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Abstract In a resource allocation problem, there is a common-pool resource, which
has to be divided among agents. Each agent is characterized by a claim on this pool
and an individual concave reward function on assigned resources, thus generalizing
the model of Grundel et al. (Math Methods Oper Res 78(2):149–169, 2013) with lin-
ear reward functions. An assignment of resources is optimal if the total joint reward
is maximized. We provide a necessary and sufficient condition for optimality of an
assignment, based on bilateral transfers of resources only. Analyzing the associated
allocation problem of the maximal total joint reward, we consider corresponding
resource allocation games. It is shown that the core and the nucleolus of a resource allo-
cation game are equal to the core and the nucleolus of an associated bankruptcy game.
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1 Introduction

In this paper, we analyze a resource allocation model with a common-pool resource
in which the sum of the claims of all agents exceeds the total amount of resources.
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38 S. Grundel et al.

Young (1995) introduced a general framework for the “type” of a claimant: “the type
of a claimant is a complete description of the claimant for purposes of the allocation,
and determines the extent of a claimant’s entitlement to the good”. In our model,
we assume that the claim represents the maximum of resources an agent can han-
dle. Therefore, an agent is never assigned more than this claim. Furthermore, we
characterize each agent by an individual strictly increasing, continuous, and concave
monetary reward function which allows for monetary compensations among agents,
given a certain assignment of resources. This paper generalizes the model in Grun-
del et al. (2013), where resource allocation problems of this type are considered for
agents with linear reward functions. Both models, with linear and concave reward
functions, can be viewed as generalizations of the classic bankruptcy model consid-
ered in O’Neill (1982). Here, the reward functions are not explicitly modeled, but are
implicitly assumed to be strictly increasing and the same for each agent. As common
in economic models, allowing for diversity among reward functions and for concavity
better incorporates differences in the agent’s evaluations of the common-pool resource.

Our model is applicable for various kinds of common-pool resource problems.
For example, consider a common-pool of water, which should be distributed among
farmers, large-scale horticultural companies and factories. There is insufficient water
to meet the rightful claims of all agents. The possibility of compensating agents who
cede water to others monetarily allows agents to interactively reshuffle water supplies
to achieve a social optimum. Subsequently, cooperative game theory offers a tool to
adequately analyze the resulting joint monetary allocation problem and to determine
fair and stable compensations among the agents. Cooperative game theory has been
successfully applied to issues in water management before. We refer to Dinar (2007),
Ambec and Sprumont (2002), Ambec and Ehlers (2008), Wang (2011), and Brink
et al. (2012)) for specific cooperative aspects in international water sharing problems.
For an overview, we refer to Parrachino et al. (2006).

In analyzing resource allocation problems, an assignment of resources is called
optimal if the total joint monetary reward is maximized. In the setting with concave
reward functions, finding optimal assignments are not straightforward. We do not
provide a constructive procedure as in Grundel et al. (2013) for the linear setting, but
provide a way of checking the optimality of a certain assignment. It is shown that an
assignment is optimal if and only if there does not exist a pair of agents for which
bilateral transfer of resources can only lead to a lower jointmonetary reward. The proof
of this characterization is intricate and, interestingly, does not require differentiability
of the reward functions. To adequately analyze the corresponding allocation problem
of maximal joint monetary rewards, we generalize the resource allocation games as
introduced in Grundel et al. (2013) to the setting of concave reward functions. This
generalization maintains the idea behind bankruptcy games as introduced by O’Neill
(1982) in the sense that, as a consistent benchmark or reference point, the value of
a particular coalition of agents reflects the maximum total joint reward that can be
derived from the resources not claimed by the agents outside the coalition at hand.
Without having to rely on compromise stability as in Grundel et al. (2013), we show
that the core and the nucleolus (Schmeidler 1969) of a resource allocation game equal
the core and the nucleolus of a corresponding bankruptcy game. The result for the
nucleolus relies on Potters and Tijs (1994). As an immediate consequence, the core of
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Resource allocation problems with concave reward functions 39

a resource allocation game is non-empty. This means that efficient allocations of the
maximal joint monetary rewards exist which are stable against coalitional deviations.
Moreover, for one such stable allocation, the nucleolus, we provide a closed form
expression in the spirit of Aumann and Maschler (1985).

This paper is organized as follows. InSect. 2, the formalmodel of resource allocation
problems is provided and optimal assignments are characterized. In Sect. 3, we analyze
corresponding resource allocation games with special attention to core elements and
the nucleolus of these games. Technical proofs are relegated to an Appendix.

2 Resource allocation problems

This section formally introduces resource allocation (RA) problems, and characterizes
optimal assignments of resources.

An RA problem considers the assignment of resources among agents who have a
claim on a common-pool resource. Let N represent the finite set of agents, E ≥ 0
the total amount (estate) of resources which has to be divided among the agents, and
d ∈ (0,∞)N a vector of demands, where for i ∈ N , di represents agent i’s claim
on the estate. It is assumed that

∑
j∈N d j ≥ E . Furthermore, for each agent i ∈ N ,

there exists a reward function ri on [0, di ] describing the monetary reward to agent i :
for every z ∈ [0, di ], ri (z) denotes the monetary reward for agent i if he is assigned
z units of resource. In this paper, it is assumed that for all i ∈ N , and ri is a strictly
increasing, continuous, and concave reward function on [0, di ] with ri (0) = 0. An
RA problem will be summarized by (N , E, d, r), with r = {ri }i∈N . The class of all
RA problems with set of agents N is denoted by RAN .

Let F(N , E, d, r) denote the set of assignments of resources given by

F(N , E, d, r) =
⎧
⎨

⎩
x ∈ R

N
∣
∣
∣
∣

∑

j∈N
x j = E, xi ∈ [0, di ] for all i ∈ N

⎫
⎬

⎭
.

Therefore, in an assignment, we assume that the complete estate E is assigned among
the agents and that no agent can get more than its demand.

Throughout this article, assignments of resources which maximize the total joint
monetary reward are considered. The remainder of this section is dedicated to char-
acterizing these optimal assignments.

Let (N , E, d, r) ∈ RAN . The maximum total joint monetary reward v(N , E, d, r)
is determined by

v(N , E, d, r) = max

⎧
⎨

⎩

∑

j∈N
r j (x j )

∣
∣
∣
∣x ∈ F(N , E, d, r)

⎫
⎬

⎭
.

Note that this maximum exists due to the fact that
∑

j∈N r j is continuous on a compact
domain. Furthermore, Lemma 2 in the Appendix shows that v(N , E, d, r) is concave
in the second coordinate E . The set X (N , E, d, r) of optimal assignments is given by
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X (N , E, d, r) =
⎧
⎨

⎩
x ∈ F(N , E, d, r)

∣
∣
∣
∣

∑

j∈N
r j (x j ) = v(N , E, d, r)

⎫
⎬

⎭
.

The next theorem characterizes optimal assignments. It tells us that an assignment is
optimal if and only if there is no profitable bilateral transfer of resources. For the special
case of linear reward functions, a constructive procedure to find optimal assignments
was provided by Grundel et al. Grundel et al. (2013). Here, the optimality conditions
are more complex, but Theorem 1 offers the possibility to check optimality on basis
of bilateral transfers of resources only. This is illustrated in Example 1.

Theorem 1 Let (N , E, d, r) ∈ RAN and x ∈ F(N , E, d, r). Then, x ∈ X (N , E,

d, r) if and only if for all i ∈ N with xi < di and for all k ∈ N\{i} with xk > 0, there
does not exist a positive ε ∈ (0,min{di − xi , xk}], such that ri (xi + ε)+ rk(xk − ε) >

ri (xi ) + rk(xk).1

Proof We first prove the “only if” part. Let x ∈ X (N , E, d, r). Suppose that there
exist an i ∈ N with xi < di , a k ∈ N\{i}with xk > 0, and an ε ∈ (0,min{di −xi , xk}],
such that ri (xi +ε)+rk(xk −ε) > ri (xi )+rk(xk). Now consider x ′ such that x ′

j = x j
for all j ∈ N\{i, k}, x ′

i = xi + ε, and x ′
k = xk − ε. Note that x ′ ∈ F(N , E, d, r) by

construction of x ′ and definition of ε. Then
∑

j∈N
r j (x j ) = ri (xi ) + rk(xk) +

∑

j∈N\{i,k}
r j (x j )

= ri (xi ) + rk(xk) +
∑

j∈N\{i,k}
r j (x

′
j )

< ri (xi + ε) + rk(xk − ε) +
∑

j∈N\{i,k}
r j (x

′
j )

=
∑

j∈N
r j (x

′).

This establishes a contradiction with the optimality of x .
For the “if” part, let x ∈ F(N , E, d, r) and x /∈ X (N , E, d, r). We will prove that

there exists an i ∈ N with xi < di , a k ∈ N\{i} with xk > 0, and an ε ∈ (0,min{di −
xi , xk}], such that ri (xi + ε)+ rk(xk − ε) > ri (xi )+ rk(xk). Let xN ∈ X (N , E, d, r).
Clearly, both sets A1 = {i ∈ N |xNi > xi } and A2 = {k ∈ N |xNk < xk} are non-empty.
Note that for all i ∈ A1, it holds that xNi > 0 and xi < di . Vice versa, for all k ∈ A2

it holds that xk > 0 and xNk < dk . The reward functions of agents i ∈ A1 and k ∈ A2
are outlined in Fig. 1.

By concavity of r it holds that, for all i ∈ A1 and ε ∈ (0, xNi − xi ]:

ri (xi + ε) − ri (xi ) ≥ ri (x
N
i ) − ri (x

N
i − ε), (1)

1 If (N , e, d, r) ∈ RAN is such that for all i ∈ N , ri is differentiable, then the conditions in Theorem 1
imply the necessary conditions that follow from the Kuhn–Tucker Theorem (1951) for an assignment to be
optimal.
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Fig. 1 Reward functions of agents i ∈ A1 and k ∈ A2

and for all k ∈ A2 and ε ∈ (0, xk − xNk ]:

rk(x
N
k + ε) − rk(x

N
k ) ≥ rk(xk) − rk(xk − ε). (2)

From the fact that xN ∈ X (N , E, d, r), it follows from the only if part that for all
i ∈ A1, k ∈ A2 and ε ∈ (0,min{xNi , dk − xNk }]:

ri (x
N
i ) − ri (x

N
i − ε) ≥ rk(x

N
k + ε) − rk(x

N
k ). (3)

Since (0,min{xNi − xi , xk − xNk }] ⊂ (0,min{xNi , dk − xNk }], subsequently applying
(1)–(3) imply that, for all i ∈ A1 and k ∈ A2 and for all ε ∈ (0,min{xNi −xi , xk−xNk }]:

ri (xi + ε) − ri (xi ) ≥ rk(xk) − rk(xk − ε).

Suppose for all i ∈ A1, k ∈ A2 and ε ∈ (0,min{xNi − xi , xk − xNk }], it holds that

ri (xi + ε) − ri (xi ) = rk(xk) − rk(xk − ε). (4)

Let i ∈ A1, k ∈ A2 and ε ∈ (0,min{xNi − xi , xk − xNk }]. Since inequality (1) is an
equality, now, we have

ri (xi + ε) − ri (xi ) = ri (x
N
i ) − ri (x

N
i − ε).

By the fact that ri is a strictly increasing, continuous, and concave function and ε > 0
this tells us that ri is linear on [xi , xNi ]. This is outlined in Fig. 2.

Similarly, we have an equality in (2) which implies that

rk(x
N
k + ε) − rk(x

N
k ) = rk(xk) − rk(xk − ε)

which tells us that rk is linear on [xNk , xk]. Finally equality in (3) implies that

ri (x
N
i ) − ri (x

N
i − ε) = rk(x

N
k + ε) − rk(x

N
k ).
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42 S. Grundel et al.

Fig. 2 Linearity on [xi , xNi ] and[xNk , xk ]

By linearity of ri on [xi , xNi ] and rk on [xNk , xk] and the fact that the difference quotient
of ri on [xi , xNi ] equals the difference quotient of rk on [xNk , xk], it holds that

ri (xNi ) − ri (xi )

xNi − xi
= rk(xk) − rk(xNk )

xk − xNk
.

Since this holds for all pairs of agents i ∈ A1 and k ∈ A2, it follows that

∑
j∈A1

(r j (xNj ) − r j (x j ))
∑

j∈A1
(xNj − x j )

=
∑

j∈A2
(r j (x j ) − r j (xNj ))

∑
j∈A2

(x j − xNj )
.

As x, xN ∈ F(N , E, d, r) we have
∑

j∈N xNj = ∑
j∈N x j = E and, consequently,

that
∑

j∈A1
(xNj − x j ) = ∑

j∈A2
(x j − xNj ) which implies

∑

j∈A1

(r j (x
N
j ) − r j (x j )) =

∑

j∈A2

(r j (x j ) − r j (x
N
j )). (5)

Then

∑

j∈N
r j (x j ) =

∑

j∈A1

r j (x j ) +
∑

j∈A2

r j (x j ) +
∑

j∈N\(A1∪A2)

r j (x j )

=
∑

j∈A1

r j (x j ) +
∑

j∈A2

r j (x j ) +
∑

j∈N\(A1∪A2)

r j (x
N
j )

=
∑

j∈A1

r j (x
N
j ) +

∑

j∈A2

r j (x
N
j ) +

∑

j∈N\(A1∪A2)

r j (x
N
j )

=
∑

j∈N
r j (x

N
j ).

The second equality holds by the fact that for all i ∈ N\(A1 ∪ A2), xi = xNi , the third
equality follows from (5).

This implies that x ∈ X (N , E, d, r)which establishes a contradiction. Hence, there
exists at least one pair of agents i ∈ A1, k ∈ A2 and ε ∈ (0,min{xNi − xi , xk − xNk }],
such that
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Fig. 3 Reward functions r1(z),
r2(z), r3(z), and r4(z)

ri (xi + ε) − ri (xi ) > rk(xk) − rk(xk − ε).

Since (0,min{xNi − xi , xk − xNk }] ⊂ (0,min{di − xi , xk}], this finishes the proof. �	

Example 1 Consider an RA problem (N , E, d, r) ∈ RAN with N = {1, 2, 3, 4},
estate E = 7, and vector of demands d = (1, 3, 4, 1). The reward functions of the
agents are given by

r1(z) = −3z2 + 12z,

r2(z) = −z2 + 6z,

r3(z) =
{
2z, if 0 ≤ z ≤ 2,
z + 2, if 2 < z ≤ 4,

r4(z) = 1

2
z,

and are drawn in Fig. 3.
An optimal assignment equals x = (

1, 21
2 , 3

1
2 , 0

)
with r(x) = (

9, 83
4 , 5

1
2 , 0

)
, and

total joint reward 231
4 .

WecanuseTheorem1 to checkoptimality of this assignment. For eachpair of agents
(i, k), it should hold for all ε ∈ (0,min{di − xi , xk}] that ri (xi + ε) + rk(xk − ε) ≤
ri (xi ) + rk(xk). From ε > 0, x1 = d1, and x4 = 0 it follows, respectively, that
i �= 1 and k �= 4. Theorem 1 with k = 1 prescribes that for all i ∈ {2, 3, 4} and all
ε ∈ (0,min{di − xi , 1}], it should hold that ri (xi + ε) + r1(1 − ε) ≤ ri (xi ) + r1(1)
or equivalently, that
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44 S. Grundel et al.

ri (xi + ε) − ri (xi )

ε
≤ r1(1) − r1(1 − ε)

ε
. (6)

Inequality (6) holds, since we know that for all i ∈ {2, 3, 4} and ε ∈ (0, di − xi ]:
ri (xi + ε) − ri (xi )

ε
≤ 1,

and for all ε ∈ (0, 1]
r1(1) − r1(1 − ε)

ε
≥ 6.

Theorem 1 with k = 2 and i = 3 prescribes that for all ε ∈ (0, 1
2 ], it should hold

that r3
(
31
2 + ε

) + r2
(
21
2 − ε

) ≤ r3
(
31
2

) + r2
(
21
2

)
or equivalently, that

r3
(
31
2 + ε

) − r3
(
31
2

)

ε
≤ r2

(
21
2

) − r2
(
21
2 − ε

)

ε
. (7)

This inequality is satisfied by concavity of r2 and r3 and the fact that r ′
2(2

1
2 ) =

r ′
3(3

1
2 ) = 1. Hence

r3
(
31
2 + ε

) − r3
(
31
2

)

ε
≤ r ′

3

(

3
1

2

)

= r ′
2

(

2
1

2

)

≤ r2
(
21
2

) − r2
(
21
2 − ε

)

ε
.

With k = 2 and i = 4 Theorem 1 prescribes that for all ε ∈ (0, 1], it should hold that

r4(ε)

ε
≤ r2

(
21
2

) − r2
(
21
2 − ε

)

ε
. (8)

Inequality (8) hold, since for all ε ∈ (0, 1]
r4(ε)

ε
= 1

2
,

and for all ε ∈ (
0, 21

2

]

r2
(
21
2

) − r2
(
21
2 − ε

)

ε
≥ r ′

2

(

2
1

2

)

= 1.

The check for optimality of x with k = 3 and i = 2 is analogous to k = 2 and
i = 3; for k = 3 and i = 4, we use an argument similar to k = 2 and i = 4.

Now, consider a subgroup S ⊆ N . For a resource allocation problem (N , E,

d, r) ∈ RAN , the maximum total joint reward of a subgroup S ⊆ N with E ′ ≤ E
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and E ′ ≤ ∑
j∈S d j equals v(S, E ′, d|S, r |S).2 The next proposition shows that total

maximization implies partial maximization.

Proposition 1 Let (N , E, d, r) ∈ RAN and xN ∈ X (N , E, d, r). Then, for all S ⊆
N, it holds that (xNi )i∈S ∈ X (S,

∑
j∈S x Nj , d|S, r |S).

Proof Since xN ∈ F(N , E, d, r), it holds that (xNi )i∈S ∈ F(S,
∑

j∈S x Nj , d|S, r |S).
Let S ⊆ N . Suppose there exists an x S ∈ F(S,

∑
j∈S x Nj , d|S, r |S), such that

∑
j∈S r j (x Sj ) >

∑
j∈S r j (xNj ). Let x ∈ R

N be such that for all i ∈ S : xi = x Si
and for all i ∈ N\S : xi = xNi . By the fact that for all i ∈ N , it holds that xi ∈ [0, di ]
and

∑

j∈N
xi =

∑

j∈S
x j +

∑

j∈N\S
x j =

∑

j∈S
x Sj +

∑

j∈N\S
x Nj

=
∑

j∈S
x Nj +

∑

j∈N\S
x Nj =

∑

j∈S
x Nj = E

it follows that x ∈ F(N , E, d, r). Now

∑

j∈N
r j (x j ) =

∑

j∈S
r j (x

S
j ) +

∑

j∈N\S
r j (x

N
j ) >

∑

j∈S
r j (x

N
j ) +

∑

j∈N\S
r j (x

N
j )

=
∑

j∈N
r j (x

N
j )

which establishes a contradiction with the fact that xN is optimal. �	

3 Resource allocation games

In this section, we associate with each RA problem a cooperative resource allocation
(RA) game. A transferable utility (TU) game is an ordered pair (N , v), where N is the
finite set of agents, and v is the characteristic function on 2N , the set of all subsets of
N . The function v assigns to every coalition S ∈ 2N a real number v(S)with v(∅) = 0.
Here, v(S) is called the worth or value of coalition S. Here, the coalitional value v(S)

is interpreted as the maximal total joint reward for coalition S when the players in the
coalition cooperate. The values v(S), S ∈ 2N serve as reference points on the basis of
which allocations of v(N ) are considered to be fair or stable. The set of all TU games
with set of agents N is denoted by TUN . Where no confusion arises, we write v rather
than (N , v).

Consider an RA problem (N , E, d, r). We assume that a coalition S can only use
the amount of resources D(S), such that all agents outside S obtain resources up to

2 d|S ∈ R
S denotes the restricted vector of demands for agents in S with respect to d ∈ R

N ; r |S refers to
{r j (z j )} j∈S .
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46 S. Grundel et al.

their demand d ∈ R
N+ . Let (S, D(S), d|S, r |S) ∈ RAS describe the associated resource

allocation problem for S, where

D(S) = max

⎧
⎨

⎩
0, E −

∑

j∈N\S
d j

⎫
⎬

⎭
.

Note that D(N ) = E . By the fact that D(S) ≤ ∑
j∈S d j , it follows that

(S, D(S), d|S, r |S) again is an RA problem.

Corollary 1 Let (N , E, d, r) ∈ RAN and let S ⊆ N. Then, (S, D(S), d|S, r |S) ∈
RAS.

In the RA game, vR associated with an RA problem (N , E, d, r), the worth of a
coalition S ∈ 2N is defined as

vR(S) = v (S, D(S), d|S, r |S) .

Let x S ∈ X (S, D(S), d|S, r |S) be an optimal assignment of resources to agents in S.
Clearly, vR(S) equals the total reward of agents in S associated with x S . For simplic-
ity, we write v(S, D(S)), rather than v(S, D(S), d|S, r |S), F(S, D(S)), rather than
F(S, D(S), d|S, r |S), and X (S, D(S)), rather than X (S, D(S), d|S, r |S).

Notice that the definition of an RA game generalizes the one provided for linear
reward functions in Grundel et al. (2013). The coalitional values vR(S), S ∈ 2N , serve
as natural benchmark for fairly allocate vR(N ) among players.

A game v ∈ TUN is called balanced if the core C(v) of the game is non-empty.
The core of a game consists of those allocations of v(N ), such that no coalition has
an incentive to split off from the grand coalition, that is

C(v) =
⎧
⎨

⎩
y ∈ R

N
∣
∣
∣
∣

∑

j∈N
y j = v(N ),

∑

j∈S
y j ≥ v(S) for all S ∈ 2N

⎫
⎬

⎭
.

For v ∈ TUN and T ⊆ N , T �= ∅, the subgame v|T ∈ TUT is defined by

v|T (S) = v(S),

for all S ⊆ T . Clearly, v|N = v. A game v ∈ TUN is called totally balanced if every
subgame of v has an non-empty core.

Theorem 2 Let (N , E, d, r) ∈ RAN with corresponding RA game vR ∈ TUN , and
choose xN ∈ X (N , E). Let yN = (ri (xNi ))i∈N . Then, yN ∈ C(vR).

Proof First, note that
∑

j∈N yNj = vR(N ) by definition. Second, let S ⊂ N . Then
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∑

j∈S
yNj =

∑

j∈S
r j (x

N
j )

= max

⎧
⎨

⎩

∑

j∈S
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝S,
∑

j∈S
x Nj

⎞

⎠

⎫
⎬

⎭

≥ max

⎧
⎨

⎩

∑

j∈S
r j (x j )

∣
∣
∣
∣x ∈ F (S, D(S))

⎫
⎬

⎭

= vR(S).

The second equality follows from Proposition 1. The inequality follows from the fact
that r j (z) is increasing for all i ∈ S and

∑
j∈S x Nj ≥ D(S). This can be seen as

follows.

∑

j∈S
x Nj =

∑

j∈N
xNj −

∑

j∈N\S
x Nj = E −

∑

j∈N\S
x Nj ≥ E −

∑

j∈N\S
d j .

because xNi ≤ di for all i ∈ N . Since, obviously, xNi ≥ 0 for all i ∈ N , also
∑

j∈S x Nj ≥ 0, and consequently,
∑

j∈S x Nj ≥ D(S). �	
By Theorem 2, it follows that RA games are balanced. Furthermore, by Corollary

1, it follows that every RA game is totally balanced.

Corollary 2 Every RA game is totally balanced.

The next lemma and example show that RA games need not be concave in gen-
eral, but that specific concavity conditions are satisfied. The proof is deferred to the
Appendix.

Lemma 1 Let (N , E, d, r) ∈ RAN with corresponding RA game vR ∈ TUN . Let
S, T,U ∈ 2N be such that S ⊆ T ⊆ N\U, U �= ∅, and vR(S) > 0. Then

vR(S ∪U ) − vR(S) ≥ vR(T ∪U ) − vR(T ). (9)

Example 2 Reconsider the RA problem of Example 1. The corresponding values of
D(S), X (S, D(S)) and vR(S) are given in the table below.

S 1 2 3 4

D(S) 0 1 2 0
x S ∈ X (S, D(S)) (0) (1) (2) (0)
vR(S) 0 5 4 0

123



48 S. Grundel et al.

S 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

D(S) 2 3 0 5 2 3
x S ∈ X (S, D(S)) (1, 1) (1, 2) (0, 0) (2 1

2 , 2 1
2 ) (2, 0) (3, 0)

vR(S) 14 13 0 13 14 8 5

S 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4 N

D(S) 6 3 4 6 7
x S ∈ X (S, D(S)) (1, 2 1

2 , 2 1
2 ) (1,2,0) (1,3,0) (2 1

2 , 3 12 , 0) (1, 2 1
2 , 3 12 , 0)

vR(S) 22 14 17 14 14 14 23 14

Lemma 1 tells us that, e.g., v({2, 4}) − v({2}) ≥ v(N ) − v({1, 2, 3}). From
v({1, 4}) − v({4}) < v(N ) − v({2, 3, 4}), it follows that if v(S) = 0, inequality
(9) may be violated.

Now, we derive an explicit expression for the nucleolus (cf. Schmeidler 1969) of
RA games. For this, we use some properties of bankruptcy problems and associated
bankruptcy games. A bankruptcy problem is a triple (N , B, c), where N represents a
finite set of agents, B ≥ 0 is the estate which has to be divided among the agents, and
c ∈ [0,∞)N is a vector of claims, where for i ∈ N , ci represents agent i’s claim on
the estate, such that

∑
j∈N c j ≥ B. For the associated bankruptcy (BR) game vB,c,

the value of a coalition S is determined by the amount of B that is not claimed by
agents in N\S. Hence, for all S ∈ 2N

vB,c(S) = max

⎧
⎨

⎩
0, B −

∑

j∈N\S
c j

⎫
⎬

⎭
.

Recall (cf. Aumann andMaschler 1985) that the nucleolus n(vE,d) of a bankruptcy
game vE,d ∈ TUN can be computed as follows:

n(vE,d) =

⎧
⎪⎪⎨

⎪⎪⎩

CE A(E, 1
2d) if

∑

j∈N
d j ≥ 2E;

d − CE A

(
∑

j∈N
d j − E, 1

2d

)

if
∑

j∈N
d j < 2E;

where

CE A(Ẽ, d̃) = (min{λ, d̃i })i∈N
with λ such that

∑
j∈N min{λ, d̃ j } = Ẽ .

It turns out that the nucleolus of an RA game coincides with the nucleolus of
an associated bankruptcy game. As a consequence, one can derive a closed form
expression of an RA game based on CEA. The proof of Theorem 3 uses the important
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result of Potters and Tijs (1994) that the nucleoli of two games are equal if those games
have the same core and one of the games is convex.

Theorem 3 Let (N , E, d, r) ∈ RAN and let vR be the corresponding RA game. Then

C(vR) = C(VB,c) and n(vR) = n(vB,c)

with B = vR(N ) and c = (
vR(N ) − vR(N\{i}))i∈N .

Proof Note that (N , B, c) is a BR problem, since vR(N ) ≥ 0, andC(vR) �= ∅, implies
that for y ∈ C(vR),

yi =
∑

j∈N
y j −

∑

j∈N\{i}
y j ≤ vR(N ) − vR(N\{i}) = ci , (10)

and consequently,
∑

j∈N c j ≥ ∑
j∈N y j = vR(N ) = B.

Next, we show that C(vR) = C(vB,c). Clearly, vR(N ) = B = vB,c(N ). First, we
will prove that C(vB,c) ⊆ C(vR) by showing that for all S ∈ 2N , vR(S) ≤ vB,c(S).
Let S ∈ 2N and let N\S = {i1, . . . , i|N\S|}. Without loss of generality, we can
assume that vR(S) > 0. This implies that D(S) > 0, and consequently, D(N\{i1}) >

0, D(N\{i1, i2}) > 0, …, D(N\{i1, . . . , iN\S}) > 0. Furthermore, vR(N\{i1}) > 0,
vR(N\{i1, i2}) > 0, …, vR(N\{i1, . . . , iN\S}) > 0. For all k ∈ {0, . . . , |N\S| − 1},
we have by Lemma 1 that

vR(N\{i1, . . . , ik}) − vR(N\{i1, . . . , ik+1}) ≥ vR(N ) − vR(N\{ik+1}).

Since

|N\S|−1∑

k=0

(vR(N\{i1, . . . , ik}) − vR(N\{i1, . . . , ik+1})) = vR(N ) − vR(S)

and

|N\S|−1∑

k=0

(vR(N ) − vR(N\{ik+1})) =
∑

j∈N\S
(vR(N ) − vR(N\{ j})) =

∑

j∈N\S
c j ,

we have that

vR(N ) − vR(S) ≥
∑

j∈N\S
c j .

Using vR(S) > 0, this implies that

vR(S) ≤ vR(N ) −
∑

j∈N\S
c j

= vB,c(S).
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Second, to prove that C(vR) ⊆ C(vB,c), let y ∈ C(vR) and S ∈ 2N . Since

∑

j∈S
y j ≥

∑

j∈S
vR({ j}) ≥ 0,

and using (10)

∑

j∈S
y j = vR(N ) −

∑

j∈N\S
y j

≥ vR(N ) −
∑

j∈N\S
c j

we have that
∑

j∈S y j ≥ vB,c(S). It follows that y ∈ C(vB,c).

Potters and Tijs (1994) proved that for any two games v,w ∈ TUN with C(v) =
C(w) and w convex, we have n(v) = n(w). From the fact the vB,c is a BR game, that
BR games are convex (Curiel et al. 1987), and C(vR) = C(vB,c) we conclude that

n(vR) = n(vB,c).

�	
Example 3 For the RA game of Example 2, vR(N ) = 231

4 and (vR(N ) − vR

(N\{i}))i∈N = (
9, 91

4 , 6
1
4 , 1

)
. Theorem 3 implies that n(vR) = (

9, 91
4 , 6

1
4 , 1

) −
CE A

(
N , 21

4 ,
(
41
2 , 4

5
8 , 3

1
8 ,

1
2

))
=

(
8 5
12 , 8

2
3 , 5

2
3 ,

1
2

)
.
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Appendix

Lemma 2 Let (N , E, d, r) ∈ RAN . Then, v(N , E, d, r) is concave in E.

Proof Let A, B ≥ 0, such that
∑

j∈N d j ≥ A and
∑

j∈N d j ≥ B. We will prove that
for all δ ∈ [0, 1], it holds that

δv(N , A, d, r) + (1 − δ)v(N , B, d, r) ≤ v (N , δA + (1 − δ)B, d, r)

Let x A ∈ F(N , A, d, r) be such that v(N , A, d, r) = ∑
j∈N r j (x A

j ) and let x B ∈
F(N , B, d, r) be such that v(N , B, d, r) = ∑

j∈N r j (x Bj ). Then
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δv(N , A, d, r) + (1 − δ)v(N , B, d, r)

= δ
∑

j∈N
r j (x

A
j ) + (1 − δ)

∑

j∈N
r j (x

B
j )

=
∑

j∈N
(δr j (x

A
j ) + (1 − δ)r j (x

B
j ))

≤
∑

j∈N
r j (δx

A
j + (1 − δ)x Bj )

≤ max

⎧
⎨

⎩

∑

j∈N
r j (x j )

∣
∣
∣
∣x ∈ F(N , δA + (1 − δ)B, d, r)

⎫
⎬

⎭

= v (N , δA + (1 − δ)B, d, r) .

The first inequality follows from concavity of r j . The second inequality is due to
the fact that {δx A

i + (1 − δ)x Bi }i∈N ∈ F(N , δA + (1 − δ)B, d, r). �	
Proof Let xT ∈ X (T, D(T )) and xT∪U ∈ X (T ∪ U, D(T ∪ U )). Since vR(S) > 0,
we have D(S) > 0. Then

vR(S ∪U ) − vR(S)

= v (S ∪U, D(S ∪U )) − v(S, D(S))

(1)= v

⎛

⎝S ∪U, D(S) +
∑

j∈U
d j

⎞

⎠ − v(S, D(S))

= max

⎧
⎨

⎩

∑

j∈S∪U
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝S ∪U, D(S) +
∑

j∈U
d j

⎞

⎠

⎫
⎬

⎭
− v(S, D(S))

(2)≥ max

⎧
⎨

⎩

∑

j∈S∪U
r j (x j )

∣
∣
∣
∣{xi }i∈S ∈ F (S, D(S)

+
∑

j∈U
(d j − xT∪U

j )

⎞

⎠ , {xi }i∈U ∈ F

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠

⎫
⎬

⎭

−v(S, D(S))

= max

⎧
⎨

⎩

∑

j∈S
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝S, D(S) +
∑

j∈U
(d j − xT∪U

j )

⎞

⎠

⎫
⎬

⎭

+max

⎧
⎨

⎩

∑

j∈U
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠

⎫
⎬

⎭
− v(S, D(S))

= v

⎛

⎝S, D(S) +
∑

j∈U
(d j − xT∪U

j )

⎞

⎠ − v(S, D(S)) + v

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠
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(3)≥ v

⎛

⎝S, D(S) +
∑

j∈U
(d j − xT∪U

j ) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

−v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠ + v

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠

(4)= v

⎛

⎝S, D(T ∪U ) −
∑

j∈T∪U
xT∪U
j +

∑

j∈S
xT∪U
j

⎞

⎠

−v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠ + v

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠

(5)= v

⎛

⎝S,
∑

j∈S
xT∪U
j

⎞

⎠ + v

⎛

⎝U,
∑

j∈U
xT∪U
j

⎞

⎠

−v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

(6)=
∑

j∈S
r j (x

T∪U
j ) +

∑

j∈U
r j (x

T∪U
j ) − v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

=
∑

j∈S
r j (x

T∪U
j ) +

∑

j∈U
r j (x

T∪U
j )

+
∑

j∈T
r j (x

T∪U
j ) −

∑

j∈T
r j (x

T∪U
j ) − v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

=
∑

j∈T∪U
r j (x

T∪U
j ) −

∑

j∈T \S
r j (x

T∪U
j ) − v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

(7)= v

⎛

⎝T ∪U,
∑

j∈T∪U
xT∪U
j

⎞

⎠ − v

⎛

⎝T \S,
∑

j∈T \S
xT∪U
j

⎞

⎠

−v

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

= v

⎛

⎝T ∪U,
∑

j∈T∪U
xT∪U
j

⎞

⎠−max

⎧
⎨

⎩

∑

j∈T \S
r j (x j )

∣
∣
∣
∣x ∈F

⎛

⎝T \S,
∑

j∈T \S
xT∪U
j

⎞

⎠

⎫
⎬

⎭

−max

⎧
⎨

⎩

∑

j∈S
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝S, D(S) +
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

⎫
⎬

⎭
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= v

⎛

⎝T ∪U,
∑

j∈T∪U
xT∪U
j

⎞

⎠

−max

⎧
⎨

⎩

∑

j∈T
r j (x j )

∣
∣
∣
∣{xi }i∈T \S ∈ F

⎛

⎝T \S,
∑

j∈T \S
xT∪U
j

⎞

⎠ , {xi }i∈S ∈F (S, D(S)

+
∑

j∈T \S
(d j − xT∪U

j )

⎞

⎠

⎫
⎬

⎭

(8)≥ v

⎛

⎝T ∪U,
∑

j∈T∪U
xT∪U
j

⎞

⎠

−max

⎧
⎨

⎩

∑

j∈T
r j (x j )

∣
∣
∣
∣x ∈ F

⎛

⎝T, D(S) +
∑

j∈T \S
d j

⎞

⎠

⎫
⎬

⎭

= v

⎛

⎝T ∪U,
∑

j∈T∪U
xT∪U
j

⎞

⎠

−v

⎛

⎝T, D(S) +
∑

j∈T \S
d j

⎞

⎠

(9)= v (T ∪U, D(T ∪U )) − v (T, D(T ))

= vR(T ∪U ) − vR(T )

Equalities (1), (4), and (9) hold, since D(S) > 0, respectively, implies D(S ∪
U ) = D(S) + ∑

j∈U d j , D(T ∪U ) = D(S) + ∑
j∈U d j + ∑

j∈T \S d j , and D(T ) =
D(S)+∑

j∈T \S d j . Inequalities (2) and (8) follow by the fact that the maximum value
decreases if an extra condition is involved in the optimization. Inequality (3) holds by
Lemma 2. Equality (5) holds by the fact that D(T ∪U ) = ∑

j∈T∪U xT∪U
j . Equalities

(6) and (7) follow from Proposition 1. �	

References

Ambec S, Ehlers L (2008) Sharing a river among satiable agents. Games Econ Behav 64(1):35–50
Ambec S, Sprumont Y (2002) Sharing a river. J Econ Theory 107(2):453–462
Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the talmud. J Econ

Theory 36:195–213
van den Brink R, Van der Laan G, Moes N (2012) Fair agreements for sharing international rivers with

multiple springs and externalities. J Environ Econ Manag 63(3):388–403
Curiel I, Maschler M, Tijs S (1987) Bankruptcy games. Zeitschrift für Ope Res 31:143–159
Dinar S (2007) International water treaties: negotiation and cooperation along transboundary rivers. Taylor

& Francis, Routledge
Grundel S, Borm P, Hamers H (2013) Resource allocation games: a compromise stable extension of

bankruptcy games. Math Methods Oper Res 78(2):149–164
Kuhn HW, Tucker AW (1951) Nonlinear programming. University of California Press, Berkeley

123



54 S. Grundel et al.

O’Neill B (1982) A problem of rights arbitration from the talmud. Math Soc Sci 2:345–371
Parrachino I, Dinar A, Patrone F (2006) Cooperative game theory and its application to natural, environ-

mental, and water resource issues: 3. Application to water resources. Res Work Pap 1(1):1–46
Potters J, Tijs S (1994) On the locus of the nucleolus. In: Megiddo N (ed) Essays in game theory: in honor

of Michael Maschler. Springer, Berlin, pp 193–203
Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170
Wang Y (2011) Trading water along a river. Math Soc Sci 61(2):124–130
Young HP (1995) Equity, in theory and practice. Princeton University Press, Princeton

123


	Resource allocation problems with concave reward functions
	Abstract
	1 Introduction
	2 Resource allocation problems
	3 Resource allocation games
	Acknowledgements
	Appendix
	References




