seated in a congress chamber and, in particular, to pro-
pose methods for generating seating plans that all parties find acceptable. The nature
of the problem is inherently subjective, as there is no definitive way of determining
whether one seating plan is better than another. However, we propose the following
basic criteria that a good seating plan should satisfy:

1. Members of the sameparty should be seated close to one another, clustered together
in a compact way.

2. The plan should abide by any pre-existing rules or traditions regarding where the
different parties are seated.

3. No party should be allocated a block of seats that is significantly better or worse
than those of other parties.

In particular, we consider the problem as that of optimizing criterion 1, while satisfying
constraints that enforce criteria 2 and 3. It should be noted that, except where stated
otherwise, we suppose that the number of available seats is exactly equal to the number
of representatives.

The aim is to develop a flexible approach that can be applied to any congress,
parliament or other political chamber in which each representative is assigned one
seat based on the party they represent. This is complicated by the fact that the seats
in each congress chamber are arranged differently, with different rules and traditions
that need to be adhered to regarding their allocation. Figure 1 shows four examples of
seating plans. The top-left diagram1 shows the Spanish Congress of Deputies, which
will be discussed in detail in the case study in Sect. 8. The top-right diagram2 shows a
seating plan the European Parliament in Strasbourg, which has a semi-circular or fan
shape, and it can be seen that each political group is assigned awedge-shaped selection
of seats. The bottom-right diagram3 shows a seating plan for the New Zealand House
of Representatives, where the seats are arranged in a horseshoe shape, and we can note
that every party is assigned at least one front row seat. The bottom-left diagram4 shows
the Canadian House of Commons, which consists of two banks of seats separated by
an aisle, with the governing party predominantly seated on one side and opposition
parties on the other side.

To model the problemwemake the assumption that each seat can be represented by
a pair of coordinates on the plane, and that these coordinates are known beforehand.
Furthermore, we make the assumption that the seats can form a connected graph, with
eachnode representing a seat and edges connecting any two seats that areadjacent. This
allows us to calculate the shortest path distances between any two seats, which provide
amore intuitivemeasure than, say, the Euclidean distance. A potential drawback of this
is that it is not always clear which pairs of seats should be considered adjacent, which
in turn means there are many possible graphs, each of which will result in different
shortest path distances. Moreover, if the seats are arranged in two banks separated

1 https://elpais.com/elpais/2016/01/26/inenglish/1453821405_849690.html.
2 http://www.europarl.europa.eu/plenary/en/hemicycle.html.
3 https://en.wikipedia.org/wiki/New_Zealand_general_election,_2014.
4 https://en.wikipedia.org/wiki/Parliament_of_Canada.
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Fig. 1 Examples of seating plans. Top left: Spanish Congress of Deputies; top right: European Parliament in
Strasbourg; bottom left: CanadianHouse ofCommons; bottom right:NewZealandHouse ofRepresentatives

by an aisle then this would result in two disconnected graphs. Despite this issue, we
still felt that shortest path distances were the best option, particularly since Euclidean
distances can give counter-intuitive results if the seats are arranged in a horseshoe
shape, which is a very common arrangement for congress and parliament chambers.
Moreover, viewing the seats as a connected graph allows us to view the problem as a
type of graph partitioning, which we briefly explore in Sect. 4.

The paper is organized as follows. In the literature review we compare the problem
with other well-studied problems. We then develop a facility location model (FLM)
and a minimum k-partitioning model (MPM). Since these models are both hard to
solve for large instances, in Sect. 5 we develop a location-allocation heuristic (LAH)
for the FLM, and in Sect. 6 we develop a geometric cutting heuristic (GCH) for the
MPM that uses straight lines to partition the seats into blocks of the correct sizes. In
Sect. 7, a computational study is conducted to evaluate and compare the performances
of the heuristics, both numerically and visually. The paper concludes with a case study
showing the results of applying the heuristics to the Spanish Congress of Deputies.

2 Literature review

Although there exist papers in the literature that apply optimization methods to deter-
mine how many seats should be awarded to each party, such as Serafini (2012), to the
best of our knowledge this paper is the first application of optimization methods to the
allocation of physical seats within the congress. Several seat allocation problems have
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been studied previously, see for instance García et al. (2014), but they are concerned
with assigning individual people to seats, whereas in our problem the aim is to assign
collections of seats to political parties. This fundamental difference means that, in
practice, the problems have little in common.

In fact, the problem has more similarities to districting problems, in which the aim
is to cluster together small areas of land to form larger districts that satisfy certain
desirable properties. These properties typically include that each district be connected
and compact, while containing populations of approximately equal sizes. The com-
pactness property is often included to prevent so-called gerrymandering, the practice
of manipulating district borders for political gain. Horn et al. (1993) and Niemi et al.
(1990) compare different approaches to achieving compactness in districting prob-
lems. For an overview of approaches to districting problems see, for example, Ricca
et al. (2011).

The similarities with the congress seating problem are clear, but there are also
several key differences. Firstly, in the congress seat allocation problem there are no
populations as such, so the population equality condition is not applicable, but instead
there is the condition that the number of seats in each block must correspond to the
number of seats won by each party. Secondly, the seats in a congress do not necessarily
fit together like a jigsaw in the sameway that geographical areas of land do, and so some
of the techniques used for districting problems may not be applicable; in particular,
many of the ways of measuring compactness cannot be applied.

Districting problems are often modelled as facility location problems, also known
as plant or warehouse location problems, for example see Hess et al. (1965) and Hojati
(1996). The goal of these problems is to choose several locations froma set of candidate
locations at which to build facilities. Customers are then allocated to the facilities, with
the aim being to minimize the set-up costs of building the facilities together with the
transportation costs of delivering goods between the facilities and their customers.
The congress seat allocation problem can be thought of as a facility location in the
following way. Let each seat be a candidate location for a facility and let each seat
also represent a single customer, then specify that we must ‘build’ exactly one facility
for each party so that allocating customers to facilities corresponds to allocating seats
to parties. It will also be necessary to ensure that each party is allocated the correct
number of seats. There are no set-up costs to speak of, but the transportation costs can
be thought of as being the sum of distances between each seat and its corresponding
facility. Since the goal is to minimize the sum of these distances, in an optimal solution
each seat belonging to a given party should be close to that party’s ‘facility’, which
should in turn encourage each block of seats to be compact. In Sect. 3 the problem is
modelled as a facility location problem, and in Sect. 5 a location-allocation heuristic
is developed, similar to that proposed by Hess et al. (1965) and Kalcsics et al. (2005)
for political districting problems.

Finally, if the seats are considered as nodes in a graph with adjacent seats connected
by edges, then the problem can be viewed as a type of graph partitioning. In particular,
a partition of the nodes that minimizes the number of ‘cut edges’ will equate to a
partition that minimizes the number of adjacent seats belonging to distinct parties,
which seems like a good objective to encourage a compact seating plan. General
minimum k-partitioning problems are well-studied and known to be NP-hard, see
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for instance Chopra and Rao (1993). Kernighan and Lin (1970) developed a popular
heuristic for the problem, and semi-definite programming relaxations can be used to
find lower bounds, see for exampleWolkowicz and Zhao (1999). In Sect. 4 the problem
is formulated as a minimum k-partitioning problem, and in Sect. 6 a geometric cutting
heuristic is developed that uses straight-line cuts to partition the graph while cutting
as few edges as possible.

3 Facility locationmodel

We first formulate the problem as a facility location model (FLM), which encourages
compactness by minimizing the sum of shortest path distances from each seat to their
party’s ‘central seat’. To use shortest path distances it is necessary to consider the seats
as nodes in a graph with adjacent seats connected by edges. In Sect. 7, we show how
such a graph can be constructed. However, it would also be possible to use different
distances, such as Euclidean. First we outline the basic model, which simply aims
to partition the seats into compact blocks, and then we consider several additional
constraints that could be included to promote a sense of fairness or to ensure the
solutions adhere to certain rules or traditions. The following notations are used:

I = set of seats.

J = set of parties.

K j = number of seats to be allocated to party j .

dik = shortest path distance between seats i and k.

y j
k =

{
1 if seat k is the central seat for party j,

0 otherwise.

xik =
{
1 if seat i is allocated to a central seat k,

0 otherwise.

The basic model is:

min
∑
i∈I

∑
k∈I

dik xik (1)

s.t.
∑
k∈I

xik = 1 ∀i ∈ I , (2)

∑
i∈I

xik =
∑
j∈J

K j y
j
k ∀k ∈ I , (3)

∑
j∈J

y j
k ≤ 1 ∀k ∈ I , (4)

∑
k∈I

y j
k = 1 ∀ j ∈ J , (5)

xik, y
j
k ∈ {0, 1} ∀i, k ∈ I ,∀ j ∈ J . (6)
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The constraints can be interpreted as follows:

(2) All seats are assigned to a central seat.
(3) If seat k is the central seat for party j then K j seats are allocated to it. If seat k is

not a central seat then no seats are allocated to it.
(4) Each seat k can be a central seat for at most one party.
(5) Exactly one central seat should be chosen for each party j ∈ J .
(6) All variables are binary.

We now consider several additional properties that might be desirable in a seating
plan, either to adhere to tradition or to encourage a degree of fairness, and we show
how these properties could be modelled as constraints that can be added to the basic
model. In reality, which, if any, of the additional constraints to include will depend
upon the specific application.

– Certain parties occupy certain areas of the chamber: let the coordinates of seat i be
(pi , qi ), and suppose we require that party j be seated on the left-hand side of the
congress chamber, or, equivalently, that they must not be allocated any seats on
the right-hand side. Suppose that the horizontal coordinates are on a scale from 0
to 100, with a seat i considered to be on the right-hand side if pi ≥ 50. Constraints
(7) then ensure that no seat on the right-hand side of the congress can be allocated
to party j .

xik ≤ 1 − y j
k ∀k ∈ I ,∀i ∈ I : pi ≥ 50. (7)

The right-hand side of (7) is only equal to zero for the seat k that is the central seat
for party j , in which case seat i cannot be assigned to that central seat if pi ≥ 50.

– No parties seated too far back: let Ri be the row number of seat i , with the front row
being row 1, the next being row 2, and so on. Let R be a constant. In constraints (8),
if seat k is not a central seat then the left-hand side is zero, and if k is a central seat
then the average row number of the seats assigned to k must be less than or equal
to R. Therefore these constraints can be used to ensure no party is seated too far
back on average.

∑
i∈I

(R − Ri )xik ≥ 0 ∀k ∈ I . (8)

– Larger parties have more front row seats: let F be a constant and suppose we want
to impose the condition that if a party has more than or equal to F seats then they
should have at least one seat in the front row. Moreover, we want to impose that
if a party has more than or equal to 2F seats then they should have at least two
seats in the front row, and so on. Let fi = 1 if seat i is in the front row, and zero
otherwise. We model this condition as follows:

∑
i∈I

fi xik ≥
∑
j∈J

⌊
K j

F

⌋
y j
k ∀k ∈ I . (9)
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For every seat k that is not a central seat the right-hand side of (9) is equal to
zero and so no conditions are imposed on the left-hand side. However, if seat k
is the central seat corresponding to party j , then the left-hand side of (9) counts
the number of front row seats allocated to party j and the right hand imposes
a minimum value on this count. Note that for small parties with K j < F the
right-hand side is equal to zero and so they are not required to have any front row
seats.

– Every representativemust be sat next to another representative of the sameparty: let
nil equal one if seats i and l are next to one another and zero otherwise. Constraints
(10) mean that a seat i cannot be allocated to central seat k unless there is another
seat next to seat i that is also allocated to central seat k:

xik ≤
∑
l∈I

nil xlk ∀i, k ∈ I . (10)

4 Minimum k-partitioningmodel

Let us now consider a graphical representation of the congress in which each node
represents a seat and adjacent seats are joined by an edge. We formulate the problem
as a model that aims to minimize the number of edges connecting two seats belonging
to different parties. Note that this is a very different objective than that of the facility
location model, and hence the two models are not addressing the same mathematical
problem. This model is a variant of the minimum k-partitioning problem that aims to
partition the nodes in a graph into k non-empty subsets, such that the number of edges
connecting distinct subsets is minimal. The following notations are used:

I = set of seats.

J = set of parties.

xi j =
{
1 if seat i is assigned to party j,

0 otherwise.

K j = number of seats to be allocated to party j .

aik =
{
1 if seats i and k are adjacent and therefore connected by an edge,

0 otherwise.

The basic model is:

min
∑
j∈J

∑
i∈I

∑
k∈I :
k≤i−1

aik xi j (1 − xk j ) (11)

s.t
∑
i∈I

xi j = K j ∀ j ∈ J , (12)

∑
j∈J

xi j = 1 ∀i ∈ I , (13)
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xi j ∈ {0, 1} ∀i ∈ I ,∀ j ∈ J . (14)

As can be seen, this is a quadratic assignment problem. Constraints (12) ensure that
there is a total of K j seats allocated to party j , and constraints (13) ensure that every
seat i is allocated to one and only one party. The additional constraints discussed for
the FLM in the previous section can easily be modified to be applied to this model.

Finally, note that the model does not explicitly aim to minimize the distances
between seats belonging to the same party, although this is likely to be encouraged
indirectly by minimizing the number of edges connecting seats belonging to different
parties. However, if it is found that this model generates solutions where the seats
belonging to a party are very spread out, it could be necessary to include a distance
component to the model. This could either be a constraint that limits the distance
between seats belonging to the same party, or else an additional quadratic component
in the objective function, such as:

min
∑
j∈J

∑
i∈I

∑
k∈I :
k≤i−1

aik xi j (1 − xk j ) +
∑
j∈J

∑
i∈I

∑
k∈I :
k≤i−1

dik xi j xk j . (15)

5 Location-allocation heuristic

A simple approach for finding good solutions to Facility Location problems is to
separate the processes of choosing where the locations are built (the location phase)
and choosing how to allocate the customers to these locations (the allocation phase).
Indeed, this was the approach adopted by Hess et al. (1965), in what is considered as
the earliest Operational Research paper on political districting (Ricca et al. 2011).

Although this heuristic was developed for Facility Location models like the one
we considered in Sect. 3, our overall purpose is to produce good seating plans rather
than solving any particular model, and so in the computational study we will also
examine how well the solutions produced by the heuristic perform for the minimum
k-partitioning model from Sect. 4.

Suppose a set of central seats {c j : j ∈ J } has already been chosen. That is, we

have fixed the variables y j
k from the Facility Location model in Sect. 3 so that y j

k = c j .
The allocation problem is:

min
∑
i∈I

∑
j∈J

dic j xi j

s.t.
∑
j∈J

xi j = 1 ∀i ∈ I ,

∑
i∈I

xi j = K j ∀ j ∈ J ,

xik ∈ {0, 1} ∀i ∈ I ,∀ j ∈ J ,

Additional constraints.

(16)
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The additional constraints could be any extra conditions we want to impose on the
solutions generated by the heuristic, similar to those described in (7)–(10). Note that
unlike the FLM, there is no constraint preventing one seat being the central seat for
more than one party. This allocation problemcanbe solved very quickly by commercial
solvers for all sizes of problem that are relevant to our application. After finding an
optimal solution to the allocation problem, the next step is to choose a new set of
central seats. This is done by fixing the variables xi j and finding the central seats
{c j : j ∈ J } that minimize the objective of (16).

By iteratively repeating the allocation and location phases, the objective value is
necessarily non-increasing from one iteration to the next. The algorithm is terminated
when the new set of central seats is identical to the previous set, which means that no
further reduction of the objective value will be achieved. The full location-allocation
heuristic (LAH) is shown in Algorithm 1.

Algorithm 1 Location-allocation heuristic
Step 1: Randomly designate one initial central seat, c j ∈ I for each party j ∈ J .
Step 2: Solve the allocation problem (16) to obtain the solution {xi j : i ∈ I , j ∈ J }.
Step 3: Calculate the new central seats, given by

c̃ j = arg min
k=1,...,n

∑
i∈I

dik xi j .

Step 4: If c̃ j = c j for all j ∈ J then output the solution and stop. Else, set c j = c̃ j for all j ∈ J and
return to step 2.

In its current form the objective function of the allocation problem minimizes the
sum of total distances from seats to their corresponding central seat. Therefore, parties
with more seats will contribute more to the objective function, and so in a sense this
prioritizes compact blocks for the larger parties over the smaller parties. This effect
can be mitigated by scaling the objective function. By dividing each term by K j we
obtain the sum of average distances from each central seat to the seats assigned to
it. However, the average distance will still be larger for larger parties, and so we can
scale further by dividing by

√
K j in an attempt to counteract this effect. The scaled

objective function is therefore given by

min
∑
i∈I

∑
j∈J

dic j
K j

√
K j

xi j . (17)

Figure 2 shows two example solutions generated by LAH. The first was produced by
the original, unscaled objective function, while the second was produced by the scaled
version. In the first solution, the smaller parties are all located around the edge of the
chamber, whereas in the second solution they tend to be embedded within the larger
parties. Which of the two solutions is best is ultimately a matter of opinion. On the
one hand, the second solution seems less biased against the smaller parties because
they are not forced to the edges of the chamber, but on the other hand it does not seem
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Fig. 2 Solutions from the unscaled (top) and scaled (bottom) LAH

ideal for the larger parties to be ‘punctured’ by the smaller parties. For now, we put
the scaled version to one side and continue using the unscaled version, although it is
worth bearing in mind the potential problems that this could cause.

6 Geometric cutting heuristic

In this section, we outline a geometric cutting heuristic (GCH) inspired by the compu-
tational geometry heuristic for political districting proposed by Kalcsics et al. (2005).
The heuristic requires that the seats be considered as a connected graph, with each seat
assigned a pair of coordinates, and adjacent seats connected by edges. The heuristic
then proceeds as follows:

– The parties are randomly split into two groups. Suppose the parties in the first
group have a total of N1 seats between them, and the parties in the second group
have N2 seats.

– An algorithm finds the straight line that partitions the seats into one group of N1
seats and one group of N2 seats, while cutting the fewest possible edges in the
graph. Performing this cut separates the graph into two subgraphs, which are then
considered separately.

– If a subgraph contains the seats for only one party, then those seats are assigned
to that party. Otherwise, the process is repeated for the subgraph. By continuing
in this way, eventually the original graph will be broken down into one subgraph
for each party, each containing the correct number of seats.
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Due to the line direction being chosen to cut the fewest possible edges, the process
can be considered primarily as a heuristic for the minimum k-partition model from
Sect. 4, however in the computational study wewill also examine howwell it performs
as a heuristic for the Facility Location model from Sect. 3.

Figure 3 shows an example of how the geometric cutting heuristic produces a
solution for a congress with 100 seats. Suppose parties 1, 2, 3 and 4 have 47, 32, 17
and 4 seats, respectively. Firstly, the parties are randomly split into two groups, in this
case parties 2 and 3 form one groupwith a total of 49 seats, and parties 1 and 4 form the
other group with a total of 51 seats. The seats are partitioned into two groups of sizes
49 and 51 by the straight line that cuts the fewest possible edges. This produces two
subgraphs, each containing the seats for two parties. Therefore, the process is repeated
for each subgraph separately, dividing each into two further subgraphs. This results in
four subgraphs, each corresponding to exactly one party. Therefore, the seats in each
subgraph are assigned to the corresponding party, producing the solution shown at the
bottom of Fig. 3.

The detailed explanation of the heuristic is divided into two parts. The Bisection
Algorithm (Algorithm 2) explains the process used to perform each division of the
graph into two subgraphs. Figure 4 shows visually how the bisection is performed.
The Geometric Cutting Algorithm (Algorithm 3) then explains how the Bisection
Algorithm is repeated iteratively until the original graph is divided into one subgraph
for each party.

The key differences between this heuristic and that presented by Kalcsics et al.
(2005) are as follows:

– The heuristic presented by Kalcsics et al. aims to partition the space such that each
district achieves approximately equal values of a given performance measure (e.g.
population size). In our problem, the blocks need to be different sizes determined
by the numbers of seats won by each party. To achieve this, we randomly split the
values {K j } into two non-empty sets, then consider cuts that partition the seats
into two blocks of sizes given by the total number of seats in each set. After each
cut has been performed, we consider each block of seats separately and further
subdivide them in the same way.

– Compactness is encouraged by Kalcsics et al. (2005) in two different ways, nei-
ther of which are adopted by the heuristic in this paper. Instead, we encourage
compactness by choosing the straight line that minimizes the number of cut edges
in the adjacency graph.

The parameter d, which determines the number of line directions to try on each
iteration, needs to be fixed beforehand. Larger values of d provide the possibility
of generating better solutions, at the expense of a longer running time. Experiments
suggest thatd = 32workswell,with larger values resulting in little or no improvement,
and this is the value we use in the computational study.

By only allowing the seats to be partitioned by straight-line cuts, we dramatically
reduce the number of solutions that can be generated by the heuristic. However, the
solutions that it does produce are likely to be visually appealing because the boundaries
between parties will not be too meandering or ‘wiggly’.
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Fig. 3 A visual representation of how the geometric cutting heuristic produces solutions for a congress with
100 seats and seat breakdown K = {47, 32, 17, 4}

Akey drawback of the heuristic is that it could be difficult tomodify the algorithm to
produce solutions that satisfy additional conditions, such as those discussed in Sect. 3.
However, this is not to say it is not possible; for example, we could prohibit any cuts
that would result in solutions that violate particular conditions.
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Algorithm 2 Bisection Algorithm
Step 1: Start with set of seats I , a set of parties J , and the number of representatives in each party

{K j : j ∈ J }. Suppose each seat i ∈ I has coordinates (xi , yi ), and that a graph is formed by
connecting adjacent seats with edges. Use a random procedure to separate the parties J into
two groups J1 and J2. Let N1 = ∑

j∈J1
K j and N2 = ∑

j∈J2
K j .

Step 2: Select a number d of line directions to try for the bisection, and for each k = 1, . . . , d:

– Let θk :=
(
k−1
d

)
2π . Then, for all seats i ∈ I , let

pik := xi cos θk − yi sin θk

so that pik is the x-coordinate of seat i rotated anticlockwise by an angle of θk about the origin.
– Sort the values pik in non-decreasing order and then find a value τk such that

pik < τk for the first N1 elements and

pik > τk for the last N2 elements.

If the N1th and N1+1th elements are equal, meaning no τk can be found, then continue to the next
value of k. Otherwise, letCk be the number of edges connecting seats in the set {i ∈ I : pik < τk }
with seats in the set {i ∈ I : pik > τk }.

Step 3: If no τk was found for any k = 1, . . . , d then return to Step 2 and increase the number of
directions d. Otherwise, let

k∗ = arg min
k=1,...,d

Ck

so that k∗ denotes the bisection line that cuts the fewest edges of the graph. Perform the
bisection by separating the seats into the sets {i ∈ I : pik∗ < τk∗ } and {i ∈ I : pik∗ > τk∗ }.

Fig. 4 To find the line direction that cuts the fewest edges, for each k = 1 . . . d we rotate the seats by
θk = 2π(k − 1)/d degrees and count the number of edges cut by a vertical line

7 Computational study

This computational study examines the performance of the location-allocation heuris-
tic (LAH) and geometric cutting heuristic (GCH), assuming the basic cases in which
they do not include any additional constraints. We compare them to each other as well
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Algorithm 3 Geometric Cutting Algorithm
Step 1: Begin with the graph containing all seats in the congress. Apply Algorithm 2 to divide the

graph into two subgraphs, each of which corresponds to a particular subset of parties. Set both
of these subgraphs to active.

Step 2: For every active subgraph:

– If the subgraph corresponds to only one party then set the subgraph to complete.
– Otherwise, apply Algorithm 2 to the subgraph to create two new active subgraphs, and set the

original subgraph to inactive.

Step 3: If there are any remainingactive subgraphs then return to step 2. If there are noactive subgraphs
then stop. The complete subgraphs all correspond to an individual party, and the seats in the
subgraph are assigned to that party to form the seating plan.

as to the solutions found for the facility location model (FLM) (1)–(6) and the mini-
mum k-partition model (MPM) (11)–(14) by Xpress Optimization software. We also
show some of the best and worst solutions generated by each heuristic and analyse
them visually.

7.1 Procedure

We considered four different sizes of congress: 50, 100, 200 and 400 seats. The coordi-
nates of the seats were generated by an online tool for generating parliament diagrams5

whichwere then used inMatlab to produce the diagrams shown in this paper. The adja-
cency graphs were formed by drawing edges between pairs of seats whose Euclidean
distance was less than a threshold, which was determined as the smallest distance such
that every seat, where applicable, is connected to both seats on either side of it and at
least one seat from the row in front and one from the row behind. Figure 5 shows the
resulting graphs. For the GCH, the parameter d, which determines the number of line
directions, was set to d = 32 in all cases.

As well as varying the number of seats in the congress, the number of parties and
number of representatives from each party were varied. It is typical for there to be
two, three or four larger parties that win the majority of seats, followed by several
much smaller parties that have only a handful of seats each. We considered these
cases, as well as the case in which the number of seats belonging to parties decreases
exponentially, with the largest party having half the seats, the next largest having a
quarter of the seats, and so on. Table 1 shows all combinations of congress size and
seat breakdowns that we considered.

For each variation, five sets of solutions were generated by each heuristic. For
the congresses with 50, 100 and 200 seats, each set consists of 100 solutions, while
for the congress of 400 seats each set consists of generating 30 solutions. For each
solution generated by either of the heuristics, we recorded the objective value of the
solution under both theFLMandMPMmodels. The results tables display the following
information:

– Best best: The lowest value achieved by any solution in any of the five sets.

5 http://tools.wmflabs.org/parliamentdiagram/parliamentinputform.html.
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Fig. 5 Adjacency graphs for the four congress sizes

Table 1 Seat breakdowns that were studied

50 seats 100 seats 200 seats 400 seats

Exponential 25, 13, 6, 3, 2, 1 50, 25, 13, 6, 3, 2, 1 100, 50, 25, 13, 6, 3, 2, 1 200, 100, 50, 25, 13, 6,
3, 2, 1

Two large
parties

25, 20, 3, 2 50, 40, 5, 3, 2 100, 80, 8, 6, 4, 2 200, 160, 13, 10, 8, 6,
3

Three large
parties

– – 65, 60, 55, 9, 6, 5 113, 123, 114, 10, 8, 7,
5

Four large
parties

– – – 105, 99, 93, 88, 7, 5, 3

– Mean best: The mean of the lowest values from each set.
– Mean mean: The mean value from all solutions in all five sets.
– Mean worst: The mean of the highest values from each set.
– Worst worst: The highest value from any of the five sets.

For both heuristics, the computational time required to generate each individual solu-
tion is negligible, particularly when considered in the context of the application, which
would not require solutions to be generated very quickly.

We also recorded the best solutions found for the FLM and MPM by running the
models in Xpress solver for 30 min (best found). The percentage gap between the best
lower bound and best feasible solution found by the solver are shown. A gap of 0%
indicates that the model was solved to optimality, in which case the time taken to
find an optimal solution is stated in parentheses. Xpress Optimizer Version 29.01.10
was used on a Core i5 machine with clock speed 3.2 GHz and 8 GB of RAM run on
Windows 7 OS.
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Table 2 50 seats, exponential
breakdown

FLM MPM

Results from solver

Best found 79 20

Gap 0% (6s) 0% (188s)

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 79 79 20 20

Mean best 79 79 21.2 20

Mean mean 81.8 81.0 25.3 22.2

Mean worst 95.8 83.8 35.2 25.2

Worst worst 107 85 40 26

Table 3 50 seats, two large
parties

FLM MPM

Results from solver

Best found 91 14

Gap 0% (9s) 0% (11s)

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 91 91 14 14

Mean best 91 91 14 14

Mean mean 93.2 92.5 15.9 14.6

Mean worst 98.4 94 21.2 16

Worst worst 100 94 25 16

7.2 Results and analysis

The results of the computational study are shown in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12. We can make the following three key observations:

1. In 30 min, Xpress solver was able to find optimal solutions for the FLM with 50
and 100 seats and for the MPM with 50 seats. In both cases with 50 seats, both
heuristics were able to produce solutions that were optimal for either model. For
100 seats, both heuristics were able to produce solutions that were very close to
optimal for the FLM.

2. Under the FLM objective function, the mean values produced by both heuristics
are very similar. However, the best scores from the LAH are consistently slightly
better than the best scores from the GCH, while the worst scores from the LAH
are usually worse than the worst scores from the GCH.
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Table 4 100 seats, exponential
breakdown

FLM MPM

Results from solver

Best found 218 33

Gap 0% (114s) 81%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 219 220 30 29

Mean best 219.4 220.8 31.8 29.6

Mean mean 228.7 227.7 38.5 32.9

Mean worst 244.6 236.2 48.4 26.2

Worst worst 251 237 56 37

Table 5 100 seats, two large
parties

FLM MPM

Results from solver

Best found 251 22

Gap 0% (71s) 66%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 251 251 20 20

Mean best 251.2 251.4 20.2 20

Mean mean 256.6 255.7 24.1 21.1

Mean worst 268.4 264.2 31.2 24

Worst worst 272 266 33 24

3. Under the MPM objective function, the GCH performs significantly better than
the LAH. Indeed, the best, mean and worst scores from the GCH are all better than
the corresponding values from the LAH.

Of course, examining the numerical results is only useful if they correspond to
our visual intuition regarding what constitutes a good seating plan. Therefore we will
now show some examples of the best and worst solutions generated by each heuristic.
This serves two purposes; firstly, we can judge whether the best and worse solutions
numerically correspond to what we would consider to be good and bad solutions
visually, and, secondly, we can visually compare and contrast the solutions generated
by the twoheuristics.Recall thatwe are only studying the basic cases,without imposing
any additional conditions, and so at this point we are only looking to see whether the
seats are arranged in a sensible and visually appealing way. In particular, the seats
should form compact shapes that are not too ‘spread out’ and ideally each party’s
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Table 6 200 seats, exponential
breakdown

FLM MPM

Results from solver

Best found 658 55

Gap 9% 96%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 660 664 43 41

Mean best 661.8 666.2 45.2 41

Mean mean 686.9 684.1 52.9 45.1

Mean worst 717.6 715 62.4 50.2

Worst worst 721 719 65 51

Table 7 200 seats, two large
parties

FLM MPM

Results from solver

Best found 744 38

Gap 59% 93%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 745 746 29 25

Mean best 747 747.2 29.4 25.20

Mean mean 764.8 763 34.8 29.2

Mean worst 857.2 777.6 48 33

Worst worst 1102 779 68 33

seats should be connected or contiguous. For purposes of brevity, we only look at the
solutions for the congress with 400 seats. Each figure shows four solutions, which
correspond to the four types of seat breakdown.

Figure 6 shows the best solutions generated by the LAH under the FLM objective
function. The blocks appear reasonably compact. There is a small problem with the
bottom-left solutionbecause the black seats are not connected.Theboundaries between
the blocks are a little irregular and wiggly, but are not too bad.

Figure 7 shows the worst solutions generated by the LAH under the FLM objective
function. In the top-left solution, the purple party are entirely surrounded by the yellow
party, which is not ideal. In the top-right solution, the yellow block is a long, thin shape
which is therefore not visually compact. In the bottom-left solution, the red and yellow
blocks are not visually compact shapes, and their boundary is very irregular. In the
bottom-right solution, the blue block does not appear visually compact. In general,
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Table 8 200 seats, three large
parties

FLM MPM

Results from solver

Best found 614 46

Gap 52% 98%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 594 596 37 35

Mean best 595.6 596.4 38.2 35.2

Mean mean 612.4 609.7 44.3 38

Mean worst 676.8 631.2 55.6 41.4

Worst worst 742 632 61 42

Table 9 400 seats, exponential
breakdown

FLM MPM

Results from solver

Best found 1996 83

Gap 77% 99%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 1909 1914 66 60

Mean best 1917 1925 68.4 61.4

Mean mean 1961.2 1962.5 77.1 66.4

Mean worst 2022.4 2016.2 86.4 71

Worst worst 2036 2022 89 72

these solutions are visually inferior to the solutions in Fig. 6, which suggests that there
is a correlation between the numerical quality and the visual quality of solutions.

Figure 8 shows the best solutions generated by the GCH under the MPM objective
function. In all of the solutions, the blocks of seats all appear compact and connected,
with well-defined borders.

Figure 9 shows the worst solutions generated by the GCH under theMPMobjective
function. The blocks are all connected and seem reasonably compact, with the possible
exception of the pink party in the bottom-left solution. It is noticeable that the worst
solutions generated by the GCH are visually much better than the worst solutions gen-
erated by the LAH. The worst solutions generated by the GCH were also numerically
better than the worst solutions generated by the LAH, which again suggests that there
is a correlation between the numerical and visual quality of solutions.
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Table 10 400 seats, two large
parties

FLM MPM

Results from solver

Best found 2333 65

Gap 78% 100%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 2158 2163 46 42

Mean best 2165.4 2169.6 47.2 42.4

Mean mean 2199.1 2198.7 55.0 48.2

Mean worst 2237.6 2243.8 65 53.2

Worst worst 2250 2251 69 54

Table 11 400 seats, three large
parties

FLM MPM

Results from solver

Best found 1899 65

Gap 74% 100%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 1727 1739 53 50

Mean best 1732.8 1744.2 54.2 50.2

Mean mean 1768.3 1769.9 59.7 58.8

Mean worst 2019.8 1805.4 80.6 56.8

Worst worst 2177 1813 94 57

In summary, the results suggest that visually theGCHperforms better than theLAH.
However, the LAH has the advantage that it is easier to incorporate additional require-
ments, because they can simply be included as constraints in the allocation phase.
With the GCH, on the other hand, it is not so easy to include additional requirements.

8 Case study: Congress of Deputies

We now consider a case study of the Spanish Congress of Deputies. We include
several requirements that are specific to the application and discuss how these can be
accommodated by the heuristics.

In the Congress of Deputies there are 350 elected representatives. There are 368
physical seats in the chamber, and nine cross-party members are chosen to sit at the
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Table 12 400 seats, four large
parties

FLM MPM

Results from solver

Best found 1791 67

Gap 74% 100%

FLM MPM

LAH GCH LAH GCH

Results from heuristics

Best best 1641 1650 65 62

Mean best 1647.4 1653.8 67 62

Mean mean 1679.9 1675.4 75.3 66

Mean worst 1815.8 1697 87.6 70.4

Worst worst 1855 1703 95 71

Fig. 6 The best solutions from the LAH under the FLM objective (color figure online)

Mesa del Congreso at the front, meaning that in practice there is a surplus of 27
seats. To simplify matters, we remove the members at the Mesa del Congreso from
consideration, so that the problem involves assigning 341 members to 368 seats. The
size of the problem makes finding optimal solutions to the FLM or MPM impractical,
and so it is necessary to use the heuristics.

The number of representatives from each party is obtained from the results of the
election of the 26th June 2016, shown in Table 13. The table also shows the index
that will be used for each party in the model and the colour that will be used to
represent each party in the solutions. Traditionally, PSOE sit on the left-hand side, PP
sit on the right, and Ciudadanos and smaller parties somewhere in the centre. As a
group that identifies as being on the left of the political spectrum, we also make the
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Fig. 7 The worst solutions from the LAH under the FLM objective (color figure online)

Fig. 8 The best solutions from the GCH under the MPM objective function (color figure online)

assumption that Podemos should sit on the left. The front row of seats is only occupied
by government ministers, in this case meaning only the PP can sit in the front row.

The coordinates of the seats used to produce all the diagrams in this section were
obtained from a pre-existing diagram of the Spanish Congress,6 and the coordinates
were then used in Matlab to produce the diagrams shown.

6 https://commons.wikimedia.org/wiki/File:Congreso_de_los_Diputados_de_la_XII_Legislatura_de_
Espa%C3%B1a.svg.
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Fig. 9 The worst solutions from the GCH under the MPM objective function (color figure online)

Table 13 The breakdown of seats in the Spanish Congress

Index Group Seats Colour

1 Partido Popular (PP) 131 Red

2 Partido Socialista Obrero Español (PSOE) 82 Blue

3 Unidos Podemos 65 Yellow

4 Ciudadanos 30 Green

5 Esquerra Republicana de Catalunya (ERC) 9 Aqua

6 Partido Nacionalista Vasco (PNV) 5 Pink

7 Mixto 19 Black

341

8.1 The LAHwith additional constraints

The location phase of the heuristic functions in exactly the same way as described
in Sect. 5, but we include several additional constraints in the allocation model in
an attempt to (a) encourage fairness and (b) adhere to the rules and traditions of the
congress. The full allocation model is shown below, followed by an explanation:

min
7∑
j=1

368∑
i=1

dic j xi j (18)

s.t.
7∑
j=1

xi j ≤ 1 i = 1, . . . , 368, (19)

368∑
i=1

xi j = K j j = 1, . . . , 7, (20)
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xi j ∈ {0, 1} i = 1, . . . , 368, j = 1, . . . , 7, (21)

xi j ≤
n∑

k=1

nik xk j i = 1, . . . , 368, j = 1, . . . , 7, (22)

n∑
i=1

f (2)
i xi j ≥ K j − 20

20
j = 1, . . . , 7, (23)

n∑
i=1

(7 − Ri )xi j ≥ 0 j = 1, . . . , 7, (24)

f (1)
i xi j = 0 i = 1, . . . , 368, j = 2, . . . , 7, (25)

xi j = 0 j = 1,∀i : pi ≤ 50, (26)

xi j = 0 j = 2, 3,∀i : pi ≥ 50, (27)

xi j = 0 j = 4, 5, 6, 7,∀i : qi ≤ 35. (28)

– The basic model is contained in Eqs. (18)–(21), with the only difference being
that what were previously equalities in constraints (19) are now inequalities due
to the fact in this case there are more physical seats than there are party members,
so some seats must be left unassigned.

– Constraints (22) ensure that each representative is sat next to another representative
from the same party.

– Let f (2)
i = 1 if seat i is in the second row, and zero otherwise. Then constraints (23)

ensure that any party with more than 20 seats has at least one seat in the second
row, any party with more than 40 seats has at least 2 seats in the second row, and
so on.

– Let Ri be equal to the row number of seat i , with the front row being row 1, and
the back row being row 8. Constraints (24) mean that the average row number of
each party must be less than or equal to seven.

– Let f (1)
i = 1 if seat i is in the front row and zero otherwise. Then constraints (25)

mean that only PP can occupy seats in the front row.
– Let (pi , qi ) be the coordinates of seat i , as shown in Fig. 10. Constraints (26)–(28)
ensure that each party is restricted to the correct part of the congress.

After running the LAH ten times, the two best and two worst solutions based on
their objective values are shown in Fig. 11. In each of the four solutions there are
notable problems with the Ciudadanos seats (in green). Since there are 30 green seats,
constraints (23) mean there must be at least one green seat in the second row, and due
to constraints (22) every member must be sat next to another person from the same
party, and so there must be at least two green seats in the second row. The problem is
that in all of the solutions these two green seats in the second row are separated from
the rest of the party’s seats.

As was discussed in Sect. 5, one option to attempt to improve the solutions is to
scale the objective function so that the model encourages all blocks to be compact,
regardless of the number of seats they contain. Figure 12 shows the two best and two
worst solutions after running the LAH with a scaled objective function (17). In three
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Fig. 10 Use seat coordinates to restrict the areas occupied by each party (color figure online)

Fig. 11 Four of ten solutions generated by the LAH. Clockwise from top left: best solution (1466), second
best solution (1472), second worst solution (1590), worst solution (1612) (color figure online)
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Fig. 12 Four of ten solutions generated by the scaled LAH. Clockwise from top left: best solution (3.271),
second best solution (3.354), second worst solution (3.634), worst solution (3.731) (color figure online)

of the solutions, the scaling has prevented the previous problems with the green block,
although now the PP seats (in red) do not form very compact shapes.

8.2 Filtering solutions from the GCH

The geometric cutting heuristic (GCH) does not have the sameflexibility to incorporate
additional requirements as theLAH.However, the results from the computational study
suggest that it is capable of producing solutions that are visually very good.

Recall that in the Congress of Deputies we need to assign 341 representatives
to 368 seats and only the PP are permitted to sit in the front row. The GCH requires an
equal number of representatives and seats, thereforewe supposed thatwe have 368 rep-
resentatives by increasing the number of representatives from each party, so that the
breakdown is {139, 89, 70, 33, 10, 6, 21}. We then generated a solution, which we
deem infeasible if it does not satisfy the party location constraints (26)–(28) from the
allocation model. Finally, if the solution is still feasible, we remove all front row seats
that do not belong to the PP. Provided each party is still allocated at least as many seats
as they require, we accept the solution. We assume that parties that are still assigned
too many seats can choose themselves which ones they leave unoccupied.

After running the GCH one thousand times with this procedure, eight of the solu-
tions remained feasible. The best and worst of these eight solutions under the MPM
objective function are shown in Fig. 13 on the left and right, respectively. We see that
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Fig. 13 Best and worst solutions produced by the GCH under theMPM objective function. The left solution
has an MPM objective value of 42 and an FLM objective value of 1620. The right solution has an MPM
objective of 49 and an FLM objective value of 1641 (color figure online)

the solutions are visually very good, with clearly defined borders between blocks, and
the only notably non-compact set of seats is the pink seats in the right solution.

If we were to include more additional requirements, as we did with the LAH, it
will become increasingly unlikely that any of the solutions generated by the GCHwill
remain feasible. Therefore, at least in its current form, the GCH is unsuitable when
there is a large number of specific requirements that must be satisfied. However, we
have seen that the solutions produced by the GCH tend to be very good, and so if it is
possible to obtain feasible solutions then they are likely to be of a high quality.

9 Concluding remarks

We conclude with a brief summary of our findings, which are then discussed together
with possible directions for further study.

9.1 Summary of findings

The original aim was to investigate ways in which mathematical optimization can
be used to generate congress seating plans. We began with a discussion of possible
approaches to the problem, noting the similarities with three other types of problems:
political districting, facility location and graph partitioning.

Next, two optimization models were developed. The first was based on a facility
location approach, while the second was a minimum k-partitioning model. Due to the
number of binary variables, and the non-linearity in the case of the second model,
optimal solutions could not be found in reasonable time by optimization software
except for very small examples, and so we proposed two heuristics to generate ‘good’
solutions.

The location-allocation heuristic (LAH) separated the location and allocation com-
ponents of the facility location model, while the geometric cutting heuristic (GCH)
used straight-line cuts to partition the graph, with line directions chosen to minimize
the number of edges that are cut.

123



Congress seat allocation using mathematical optimization 453

A computational study was undertaken to assess the performance of the heuristics,
with the solutions evaluated both numerically and visually. The results showed that
under the central seats compactness measure both heuristics performed similarly on
average, although the best and worst solutions found by the LAH tended to be better
and worse, respectively, than the best and worst solutions found by the GCH. On the
other hand, the GCH performed significantly better under the cut-edges measure than
the LAH. Visual examination of the solutions concurred with the numerical results;
the best solutions both looked of a similar quality, but the worst numerical solutions
from the LAH looked significantly worse than those from the GCH. Therefore, for
solving the basic problem of partitioning the seats into compact blocks, it is fair to say
that the GCH performs better than the LAH. However, the GCH has the disadvantage
of not being able to incorporate additional constraints easily, whereas in the LAH they
can be included in the allocation phase.

We concludedwith a case study of the SpanishCongresswith additional constraints.
When these additional constraints were included in the LAH we found that they can
result in the seats forming irregular shapes, although this effect can be partly mitigated
by scaling the objective function. The possibility of filtering solutions generated by
the GCH was also considered and it was found that if any solutions are found then
they are likely to be very good, but as the number of additional constraints increases
it becomes increasingly unlikely that any solutions will remain feasible.

9.2 Discussion and possible further study

The primary objective of this paper was to investigate how mathematical modelling
and optimization could be used to produce seating plans for congress chambers. We
have discussed several approaches, and have shown that if a set of basic rules can be
agreed upon regarding how the seats should be assigned, then it is possible to generate
politically unbiased seating plans that satisfy these rules. In particular, the removal of
any potential political bias should help to prevent complaints such as those from the
Podemos spokesperson mentioned in the introduction. On the other hand, we found
that the inclusion of certain rules can result in irregular looking seating plans, and
future research should try to address this problem.

In this sense, it would be particularly interesting to include explicitly in the model
constraints that enforce connectivity (remember that our models encourage connectiv-
ity, but do not guarantee it). As part of our future research, we would like to study the
inclusion of connectivity constraints such as those described in Carvajal et al. (2013)
and Wang et al. (2017). This has not been done in this paper because here we have
tried to show that some simple models can already provide unbiased and meaningful
solutions to arrange seats in a congress chamber. It is true that it is not guaranteed that
the solution will be perfect, but we have shown that most of the solutions are very
good starting points that require aminimalmanual modification to provide satisfactory
solutions. The constraints described in those two papers would increase the complex-
ity of the models and some algorithms, much more specialized, would be necessary
to solve those larger models. Although very interesting to us from the practical and
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mathematical point of view, we feel that we would be losing from sight the simplicity
aspect of this paper.

Another benefit of using amathematical approach rather than devising seating plans
by hand is that the heuristics are able to produce a large number of possible plans very
quickly. Moreover, there is a lot of variety in these plans, as can be seen from the
diagrams in Sects. 7 and 8, which presents the user with lots of flexibility, although
of course this means restoring some of the decision-making to human hands, thereby
reopening the potential for bias. However, as we mentioned in the introduction, the
inherent subjectivity of the problem means that trying to obtain the ‘perfect’ seating
plan will always be impractical.

There are many possible approaches to this problem, and these could be further
explored by additional study. In particular, there are many ways to interpret what
makes a seating plan visually appealing and how to express this mathematically. The
success of the geometric cutting heuristic (GCH) when applied to the basic problem
suggests that further investigations into geometric approaches would be worthwhile.

Finally, it would be interesting to combine the topic with a more political-focused
study into what the politicians themselves want from a seating plan. This would serve
to clarify and consolidate the objectives, which would in turn assist the development
of possible optimization-based approaches.
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