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Abstract
This is a survey on polling systems, focussing on the basic single-server multi-queue
polling system in which the server visits the queues in cyclic order. The main goals of
the paper are: (i) to discuss a number of the key methodologies in analyzing polling
models; (ii) to give an overview of recent polling developments; and (iii) to present a
number of challenging open problems.
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Mathematics Subject Classification 60K25 · 90B22

1 Introduction

This paper is devoted to polling systems. The basic polling system is a queueingmodel
in which customers arrive at n queues according to independent Poisson processes,
and inwhich a single server visits those n queues in cyclic order to serve the customers.
When n = 1, this system reduces to the classical M/G/1 queue. For general n, the
basic polling system may be viewed as an M/G/1 queue with n customer classes
and dynamically changing priority—in contrast to queueing models with multiple
customer classes which have fixed priority levels. Inmany applications, the switchover
times of the server, when moving from one queue to another, are nonnegligible and
should be included in the model.
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Applications of polling systems abound, because a service facility that can serve
the needs of n different types of customers is such a natural setting in every-day life.
Indeed, polling systems have been used to model a plethora of congestion situations,
like (i) a patrolling repairman with n types of repair jobs, (ii) a machine producing
n types of products on demand, (iii) protocols in computer-communication systems,
allocating resources to n stations, job types or traffic sources, and (iv) a signalized
road traffic intersection with n different traffic streams. These and other application
areas have given rise to a huge range of variants and extensions of the basic polling
system. Several overviews of the applicability of polling systems have been published,
cf. Grillo (1990), Levy and Sidi (1990), Takagi (1991) and Boon et al. (2011). We,
therefore, refrain from an extensive discussion of polling applications. When it comes
to polling surveys, one should of course mention that, until 2000, Takagi maintained
a quite complete bibliography on polling models, which included more than 700
publications (Takagi 1997, 2000). A more recent survey is Vishnevskii and Semenova
(2006).

The main goals of the present paper are threefold: first, to discuss a number of the
key methodologies in analyzing polling models; second, to give an overview of recent
polling developments; and finally, to present a number of challenging open problems,
which hopefully promote the interest of the reader in this fascinating field.

As a disclaimer, we would like to emphasize that we do not aim for complete-
ness. Since the publication of the survey (Takagi 2000), several hundreds of polling
papers have appeared. When discussing recent developments, we mainly focus on
contributions which we believe to be methodologically important or which give rise
to interesting open problems—and undoubtedly there is a bias towards publications
which are in some way related to the authors.

Polling models are closely related to queueing models with vacations. One could
naively model one queue of a polling model as a queue in isolation, in which the
intervisit time (composed of switchover times and visit times at the other queues,
i.e., the time periods the server spends at a queue) is viewed as a server vacation.
Unfortunately, the intervisit times depend on the visit times in an intricate way.

In this paper, we do not give much consideration to queues with vacations; we refer
the reader to the surveys of Doshi (1986, 1990) and the books of Takagi (1991) and
Tian and Zhang (2006).

The remainder of this paper is organized in the following way. Section 2 presents
a detailed model description. Section 3 reviews some properties and results of very
general validity, including the so-called pseudo-conservation law. Section 4 focuses
on waiting times and (mainly) joint queue-length distributions, for the important class
of disciplines which satisfy a so-called branching property. Section 5 is devoted to
polling models which do not satisfy that property.

The next few sections consider some special topics: polling models with arrival
processes that generalize the above-mentioned Poisson processes (Sect. 6), scheduling
in polling models (Sect. 7) and two types of asymptotics: many-queue asymptotics
and heavy-traffic asymptotics (Sect. 8). Section 9 contains a collection of interesting
isolated polling models and results. Finally, Sect. 10 presents some suggestions for
further research.
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2 Model description

We are interested in situations in which a service facility offers services to n classes of
customers, in some prescribed order. We present the model description via 10 assump-
tions. Some of these assumptions will be relaxed in later sections.

Assumption 1 The service facility has a single server and that server works at unit
speed when it is working.

Assumption 2 The number of customer classes, n, is finite.

Assumption 3 Customers in the various classes arrive at the service facility according
to n independent Poisson arrival processes, with intensity λi for class i , joining a queue
Qi , i = 1, 2, . . . , n. Customers of class i have service requirements which are inde-
pendent, identically distributed (i.i.d.) random variables, generically denoted by Bi ,
with distribution Bi (·) and Laplace–Stieltjes transform (LST) βi (·), i = 1, 2, . . . , n.
Service requirements of customers of different classes are also independent of each
other and of the arrival processes.

Assumption 4 Each queue has an infinite buffer capacity. Furthermore, all customers
have infinite patience; hence, no customer is lost.

Assumption 5 The routing policy of the server is cyclic: the server successively visits
the queues in order Q1, Q2, . . . , Qn, Q1, Q2, . . . , Qn etc. Another option that we
will briefly touch upon is a polling table, i.e., a fixed visit pattern which is cyclically
repeated (like star pollingwith Q1 as center of the star: Q1, Q2, Q1, Q3, . . . , Q1, Qn).
Yet, another option is random polling, in which the server visits the queues according
to a probabilistic visit scheme. Markovian polling refers to the case in which the
transitions between queues follow a Markov chain.

Assumption 6 The service policy, describing the behavior of the server while visiting
a queue, can be one of many policies which have been considered in the literature. The
most popular ones are the following: (i) exhaustive: the server keeps serving a queue
until it has become empty; (ii) gated: the server keeps serving a queue until all those
customers have been served that were already present when the server arrived at that
queue; (iii) k-limited: the server keeps working at a queue until a predefined number
of k customers has been served, or the queue has become empty—whichever occurs
first. Other policies include decrementing service: the server serves a queue until the
number in that queue has decreased to one less than the number present upon arrival of
the server; time-limited service: the server serves customers at Qi until a time limit Ti

has been reached, or until the queue has become empty—whichever occurs first; and
binomial-gated: the server restricts service to the customers present upon its arrival,
but each of those is only served with a fixed probability pi (in Qi , i = 1, 2, . . . , n).
Another well-studied policy is Globally gated: when the server arrives at Q1 at some
time t1, it starts a cycle of the n queues in which it only serves the customers that are
already present at t1.

Finally, we assume that a server does not stay at an empty queue if other queues
are not empty (non-idling assumption); however, in Sect. 9.2, we briefly consider an
idling service policy.
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Assumption 7 The service order within each queue is First-Come First-Served
(FCFS). This assumption was almost universally made in the polling literature until
thework ofWierman et al. (2007). In Sect. 7, wewill discuss non-FCFS service orders.

Assumption 8 The times to switch from Qi , i = 1, 2, . . . , n, to the next queue are
assumed to be i.i.d. randomvariables, generically denoted by Si , with distribution Si (·)
and LST σi (·). All switchover times are assumed to be independent of each other and
of the interarrival and service times. When the switchover times between successive
queues are all zero, a special situation arises. If the system has become empty after
a visit to, say, Qi in the case of zero switchover times, then the server is assumed
to visit queues Qi+1, . . . , Qn (which now takes zero time) and stay in front of Q1
(see Sect. 4). In the case of non-zero switchover times, the server is assumed to keep
switching in an empty system.

Assumption 9 As soon as a customer has been served, it leaves the system. At some
places, we briefly mention the case of customer routing; a served customer might
rejoin the same queue, or join another one.

Assumption 10 The total traffic load is such that the key stochastic processes (queue
lengths and waiting times) reach steady state. A necessary condition for this is that
the total offered load ρ := ∑n

i=1 ρi < 1; here, ρi := λi EBi is the mean offered
load at Qi per time unit, i = 1, 2, . . . , n. When all switchover times are zero, this
condition is also sufficient. Otherwise, the situation may be much more complicated,
and in particular, the service policies may influence the stability condition; e.g., in 1-
limited service, the server is forced to spend a switchover time after each service, see
Fricker and Jaïbi (1994) for an extensive discussion of these stability issues. We refer
to Foss and Chernova (1996a), Foss and Chernova (1996b), Foss et al. (1996), Foss
and Last (1996), Foss and Last (1998), Foss and Kovalevskii (1999), and Kovalevskii
et al. (2005) for stability results for various polling systems (not necessarily satisfy-
ing all of the above assumptions), along with related dominance theorems and fluid
limits.

When a polling system satisfies all 10 assumptions, we denote it by PS.

3 General results

In this section, we discuss a number of results which hold for basically all PS,
i.e., polling systems that satisfy Assumptions 1–10 of Sect. 2. These are cycle-time
and visit-time results (Sect. 3.1), workload decompositions (Sect. 3.2), pseudo-
conservation laws for mean waiting times (Sect. 3.3), Eisenberg’s relations between
queue lengths at visit beginnings, visit completions, service beginnings and service
completions (Sect. 3.4), and a general relation between the joint queue-length distri-
bution at an arbitrary epoch and the joint queue-length distributions at visit beginnings
and visit completions (Sect. 3.5).
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3.1 Mean cycle and visit times

In a polling model of type PS, let us define the cycle timeCi of Qi as the time between
two successive visit beginnings of the server to Qi . If the mean total switchover time
in a polling model of type PS is positive, i.e., s := ∑n

i=1 ESi > 0, then the mean
cycle time for Qi satisfies the following balance equation:

ECi − s = ρECi , i = 1, 2, . . . , n.

Indeed, the left-hand side gives themean length of time the server is working during an
arbitrary cycle of Qi , and the right-hand side gives the mean amount of work arriving
in PS during an arbitrary cycleCi . In steady state, these two quantities should be equal.
Hence, we find

ECi = s

1 − ρ
, i = 1, 2, . . . , n. (1)

Apparently, each queue has the same mean cycle time EC. It is important to notice,
though, that the distributions of the cycle times of different queues, and even the
variances, may not the same (unless the system is completely symmetric).

The balance argument used above also immediately implies that the mean visit time
EVi of Qi is given by

EVi = ρi ECi = ρi s

1 − ρ
, i = 1, 2, . . . , n. (2)

In a system with zero switchover times, viz., s = 0, Formulas (1) and (2) still hold
if the server is assumed to keep cycling when the system has become empty (indeed,
in an empty system, there will be an infinite number of zero-length cycles); however,
these formulas are meaningless then.

3.2 Workload decompositions

Again, consider the polling system PS, and assume in addition that all switchover
times are zero. The server is then always working as long as there are customers in
the system (cf. Assumption 6). Since the server is working at unit speed when it is
working (Assumption 1), a sample path consideration reveals that the amount of work
in the system evolves in a way that does not depend on the order of service of the
queues, or within the queues, and neither on the service policies at the queues. This is
the principle of work conservation (cf. Heyman and Sobel 1982, p. 418). In particular,
the amount of work evolves exactly as in an M/G/1 queue in which the arrival rate is
� := ∑n

i=1 λi and in which the service time distribution is
∑n

i=1
λi
�

Bi (·). We denote
this queue by the ’corresponding M/G/1 queue’.

If the switchover times are positive, then the principle of work conservation is
violated: the server is sometimes switching (not working), although there is work
present in the system. It was proven in Boxma and Groenendijk (1987) that, for a
cyclic polling system PS, a principle of work decomposition holds: the steady-state
amount of work Vwith in PS with switchover times is, in distribution, the sum of
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the steady-state amount of work Vwithout in the corresponding PS without switchover
times (hence the corresponding M/G/1 queue) plus the steady-state amount of work
Y present in the system at an epoch in which the server is not working:

Vwith
d= Vwithout + Y, (3)

and Vwithout and Y are independent. This decomposition result was generalized in
Boxma (1989) to a large class of single-server queues with multiple customer classes
and various forms of work interruptions. These decompositions fit in a line of decom-
position results for queueing models with vacations/interruptions which goes back to
the ground-breaking paper of Fuhrmann and Cooper (1985a) which concentrates on
queue-length decompositions. It should be noticed that queue lengths are much more
sensitive to distributional assumptions than workload, and hence, the conditions for
queue-length decompositions to hold are also more stringent than those for workload
decompositions. Most of the decomposition proofs rely on sample path consider-
ations, and on the fact that the workload evolves exactly the same under FCFS and
Last-ComeFirst-Served (LCFS), and on the exploitation of nice properties of theLCFS
Preemptive-Resume discipline, see also the insightful discussion in Ivanovs and Kella
(2013), and a workload decomposition for polling models with multi-dimensional
Lévy input in Boxma and Kella (2014).

3.3 Pseudo-conservation laws

For the PS model, one can express the mean workload EVwith into the mean numbers
ENi of waiting customers at the various queues of PS, and hence, via Little’s formula,
into themeanwaiting times EWi . This is sometimes referred to as Brumelle’s formula
Brumelle (1971):

EVwith =
n∑

i=1

EBi ENi +
n∑

i=1

ρi
EB2

i

2EBi
=

n∑

i=1

ρi EWi + 1

2

n∑

i=1

λi EB2
i . (4)

Indeed, EBi ENi is the mean amount of work of waiting customers at Qi (we use
here the fact that service at each queue is non-preemptive; hence, we have to exclude

a discipline like time-limited), and ρi
EB2

i
2EBi

is the product of the probability that Qi is
being served at an arbitrary epoch, and the mean length of the residual service time of
a customer at Qi .

Using (3) and the fact that, in the case of zero switchover times, one has (using a
well-known result for the ‘corresponding M/G/1 queue’):

EVwithout =
n∑

i=1

λi EB2
i

2(1 − ρ)
, (5)

the following so-called pseudo-conservation law (PCL) for the mean waiting times is
obtained Boxma and Groenendijk (1987):

123



Polling: past, present, and perspective 341

n∑

i=1

ρi EWi = ρ

n∑

i=1

λi EB2
i

2(1 − ρ)
+ EY. (6)

In Boxma and Groenendijk (1987), EY is subsequently split in three terms:

EY = ρ
s(2)

2s
+ s

2(1 − ρ)

[

ρ2 −
n∑

i=1

ρ2
i

]

+
n∑

i=1

EZi i , (7)

where s and s(2) are the mean and second moment of the total switchover time in one
cycle of the server. The three terms reflect the influence of the presence of switchover
times. All three terms have an easy probabilistic interpretation. Focussing on the
contributions from Qi , one has EZi i in the last term, which denotes the mean amount
of work left behind by the server in Qi after a visit to that queue. In the first term, one

has a contribution ρi
s(2)

2s , which is the mean amount of work which has arrived in Qi

(after the server visit to Qi ) during the past part of the total switchover time in a cycle.
Finally, the contribution of Qi to the second term of (7), ρi

∑n
j=i+1

ρ j s
1−ρ

, is the mean
total workload which has arrived in Qi during the visit times at Qi+1, . . . , Qn of the
server (cf. (2)).

The term EZi i is the only term that depends on the service policy at the queues (and
in fact only on the service policy at that particular queue). For many service policies, it
is easy to determine EZi i . For exhaustive service, it equals zero, and for gated service
EZi i = ρ2

i
s

1−ρ
; indeed, ρi EVi arrives on average at Qi per visit, and EVi = ρi s

1−ρ
according to (2).

The PCL has been generalized in several directions, including batch Poisson
arrivals, polling tables, and Markovian polling. The simplicity, quite general valid-
ity, and robustness of the PCL make it suitable for several purposes. These include
the development of approximations for mean waiting times and/or a check of such
approximations and optimizations as will be discussed in Sects. 9.2 and 9.3.

3.4 Eisenberg’s relation

In this section, following Borst and Boxma (1997), we discuss a beautiful relation
of Eisenberg (1972), which in our view would have deserved greater attention in
the polling literature. Eisenberg relates the probability generating functions of queue
lengths at various instants: visit beginnings and endings, and service beginnings and
endings. Eisenberg (1972) studies a polling model with non-zero switchover times
and the exhaustive service discipline at all queues (while briefly discussing the case
of gated service at all queues). He considers the following four quantities, with N
denoting a vector of numbers of customers at Q1, . . . , Qn and N a realization:

Sbi (t, N ) := number of service beginnings at Qi in (0, t) for which N = N ;
Sci (t, N ) := number of service completions at Qi in (0, t) for which N = N ;
Vbi (t, N ) := number of visit beginnings at Qi in (0, t) for which N = N ;
Vci (t, N ) := number of visit completions at Qi in (0, t) for which N = N .
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342 S. Borst, O. Boxma

In the case of a service or visit completion, the state is defined as what exists imme-
diately after the departure of the customer.
Eisenberg (1972) now makes the crucial observation that each time a visit beginning
or a service completion occurs, this coincides with either a service beginning or a visit
completion. Hence

Vbi (t, N ) + Sci (t, N ) = Sbi (t, N ) + Vci (t, N ). (8)

As observed in Borst and Boxma (1997), (8) not only holds for the case of non-zero
switchover times and exhaustive or gated service, but for any service discipline, and
also for the case of zero switchover times. Define the following equilibrium state
probabilities for this polling model:

S̃bi (N ) := Pr(N = N , S is at Qi | service beginning instant);
S̃ci (N ) := Pr(N = N , S is at Qi | service completion instant);
Ṽbi (N ) := Pr(N = N | visit beginning at Qi );
Ṽci (N ) := Pr(N = N | visit completion at Qi ).

Eisenberg (1972) divides all four terms in (8) by the total number of service comple-
tions at all queues in (0, t), and takes the limit for t → ∞. He thus relates those four
equilibrium state probabilities:

γi Ṽbi (N ) + S̃ci (N ) = S̃bi (N ) + γi Ṽci (N ).

Here, γi is the long-term ratio of the number of visit completions at Qi to the number
of customers that are handled by the system; in this cyclic polling model γi ≡ γ ,
i = 1, . . . , n. Written in terms of PGFs (probability generating functions)

γ Vbi (z) + Sci (z) = Sbi (z) + γ Vci (z), (9)

for z = (z1, . . . , zn), | z j | ≤ 1, j = 1, . . . , n; here, Vbi (z) and Vci (z) denote the
PGF of the joint queue-length distribution at visit beginnings and visit completions of
Qi , respectively, while Sbi (z) and Sci (z) denote the PGF of the joint distribution of
queue-length vector and server position at service beginnings and service completions,
respectively.
Now, Eisenberg observes that Sci (z) and Sbi (z) are related via

Sci (z) = Sbi (z)βi

⎛

⎝
n∑

j=1

λ j (1 − z j )

⎞

⎠ /zi , (10)

for | z j | ≤ 1, j = 1, . . . , n. It follows from (9) and (10) that

Sci (z) =
γβi

(∑n
j=1λ j (1 − z j )

)

zi − βi

(∑n
j=1λ j (1 − z j )

) [Vbi (z) − Vci (z)]. (11)
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Eisenberg, considering the variant with switchover times and exhaustive service,
subsequently expresses Vbi (z) into Vci−1(z). For the moment we refrain from that
[see (15)], but we observe that Formula (11) is generally valid for the polling systems
PS described in Sect. 2 (with and without switchover times).

Taking z = (1, . . . , 1, y, 1, . . . , 1) in (11), with y as i th argument, and dividing
by the probability λi/λ that an arbitrary service completion is at Qi , gives the queue-
length PGF at Qi at a service completion instant at Qi . PASTA, in combination with
a standard up- and down-crossing argument, shows that the queue-length distribution
at Qi at its service completion instants, at its customer arrival instants, and in steady
state, are all the same. Hence, with Ni the steady-state queue length at Qi and with
Xi and Yi the steady-state queue lengths at Qi at the beginning and end of a visit at
that queue (or, equivalently, at the end and beginning of an intervisit time of Qi ), one
obtains after some rewriting (see Borst and Boxma 1997 for the details):

E(yNi ) = (1 − ρi )(1 − y)βi (λi (1 − y))

βi (λi (1 − y)) − y

E(yYi ) − E(yXi )

(1 − y)(EXi − EYi )
, |y| ≤ 1. (12)

The first term in the right-hand side is the PGF E(yNi |M/G/1) of the queue-length
distribution in a ‘corresponding’ isolated M/G/1 queue of Qi with arrival rate λi

and service time LST βi (·). The second term appears to be the PGF of the number of
customers Ni |I at an arbitrary intervisit time of Qi . Formula (12) implies that

Ni
d= Ni |M/G/1 + Ni |I , (13)

the two terms in the right-hand side being independent. This is the well-known
Fuhrmann–Cooper queue-length decomposition (Fuhrmann and Cooper 1985a).

Remark 3.1 Fuhrmann and Cooper (1985a) state five conditions under which their
decomposition holds; these conditions are contained in the 10 assumptions of Sect. 2,
except that it is explicitly assumed in Fuhrmann and Cooper (1985a) that service is
non-preemptive, a condition that is violatedwhen the service discipline is time-limited,
for example.

Using the distributional form of Little’s law, cf. Keilson and Servi (1990), the
above Fuhrmann–Cooper queue-length decomposition (13) immediately translates
into a waiting-time decomposition. In Sect. 4.1, we will return to this relation, for the
case of polling models that satisfy Property 4.1. ��

3.5 The joint queue-length distribution at an arbitrary epoch

In Sect. 3.4, we focused on queue-length vectors at visit beginnings and visit com-
pletions, and at service beginnings and service completions. Throughout the polling
literature, the attention has always been on those epochs, as far as joint queue-length
distributions is concerned. However, in Boxma et al. (2011), it was shown that, for the
general PSmodel, one can express the PGF L(z) of the steady-state joint queue-length
distribution at an arbitrary epoch in those at visit beginnings and visit completions,
in the following way (with z = (z1, . . . , zn)):
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L(z) = 1

EC

n∑

i=1

(
Vbi (z) − Vci (z)

�(z)

zi (1 − βi (�(z)))

zi − βi (�(z))
+ Vci (z) − Vbi+1(z)

�(z)

)

, (14)

with �(z) := ∑n
j=1 λ j (1 − z j ). Its proof in Boxma et al. (2011) is based on the

following relations:

(i) Eisenberg’s (1972) relation (11) as generalized to PS polling models in Borst and
Boxma (1997).

(ii) Relation (10) between queue-length PGFs at the beginning and end of a service.
(iii) An obvious relation between queue lengths at the beginning and end of a

switchover:
Vbi+1(z) = Vci (z)σi (�(z)) , i = 1, 2, . . . , n. (15)

(iv) A stochastic mean value theorem, expressing L(z) as an average over the PGFs
of the joint queue-length distribution at an arbitrary moment during a visit to Qi

(Xi (z)) and during a switchover period between Qi and Qi+1 (Yi (z)):

L(z) = 1

EC

n∑

i=1

(
EBi

γi
Xi (z) + si Yi (z)

)

, (16)

where, for i = 1, 2, . . . , n,

Xi (z) = Sbi (z)β
past
i (�(z)), (17)

Yi (z) = Vci (z)σ
past
i (�(z)), (18)

whereβ
past
i (·) and σ

past
i (·) are the LSTs of the past parts ofBi andSi , respectively,

and therefore

β
past
i (�(z)) = 1 − βi (�(z))

EBi�(z)
, σ

past
i (�(z)) = 1 − σi (�(z))

ESi�(z)
. (19)

Starting from (16), substituting (17) and (18), and using (10) and (11) to eliminate all
Sbi (z) and Sci (z), yields (14).

Remark 3.2 In Boxma et al. (2011) also zero switchover times are allowed; the same
result (14) is shown to hold.

In Theorem 1 of Boxma et al. (2011), it was subsequently observed that one may
simplify (14) as follows, using the fact that

∑n
i=1(Vci (z)−Vbi+1(z)) = ∑n

i=1(Vci (z)−
Vbi (z)) and (11):

L(z) =
∑n

i=1 λi (1 − zi )Sci (z)∑n
i=1 λi (1 − zi )

. (20)

This formula is remarkably simple; notice that it does not involve the service time
distributions and that the service disciplines at the various queues do not play a role
either, which confirms that (14) is based on very general principles. A short proof of
this formula was subsequently presented in Boon et al. (2017). That proof is based

123



Polling: past, present, and perspective 345

on a very simple, yet very general, balance equation for n-dimensional queue-length
processes just before arrivals and just after departures, and on PASTA. For marginal
queue lengths, it reduces to a classical up- and downcrossing identity.

4 The joint queue-length distribution at polling epochs

In Sect. 3.4, we have seen that Eisenberg’s results (Eisenberg 1972) yield simple
relations between the PGF Sci (z) of the joint queue-length vector at service completion
epochs (or Sbi (z), at service beginning epochs) and the PGFs Vbi (z) and Vci (z) of the
joint queue-length vector at visit beginning and visit completion epochs. Here, again,
z = (z1, . . . , zn). We now restrict ourselves to polling models for which the service
discipline at each queue satisfies the following property:

Property 4.1 If there are ki customers present at Qi at the start of a visit, then during
the course of the visit, each of these ki customers will effectively be replaced in an
i.i.d. manner by a random population having PGF hi (z1, . . . , zn), which may be any
n-dimensional PGF.

Resing (1993) (see also Fuhrmann 1981) has studied polling systems that satisfy this
property; this includes the case of exhaustive or gated service at all queues, but it
excludes the case of 1-limited service at any queue. Resing (1993) has pointed out
that, for this class of polling systems, the joint queue-length process at visit instants
of a fixed queue is a so-called multi-type branching process with immigration. The
theory of multi-type branching processes (cf. Athreya and Ney 1972; Resing 1990)
thus leads to an expression for the PGF of the joint steady-state queue-length process
at visit beginning (polling) instants (which exists if ρ < 1 and si < ∞ for all i).
Property 4.1 prescribes how each of the customers present at Qi at the visit beginning
is replaced by independent families of customers at its visit completion. This enables
one to express Vci (·) nicely into Vbi (·):

Vci (z) = Vbi (z1, . . . , zi−1, hi (z), zi+1, . . . , zn). (21)

Next, we relate Vbi (z) to Vci−1(z). That will allow us—after n steps—to express, say,
Vb1(·) into itself, and finally to obtain an explicit expression for Vb1(z). The PGFs
Vci (·), Sbi (·), and Sci (·) then also follow.

In our analysis, we follow (Resing 1993). We distinguish the two cases of non-zero
and zero switchover times. In both cases, the following branching functions play a
crucial role, thus establishing the link between both cases.

Define
f (z) := ( f1(z), . . . , fn(z)), (22)

with
fi (z) := hi (z1, . . . , zi , fi+1(z), . . . , fn(z)) (23)

for | z j | ≤ 1, j = 1, . . . , n. This is the offspring PGF, the PGF of the joint distri-
bution of the numbers of customers at the end of a cycle with respect to Q1 that are
descendants of a type-i customer. In this branching process setting, a descendant of
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some customer K is a customer that has arrived during the service time of K or of one
of its descendants.
For | z j | ≤ 1, j = 1, . . . , n, define

f (0)(z) := z, f (k)(z) := f ( f (k−1)(z)), k ≥ 1.

Case I: Non-zero switchover times
Observe that

Vbi (z) = Vci−1(z)σi−1

⎛

⎝
n∑

j=1

λ j (1 − z j )

⎞

⎠ . (24)

Substituting (21) into (24)

Vbi (z) = Vbi−1 (z1, . . . , zi−2, hi−1(z), zi , . . . , zn) σi−1

⎛

⎝
n∑

j=1

λ j (1 − z j )

⎞

⎠ . (25)

Applying (25) n times (which corresponds to following the server during one full cycle
with respect to Q1)

Vb1(z) = Vb1( f (z))g(z), (26)

with

g(z) =
n∏

i=1

σi

⎛

⎝
i∑

j=1

λ j (1 − z j ) +
n∑

j=i+1

λ j (1 − f j (z))

⎞

⎠ .

The function g(·) represents the ‘immigration process’ of this multi-type branching
process: it is the PGF of the vector of all customers that either have arrived in the
switchover periods of the past cycle (measured with respect to Q1), or are descendants
of such customers.
Iterating (26) yields

Vb1(z) =
∞∏

k=0

g( f (k)(z))

=
∞∏

k=0

n∏

i=1

σi

⎛

⎝
i∑

j=1

λ j (1 − f (k)
j (z)) +

n∑

j=i+1

λ j (1 − f (k+1)
j (z))

⎞

⎠ , (27)

the infinite product being convergent when the ergodicity conditions are fulfilled.

Case II: Zero switchover times
In the case of zero switchover times (in the sequel, we add a superscript 0 for that
case, to distinguish its quantities from those for non-zero switchover times):

V 0
bi

(z) = V 0
ci−1

(z), (28)
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for i = 2, . . . , n. The relation between V 0
b1

(z) and V 0
cn

(z) deserves special attention
because of our convention concerning the behavior of the server when the system is
empty. When all queues in the model with zero switchover times become empty, S
makes a full cycle, and subsequently stops right before Q1 (all this requires zero time).
When the first new customer arrives, S cycles along the queues to that customer. The
consequence of this is that when the system is empty at the start of a visit to Q1, then
the next visit to Q1 does not take place until a customer has arrived. We can write

V 0
b1(z) = V 0

cn
(z) − V 0

b1(0)[1 − g0(z)], (29)

with

g0(z) :=
n∑

i=1

λi

λ
zi .

The function g0(·) represents the ‘immigration process’ of the multi-type branching
process: it is the PGF of the arrival process of customers during periods in which the
system is empty.

Remark 4.1 Although we sometimes find it convenient to concentrate on Q1, it should
be noted that our convention for the position of S in an empty system does not affect
the waiting-time and queue-length distributions.
In fact, our convention slightly differs from that of Resing (1993), who assumes that
when the system is empty, S immediately stops right behind Q1, and hence takes
g0(z) = ∑n

i=1
λi
λ

fi (z). Our convention enables us to simultaneously apply the theory
of multi-type branching processes and Eisenberg’s approach. ��
Substituting (21) into (28)

V 0
bi

(z) = V 0
bi−1

(z1, . . . , zi−2, hi−1(z), zi , . . . , zn) (30)

for i = 2, . . . , n. Starting from (29) and (21) for i = n, and subsequently using (30)
for i = n, n − 1, . . . , 2, one obtains

V 0
b1(z) = V 0

b1( f (z)) − V 0
b1(0)[1 − g0(z)]. (31)

Iterating (31) yields

V 0
b1(z) = 1 − V 0

b1(0)
∞∑

k=0

[
1 − g0( f (k)(z))

]
= 1 − V 0

b1(0)
∞∑

k=0

n∑

i=1

λi

λ

(
1 − f (k)

i (z)
)

,

(32)
with

V 0
b1(0) =

[

1 +
∞∑

k=0

[
1 − g0( f (k)(0))

]
]−1

=
[

1 +
∞∑

k=0

n∑

i=1

λi

λ

(
1 − f (k)

i (0)
)
]−1

,

the infinite sum being convergent when the ergodicity conditions are fulfilled.
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From (27) and (32), we see that Vb1(z) as well as V 0
b1

(z) is determined by
n∑

j=1
λ j (1−

f (k)
j (z)).

Remark 4.2 It is worth observing that the Globally gated service discipline (Boxma
et al. 1992), as described in Sect. 2, does not satisfy Property 4.1. At the same time,
the PGFs Vbi (·) and Vci (·) can all be expressed in terms of the joint queue-length PGF
Vb1(·) at the start of a cycle. Indeed, Globally gated is, arguably, the most tractable
service discipline, providing a useful testing ground for novel concepts. Altman et al.
(1992) consider the elevator variant of Globally gated, where the various queues are
visited in alternating order. From an application perspective, it might be interesting to
consider the concept of a reservationmechanism, which also underlies Globally gated,
in more detail. For example, customers at some queue might have a certain window
of opportunity to make a reservation for service in the next visit period of that queue,
see Abidini et al. (2017a) for an application in optical switches.

4.1 Marginal queue lengths and waiting times

Above, the joint queue-length PGFs Vbi (z) and V 0
bi

(z) at visit beginning instants have
been determined for the class of cyclic polling models in which Property 4.1 holds for
the service disciplines at all queues. In Sect. 3.4, we already obtained a decomposition
for the PGF of the marginal queue-length distribution at Qi into a corresponding
M/G/1 term and a term involving E(yXi ) and E(yYi ) (via the PGF E(yNi |I )). In
particular, denoting

h̃i (y) := hi (1, . . . , 1, y, 1, . . . , 1); Ṽbi (y)

:= Vbi (1, . . . , 1, y, 1, . . . , 1); Ṽ 0
bi

(y)

:= V 0
bi

(1, . . . , 1, y, 1, . . . , 1),

with y as i th argument, it follows from (12) and (21) for the case of non-zero switchover
times that

E(yNi |I ) = Ṽbi (h̃i (y)) − Ṽbi (y)

(1 − y)Ṽ ′
bi

(1)(1 − h̃′
i (1))

; (33)

the same result holds for the case of zero switchover times, replacing Ṽbi (·) by Ṽ 0
bi

(·)
in (33). Similarly indicating queue lengths, and waiting times, by a superscript 0 in
the case of zero switchover times, one finds (Borst and Boxma 1997)

E(yNi ) = E(yN
0
i )

[Ṽbi (h̃i (y)) − Ṽbi (y)]Ṽ 0
bi

′(1)
[Ṽ 0

bi
(h̃i (y)) − Ṽ 0

bi
(y)]Ṽ ′

bi
(1)

, (34)

E(e−ωWi ) = E(e−ωW0
i )

[Ṽbi (h̃i (1 − ω/λi )) − Ṽbi (1 − ω/λi )]Ṽ 0
bi

′(1)
[Ṽ 0

bi
(h̃i (1 − ω/λi )) − Ṽ 0

bi
(1 − ω/λi )]Ṽ ′

bi
(1)

. (35)

For exhaustive service, h̃i (·) ≡ 1; for gated service, h̃i (y) = βi (λi (1 − y)).
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Let us now (without loss of generality) concentrate on W1 and W0
1. After some cal-

culations Borst and Boxma (1997), one gets

E(e−ωW1) = E(e−ωW0
1 )

Ṽb1(h̃1(1 − ω/λ1)) − Ṽb1(1 − ω/λ1)

s[H̃(h̃1(1 − ω/λ1)) − H̃(1 − ω/λ1)]
, (36)

which for exhaustive service (h̃1(·) ≡ 1) and gated service (h̃1(1 − ω/λ1) = β1(ω)),
corresponds to Theorems 2 and 5 in Srinivasan et al. (1995), respectively.

Remark 4.3 The above results expose a close similarity between the cases with and
without switchover times. Before Borst and Boxma (1997), models with switchover
times and models without switchover times had usually been treated separately, often
via different approaches; the problem with simply letting the switchover times tend to
zero in a polling model with non-zero switchover times is that the number of polling
epochs in an idle period tends to infinity, leading to degenerate distributions at such
epochs, cf. Levy andKleinrock (1991) andEisenberg (1994). The relationship between
the two models has further been exposed in Cooper et al. (1996), Fuhrmann (1992),
and Srinivasan et al. (1995); in Borst and Boxma (1997), some of their results are
unified and generalized.

4.2 Computational aspects

The above results provide a basis for a very efficient numerical calculation of the
mean waiting times as well as higher order moments (Borst and Boxma 1997). The
number of elementary operations (additions, multiplications) involved for calculating
the mean waiting time at a single queue is O(n logρ(ε)), with ε the desired level
of accuracy. This is comparable to the computational complexity of the so-called
descendant-set approach developed by Konheim and Levy (1992) and the so-called
station time method of Ferguson and Aminetzah (1985) which entail solving a system
of n2 equations for obtaining the mean waiting times at all n queues. These methods
provided a significant reduction in computational complexity compared to the original
buffer occupancy method described by Cooper (1970), Cooper and Murray (1969),
and Eisenberg (1972) which required solving a system of n3 equations for determining
themeanwaiting times at all n queues. Themean value analysis developed byWinands
et al. (2006), as further discussed in Sect. 7, also provides an efficient way to determine
mean sojourn times, as demonstrated in Van der Gaast et al. (2017) for a model with
batch arrivals. It additionally offers a basis for approximations of mean queue lengths
and mean delays.

We close this subsection by remarking that (i) Eq. (11) of Resing (1993) provides
exact (non-numerical) moment expressions for branching-type polling models and (ii)
Choudhury and Whitt (1996) present an elegant method to obtain moments and tail
probabilities in polling models via numerical inversion of transform expressions.

123



350 S. Borst, O. Boxma

5 Two-queue polling systems which are not of branching type

There appears to be a sharp division between ‘easy’ (branching-type) and ‘compli-
cated’ polling models. Such a division is not uncommon in queueing theory; one also
sees it, e.g., in queueing networks that do or do not satisfy the conditions to have
a product form for their joint queue-length distribution. If a polling system does not
satisfy the branching property, then an exact analysis of queue length and waiting-time
distributions generally seems out of reach. Just like in queueing networks, there are
a few two-queue exceptions; in the present section, we consider some of those. We
restrict ourselves to the case of non-zero switchover times. Starting point is a relation
between the two-dimensional queue-length generating functions Vb1(z) = Vb1(z1, z2)
and Vb2(z1, z2) at server visits to Q1 and Q2, respectively. When the branching prop-
erty holds, this relation is given by (25), which could be iterated to yield an infinite
product. Now, consider the case in which Q1 receives exhaustive service and Q2
receives 1-limited service. Then (26) is replaced by

Vb1(z1, z2) = β2(z1, z2)σ2(z1, z2)

z2
[σ1(z1, z2)Vb1(h1(z1, z2), z2)

−σ1(z1, 0)Vb1(h1(z1, 0), 0)]
+σ2(z1, z2)σ1(z1, 0)Vb1(h1(z1, 0), 0). (37)

Ibe (1990) has obtained the marginal queue-length transform for Q1 at polling instants
of that queue; Groenendijk ( 1990 b, Section 6.3) used (37) to obtain an explicit
expression for Vb1(z1, z2). The key to solving (37) is the observation that because
service at Q1 is exhaustive, one has h1(z1, z2) = π1(λ2(1 − z2)) with π1(·) the LST
of a busy period of M/G/1 queue Q1 in isolation. Because this function does not
depend on z1, Vb1(h1(z1, 0), 0) is a constant, not depending on z1. Hence, the only
unknown functions in (37) are Vb1(z1, z2) and Vb1(h1(z1, z2), z2), and the substitution
z1 = π1(λ2(1−z2)) (plus the normalization condition) solves the problem. For a study
of the two-queue case with exhaustive service at Q1 and k-limited service at Q2, we
refer to Ozawa (1990) and Winands et al. (2009).

It is perhaps not that surprising that the two-queue exhaustive/1-limited model
is easy to analyze; in the case of zero switchover times, it reduces to a classical
queueing model with two customer classes and non-preemptive priority for class 1. It
is surprising, though that the two-queue gated/1-limited model has not succumbed to
an exact analysis; in Boon et al. (2011), it is suggested that determination of Vb1 (z1, z2)
for that model might be accomplished by solving a so-called boundary value problem
of a complicated type.

Several two-queue pollingmodels have been solved via a formulation as a boundary
value problem; we now turn to this line of research.

Eisenberg (1979) studies a two-queue polling model with 1-limited service at both
queues and without switchover times. He transforms the problem of determining
Vb1(z1, z2) into the problem of solving a singular integral equation (a complex Fred-
holm integral equation of the second kind). As the author indicates, due to the difficult
nature of themathematics, some steps in the solution remain to be proven. InCohen and
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Boxma (1981), a different approach for this same model is given. Below, we sketch
that approach, for the more general case of non-zero switchover times (cf. Boxma
and Groenendijk 1988). Starting point in Boxma and Groenendijk (1988) again is the
functional equation for Vbi (z1, z2):

K (z1, z2)Vb1(z1, z2) = Vb1(0, z2)[β2(z1, z2)σ1(z1, z2)σ2(z1, z2)(z1 − β1(z1, z2))]
+Vb2(z1, 0)[z1σ2(z1, z2)(z2 − β2(z1, z2))], (38)

with K (z1, z2) the kernel of the functional equation, defined as

K (z1, z2) := z1z2 − β1(z1, z2)β2(z1, z2)σ1(z1, z2)σ2(z1, z2). (39)

The appearance of the functions Vb1(0, z2) and Vb2(z1, 0) corresponds to a server
arriving at an empty queue. Once they have been obtained, Vb1(z1, z2) is also known.
The key in the analysis in Boxma and Groenendijk (1988) is that, according to its
definition as a probability generating function, Vb1(z1, z2) should be analytic inside
the product of unit circles |z1| < 1, |z2| < 1. Hence, every zero of K (z1, z2) in
that region should also be a zero of the right-hand side of (38). The ensuing relation
between Vb1(0, z2) and Vb2(z1, 0) is thus translated into a Riemann boundary value
problem—a problem in which two functions are related on a closed contour, while one
function is analytic inside that contour (and continuous up to the boundary) and the
other function is analytic outside that contour (and continuous up to the boundary).
By solving such a Riemann problem, Vb1(0, z2) and Vb2(z1, 0) are obtained. In Cohen
and Boxma (1981), for the case of zero switchover times, a similar approach was
followed, resulting in a (somewhat simpler) Dirichlet boundary value problem.

Cohen (1987) studies a two-queue polling model with semi-exhaustive (also called
decrementing) service: the server stays in a non-empty queue until the number of
customers present has become one smaller than the number found upon its arrival to
the queue. The joint queue-length distribution at visit completion epochs is obtained
by formulating and solving a Riemann boundary value problem.

Several studies consider two-queue polling models with Bernoulli service. Under
this service discipline, if both queues are non-empty and the server is at Q j , a customer
from Q j is served with probability p j and a customer from the other queue is served
with probability 1 − p j . The case with p1 = 1 and 0 ≤ p2 < 1 was solved by
Weststrate and van der Mei (1994) via an iterative process. The case that p1, too,
is less than one is harder. Both Lee (1997, zero switchover times) and Feng et al.
(1998, non-zero switchover times) treat this model using boundary value techniques.
Lee formulates a Riemann boundary value problem with a shift, and translates it to
a Fredholm integral equation which he solves. Feng et al. (1998) also formulate and
solve a Riemann boundary value problem.

Finally, we would like to observe that it seems unlikely that an exact analysis will
be provided for an n-queue polling model, with n > 2, in which none of the queues
has a branching-type service discipline. This belief is based on the lack of a boundary
value approach in dimensions higher than two. Analytic–numerical approaches like
the power-series algorithm could be used in such cases, see Blanc (1991).
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6 The input process

The polling literature focuses almost exclusively on the case of customers arriving
according to independent Poisson processes, the service requirements at the various
queues, moreover, being independent sequences; the resulting input processes hence
are independent compound Poisson processes. In this section, we consider some gen-
eralizations of these assumptions.
(i) BMAP arrivals. Saffer and Telek (2010) consider a polling model with either
exhaustive or gated service, in which the arrival processes at the n queues are indepen-
dent BatchMarkovian Arrival Processes (BMAP). They developed a generalization of
the so-called buffer occupancymethod, a classical method for analyzing queue lengths
in polling systems, first presented by Cooper and Murray (1969).
(ii) Renewal arrivals. Bertsimas and Mourtzinou (2009) consider a polling model
with independent renewal arrival processes at the various queues. For the case of
gated service at all queues, they derive expressions for the mean delays in heavy
traffic, expressing these in cycle time variances which can be obtained by solving
a system of n × n equations. Van der Mei and Winands (2008) build upon their
result, allowing general switchover times and providing closed-form expressions for
scaled mean delays in heavy traffic. Boon et al. (2014) combine light- and heavy-
traffic approximations, via interpolation, to come up with accurate mean waiting-time
approximations for polling systems with both gated and exhaustive service.

Another type of approximation is provided in a few papers of Tran-Gia, see in
particular Tran-Gia (1992). He presents a discrete-time analysis of polling systems
with finite buffers, 1-limited service, and general renewal input. Hismethod is based on
the use of efficient discrete convolution operations, using fast convolution algorithms
like the Fast Fourier transform.
(iii) Correlated arrivals. Levy and Sidi (1989) study a polling system with corre-
lated Poisson arrival streams. They consider gated and exhaustive service, and derive
linear equations, whose solution yields the mean delays. They also derive a pseudo-
conservation law for the mean delays. They extend their analysis in Levy and Sidi
(1991) to the case of Poisson arrivals of customer batches with correlated numbers
(K1, . . . , Kn), destined for queues Q1, . . . , Qn . A workload decomposition and gen-
eral pseudo-conservation law for a polling model with such a batch Poisson arrival
process is presented in Boxma (1989). Van der Gaast et al. (2017) derive the sojourn
time LST of a batch, for exhaustive, gated and Globally gated service; a batch here
may contain customers of various queues.
(iv) Lévy input. Recently there has been a growing interest in queueing models with
as input a Lévy process (‘Lévy-driven queues’, see Debicki and Mandjes 2015). Lévy
processes are processes with stationary, independent increments. Compound Poisson
processes, Brownian motion and linear increment processes are some special cases.
The generalization from a compound Poisson input (as in an M/G/1 queue) to a
Lévy input implies that one can no longer speak of customers and queue lengths;
the focus naturally shifts to workloads. There is hardly any literature on Lévy-driven
polling systems. A pioneering paper is due to Eliazar (2005a), who studies Lévy-
driven polling systems under the gated discipline, using a dynamical systems approach.
Czerniack and Yechiali (2009) consider fluid input at all queues, which may be seen
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as a special case of Lévy input. In Boxma et al. (2011) a very general arrival process is
allowed: the input process is an n-dimensional Lévy subordinator (i.e., non-decreasing
sample paths, which is of course natural for an input process). Correlations between
the inputs at the various queues are allowed. Moreover, the input process may change
at polling and switchover instants, implying that one can have different input processes
at different server positions. The transition from compound Poisson process to Lévy
subordinator implies that one no longer has the branching Property 4.1, which is
stated in terms of numbers of customers. Boxma et al. (2011) identify the analogous
branching property in a continuous state space setting, that allows describing themulti-
dimensional workload at successive polling instants at a fixed queue as a multi-type
continuous state space, discrete-time, branching process. This is referred to as a multi-
type Jirina branching process (Jirina 1958; MTJBP). The class of service disciplines
that satisfy the new branching property is rich, and contains the exhaustive and gated
disciplines. Altman and Fiems (2007) had also observed the relation between Lévy-
driven polling models and MTJBPs, in a special case in which all the queues are
fed by identical Lévy subordinators. Employing the Kella–Whitt martingale, the LST
of the joint steady-state workload distribution at an arbitrary epoch is also obtained
in Boxma et al. (2011). Martingales are also the main tool in proving a workload
decomposition result for a polling system with multi-dimensional Lévy input (Boxma
and Kella 2014).

7 Scheduling

Until 10years ago, very few papers diverged from the FCFS assumption for service
within a queue of a polling system. In this section, we pay attention to two lines of
research which deviate from the FCFS adagium: (i) polling systems with multiple
classes of customers per queue, and fixed priorities, and (ii) polling systems in which
there is only one class of customers per queue, but with a service discipline within a
queue that is not FCFS but, e.g., Last-Come First-Served (LCFS), processor sharing,
Random Order of Service (ROS), or Shortest Job First (SJF).
(i) Multiple customer classes with fixed priorities. Shimogawa and Takahashi (1992)
derive a PCL for a polling system with fixed priorities within queues, and Fournier
and Rosberg (1991) consider polling systems with local priorities and with global
priorities (where the server moves to the next queue if some queue has a customer of
higher priority than the ones in the presently visited queue). They develop a PCL for
both model variants.

While most polling + priority studies originated from a computer-communication
background, polling systems with multiple customer classes and fixed priorities also
arise naturally in the Stochastic Economic Lot Scheduling Problem (SELSP), where
multiple types of products have to be produced on a single machine with significant
setup times. In the SELSP, orders for the same product type are being placed by cus-
tomers of different priority levels, giving rise to polling models with not only several
queues (corresponding to orders for the various product types) but also several cus-
tomer classes per queue, see Winands (2007). This formed one of the motivations for
a series of papers of Boon and Adan (2009), Boon et al. (2010a, b). They analyze the
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joint queue-length distribution for polling models which are of type PS, except for the
additional assumption that within each queue there are several classes of customers
with fixed priorities. That analysis relies on a relation to multi-type branching pro-
cesses, cf. Sect. 4. They also determine the waiting-time distributions of the various
classes of customers. This is done for exhaustive, gated and Globally gated service. A
key step of the approach is to determine the joint distribution of the past and residual
cycle time at the arrival epoch of the tagged customer. For gated service, the waiting
time of a customer of priority level k in Qi consists of that residual cycle time, plus
the services of higher priority customers arriving during the cycle, plus the services of
customers of equal priority arriving during the past part of the cycle. For exhaustive
service, the procedure is somewhat similar, with a slightly different definition of the
cycle time: for gated service, a cycle for Qi starts at the beginning of a visit to Qi ,
whereas for exhaustive service it turns out to be convenient to let the cycle start at the
completion of a visit to Qi .

(ii)One customer class per queue; non-FCFS service.There are quite a few real-world
examples of polling situations in which non-FCFS scheduling might be required. In
the computer science community, polling models are used to study the Bluetooth
and 802.11 protocols, and scheduling policies at routers and i/o subsystems in web
servers. The high workload variability in many of these settings makes non-FCFS
scheduling appealing, see Wierman et al. (2007). In Wierman et al. (2007) it is argued
that the lack of research on scheduling in polling systems is not due to a lack of
applications, but rather due to the beliefs that the impact of within-queue scheduling
will be small, and that the ensuing mathematical analysis will be very hard. Using the
Mean Value Analysis (MVA) framework that was developed for polling systems in
Winands, Winands et al. (2006), in Wierman et al. (2007) mean response (=sojourn)
times in polling systems with exhaustive or gated service are determined for a wide
array of service disciplines: LCFS, Processor Sharing, SJF and Shortest Remaining
Processing Time First (SRPT). It turns out that, while varying the scheduling strategy
at queues with gated service does not have a major effect, it does strongly affect mean
delays in the case of exhaustive service. This holds in particular for SRPT, just as in
an ordinary M/G/1 queue. The reason that the effect is particularly pronounced for
exhaustive service is that small jobs which arrive during a visit of their queue take
advantage of preemption and thus have very small delays.

The above analysis is extended to sojourn time distributions in Boxma et al. (2009).
The approach globally consists of the following steps: (i) determine the joint queue-
length distribution at server visit epochs to a queue (restricting attention to polling
models which satisfy the branching property); (ii) determine the LST of the cycle
time distribution for some queue Qi ; (iii) use this to determine the joint LST of the
past and residual part of that cycle time, at the arrival epoch of a customer at Qi ; (iv)
for various service disciplines at Qi , and now focusing on gated and Globally gated,
careful book-keeping yields the sojourn time LST at Qi . The analysis for exhaustive
service seems more complicated; in Ayesta, Ayesta et al. (2012) the sojourn time LST
is obtained for the case of an M/M/1 processor-sharing queue in a polling system,
under the constraint that all other queues also satisfy the branching property. See also
Kim and Kim (2017) for the case of phase-type service at the processor-sharing queue.
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8 Asymptotics

In this section, we consider two kinds of asymptotics: many-queue asymptotics and
heavy-traffic asymptotics.

8.1 Many-queue asymptotics

Asymptotic regimes where the number of queues in a polling system grows large
have received little attention so far. A few authors have studied the case in which the
switchover times between successive queues go to zero when the number of queues
grows large. In the limit, the polling system then behaves as a “continuous” spatial
system with a single server which moves at constant speed along a circle, stopping to
perform services when it encounters customers. These customers arrive uniformly on
the circle, according to a Poisson process. Initial studies of such a continuous polling
system were provided in Coffman and Gilbert (1986) and Fuhrmann and Cooper
(1985b). Their model is generalized by Kroese and Schmidt (1992) via an approach
that makes use of randommeasure theory and stochastic integration theory, and which
thus also provides a rigorous mathematical basis for the study of continuous polling
models.

An interesting model generalization is also proposed by Eliazar (2005b). He con-
siders a polling system with gated service and n queues, with a Lev́y input process
and general interdependent switchover times. Letting n → ∞, he proves convergence
in law to a limiting polling system on the circle. His proof is based on an asymptotic
analysis of stochastic Poincaré maps. The obtained limit is identified as a so-called
snowplowing system on the circle (a snowplower cycling along a track, clearing off
snow while moving (cf. Knuth 1973, pp. 254–255 and 259–264).

Motivated by applications in ferry-assisted wireless local-area networks, Kavitha
andAltman have studied several continuous polling variants, see, for instance, Kavitha
and Altman (2012), in which nonclassical service disciplines are considered, and in
which the continuous polling system is analyzed by discretizing the system in such a
way that known pseudo-conservation laws (cf. Sect. 3.3) can be applied. Their results
rely heavily on fixed-point analysis of infinite-dimensional operators.

Kroese and Schmidt (1994) considers a greedy service policy: after completion
of a service, the server always moves in the direction of the nearest customer. The
stability condition for this system and several interesting open problems are discussed
in Rojas Nandayapa et al. (2011). Those open problems concern stability issues as
well as characterization of the random measure describing the steady-state customer
positions. This is done in amore general setting than polling on a circle; customersmay
arrive in some space, and are served by one or more servers roaming that space. We
refer to Rojas Nandayapa et al. (2011) for an extensive set of references on continuous
polling.

In Meyfroyt et al. (2018), another type of scaling with a large number of queues
is studied. Motivated by token passing algorithms for communication channels with
medium access control and a large number of nodes, Meyfroyt et al. (2018) consider
the following scenario: the number of queues grows large, while the total arrival rate is
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kept fixed and the individual switchover time and service time distributions remain the
same. This asymptotic regime leads to cycles of infinite length and queue lengths with
non-trivial distributions. Explicit pre-limit expressions are derived for the covariance
of queue lengths, the covariance of visit times and the variance of the cycle time
for symmetric polling systems in which the server uses a branching-type discipline.
This leads to explicit expressions for limn→∞E[C/n] and limn→∞nVar(C/n). Those
results reveal that since Var(C/n) is of order 1/n, the scaled cycle timeC/n converges
in probability to a deterministic value. This implies that the queue lengths at the various
nodes become asymptotically independent. In the limit, the individual queues appear
to behave as discrete-time bulk service queues. It is suggested inMeyfroyt et al. (2018)
that these properties of C/n and of the individual queues remain valid for symmetric
polling systems with a large number of queues and more general non-idling service
disciplines—which are not necessarily of the branching type.

8.2 Heavy-traffic asymptotics

Pioneering papers regarding the heavy-traffic behavior of polling systemswerewritten
by Coffman et al. (1995, 1998). In Coffman et al. (1995), the focus is on a two-queue
pollingmodelwith renewal arrival processes and exhaustive service at both queues, and
with zero switchover times. The authors first apply standard heavy-traffic assumptions
and scalings; they let

√
m(1−ρ) approach a constantwithm going to infinity, and show

that the normalized total workload process W (mt)/
√

m) weakly converges to reflected
Brownian motion (RBM). For this, they can rely on a known G/G/1 result because of
work conservation. They subsequently show that the scaled workloads of individual
queues change at a rate that becomes infinite in the limit. They then formulate an
averaging principle for individual workloads, in which during one polling cycle, these
scaled workloads linearly decrease to zero (during visit periods of the corresponding
queue) and linearly increase (during the subsequent intervisit period), while the total
scaled workload in the system during such a cycle basically stays the same. Individual
workloads change a factor

√
m faster than the total workload. Put differently: when

the total scaled workload equals x , the scaled workload at an individual queue is
uniformly distributed on [0, x]. While in Coffman et al. (1995), a rigorous proof is
only provided for the two-queue case with identical service time distributions, the
authors convincingly argue that such an averaging principle should also hold in the
n-queue case, with not necessarily identical service time distributions.

Coffman et al. (1998) prove that the averaging principle carries over to the case
of non-zero switchover times. Because of those switchover times, they first have to
replace the RBM heavy-traffic limit for the total workload by a Bessel-type diffusion
limit. Two key elements of their subsequent approach are: (i) they first prove the
averaging principle for a so-called threshold queue, a single queue in isolation with
a server which only starts serving when the workload exceeds some value T and (ii)
they strongly rely on a semi-martingale representation of the workload process, which
allows them to use general convergence results for semi-martingales.

The Coffman–Puhalskii–Reiman papers have given rise to several lines of research.
Olsen (2001) provides a heuristic refinement of the averaging principle, which

123



Polling: past, present, and perspective 357

improves the accuracy of the resulting approximation for waiting-time distributions
under moderate load. In several studies, it is argued, without a rigorous proof, that
the averaging principle of Coffman et al. (1995, 1998) holds in far greater general-
ity. We refer to Section 2 of Markowitz et al. (2000) for an excellent discussion of
the heavy-traffic averaging principle and further references, here only mentioning the
interesting extensions to polling systems in tandem in Reiman and Wein (1999) and
to the stochastic economic lot scheduling problem (Markowitz et al. 2000). Olsen
and Van der Mei (2005), too, conjecture that the heavy-traffic averaging principle
holds in considerable generality, and apply it to polling models with renewal arrivals,
exhaustive or gated service at the queues, and service according to a polling table.
They also use their heavy-traffic limiting result to provide accurate approximations
for waiting-time distributions under moderate to heavy load. A similar approach is
followed in Boon et al. (2016) for a network with a single roving server, leading to a
heavy-traffic limiting result for the distribution of the total sojourn time of a customer
in the network when following a specific path. In combination with a novel light-traffic
approximation, this yields an approximation for the mean total sojourn time along a
specific path, which is highly accurate for awide range of traffic loads. Jennings (2010)
uses a new technique to prove the validity of a heavy-traffic averaging principle for
a vector of weighted queue lengths in a polling system with zero switchover times,
and with a certain parameterized set of gated and exhaustive service disciplines. Each
queue length is weighted by its mean processing time.

Finally, we mention three results of a different type. First, Van der Mei (2007)
develops a heavy-traffic approach which is quite different from the one in Coffman
et al. (1995, 1998). He restricts himself to branching-type polling systems, and then
exploits Theorem 4 of Quine (1972) for multi-type Galton–Watson branching pro-
cesses, in which the maximal eigenvalue of the so-called mean matrix (of numbers
of descendants) approaches the critical value 1. Using Resing’s relation between the
numbers of particles inmulti-type branching processes Resing (1993) and the numbers
of customers in the various queues at server polling epochs, he is able to obtain the
heavy-traffic limiting behavior of the queue lengths, see also Abidini et al. (2017b)
for a related heavy-traffic result for a polling model with retrials and so-called glue
periods that models the dynamics of optical switches; in Abidini et al. (2017b), heavy-
traffic asymptotics for the joint queue-length process are derived. Interestingly, Kroese
(1997) provides a heavy-traffic analysis of a continuous polling system on the circle
(cf. Sect. 8.1), by exploiting the relationship between such systems and age-dependent
branching processes.

Second, Boon and Winands (2014) consider a two-queue polling system with zero
switchover times and ki -limited service at Qi , i = 1, 2, underMarkovian assumptions.
Applying a singular perturbation technique, they derive the heavy-traffic behavior of
the joint queue-length vector. The queue length of the critically loaded queue (Q2)
appears to be exponentially distributed after an appropriate scaling, whereas the queue
length of Q1 is distributed as that of a queue in isolation with Erlang-k2 distributed
vacations. This reveals a heavy-traffic behavior that is quite different from the heavy-
traffic behavior of the branching-type polling models studied in the papers mentioned
above.
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Third, Bekker et al. (2015) consider polling models with the gated or globally
gated service policy and several non-FCFS service disciplines. They derive asymptotic
closed-form expressions for the LST of scaled (by a factor 1 − ρ) waiting times and
sojourn times in heavy traffic. For FCFS, it was already known that the scaled sojourn
times are of the form U�, with U and � independent, U uniformly distributed and �

Gamma distributed. In Bekker et al. (2015), this result is also shown to hold for LCFS,
while one has Ũ� for ROS with Ũ having a trapezoidal distribution; for processor
sharing and SJF one gets Ũ∗�, with Ũ∗ having a generalized trapezoidal distribution.
These results lead to accurate waiting- and sojourn time approximations. Vis et al.
(2015) consider the same heavy-traffic problem for the case of exhaustive service at
all queues. In that case, the scaled sojourn times are of the form ��, where � is
related to a uniformly distributed random variable.

9 Somemiscellaneous topics

In this section, we discuss some miscellaneous topics, which did not fit in the frame-
work of the previous sections: (i) multiple-server polling systems; (ii) disciplines with
service limits; (iii) optimization of polling systems; and (iv) queue-length-dependent
server behavior. Unfortunately, we could not cover some interesting topics like the
concept of the dormant server which stays at a queue when the system has become
empty; the concept of the smart customerwhose arrival rate is determined by the server
location; and the concept of fairness. The latter concept may deserve more attention
than it has so far received in the literature (Shapira and Levy (2015); Van Wijk et al.
(2012)), because it is closely related to the important question which queue to serve
next, and which service discipline to use at a queue.

9.1 Multiple-server polling systems

As reflected inAssumption 1, in Sect. 2, we have focused on polling systemswith a sin-
gle server. Althoughmultiple-server polling systems find a wide range of applications,
they have received relatively limited attention, and hardly any exact distributional
results are available, since the combination of several queues and multiple servers
yields highly complex behavior.

In multiple-server models, it is useful to distinguish between two scenarios with
either coupled servers which always visit the various queues as a group or independent
servers which each visit the queues individually. Browne and Weiss (1992) establish
index-type rules for determining the visit order thatmyopicallyminimizes the expected
length of individual cycles in systems with coupled servers and exhaustive or gated
service. Browne et al. (1992) and Browne and Kella (1995) analyze two-queue models
with an infinite number of coupled servers and deterministic service times at one of
the two queues. Vlasiou and Yechiali (2008) analyze polling systems with an infi-
nite number of coupled servers and random visit durations. Borst (1995) explores the
class of models with multiple coupled servers that satisfy a slight generalization of
branching Property 4.1, and allow an exact analysis of the joint queue-length distribu-
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tion at polling epochs, the marginal queue-length distributions, and the waiting-time
distributions.

Models with multiple independent servers arise in scenarios, where several queues
may be served concurrently, as is commonly the case in a wide range of applications,
e.g., token ring and optical communication networks, elevator systems, and signalized
traffic intersections. In a pioneering paper, Morris and Wang (1984) derive the mean
cycle time of each server and the mean intervisit time to a queue, and present approx-
imate expressions for the mean sojourn time for both a gated-type and a limited-type
service discipline. An interesting phenomenon observed in Morris and Wang (1984)
is that multiple independent servers have a tendency to cluster if they follow identical
routes, especially in high load conditions. This phenomenon is somewhat reminiscent
of the tendency for city buses and trams to bunch together on heavily traveled routes,
and may be visualized and understood as follows. A server that is behind will tend to
move fast, as it only encounters recently served queues, whereas a server at the front
will tend to be slowed down by queues that have not been served for a while. Thus, the
servers tend to form bunches while constantly leapfrogging over one another. Obvi-
ously, the bunching of servers is alleviated if they follow different routes, and Morris
and Wang (1984), therefore, advocate the use of ‘dispersive’ policies to improve the
system performance. Gamse and Newell (1982a) and Gamse and Newell (1982b) use
multiple-server polling models to study elevator operations, where similar bunching
behavior can occur.

Borst and Van der Mei (1998) provide mean waiting-time approximations which
exploit pseudo-conservation-like concepts (which had proven to be valuable in the
single-server case, cf. Boxma and Meister 1987a, b) and explicitly account for the
tendency of the servers to cluster as function of their visit orders. Van der Mei and
Borst (1997) demonstrate how performance metrics in polling systems with multiple
independent servers may be calculated using the so-called power-series algorithm.

In recent papers, Antunes et al. (2010) and Robert and Roberts (2010) propose
mean-field approximations for the capacity of multiple-server polling systems with a
large number of queues and a limit on the number of servers that can visit a queue
simultaneously, motivated by applications in passive optical networks. Finally, it is
worth observing that the analysis of optimal dynamic routing policies and service
disciplines for polling systems with multiple independent servers is closely related to
that of selecting an optimal service vector in ‘switched’ networkswith several potential
schedules and reconfiguration delays as considered in Armony and Bambos (2003),
Brzezinski and Modiano (2005), Celik et al. (2016), Hung and Chang (2008), and
Wang and Javidi (2017).

9.2 Disciplines with service limits

Disciplines with service limits, as described in Sect. 2, are commonly adopted in
practice to regulate the amount of service provided to each of the queues during a
visit. Such service limits can either be specified in terms of the maximum number
of customers served during a visit or the maximum time duration of a visit, and can
be leveraged to bound the cycle time. Moreover, these limits provide a mechanism
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to achieve prioritization, by assigning different service limits to different queues,
according to their relative importance.

Although these disciplines are widely implemented, they are difficult to analyze
and hence it is not well understood how to set the service limits so as to achieve target
performance levels. Note that k-limited service disciplines do not satisfy Property 4.1
and exact results are only available for special cases, such as completely symmetric
systems with 1-limited service and a few two-queue scenarios, as discussed in Sect. 5.
Polling systems with time-limited service have not yielded to an exact analysis in
any degree of generality either. Coffman, Fayolle and Mitrani Coffman et al. (1988)
and De Haan, Boucherie and Van Ommeren in a series of papers (see, e.g., De Haan
et al. 2009) present interesting results for exponentially distributed time limits. Leung
(1991) develops a numerical technique for analyzing systems with a probabilistically
limited service discipline.

The fact that disciplines with service limits are widely deployed, yet extremely
hard to analyze, has considerably added to the importance of the pseudo-conservation
laws discussed in Sect. 3 in constructing and validating waiting-time approximations.
Boxma and Meister (1987b) use the pseudo-conservation law to derive waiting-time
approximations for 1-limited service. 1990 (b) presents a more refined procedure to
compute such approximations. For the general case of k-limited service, the pseudo-
conservation law still contains an unknown term. Fuhrmann and Wang (1988) obtain
waiting-time approximations for k-limited service by bounding that term. Everitt
(1986), Everitt (1989) derives such approximations by approximating that term. Chang
and Sandhu (1992) present a more refined procedure to calculate waiting-time approx-
imations for k-limited service.

9.3 Optimization of polling systems

Optimization in polling systems is a multi-faceted problem which has been actively
pursued, though it remains somewhat under-explored compared to the analysis of
polling systems. We refer to Boxma (1991) (static optimization) and Yechiali (1991)
(semi-dynamic optimization) for surveys, and here only highlight a few of the main
issues.

In the optimization of polling systems, there are two key factors that play a role:
first, what is the performance metric to be optimized, and second, what is the class of
feasible scheduling policies. As for the first factor, a commonly adopted optimization
criterion is aweighted sumof themeanwaiting times at the various queues.Concerning
the second factor, usually the class of feasible scheduling policies consists of a family
of strategies of similar structure that differ by some (vectorial) parameter. Typical
examples include a routing vector (routing probabilities, or polling table), a service
vector (service probabilities, or service limits), or a routing vector and a service vector
simultaneously, which we now briefly discuss in succession.

Optimization of the routing policy for a given service policy
A considerable research effort has been devoted to static optimization, i.e., optimiza-
tion of static routing policies, inwhich the routing decisions aremade independently of
the state of the system. Boxma et al. (1990) consider a systemwith randompolling, and
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either exhaustive or gated service at each of the queues. They address the problem of
finding the routing probabilities that minimize

∑n
i=1ρi EWi , the latter quantity being

explicitly known from the pseudo-conservation law for random polling, cf. Boxma and
Weststrate (1989). They subsequently use this to determine a polling table that min-
imizes

∑n
i=1ρi EWi , or, more generally Boxma et al. (1993), to determine a polling

table that minimizes a weighted sum of the mean waiting times, the latter quantity
now being approximated in terms of the occurrence ratios of the queues in the polling
table. Kruskal (1969) studies a similar problem with deterministic arrival, service, and
switchover processes. In all cases, the optimal visit ratios are given by surprisingly
simple square-root formulas.

Also, a considerable amount of research effort has been put to semi-dynamic opti-
mization, i.e., optimization of semi-dynamic routing policies, in which periodically
the visit order for some future period is determined, based on some partial knowledge
of the state of the system; see for instance Browne and Yechiali (1989) and Fabian
and Levy (1994).

Optimization of the service policy for a given routing policy
Borst et al. (1995) consider a system with a k-limited service strategy at each of
the queues, and address the problem of determining the vector of service limits
(k1, . . . , kn) that minimizes a weighted sum of the mean waiting times. Blanc and
Van der Mei (1995) study a similar optimization problem in a system with a Bernoulli
service strategy at each of the queues.

Simultaneous optimization of routing policy and service policy
Borst et al. (1994) consider a system operated with a fixed time polling (ftp) scheme.
An ftp scheme specifies which queue should be visited at what time, i.e., it specifies
not only the order of the visits, but also the starting times of the visits, and addresses
the problem of constructing an ftp scheme that minimizes a weighted sum of the mean
waiting times.

For a model with zero switchover times, the optimal (non-preemptive) polling
policy is known to be given by the cμ-rule, cf. Meilijson and Yechiali (1977), and
Buyukkoc et al. (1985). For a symmetric two-queue model with non-zero switchover
times,Hofri andRoss (1987) show that the policy thatminimizes the sumof discounted
switchover times and the holding cost, is exhaustive service in a non-empty system, and
is of threshold type for switching from an empty queue to another. For an asymmetric
two-queue model with switchover costs rather than switchover times, Koole (1998)
shows that the policy that minimizes the sum of discounted switching cost and holding
cost, is not a threshold policy, but that the best threshold policy approaches the optimal
policy very well. See the next subsection for some further threshold policies.

9.4 Queue-length-dependent server behavior

We briefly mention some studies which are devoted to the exact analysis of two-queue
polling models with threshold switching. Lee and Sengupta (1993) consider a two-
queue system without switchover times. If there are more than L customers at Q1
after a customer departure, then the server next serves a type-1 customer. If there
are at most L customers at Q1 after a customer departure, then the server checks the
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type of the last served customer, and serves a customer of the other type (if there is
one). Boxma et al. (1995) study a two-queue model with exponential service times
and exhaustive service at Q1. Service at Q2 is also exhaustive, unless the size of Q1
reaches a threshold T during a service at Q2; in the latter case the server switches
to Q1, either preemptively or at the end of the service. The same model, but with
general service time distributions and without preemption, is considered in Boxma
and Down (1997); that paper also contains a simple, yet accurate, mean queue-length
approximation which is suitable for optimization purposes. The two-queue model
with general service time distributions in Feng et al. (2001) has two thresholds M and
N > M in Q2. After a service completion in Q1 that leaves Q1 non-empty, the server
still moves to Q2 if its queue length exceeds N . After a service completion in Q2
that leaves Q2 with at most M customers, while Q1 is not empty, the server switches
to Q1; otherwise, it stays at Q2. The analysis in each of these four papers Boxma
and Down (1997), Boxma et al. (1995), Feng et al. (2001), Lee and Sengupta (1993)
focuses on queue-length PGFs, and relies on arguments from complex function theory.
The two-queue model of Avrachenkov et al. (2016) also has a threshold-based policy,
but the capacities of both queues are finite. They use a matrix-analytic approach, and
expose an interesting oscillation phenomenon. We also refer to this paper for further
references on threshold switching.

Remark 9.1 Next to queue-length-dependent server behavior, one could also allow
queue-length-dependent customer behavior. In Adan et al. (2016), a two-queue polling
model is analyzed in which customers join the shortest queue. The joint queue-length
distribution is determined both via the compensation approach and via reduction to a
Riemann–Hilbert boundary value problem. Alternatively, one could allow customers
to use some form of information about the server position. For example, the arrival
rate of customers could depend on whether the server is visiting Qi , or switching
to Q j . In the case of branching-type service disciplines, one can then still obtain joint
queue-length distributions by exploiting properties of multi-type branching processes;
a similar statement even holds in the case of Lévy-driven polling models (Boxma et al.
2011).

10 Suggestions for further research

Polling is a quite broad topic, and there are several ways of listing suggestions for fur-
ther polling studies.One option is to link an open problem to each of the 10 assumptions
of Sect. 2. Indeed, it would be interesting to obtain more results for multiple-server
polling systems (Assumption 1); to devote more attention to spatial polling models
(Assumption 2; see Altman and Foss 1997); to relax the assumption of Poisson arrivals
(Assumption 3); to allow the loss of customers (Assumption 4); to consider non-cyclic
routing, in particular Markovian routing (Assumption 5). This is, a.o., relevant in the
setting of random access in wireless communications, see Dorsman et al. (2015). It is
interesting to notice Resing (1993) that the joint queue-length process in Markovian
polling models is not a multi-type branching process, even if the service policies at all
queues are of branching type); to get a better grip on service policies which are not of
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branching type (Assumption 6); to obtain more results for polling systems with non-
FCFS service order (Assumption 7); to study the effect of large switchover times, and
also to allow the possibility that a switchover time is skipped when the corresponding
queue is empty (Assumption 8; see Boon et al. 2011); to consider a network of queues
with one or more polling servers (Assumption 9; Altman and Yechiali 1994; Armony
andYechiali 1999; Beekhuizen and Resing 2008; Boon andWinands 2014; VanHoudt
2010; Sidi 1992); and to study stability conditions Foss and Last (1996) but also the
transient behavior of polling systems (Assumption 10).

Rather than “polling” these 10 topics in an exhaustive manner, we prefer to focus
on what in our opinion are a few particularly relevant directions for further research:

(i) Exact results for non-branching models are quite scarce, and exact results for
branching-type polling models are typically given in the form of sums of infinite
products of generating functions. Hence, there is a strong need for readily appli-
cable expressions, which give useful qualitative insights and reasonably accurate
quantitative results, like those provided in Federgruen and Katalan (1994). In par-
ticular, there seems to be a need for more asymptotic analysis. Firstly, we need to
improve our insight into the heavy-traffic behavior of the class of branching-type
polling systems, possibly based on the theory of multi-type branching processes,
see Van der Mei (2007), but it is even more important to develop a methodol-
ogy to study the heavy-traffic behavior of those polling systems in which the
branching property is violated. Secondly, large-deviation asymptotics for polling
systems deserve attention. Finally, we have only begun to understand the asymp-
totics for n, the number of queues, growing large. The scaling limits which are
developed via asymptotic analysis may subsequently provide the basis for useful
approximations, see Bertsimas and Mourtzinou (2009) and Boon et al. (2014).

(ii) Relatively few studies have been devoted to the dynamic optimization of polling
systems: which queue to serve next, and for how long? From an application per-
spective, it seems important to develop a methodology, possibly based onMarkov
decision processes, to tackle such problems systematically, also covering scenar-
ios with simultaneous service of several queues subject to certain constraints.
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