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Abstract This paper describes an algorithm for solving structured nonsmooth convex
optimization problems using the optimal subgradient algorithm (OSGA), which is a
first-order method with the complexity O(ε−2) for Lipschitz continuous nonsmooth
problems andO(ε−1/2) for smooth problemswith Lipschitz continuous gradient. If the
nonsmoothness of the problem is manifested in a structured way, we reformulate the
problem so that it can be solved efficiently by a new setup of OSGA (called OSGA-V)
with the complexity O(ε−1/2). Further, to solve the reformulated problem, we equip
OSGA-O with an appropriate prox-function for which the OSGA-O subproblem can
be solved either in a closed form or by a simple iterative scheme, which decreases the
computational cost of applying the algorithm for large-scale problems. We show that
applying the new scheme is feasible for many problems arising in applications. Some
numerical results are reported confirming the theoretical foundations.
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1 Introduction

Subgradient methods are a class of first-order methods that have been developed
to solve convex nonsmooth optimization problems, dating back to 1960; see, e.g.,
(Polyak 1987; Shor 1985). In general, they only need function values and sub-
gradients, and not only inherit the basic features of general first-order methods
such as low memory requirement and simple structure but also are able to deal
with every convex optimization problem. They are suitable for solving convex
problems with a large number of variables, say several millions. Although these
features make them very attractive for applications involving high-dimensional
data, they usually suffer from slow convergence, which finally limits the attainable
accuracy. In 1983, Nemirovsky and Yudin (1983) derived the worst-case com-
plexity bound of first-order methods for several classes of problems to achieve
an ε-solution, which is O(ε−2) for Lipschitz continuous nonsmooth problems and
O(ε−1/2) for smooth problems with Lipschitz continuous gradients. The low con-
vergence speed of subgradient methods suggests that they often reach an ε-solution
in the number of iterations closing to the worst-case complexity bound on itera-
tions.

In Nemirovsky and Yudin (1983), it was proved that the subgradient, subgra-
dient projection, and mirror descent methods attain the optimal complexity of
first-order methods for solving Lipschitz continuous nonsmooth problems; here, the
mirror descent method is a generalization of the subgradient projection method,
cf. (Beck and Teboulle 2003; Beck et al. 2010). Nesterov (2011), Nesterov
(2006) proposed some primal-dual subgradient schemes, which attain the complex-
ity O(ε−2) for Lipschitz continuous nonsmooth problems. Juditsky and Nesterov
(2014) proposed a primal-dual subgradient scheme for uniformly convex func-
tions with an unknown convexity parameter, which attains the complexity close
to the optimal bound. Nesterov (1983) and later in Nesterov (2004) proposed
some gradient methods for solving smooth problems with Lipschitz continuous
gradients attaining the complexity O(ε−1/2). He also in Nesterov (2005a, b) pro-
posed some smoothing methods for structured nonsmooth problems. Smoothing
methods also have been studied by many authors; see, e.g., Beck and Teboulle
(2012), Boţ and Hendrich (2013), Boţ and Hendrich (2015), and Devolder et al.
(2012).

In many fields of applied sciences and engineering such as signal and image pro-
cessing, geophysics, economic, machine learning, and statistics, there exist many
applications that can be modeled as a convex optimization problem, in which the
objective function is a composite function of a smooth function with Lipschitz con-
tinuous gradients and a nonsmooth function; see Ahookhosh (2016) and references
therein. Studying this class of problems using first-order methods has dominated the
convex optimization literature in the recent years. Nesterov (2013, 2015) proposed
some gradient methods for solving composite problems obtaining the complexity
O(ε−1/2). For this class of problems, other first-order methods with the complex-
ity O(ε−1/2) have been developed by Auslender and Teboulle (2006), Beck and
Teboulle (2012), Chen et al. (2014, 2017, 2015, 2014), Devolder et al. (2013),
Gonzaga and Karas (2013), Gonzaga et al. (2013), Lan (2015), Lan et al. (2011),
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and Tseng (2008). In particular, Neumaier (2016) proposed an optimal subgradi-
ent algorithm (OSGA) attaining the complexity O(ε−2) for Lipschitz continuous
nonsmooth problems and the complexity O(ε−1/2) for smooth problems with Lip-
schitz continuous gradients. OSGA is a black-box method and does not need to
know about global information of the objective function such as Lipschitz con-
stants.

1.1 Content

This paper focuses on a class of structured nonsmooth convex constrained optimization
problems that is a generalization of the composite problems, which is frequently
found in applications. OSGAbehaves well for composite problems in applications; see
Ahookhosh (2016) and Ahookhosh and Neumaier (2017), Ahookhosh and Neumaier
(2017); however, it does not attain the complexityO(ε−1/2) for this class of problems.
Hence, we first reformulate the problem considered in a way that only the smooth
part remains in the objective, in the cost of adding a functional constraint to our
feasible domain. Afterward, we propose a suitable prox-function, provide a new setup
for OSGA called OSGA-O for the reformulated problem, and show that solving the
OSGA-O auxiliary problem for the reformulated problem is equivalent to solving a
proximal-like problem. It is shown that this proximal-like subproblem can be solved
efficiently for many problems appearing in applications either in a closed form or by
a simple iterative scheme. Due to this reformulation, the problem can be solved by
OSGA-O with the complexityO(ε−1/2). Finally, some numerical results are reported
suggesting a good behavior of OSGA-O.

The underlying function of the subproblem of OSGA is quasi-concave and finding
its solution is the most costly part of the algorithm. Hence, efficient solving of this
subproblem is crucial but not a trivial task. For unconstrained problems, we found a
closed form solution for the subproblem and studied the numerical behavior of OSGA
in Ahookhosh (2016) and (Ahookhosh and Neumaier 2013, 2016). In Ahookhosh and
Neumaier (2017), we gave one projection version of OSGA and provided a framework
to solve the subproblem over simple convex domains or simple functional constraints.
In particular, we describe a scheme to compute the global solution of the OSGA sub-
problem for bound constraints in Ahookhosh and Neumaier (2017). Let us emphasize
that the subproblem of OSGA-O is constrained by a simple convex set and simple
functional constraints, which is different from that one used in Ahookhosh (2016),
Ahookhosh and Neumaier (2013), Ahookhosh and Neumaier (2016), Ahookhosh and
Neumaier (2017), Ahookhosh and Neumaier (2017), which leads to solve a proximal-
like problem.

The overall structure of this paper takes six sections, including this introductory
section. In the next section, we briefly review the main idea of OSGA. In Sect. 3,
we give a reformulation for the basic problem considered and show that solving the
OSGA-O subproblem is equivalent to solving a proximal-like problem. Section 4
points out how the proximal-like subproblem can be solved in many interesting
cases. Some numerical results are reported in Sect. 5, and conclusions are given in
Sect. 6.
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1.2 Preliminaries and notation

Let V be a finite-dimensional vector space endowed with the norm ‖ · ‖, and let V∗
denotes its dual space, formed by all linear functional on V where the bilinear pairing
〈g, x〉 denotes the value of the functional g ∈ V∗ at x ∈ V . The associated dual norm
of ‖ · ‖ is defined by

‖g‖∗ = sup
z∈V

{〈g, z〉 : ‖z‖ ≤ 1}.

If V = R
n , then, for 1 ≤ p ≤ ∞,

‖x‖p =
(

n∑
i=1

|xi |p
)1/p

, ‖x‖1,p =
m∑
i=1

‖xgi ‖p,

where x = (xg1 , . . . , xgm ) ∈ R
n1 × · · · × R

nm in which n1 + · · · + nm = n. We set
(x)+ = max(x, 0). For a function f : V → R = R ∪ {±∞},

dom f = {x ∈ V | f (x) < +∞}

denotes its effective domain, and f is called proper if dom f �= ∅ and f (x) > −∞ for
all x ∈ V . LetC be a subset of V . In particular, ifC is a box, we denote it by x = [x, x]
in which x and x are the vectors of lower and upper bounds on the components of x,
respectively. The vector g ∈ V∗ is called a subgradient of f at x if f (x) ∈ R and

f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ V.

The set of all subgradients is called the subdifferential of f at x and is denoted by
∂ f (x). If f : V → R is nonsmooth and convex, then Fermat’s optimality condition
for the nonsmooth convex optimization problem

min f (x)
s.t. x ∈ C

is given by
0 ∈ ∂ f (x) + NC (x), (1)

where NC (x) is the normal cone of C at x defined by

NC (x) = {p ∈ V | 〈p, x − z〉 ≥ 0 ∀z ∈ C}. (2)

The proximal-like operator proxCλ f (y) is the unique optimizer of the optimization
problem

proxCλ f (y) := argmin
x∈C

1

2
‖x − y‖22 + λ f (x), (3)

where λ > 0. From (1), the first-order optimality condition of (3) is given by

0 ∈ x − y + λ∂ f (x) + NC (x). (4)
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If C = V , then (4) is simplified to

0 ∈ x − y + λ∂ f (x), (5)

giving the classical proximity operator. A function f is called strongly convex with
the convexity parameter σ > 0 if and only if

f (z) ≥ f (x) + 〈g, z − x〉 + σ

2
‖z − x‖22 for all x, z ∈ V (6)

where g denotes any subgradient of f at x , i.e., g ∈ ∂ f (x).
The subdifferential of φ(x) = ‖Wx‖ is given in the next result, for an arbitrary

norm ‖ · ‖ in R
n and a matrix W ∈ R

m×n . To observe a proof of this result, see
Proposition 2.1.17 in Ahookhosh (2015).

Proposition 1 Let φ : Rn → R, φ(x) = ‖Wx‖, where W ∈ R
m×n is an invertible

matrix and ‖ · ‖ is any norm of Rn. Then

∂φ(x) =
{ {g ∈ R

n | ‖W−T g‖ ≤ 1} if x = 0,
{g ∈ R

n | ‖W−T g‖ = 1, 〈g, x〉 = ‖Wx‖} if x �= 0.

In particular, if ‖ · ‖ is self-dual (‖ · ‖ = ‖ · ‖∗), we have

∂φ(x) =
{ {g ∈ R

n | ‖W−T g‖∗ ≤ 1} if x = 0,
WT Wx

‖Wx‖ if x �= 0.

In the next example, we show how Proposition 1 is applied to φ = ‖ · ‖∞, which
will be needed in Sect. 4. The subdifferential of other norms of Rn can be computed
with Proposition 1 in the same way.

Example 2 We use Proposition 1 to derive the subdifferential of φ = ‖ · ‖∞ at an
arbitrary point x . We first recall that the dual norm of ‖ · ‖∞ is ‖ · ‖1. If x = 0,
Proposition 1 implies

∂φ(0) = {g ∈ R
n | ‖g‖1 ≤ 1}

=
{
g ∈ R

n | g =
n∑

i=1

βi ei , β ∈ [−1, 1],
n∑

i=1

|βi | ≤ 1

}
,

leading to

∂φ(x) =
{
g ∈ R

n | ‖g‖1 = 1, 〈g, x〉 = ‖x‖∞ = max
1≤i≤n

|xi |
}

=
⎧⎨
⎩g ∈ R

n |
n∑
j=1

|g j | = 1,
n∑
j=1

g j x j = ‖x‖∞

⎫⎬
⎭ .
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If x �= 0, we set

I := {i ∈ {1, . . . , n} | ‖x‖∞ = |xi |}

and we have ‖x‖∞ = ∑
i∈I βi |xi | and ∑

i∈I βi = 1 leading to

∂φ(x) =
{
g ∈ R

n | g =
∑
i∈I

βi sign(xi )ei ,
∑
i∈I

βi = 1

}
.

2 A review of optimal subgradient algorithm (OSGA)

In this section, we briefly review the main idea of the optimal subgradient algorithm
(OSGA) proposed by Neumaier (2016). To this end, we first consider the convex
constrained minimization problem

min f (x)
s.t. x ∈ C,

(7)

where f : C → R is a proper and convex function defined on a nonempty, closed, and
convex subsetC of V . The aim is to derive a solution x̂ ∈ C using the first-order black-
box information, i.e., function values and subgradients. OSGA (see Algorithm 2) is
an optimal subgradient algorithm for the problem (7) that constructs a sequence of
iterates whose related function values converge to the minimum with the optimal
complexity. The primary objective is to monotonically reduce bounds on the error
term f (xb) − f̂ of the function values, where f̂ := f (̂x) and xb is the best known
point.

In details, OSGA considers a linear relaxation of f at x defined by

f (x) ≥ γ + 〈h, x〉 for all x ∈ C, (8)

where γ ∈ R and h ∈ V∗ and a continuously differentiable prox-function Q : C → R

satisfying (6) and
Q0 := inf

x∈C Q(x) > 0. (9)

Moreover, OSGA requires an efficient routine for finding a maximizer u := U (γ, h)

and the optimal objective value η := E(γ, h) of the auxiliary problem

sup Eγ,h(x)
s.t. x ∈ C,

(10)

where it is known that the supremum η is positive and the function Eγ,h : C → R is
defined by

Eγ,h(x) := −γ + 〈h, x〉
Q(x)

, (11)

with γ ∈ R, h ∈ V∗.
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In Neumaier (2016), it is shown that OSGA attains the following bound on function
values

0 ≤ f (xb) − f̂ ≤ ηQ(̂x).

Hence, by decreasing the error factor η, the convergence to an ε-minimizer xb is
guaranteed by

0 ≤ f (xb) − f̂ ≤ ε,

for some target tolerance ε > 0. In Neumaier (2016), it is shown that the number of
iterations to achieve this optimizer isO(ε−1/2) for smooth f withLipschitz continuous
gradients and O(ε−2) for Lipschitz continuous nonsmooth f , which are optimal in
both cases, cf. (Nemirovsky and Yudin 1983). The algorithm does not need to know
about the global Lipschitz parameters and has a low memory requirement. Hence,
if the subproblem (10) can be solved efficiently, it is appropriate for solving large-
scale problems. In the next section, we show that OSGA can solve some structured
nonsmooth problems with the complexity O(ε−1/2). Moreover, it is shown that by
selecting a suitable prox-function Q, the subproblem (10) can be solved efficiently for
this class of problems.

As discussed in Neumaier (2016), to update the given parameters α, h, γ , η and u,
OSGA uses the following scheme:

Algorithm 1: PUS (parameters updating scheme)

Input: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ , α, η, h̄, γ̄ , η̄, ū;
Output: α, h, γ , η, u;

1 begin
2 R ← (η − η)/(δαη);
3 if R < 1 then
4 α = αe−κ ;
5 else
6 α ← min(αeκ

′(R−1), αmax);
7 end
8 α ← α;
9 if η < η then

10 h ← h; γ ← γ ; η ← η; u ← u;
11 end
12 end

If the best function value fxb is stored and updated, then each iteration of OSGA
only requires the computation of two function values fx and fx ′ (Lines 6 and 11) and
one subgradient gx (Line 6).
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Algorithm 2: OSGA (optimal subgradient algorithm)
Input: global parameters: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ; local parameters: x0, μ ≥ 0;
Output: xb , fxb ;

1 begin
2 xb = x0; compute fxb and gxb ;
3 h = gxb − μgQ(xb); γ = fxb − μQ(xb) − 〈h, xb〉;
4 γb = γ − fxb ; u = U (γb, h); η = E(γb, h) − μ; α = αmax;
5 while stopping criteria do not hold do
6 x = xb + α(u − xb); compute fx and gx ;
7 g = gx − μgQ(x); h = h + α(g − h);
8 γ = γ + α( fx − μQ(x) − 〈g, x〉 − γ );
9 x ′

b = argminz∈{xb,x} f (z); fx ′
b

= min{ fxb , fx };
10 γ ′

b = γ − fx ′
b
; u′ = U (γ ′

b, h);

11 x ′ = xb + α(u′ − xb); compute fx ′ ;
12 choose xb in such a way that fxb ≤ min{ fx ′

b
, fx ′ };

13 γ b = γ − fxb ; u = U (γ b, h); η = E(γ b, h) − μ;
14 xb = xb; fxb = fxb ;
15 update the parameters α, h, γ , η and u using PUS;
16 end
17 end

3 Structured nonsmooth convex optimization

Let us consider the convex constrained problem

min f (Ax, φ(x))
s.t. x ∈ C,

(12)

where f : U × R → R is a proper and convex function that is smooth with Lipschitz
continuous gradients with respect to both arguments and monotone increasing with
respect to the second argument, A : V → U is a linear operator, C ⊆ V is a simple
convex domain, and φ : V → R is a simple nonsmooth, real-valued, and convex loss
function. This class of convex problems generalizes the composite problem considered
in Nesterov (2013, 2015). As discussed in Sect. 2, OSGA attains the complexity
O(ε−2) for this class of problems. Hence we aim to reformulate the problem (12)
in such a way that OSGA attains the complexity O(ε−1/2). We here reformulate the
problem (12) in the form

min f̃ (x, ξ)

s.t. (x, ξ) ∈ C̃,
(13)

where

f̃ : V × R → R, f̃ (x, ξ) := f (Ax, ξ), (14)

C̃ := {(x, ξ) ∈ V × R | x ∈ C, φ(x) ≤ ξ}. (15)

By the assumptions on f , the reformulated function f̃ is smooth and has Lipschitz
continuous gradients. OSGA can handle the problems of the form (13) with the com-
plexity O(ε−1/2) in the price of adding a functional constraint to the feasible domain
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C . In the next subsection, we will show how OSGA can effectively handle (13) with
the feasible domain C̃ . A version of OSGA that take advantages of the problem (13)
is called OSGA-O.

Problems of the form (12) appears in many applications in the fields of signal and
image processing, machine learning, statistics, economic, geophysics, and inverse
problems. Let us consider the following example.

Example 3 (composite minimization) We consider the unconstrained minimization
problem

min f (Ax) + φ(x)
s.t. x ∈ C,

(16)

where f : U → R is a smooth, proper, and convex function, A : V → U is a linear
operator, and φ : V → R is a simple but nonsmooth, real-valued, and convex loss
function. In this case, we reformulate (16) in the form (13) by setting f̃ (x, ξ) :=
f (Ax) + ξ . Let us now consider the linear inverse problem

y = Ax + ν, (17)

where x ∈ R
n is the original object, y ∈ R

m is an observation, and ν ∈ R
m is an

additive or impulsive noise. The objective is to recover x from y by solving (17).
In practice, this problem is typically underdetermined and ill-conditioned, and ν is
unknown. Hence x typically is recovered by solving one of theminimization problems

min
1

2
‖y − Ax‖22 + 1

2
λ‖x‖22

s.t. x ∈ R
n,

(18)

min
1

2
‖y − Ax‖22 + λ‖x‖1

s.t. x ∈ R
n,

(19)

or

min
1

2
‖y − Ax‖22 + 1

2
λ1‖x‖22 + λ2‖x‖1

s.t. x ∈ R
n .

(20)

These problems can be reformulated in the form (13) by setting

f̃ (x, ξ) := 1

2
‖y − Ax‖22 + ξ, φ(x) := 1

2
λ‖x‖22, (21)

f̃ (x, ξ) := 1

2
‖y − Ax‖22 + ξ, φ(x) := λ‖x‖1, (22)

or

f̃ (x, ξ) := 1

2
‖y − Ax‖22 + ξ, φ(x) := 1

2
λ1‖x‖22 + λ2‖x‖1, (23)

respectively.
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3.1 New setup of optimal subgradient algorithm (OSGA-O)

This section describes the subproblem (10) for a problem of the form (13). To this end,
we introduce some prox-function and employ it to derive an inexpensive solution of
the subproblem. We generally assume that the domain C is simple enough such that
η and (̂u, ũ) can be computed cheaply, in O(n log n) operations, say.

Let Q : V × R → R be a function defined by

Q(x, x̃) := Q0 + 1

2

(
‖x‖22 + x̃2

)
, (24)

where Q0 > 0. From gQ(x, x̃) = (x x̃)T , we obtain

Q(z, z̃) + 〈gQ(z, z̃), (x − z, x̃ − z̃)〉 + 1

2
‖(x − z, x̃ − z̃)T ‖22

= Q0 + 1

2

〈
(z, z̃)T , (z, z̃)T

〉
+

〈
(z, z̃)T , (x − z, x̃ − z̃)T

〉
+ 1

2

〈
(x − z, x̃ − z̃)T , (x − z, x̃ − z̃)T

〉
= Q0 + 1

2

〈
(z, z̃)T , (x, x̃)T

〉
+ 1

2

〈
(x, x̃)T , (x − z, x̃ − z̃)T

〉
= Q0 + 1

2

〈
(x, x̃)T , (x, x̃)T

〉
= Q0 + 1

2

(
‖x‖22 + x̃2

)
= Q(x, x̃).

This means that Q is a strongly convex function with the convexity parameter 1, and
since Q0 > 0, we get Q(x, x̃) > 0. Then Q is strongly convex, and Q(x, x̃) > 0.
This shows that Q is a prox-function. We now replace the linear relaxation (8) by

f̃ (x, x̃) ≥ γ + 〈h, x〉 + h̃ x̃ for all x ∈ Ĉ . (25)

Using this linear relaxation and the prox-function (24), the subproblem (10) is rewritten
in the form

sup Eγ,h ,̃h(x, x̃)
s.t. (x, x̃) ∈ C̃,

(26)

where Eγ,h ,̃h : V × R → R is differentiable and given by

Eγ,h ,̃h(x, x̃) := −γ + 〈h, x〉 + h̃ x̃

Q(x, x̃)
. (27)

Let (̂u, ũ) ∈ V×R be a maximizer of (26) and η = Eγ,h ,̃h (̂u, ũ). The next result gives

a bound on the error f̃ (xb, x̃b) − f̂ , which is important for providing the complexity
analysis of OSGA-O.
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Proposition 4 Let γb := γ − f (xb, x̃b), (̂u, ũ) := U (γb, h, h̃), and η := E(γb, h, h̃).
Then, we have

0 ≤ f (xb, x̃b) − f̂ ≤ ηQ(̂x, x∗), (28)

where (̂x, x∗) is the solution of (13). In particular, if (xb, x̃b) is not yet optimal, then
the choice (̂u, ũ) implies η = E(γb, h, h̃) > 0.

Proof Using (25), (26), and (27), this follows similarly to Proposition 2.1 in Neumaier
(2016). ��

Proposition 5 The maximizer (̂u, ũ) of (26) and the associated η satisfy

γ + 〈h, û〉 + h̃ũ = −ηQ(̂u, ũ), (29)

〈ηû + h, x − û〉 + (ηũ + h̃)(̃x − ũ) ≥ 0 for all (x, x̃) ∈ C̃ . (30)

Proof The problem (26) and the definition (27) imply that the function ζ : C×R → R

defined by

ζ(x, x̃) := γ + 〈h, x〉 + h̃ x̃ + ηQ(x, x̃)

is nonnegative and vanishes at (x, x̃) = (̂u, ũ), i.e., the identity (29) holds. Since
ζ(x, x̃) is continuously differentiable with gradient gζ (x, x̃) = (ηû + h, ηũ + h̃)T ,
the first order optimality condition holds, i.e.,

〈ηû + h, x − û〉 + (ηũ + h̃)(̃x − ũ) ≥ 0 (31)

for all (x, x̃) ∈ C̃ , giving the results. ��

The subsequent result gives a systematic way for solving OSGA subproblem (26)
for problems of the form (13).

Theorem 6 Let (̂u, ũ) ∈ V × R be a maximizer of (26) and η = Eγ,h ,̃h (̂u, ũ). Then,

for y := −η−1h, λ := ũ + η−1h̃, we have

ũ := φ(̂u), û := argmin
x∈C

1

2
‖x − y‖22 + λφ(x). (32)

Furthermore, η and λ can be computed by solving the two-dimensional system of
equations

⎧⎪⎪⎨
⎪⎪⎩

φ(̂u) + η−1h̃ − λ = 0,

η

(
1

2
(‖û‖22 + φ(̂u)2) + Q0

)
+ γ + 〈h, û〉 + h̃φ(̂u) = 0.

(33)
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Proof From Proposition 5, at the minimizer (̂u, ũ), we obtain

η

(
1

2
(‖û‖22 + (̃u)2) + Q0

)
= −γ − 〈h, û〉 − h̃ũ (34)

and

〈ηû + h, x − û〉 + (ηũ + h̃)(̃x − ũ) ≥ 0 for all (x, x̃) ∈ C × R, φ(x) ≤ x̃ . (35)

We conclude the proof in the next two parts:
In the first part, considering gQ (̂u, ũ) = (̂uT , ũ)T , we show that (35) is equivalent

to the following two inequalities

⎧⎨
⎩

ηũ + h̃ ≥ 0,

〈ηû + h, x − û〉 + (ηũ + h̃)(φ(x) − ũ) ≥ 0 for all (x, x̃) ∈ C × R.

(36)

Assuming that these two inequalities hold,we prove (35). Fromφ(x) ≤ x̃ andηũ+h̃ ≥
0, we obtain

〈ηû + h, x − û〉 + (ηũ + h̃)(̃x − ũ) ≥ 〈ηû + h, x − û〉 + (ηũ + h̃)(φ(x) − ũ) ≥ 0.

We now assume (35) and prove (36). The inequality ηũ + h̃ ≥ 0 holds; otherwise, by
selecting x̃ large enough, we get

〈ηû + h, x − û〉 + (ηũ + h̃)(̃x − ũ) < 0,

which is a contradiction with (35). Since φ(x) ≤ x̃ , the second inequality of (36)
holds.

In the second part, by setting x = û and ũ = φ(̂u), we see that û is a solution of
the minimization problem

inf
x∈C 〈ηû + h, x − û〉 + (ηũ + h̃)(φ(x) − ũ).

The first-order optimality condition (1) of this problem leads to

0 ∈ û + η−1h + (̃u + η−1h̃) ∂φ(̂u) + NC (̂u). (37)

On the other hand, by writing the first-order optimality condition (4) for the problem

min
1

2
‖x − y‖22 + λφ(x)

s.t. x ∈ C,

we get
0 ∈ û − y + λ ∂φ(̂u) + NC (̂u). (38)
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By comparing (37) and (38) and setting y = −η−1h, λ = ũ+η−1h̃, we conclude that
both problems have the same minimizer û. Since ũ = φ(̂u), we obtain

λ = ũ + η−1h̃ = φ(̂u) + η−1h̃.

Using this and substituting ũ = φ(̂u) in (34), η and λ are found by solving the system
of nonlinear equations (33). This completes the proof. ��

In Theorem 6, if C = V , the problem (32) is reduced to the classical proximity
operator û = proxλφ(y) defined in (3). Hence, the problem (32) is called proximal-
like. Therefore, the word “simple” in the definition of C means that the problem (32)
can be solved efficiently either in a closed form or by an inexpensive iterative scheme.
To have a clear view of Theorem 6, we give the following example.

Example 7 Let us consider the �1-regularized least squares problem (19). Then, the
problem can be reformulated as

min
1

2
‖y − Ax‖22 + ξ

s.t. ‖x‖1 ≤ ξ.

Since φ = ‖ · ‖1, the solution of (32) is û = sign(yi )(|yi | − λ)+ with y = −η−1h
(see Table 6.1 in Ahookhosh (2015)). Substituting this into (33) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(η, λ) :=
n∑

i=1

(|yi | − λ)+ + η−1h̃ − λ = 0,

f2(η, λ) := η

⎛
⎝1

2

⎛
⎝ n∑

i=1

(|yi | − λ)2+ +
(

n∑
i=1

(|yi | − λ)+

)2
⎞
⎠ + Q0

⎞
⎠

+γ + ∑n
i=1(hi + h̃)(|yi | − λ)+ = 0.

This is a two-dimensional system of nonsmooth equations that can be reformulated as
a nonlinear least squares problem; see, e.g., (Pang and Qi 1993).

Theorem 6 leads to the two-dimensional nonlinear system

F(η, λ) := ( f1(η, λ), f2(η, λ))T = 0, (39)

where

f1(η, λ) := φ(̂u) + η−1h̃ − λ,

f2(η, λ) := η

(
1

2
(‖û‖22 + φ(̂u)2) + Q0

)
+ γ + 〈h, û〉 + h̃φ(̂u),

in which û and η, λ > 0. For instance, in Example 7, see the definition of f1(η, λ)

and f2(η, λ). The system of nonsmooth equations (39) can be handled by replacing
the vector (η, λ) with (|η|, |λ|) and solving
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min
1

2
‖F(|η|, |λ|)‖22

s.t. η, λ ∈ R

(40)

if f1(η, λ) and f2(η, λ) are nonsmooth. The problems (39) and (40), such as Example
7, can be solved by semismooth Newton methods or smoothing Newton methods (Qi
and Sun 1999), quasi-Newton methods (Sun and Han 1997; Li et al. 2001), secant
methods (Potra et al. 1998), and trust-region methods (Ahookhosh et al. 2015; Qi
1995).

In view of Theorem 6, we now provide a systematic way for solving OSGA-O
subproblem (26), which is summarized in next scheme.

Algorithm 3: SUS (subproblem solver for OSGA-O)
Input: Q0, γ , h;
Output: u, η;

1 begin
2 solve the system of nonlinear equation (39) approximately by a nonlinear solver to find η and λ;
3 set u = (̂u, φ(̂u)).
4 end

To implement Algorithm 3 (SUS), we need a reliable nonlinear solver to deal
with the system of nonlinear equation (39) and a routine giving the solution of the
proximal-like problem (32) effectively. In Sect. 4, we investigate solving the proximal-
like problem (32) for some practically important loss functionsφ. Algorithm2 requires
two solutions of the subproblem (26) (u in Line 6 and u′ in Line 10) that are provided
by Line 3 of SUS (similar notation can be considered for u′).

3.2 Convergence analysis and complexity

In this section, we establish the complexity bounds of OSGA-O for Lipschitz contin-
uous nonsmooth problems and smooth problems with Lipschitz continuous gradients.
We also show that if f̃ is strictly convex, the sequence generated by OSGA-O is
convergent to x̂ .

To guarantee the existence of a minimizer for OSGA-O, we assume the following
conditions.

(H1) The objective function f̃ is proper and convex;
(H2) The upper level set N f̃ (x0, x̃0) := {x ∈ C̃ | f̃ (x, x̃) ≤ f̃ (x0, x̃0)} is bounded,

for the starting point (x0, x̃0) ∈ V × R.

Since f̃ is convex, the upper level set N f̃ (x0, x̃0) is closed, and V × R is a finite-
dimensional vector space, (H2) implies that the upper level set N f̃ (x0, x̃0) is convex

and compact. It follows from the continuity and properness of the objective function f̃
that it attains its global minimizer on the upper level set N f̃ (x0, x̃0). Therefore, there
is at least one minimizer (̂x, x∗).
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Since the underlying problem (13) is a special case of the problem (7) considered
by Neumaier (2016), the complexity results of OSGA-O is the same as OSGA.

Theorem 8 Suppose that f̃ − μQ is convex and μ ≥ 0. Then we have

(i) (Nonsmooth complexity bound) If the points generated by Algorithm 2 stay in a
bounded region of the interior of C̃, or if f̃ is Lipschitz continuous in C̃, the total
number of iterations needed to reach a point with f̃ (x, x̃) ≤ f̃ (̂x, x∗) + ε is at
mostO((ε2+με)−1). Thus the asymptotic worst case complexity isO(ε−2)when
μ = 0 and O(ε−1) when μ > 0.

(ii) (Smooth complexity bound) If f̃ has Lipschitz continuous gradients with Lipschitz
constant L, the total number of iterations needed by Algorithm 2 to reach a
point with f̃ (x, x̃) ≤ f̃ (̂x, x∗) + ε is at most O(ε−1/2) if μ = 0, and at most
O(| log ε|√L/μ) if μ > 0.

Proof Since all assumptions of Theorems 4.1 and 4.2, Propositions 5.2 and 5.3, and
Theorem 5.1 of Neumaier (2016) are satisfied, the results remain valid. ��

Indeed, if a nonsmooth problem can be reformulated as (13) with a nonsmooth loss
function φ, then OSGA-O can solve the reformulated problem with the complexity
O(ε−1/2) for an arbitrary accuracyparameter ε. The next result shows that the sequence
{(xk, x̃k)} generated by OSGA-O is convergent to (̂x, x∗) if the objective f̃ is strictly
convex and (̂x, x∗) ∈ int C̃ , where int C̃ denotes the interior of C̃ .

Proposition 9 Suppose that f̃ is strictly convex, then the sequence {(xk, x̃k)} gener-
ated by OSGA-O is convergent to (̂x, x∗) if (̂x, x∗) ∈ int C̃.

Proof Since f̃ is strictly convex, the minimizer (̂x, x∗) is unique. By (̂x, x∗) ∈ int C̃ ,
there exists a small δ > 0 such that the neighborhood

N (̂x, x∗) := {(x, x̃) ∈ C̃ | ‖(x, x̃) − (̂x, x∗)‖ ≤ δ}

is contained in C̃ and it is a convex and compact set. Let (xδ, x̃δ) be a minimizer of
the problem

min f̃ (x, x̃)
s.t. (x, x̃) ∈ ∂N (̂x, x∗), (41)

where ∂N (̂x, x∗) denotes the boundary of N (̂x, x∗). Set εδ := f̃ (xδ, x̃δ) − f̂ and
consider the upper level set

N f̃ (xδ, x̃δ) := {(x, x̃) ∈ C̃ | f̃ (x, x̃) ≤ f̃ (x, x̃) = f̂ + εδ}.

Now, Theorem 8 implies that the algorithm attains an εδ-solution of (13) in a finite
number κ of iterations. Hence, after κ1 iterations, the best point (xb, x̃b) attained by
OSGA-O satisfies f̃ (xb, x̃b) ≤ f̂ + εδ , i.e., (xb, x̃b) ∈ N f̃ (xδ, x̃δ). We now show
that N f̃ (xδ, x̃δ) ⊆ N (̂x, x∗). To prove this statement by contradiction, we suppose
that there exists (x, x̃) ∈ N f̃ (xδ, x̃δ) \ N (̂x, x∗). Since (x, x̃) /∈ N (̂x, x∗), we have
‖(x, x̃) − (̂x, x∗)‖ > δ. Therefore, there exists λ0 such that

‖λ0(x, x̃) + (1 − λ0)(̂x, x
∗)‖ = δ.
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It follows from (41), the strictly convex property of f̃ , and f̃ (x, x̃) ≤ f̃ (xδ, x̃δ) that

f̃ (xδ, x̃δ) ≤ f̃ (λ0(x, x̃) + (1 − λ0)(̂x, x
∗)) < λ0 f̃ (x, x̃) + (1 − λ0) f̃ (̂x, x

∗)
≤ λ0 f̃ (xδ, x̃δ) + (1 − λ0) f̃ (xδ, x̃δ) = f̃ (xδ, x̃δ),

which is a contradiction, i.e., N f̃ (xδ, x̃δ) ⊆ N (̂x, x∗) implying (x, x̃) ∈ N (̂x, x∗),
giving the result. ��

4 Solving proximal-like subproblem

In this section, we show that the proximal-like problem (32) can be solved in a closed
form for many special cases appearing in applications. To this end, we first consider
unconstrained problems (C = V) and study some problems with simple constrained
domains (C �= V). Although finding proximal points is a mature area in convex non-
smooth optimization (cf. (Combettes and Pesquet 2011; Parikh and Boyd 2013)), we
here address the solution of several proximal-like problems of the form (32) appearing
in applications that to the best of our knowledge have not been studied in literature.

4.1 Unconstrained examples (C = V)

We here consider several interesting unconstrained proximal problems appearing in
applications and explain how the associated OSGA-O auxiliary problem (32) can be
solved.

In recent years, the interest of applying regularizations with weighted norms is
increased by emerging many applications; see, e.g., (Daubechies et al. 2010; Rauhut
and Ward 2016). Let d be a vector in Rn such that di �= 0 for i = 1, . . . , n. Then, we
define the weight matrix D := diag(d), which is a diagonal matrix with Di,i = di for
i = 1, . . . , n. It is clear that D is an invertible matrix. The next two results show how
to compute a solution of the problem (32) for special cases of φ arising frequently in
applications.

Proposition 10 Let D := diag(d), where d ∈ R
n with di �= 0, for i = 1, . . . , n. If

φ(x) = ‖Dx‖1, the proximity operator (32) is given by

(
proxλφ(y)

)
i
= sign(yi )(|yi | − λ|di |)+, (42)

for i = 1, . . . , n.

Proof See Proposition 6.2.1 in Ahookhosh (2015). ��
Proposition 11 Let D := diag(d), where d ∈ R

n and di �= 0, for i = 1, . . . , n. If
φ(x) = ‖Dx‖2, the proximity operator (32) is given by proxλφ(y) = 0 if ‖D−1y‖2 ≤
λ and otherwise, for i = 1, . . . , n,

(
proxλφ(y)

)
i
= τ yi

τ + λd2i
,
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where τ is the unique solution of the one-dimensional nonlinear equation

n∑
i=1

d2i y
2
i

(τ + λd2i )2
− 1 = 0.

Proof The optimality condition (5) shows that u = proxλφ(y) if and only if

0 ∈ u − y + λ ∂‖Du‖2. (43)

We consider two cases:

(i) ‖D−1y‖2 ≤ λ; (ii) ‖D−1y‖2 > λ.
Case (i). Let ‖D−1y‖2 ≤ λ. Then, we show that u = 0 satisfies (43). If u = 0,

Proposition 1 implies ∂φ(0) = {g ∈ V∗ | ‖D−1g‖2 ≤ 1}. Using this, we
get that u = 0 is satisfied in (43) if y ∈ {g ∈ V∗ | ‖D−1g‖2 ≤ λ} leading
to proxλφ(y) = 0.

Case (ii). Let ‖D−1y‖2 > λ. Case (i) implies u �= 0. Proposition 1 implies ∂φ(u) =
DT Du/‖Du‖2, and the optimality condition (5) yields

u − y + λ DT Du

‖Du‖2 = 0.

By this and setting τ = ‖Du‖2, we get(
1 + λd2i

τ

)
ui − yi = 0,

leading to

ui = τ yi
τ + λd2i

,

for i = 1, . . . , n. Substituting this into τ = ‖Du‖2 implies

n∑
i=1

d2i y
2
i

(τ + λd2i )2
= 1.

We define the function ψ : ]0,+∞[ → R by

ψ(τ) :=
n∑

i=1

d2i y
2
i

(τ + λd2i )2
− 1,

where it is clear that ψ is decreasing and

lim
τ→0

ψ(τ) = 1

λ2

n∑
i=1

y2i
d2i

− 1 = 1

λ2

(
‖D−1y‖22 − λ2

)
, lim

τ→+∞ ψ(τ) = −1.
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It can be deduced by ‖D−1y‖2 > λ and the mean value theorem that there
exists τ̂ ∈ ]0,+∞[ such that ψ(̂τ) = 0, giving the result. ��

We here emphasize that if D = I (I denotes the identity matrix) then the proximity
operator for φ(·) = ‖ · ‖2 is given by

proxλφ(y) = (1 − λ/‖y‖2)+y,

cf. (Parikh and Boyd 2013). If one solves the equation ψ(τ) = 0 approximately, and
an initial interval [a, b] is available such that ψ(a)ψ(b) < 0, then a solution can be
computed to an ε-accuracy using the bisection scheme inO(log2((b−a)/ε)) iterations;
see, e.g., (Neumaier 2001). However, it is preferable to use a more sophisticated
zero finder like the secant bisection scheme (Algorithm 5.2.6, (Neumaier 2001)). If
an interval [a, b] with sign change is available, one can also use MATLAB fzero
function combining the bisection scheme, the inverse quadratic interpolation, and the
secant method.

Grouped variables typically appear in high-dimensional statistical learning prob-
lems. For example, in data mining applications, categorical features are encoded by
a set of dummy variables forming a group. Another interesting example is learning
sparse additive models in statistical inference, where each component function can
be represented using basis expansions and thus can be treated as a group. For such
problems (see (Liu et al. 2010) and references therein), it is more natural to select
groups of variables instead of individual ones when a sparse model is preferred.

In the following two results, we show how the proximity operator proxλφ(·) can
be computed for the mixed-norms φ(·) = ‖ · ‖1,2 and φ(·) = ‖ · ‖1,∞, which are
especially important in the context of sparse optimization and sparse recovery with
grouped variables.

Proposition 12 Let φ(·) = ‖ · ‖1,2. Then, the proximity operator (32) is given by

(proxλφ(y))gi =
(
1 − λ

‖ygi ‖2
)

+
ygi . (44)

for i = 1, . . . ,m.

Proof Since u = (ug1 , . . . , ugm ) ∈ R
n1 × . . . × R

nm and φ is separable with respect
to the grouped variables, we fix the index i ∈ {1, . . . ,m}. The optimality condition
(5) shows that ugi = proxλφ(ygi ) if and only if

0 ∈ ugi − ygi + λ ∂‖ugi ‖2, (45)

for i = 1, . . . ,m. We now consider two cases: (i) ‖ygi ‖2 ≤ λ; (ii) ‖ygi ‖2 > λ.

Case (i). Let ‖ygi ‖2 ≤ λ. Then, we show that ugi = 0 satisfies (45). If ugi = 0,
Proposition 1 implies ∂φ(0gi ) = {g ∈ R

ni | ‖ggi ‖2 ≤ 1}. By substituting
this into (45), we get that ugi = 0 is satisfied in (45) if ygi ∈ {g ∈ R

ni |
‖ggi ‖2 ≤ λ}, which leads to proxλφ(ygi ) = 0gi . Since the right hand side
of (44) is also zero, (44) holds.
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Case (ii). Let ‖ygi ‖2 > λ. Then, Case (i) implies that ugi �= 0. From Proposition 1,
we obtain

∂φ(ugi ) =
{

ugi
‖ugi ‖2

}
, (46)

where i = 1, . . . ,m and ‖ygi ‖2 > λ. Then (45) and (46) imply

ugi − ygi + λ
ugi

‖ugi ‖2
= 0,

leading to

(
1 + λ

‖ugi ‖2
)
ugi = ygi

giving ugi = μi ygi . Substituting this into the previous identity and solving
it with respect to μi yield

μi =
(
1 − λ

‖ygi ‖2
)

+
ygi , ugi = μi ygi ,

completing the proof. ��
Proposition 13 Let φ(·) = ‖ · ‖1,∞. Then, the proximity operator (32) is given by

(proxλφ(ygi ))
j
gi =

⎧⎨
⎩
0 if ‖ygi ‖1 ≤ λ,

sign(y j
gi )u

i∞ if ‖ygi ‖1 > λ, j ∈ Igi ,
y j
gi if ‖ygi ‖1 > λ, j /∈ Igi ,

(47)

for i = 1, . . . ,m, where

ui∞ := 1

k̂i

⎛
⎝ ∑

j∈Igi

|y j
gi | − λ

⎞
⎠ (48)

with
Igi := {l1gi , . . . , l k̂igi } (49)

in which k̂i is the smallest k ∈ {1, . . . , ni − 1} such that

1

k̂i

⎛
⎝ k̂i∑

j=1

v
j
gi − λ

⎞
⎠ ≥ vk̂i+1

gi , (50)

where v
j
gi := |y

l jgi
| and l1gi , . . . , l

ni
gi is a permutation of 1, . . . , ni such that v1gi ≥

v2gi ≥ . . . ≥ v
ni
gi . If (59) is not satisfied for k ∈ {1, . . . , ni − 1}, then k̂i = ni , for

i = 1, . . . ,m.
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Proof Since u = (ug1 , . . . , ugm ) ∈ R
n1 × . . . × R

nm and φ is separable with respect
to the grouped variables, we fix the index i ∈ {1, . . . ,m}. The optimality condition
(5) shows that ugi = proxλφ(ygi ) if and only if

0 ∈ ugi − ygi + λ ∂‖ugi ‖∞. (51)

We now consider two cases: (i) ‖ygi ‖1 ≤ λ; (ii) ‖ygi ‖1 > λ.

Case (i). Let ‖ygi ‖1 ≤ λ. Then, we show that ugi = 0 satisfies (51). If ugi = 0,
the subdifferential of φ derived in Example 2 is ∂φ(0gi ) = {g ∈ R

ni |
‖g‖1 ≤ 1}. By substituting this into (51), we get that ugi = 0 satisfies (51)
if ygi ∈ {g ∈ R

ni | ‖g‖1 ≤ 1}, i.e., proxλφ(ygi ) = 0gi .
Case (ii). Let ‖ygi ‖1 > λ. From Case (i), we have ugi �= 0. We show that

u j
gi =

{
sign(y j

gi )u
i∞ if i ∈ Igi ,

y j
gi otherwise,

(52)

with Igi defined in (49), satisfies (51). Hence, using the subdifferential of

φ derived in Example 2, there exist coefficients β
j
gi , for j ∈ Igi , such that

ugi − ygi + λ
∑
j∈Igi

β
j
gi sign(u

j
gi )e j = 0, (53)

where
β
j
gi ≥ 0 j ∈ Igi ,

∑
j∈Igi

β
j
gi = 1. (54)

Let ugi be the vector defined in (52). We define

β
j
gi := |y j

gi | − ui∞
λ

, (55)

for j ∈ Igi = {li1, . . . , lik̂i } with ui∞ defined in (48). We show that the

choice (55) satisfies (53). We first show ui∞ > 0. It follows from (48) and
(50) if k̂i < n and from ‖ygi ‖1 > λ if k̂i = n. Using (52) and (55), we
come to

u j
gi − y j

gi +λβ
j
gi sign(u

j
gi )=sign(y j

gi )u
i∞ − y j

gi +
(
|y j

gi |−ui∞
)
sign(sign(y j

gi )u
i∞)

= sign(y j
gi )u

i∞ − y j
gi +

(
|y j

gi | − ui∞
)
sign(y j

gi ) = 0,

for j ∈ Igi . For j /∈ I j
gi , we have u

j
gi − y j

gi = 0. Hence, (53) is satisfied
componentwise. It remains to show that (54) holds. From (50), we have
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that |y j
gi | ≥ ui∞, for j ∈ Igi . This and (55) yield β

j
gi ≥ 0 for j ∈ Igi . It

can be deduced from (48) that

k̂i∑
j=1

β
j
gi = 1

λ

k̂i∑
j=1

|y j
gi | − k̂i

λ
ui∞ = 1

λ

k̂i∑
j=1

|y j
gi | − 1

λ

⎛
⎝ k̂i∑

j=1

|y j
gi | − λ

⎞
⎠ = 1,

giving the results. ��
Corollary 14 Let φ(·) = ‖ · ‖∞. Then, the proximity operator (32) is given by

(proxλφ(y))i =
⎧⎨
⎩
0 if ‖y‖1 ≤ λ,

sign(yi )u∞ if ‖y‖1 > λ, i ∈ I,

yi if ‖y‖1 > λ, i /∈ I,

(56)

for i = 1, . . . , n, where

u∞ := 1

k̂

(∑
i∈I

|yi | − λ

)
(57)

with
I := {l1, . . . , l̂k} (58)

in which k̂ is the smallest k ∈ {1, . . . , n − 1} such that

1

k̂

⎛
⎝ k̂∑

i=1

vi − λ

⎞
⎠ ≥ vk̂+1, (59)

where vi := |yli | and l1, . . . , ln is a permutation of 1, . . . , n such that v1 ≥ v2 ≥
· · · ≥ vn. If (59) is not satisfied for k ∈ {1, . . . , n − 1}, then k̂ = n.

Proof The proof is straightforward from Proposition 13 by setting m = 1, n1 = n,
yg1 = y, and Ig1 = I.

4.2 Constrained examples (C �= V)

In this section, we consider the subproblem (32) and show how it can be solved for
some φ and C . More precisely, we solve the minimization problem

min
1

2
‖x − y‖22 + λφ(x)

s.t. x ∈ C,

where φ(x) is a simple convex function and C is a simple domain. We consider a few
examples of this form.
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Proposition 15 Let φ(x) = ‖Dx‖1 and C = [x, x], where D is a diagonal matrix.
Then, the global minimizer of the subproblem (32) is given by

(proxCλφ(y))i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi if ω(y, λ) > 0, xi − yi + λ|di | sign(xi ) ≥ 0,
xi if ω(y, λ) > 0, xi − yi + λ|di | sign(xi ) ≤ 0,
yi − λ|di | if ω(y, λ) > 0, yi > λ|di |,
yi + λ|di | if ω(y, λ) > 0, yi < −λ|di |,
0 otherwise,

(60)

for i = 1, . . . , n, where

ω(y, λ) :=
∑

yi+λ|di |<0

(yi + λ|di |)x +
∑

yi+λ|di |>0

(yi + λ|di |)x . (61)

Proof The optimality condition (4) shows that u = proxCλφ(y) if and only if

0 ∈ u − y + λ ∂‖Du‖1 + NC (u), (62)

where NC (u) is the normal cone of C at u defined in (2). We show that u = 0 if and
only if ω(y, λ) ≤ 0. We first consider that

NC (0) = {
p ∈ V ∣∣ ∀z ∈ [x, x], 〈p, z〉 ≤ 0

} =
⎧⎨
⎩p ∈ V |

∑
pi<0

pi x +
∑
pi>0

pi x ≤ 0

⎫⎬
⎭ .

(63)
(62) suggests u = 0 if and only if there exists p ∈ NC (0) ∩ (y − λ∂φ(x)). By
Proposition 1, this is possible if and only if

min

⎧⎨
⎩
∑
pi<0

pi x +
∑
pi>0

pi x
∣∣∣ p = λg, ‖D−1g‖∞ ≤ 1

⎫⎬
⎭ ≤ 0.

The solution of this problem is p = y − λ|D1|, where 1 is the vector of all ones.
Hence, the minimum of this problem is given by (61). This implies u = 0 if and only
if ω(y, λ) ≤ 0. We, therefore, consider two cases:

Case (i). u = 0. Then, we have ω(y, λ) ≤ 0.
Case (ii). u �= 0. Then, ω(y, λ) > λ. Proposition 1 yields

∂φ(u) = {g ∈ V∗ | ‖D−1g‖∞ = 1, 〈g, u〉 = ‖Du‖1},

leading to

n∑
i=1

(giui − |diui |) = 0.
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By induction on nonzero elements of u, we get giui = |diui |, for i =
1, . . . , n. This implies that gi = |di | sign(ui ) if ui �= 0. This and the
definition of NC (u) yield

ui − yi + λ(∂‖Du‖1)i
⎧⎨
⎩

≥ 0 if ui = xi ,≤ 0 if ui = xi ,
= 0 if xi < ui < xi ,

for i = 1, . . . , n, and equivalently for u �= 0, we get

ui − yi + λ|di | sign(ui )
⎧⎨
⎩

≥ 0 if ui = xi ,≤ 0 if ui = xi ,
= 0 if xi < ui < xi ,

(64)

for i = 1, . . . , n. If ui = xi , substituting ui = xi in (64) implies xi −
yi + λ|di | sign(xi ) ≥ 0. If ui = xi , substituting ui = xi in (64) gives
xi − yi + λ|di | sign(xi ) ≤ 0. If xi < ui < xi , there are three possibilities:
(a) ui > 0; (b) ui < 0; (c) ui = 0. In Case (a), sign(ui ) = 1 and (64)
lead to ui = yi − λ|di | > 0. In Case (b), sign(ui ) = −1 and (64) imply
ui = yi + λ|di | < 0. In Case (c), we end up to ui = 0, completing the
proof. ��

Proposition 16 Let φ(x) = 1
2‖x‖22 and C = [x, x]. Then, the global minimizer of the

subproblem (32) is given by

(proxCλφ(y))i =
⎧⎨
⎩
xi if (1 + λ)xi ≥ yi ,
xi if (1 + λ)xi ≤ yi ,
yi/(1 + λ) if xi < yi/(1 + λ) < xi ,

(65)

for i = 1, . . . , n.

Proof The function φ(x) = 1
2‖x‖22 is differentiable, i.e.,

∂φ(x) = x .

This and the definition of NC (u) imply

ui − yi + λui

⎧⎨
⎩

≥ 0 if ui = xi ,≤ 0 if ui = xi ,
= 0 if xi < ui < xi ,

(66)

for i = 1, . . . , n. If ui = xi , substituting ui = xi in (66) implies (1 + λ)xi ≥ yi . If
ui = xi , substituting ui = xi in (66) yields (1 + λ)xi ≤ yi . If xi < ui < xi , then
ui = yi/(1 + λ), giving the result. ��
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Proposition 17 Let φ(x) = 1
2λ1‖x‖22 + λ2‖Dx‖1 and C = [x, x]. Then the global

minimizer of the subproblem (32) is determined by

(proxCλφ(y))i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi if ω(y, λ) > 0, (1 + λ1)xi − yi + λ2|di | sign(xi ) ≥ 0,
xi if ω(y, λ) > 0, (1 + λ1)xi − yi + λ2|di | sign(xi ) ≤ 0,
1/(1 + λ1)(yi − λ2|di |) if ω(y, λ) > 0, yi > λ2|di |,
1/(1 + λ1)(yi + λ2|di |) if ω(y, λ) > 0, yi < −λ2|di |,
0 otherwise,

(67)
for i = 1, . . . , n, where ω(y, λ) is defined by (61).

Proof Since V is finite-dimensional and dom
( 1
2λ1‖x‖22

)∩domλ2‖Dx‖1 �= ∅, we get

∂

(
1

2
λ1‖x‖22 + λ2‖Dx‖1

)
= λ1∂

(
1

2
‖x‖22

)
+ λ2∂ (‖Dx‖1) . (68)

The optimality condition (4) shows that u = proxCλφ(y) if and only if

0 ∈ u − y + λ1u + λ2 ∂‖Du‖1 + NC (u). (69)

By (69), we have u = 0 if and only if there exists p ∈ NC (0)∩ (y −λ2∂φ(x)), where
NC (0) is defined by (63). By Proposition 1, this is possible if and only if

min

⎧⎨
⎩
∑
pi<0

pi x +
∑
pi>0

pi x
∣∣∣ p = λ2g, ‖D−1g‖∞ ≤ 1

⎫⎬
⎭ ≤ 0.

The solution of this problem is p = y − λ2|D1|, where 1 is the vector of all ones.
Hence the minimum of this problem is given by (61). This implies u = 0 if and only
if ω(y, λ2) ≤ 0. We, therefore, consider two cases:

Case (i). u = 0. Then, we have ω(y, λ2) ≤ 0.
Case (ii). u �= 0. Then, ω(y, λ2) > 0. From (68) and the definition of NC (u), we

obtain

ui − yi + λ1ui + λ2∂|diui |
⎧⎨
⎩

≥ 0 if ui = xi ,≤ 0 if ui = xi ,
= 0 if xi < ui < xi ,

for i = 1, . . . , n. This leads to

(1 + λ1)ui − yi + λ2|di | sign(ui )
⎧⎨
⎩

≥ 0 if ui = xi ,≤ 0 if ui = xi ,
= 0 if xi < ui < xi ,

(70)

for i = 1, . . . , n. If ui = xi , substituting ui = xi in (64) gives (1 +
λ1)xi − yi + λ2|di | sign(xi ) ≥ 0. If ui = xi , substituting ui = xi in (64)
implies (1 + λ1)xi − yi + λ2|di | sign(xi ) ≤ 0. If xi < ui < xi , there
are three possibilities: (i) ui > 0; (ii) ui < 0; (iii) ui = 0. In Case (i),
sign(ui ) = 1 and (64) imply ui = 1/(1 + λ1)(yi − λ2|di |) > 0. In Case
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(ii), sign(ui ) = −1 and (64) imply ui = 1/(1 + λ1)(yi + λ2|di |) < 0. In
Case (iii), we get ui = 0, giving the result. ��

Let x ≥ 0 be nonnegativity constraints. These constraints are important in many
applications, especially if x describes physical quantities; see, e.g., (Esser et al. 2013;
Kaufman and Neumaier 1996, 1997). Since nonnegativity constraints can be regarded
as an especial case of bound-constrained domain, Propositions 15, 16, and 17 can be
used to derive the results for nonnegativity constraints.

5 Numerical experiments and application

We here report some numerical results to compare the performance of OSGA-O with
OSGA and some state-of-the-art methods. In our comparison, we consider PGA (prox-
imal gradient algorithm (Parikh andBoyd 2013)), NSDSG (nonsummable diminishing
subgradient algorithm (Boyd et al. 2003)), FISTA (Beck and Teboulle’s fast proximal
gradient algorithm (Beck andTeboulle 2012)), NESCO (Nesterov’s composite optimal
algorithm (Nesterov 2013)), NESUN (Nesterov’s universal gradient algorithm (Nes-
terov 2015)), NES83 (Nesterov’s 1983 optimal algorithm (Nesterov 1983)), NESCS
(Nesterov’s constant step optimal algorithm (Nesterov 2004)), andNES05 (Nesterov’s
2005 optimal algorithm (Nesterov 2005a)). We adapt NES83, NESCS, and NES05 by
passing a subgradient in the place of the gradient to be able to apply them to nons-
mooth problems (see Ahookhosh (2016)). The codes of these algorithms are written
in MATLAB, where we use the parameters proposed in the associated papers.

5.1 Experiment with random data

We consider solving an underdetermined system

Ax = y, (71)

where A ∈ R
m×n (m < n) and y ∈ R

m . Underdetermined systems of linear equations
have frequently appeared in many applications of linear inverse problem such as those
in the fields of signal and image processing, geophysics, economics, machine learning,
and statistics. The objective is to recover x from the observed vector y, and matrix
A by some optimization models. Due to the ill-conditioned feature of the problem,
the most popular optimization models are (18), (19), and (20), where (18) is smooth
and (19) and (20) are nonsmooth. In Sect. 5.1.1, we report numerical results with
the �1 minimization (19), and in Sect. 5.1.2, we give results regarding the elastic net
minimization problem (20). We set m = 5000 and n = 10000, and the data A, y, and
x0 for problem (19) is randomly generated by

A = rand(m,n), y = rand(1,m), x0 = rand(1,n),

where rand generates uniformly distributed random numbers between 0 and 1 and
x0 is a starting point for algorithms.
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We divide the solvers into two classes: (i) proximal-based methods (PGA, FISTA,
NESCO, and NESUN) that can be directly applied to nonsmooth problems; (ii)
Subgradient-basedmethods (NSDSG,NES83, NESCS, andNES05) inwhich the non-
smooth first-order oracle is required, where NES83, NESCS, and NES05 are adapted
to take a subgradient in the place of the gradient. We set

L̂ := max
1≤i≤n

‖ai‖2,

where ai (i = 1, 2, . . . , n) is the i-th column of A. In the implementation, NESCS,
NES05, PGA, and FISTA use L = 104 L̂ , andNSDSG employs α0 = 10−7. Algorithm
1, for both OSGA and OSGA-O, uses the parameters

δ = 0.9, αmax = 0.7, κ = κ ′ = 0.5,

and the prox-function (24) with Q0 = 1
2‖x0‖2 + ε, where ε is the machine precision.

All numerical experiments were executed on a PC Intel Core i7-3770 CPU 3.40GHz
8 GB RAM. To solve the nonlinear system of equations (33), we first consider the
nonlinear least-squares problem (40) and solve it by the MATLAB internal function
fminsearch,1 which is a derivative-free solver handling both smooth and nons-
mooth problems. In our implementation, we apply OSGA-O to the problem, stop it
after 100 iterations and save the best function value attained ( fs), and run the others
until either the same function value is achieved or the number of iterations reaches
5000. In our comparison, Ni and T denote the total number of iterations and the
running time, respectively.

To display the results, we used the Dolan and Moré performance profile (Dolan
and Moré 2002) with the performance measures Ni and T . In this procedure, the
performance of each algorithm is measured by the ratio of its computational outcome
versus the best numerical outcome of all algorithms. This performance profile offers
a tool to statistically compare the performance of algorithms. Let S be a set of all
algorithms and P be a set of test problems. For each problem p and algorithm s, tp,s
denotes the computational outcome with respect to the performance index, which is
used in the definition of the performance ratio

rp,s := tp,s
min{tp,s : s ∈ S} . (72)

If an algorithm s fails to solve a problem p, the procedure sets rp,s := rfailed, where
rfailed should be strictly larger than any performance ratio (72). Let n p be the number
of problems in the experiment. For any factor τ ∈ R, the overall performance of an
algorithm s is given by

ρs(τ ) := 1

n p
size{p ∈ P : rp,s ≤ τ }.

1 The function fminsearch is a derivative-free solver for unconstrained optimization problems based
on Nelder–Mead simplex direct search method performing well for two-dimensional problems; see, e.g.,
(Hansen et al. 2010; Lagarias et al. 1998).
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Here, ρs(τ ) is the probability that a performance ratio rp,s of an algorithm s ∈ S is
within a factor τ of the best possible ratio. The function ρs(τ ) is a distribution function
for the performance ratio. In particular, ρs(1) gives the probability that an algorithm s
wins over all other considered algorithms, and limτ→rfailed ρs(τ ) gives the probability
that algorithm s solves all considered problems. Therefore, this performance profile
can be considered as a measure of efficiency among all considered algorithms. In
the following figures of this section, the number τ is represented in the x-axis, while
P(rp,s ≤ τ : 1 ≤ s ≤ ns) is shown in the y-axis.

5.1.1 �1 minimization

Here, we consider the �1 minimization problem (19), reformulate it as a minimization
problem of the form (13) with the objective and the constraint given in (22), and
solve the reformulated problem by OSGA-O. We then report some numerical results
and a comparison among OSGA-O, OSGA and some state-of-the-art methods. For
OSGA-O and OSGA, we here set μ = 0.

Let us consider 6 different regularization parameters, apply PGA, FISTA, NESCO,
NESUN, OSGA, and OSGA-O to (19) with 10 generated random data for each regu-
larization parameter, and report numerical results in Table 1. Then, we use NSDSG,
NES83, NESCS, NES05, OSGA, and OSGA-O for solving (19) with 10 generated
random data corresponding to each regularization parameter and report numerical
results in Table 2. We give a comparison among these algorithms in Fig. 1 for all
60 problems with the performance profile of Ni and T . We illustrate function val-
ues versus iterations for both classes of solvers with the regularization parameters
λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5 in Fig. 2.

The results of Tables 1 and 2 show that OSGA-O attains the best number of iter-
ations and running time for the �1 minimization problem, where the average of 10
implementations associated to each regularization parameter is given in these tables.
In Fig. 1, subfigures (a) and (b) stand for performance profiles with measures Ni and T
comparing proximal-based methods, where OSGA-O outperforms the others substan-
tially. In this figure, subfigures (c) and (d) display performance profiles for measures

Table 1 Averages (only integer part) of Ni and T for PGA, FISTA,NESCO,NESUN,OSGA, andOSGA-O
for solving �1 minimization problem with several regularization parameters

Reg. Par. OSGA-O OSGA PGA FISTA NESCO NESUN

Ni T Ni T Ni T Ni T Ni T Ni T

λ = 1 100 12 2277 103 5000 138 3316 138 3189 385 2614 223

λ = 10−1 100 12 1497 72 4680 141 1940 87 1162 153 1376 125

λ = 10−2 100 12 638 31 5000 156 1024 48 617 85 735 69

λ = 10−3 100 12 773 38 5000 154 1241 60 749 102 890 85

λ = 10−4 100 12 783 36 5000 138 1287 51 775 87 922 73

λ = 10−5 100 12 462 22 5000 148 744 34 450 59 536 49
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Table 2 Averages (only integer part) of Ni and T for NSDSG, NES83, NESCS, NES05, OSGA, and
OSGA-O for solving �1 minimization problem with several regularization parameters

Reg. Par. OSGA-O OSGA NSDSG NES83 NESCS NES05

Ni T Ni T Ni T Ni T Ni T Ni T

λ = 1 100 12 2277 103 5000 162 3352 169 4508 224 3318 106

λ = 10−1 100 12 1497 72 5000 152 2167 105 4021 193 1947 60

λ = 10−2 100 12 638 31 5000 138 1142 46 3956 167 1029 26

λ = 10−3 100 12 773 38 5000 148 1386 62 4482 200 1248 35

λ = 10−4 100 12 783 36 5000 142 1434 64 4949 216 1229 37

λ = 10−5 100 12 462 22 5000 150 831 37 3572 161 749 21
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(a) Performance profile for the number of iterations
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(b) Performance profile for the running time
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(c) Performance profile for the number of iterations
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(d) Performance profile for the running time

Fig. 1 Performance profiles for the number of iterations Ni and the running time T for the �1 minimization
problem: a,b display the results for Ni and T of PGA, FISTA,NESCO,NESUN,OSGA, andOSGA-O; c,d,
respectively, illustrate the results for Ni and T of NSDSG, NES83, NESCS, NES05, OSGA, and OSGA-O.
In all of these subfigures OSGA-O attains the best results with respect to both measures Ni and T
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Ni and T to compare subgradient-based methods, where OSGA-O performs much
better than the others with respect to both measures. Further, from Fig. 2, it can be
seen that the worst results are obtained by NSDSG and PGA, while FISTA, NESCO,
NESUN, NES83, NESCS, NES05, and OSGA are comparable to some extent; how-
ever, OSGA-O is significantly superior to the other methods.
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(l) λ = 10−5

Fig. 2 A comparison among first-order methods for solving �1 minimization problem: a–f illustrate
a comparison of function values versus iterations among PGA, FISTA, NESCO, NESUN, OSGA, and
OSGA-O for λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, respectively; g–l display a comparison of
function values versus iterations among NSDSG, NES83, NESCS, NES05, OSGA, and OSGA-O for
λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, respectively
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5.1.2 Elastic net minimization

We now consider the elastic net minimization problem (20), reformulate it as a min-
imization problem of the form (13) with the objective and the constraint given in
(23), and solve the reformulated problem by OSGA-O. We then give some numerical
results and a comparison among OSGA-O,OSGA and some state-of-the-art solvers.
For OSGA-O and OSGA, we here set μ = λ1/2.

Let us consider six different regularization parameters λ1 = λ2 = 1, 10−1, 10−2,

10−3, 10−4, 10−5. For each of these parameters,we generate the randomdata 10 times
and report numerical results of PGA, FISTA, NESCO, NESUN, OSGA, and OSGA-O
in Table 3 and numerical results of NSDSG, NES83, NESCS, NES05, OSGA, and
OSGA-O in Table 4. For these 60 problems, we illustrate the performance profile for
the measures Ni and T in Fig. 3. We then display function values versus iterations for
both classes of solvers with λ1 = λ2 = 1, 10−1, 10−2, 10−3, 10−4, 10−5 in Fig. 4.

The results ofTables 3 and4 show that the best number of iterations (Ni ) and running
time (T ) are obtained byOSGA-O. From the results of Fig. 3, it can be seen thatOSGA-
O outperforms the others considerablywith respect to Ni and T for both proximal-type
and subgradient-type methods. It is also clear that the second best algorithm is OSGA.

Table 3 Averages (only integer part) of Ni and T for PGA, FISTA,NESCO,NESUN,OSGA, andOSGA-O
for solving the elastic net problem (19) with several regularization parameters

Reg. Par. OSGA-O OSGA PGA FISTA NESCO NESUN

Ni T Ni T Ni T Ni T Ni T Ni T

λ = 1 100 12 4781 222 5000 143 4904 215 4756 609 4071 371

λ = 10−1 100 12 1128 52 5000 143 1517 66 908 110 1078 94

λ = 10−2 100 12 652 31 5000 148 1038 45 626 78 744 63

λ = 10−3 100 12 474 23 5000 151 762 33 460 55 549 48

λ = 10−4 100 12 513 25 5000 147 839 37 506 62 602 54

λ = 10−5 100 12 661 32 5000 148 1076 47 649 79 772 68

Table 4 Averages (only integer part) of Ni and T for NSDSG, NES83, NESCS, NES05, OSGA, and
OSGA-O for solving the elastic net problem with several regularization parameters

Reg. Par. OSGA-O OSGA NSDSG NES83 NESCS NES05

Ni T Ni T Ni T Ni T Ni T Ni T

λ = 1 100 12 4781 222 5000 147 4949 221 5000 226 4904 145

λ = 10−1 100 12 1128 52 5000 156 1692 80 4677 218 1523 47

λ = 10−2 100 12 652 31 5000 146 1158 50 4225 182 1044 28

λ = 10−3 100 12 474 23 5000 144 8516 36 3058 130 766 20

λ = 10−4 100 12 513 25 5000 144 935 40 3120 135 844 23

λ = 10−5 100 12 661 32 5000 148 1203 52 4589 201 1083 29
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(a) Performance profile for the number of iterations
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(b) Performance profile for the running time
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(d) Performance profile for the running time

Fig. 3 Performance profiles for the number of iterations Ni and the running time T for the elastic net
problem: a, b display the results for Ni and T of PGA, FISTA, NESCO, NESUN, OSGA, and OSGA-
O; c, d, respectively, illustrate the results for Ni and T of NSDSG, NES83, NESCS, NES05, OSGA, and
OSGA-O. In all of these subfigures OSGA-O attains the best results with respect to bothmeasures Ni and T

In Fig. 4, we can see that the worst results are obtained by NSDSG and PGA, while
FISTA, NESCO, NESUN, NES83, NESCS, NES05 and OSGA behave competitively.
Further, OSGA-O performs better than the others significantly.

5.2 Sparse recovery (compressed sensing)

In recent years, there has been an increasing interest in finding sparse solutions of
many problems using the structured models in various areas of applied mathematics.
In most cases, the problem involves high-dimensional data with a small number of
available measurements, where the core of these problems involves an optimization
problem of the form (19) or (20). Thanks to the sparsity of solutions and the structure
of problems, these optimization problems can be solved in reasonable time even for the
extremely high-dimensional data sets. Sparse recovery, basis pursuit, lasso, wavelet-
based deconvolution, and compressed sensing are some examples,where the latter case
receives lots of attentions during the recent years, cf. (Candés 2006; Donoho 2006).
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(l) λ = 10−5

Fig. 4 A comparison among first-order methods for solving the elastic net problem: a–f illustrate a
comparison of function values versus iterations among PGA, FISTA, NESCO, NESUN, OSGA, and
OSGA-O for λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, respectively; g–l display a comparison of
function values versus iterations among NSDSG, NES83, NESCS, NES05, OSGA, and OSGA-O for
λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, respectively

Let us consider a linear inverse problem of the form (71) that we solve it with
minimization problems (19) and (20). We set n = 4096 and m = 1024. The problem
is generated by the same procedure given in GPSR (Figueiredo et al. 2007) package
available at
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http : //www.lx.it.pt/ mtf/GPSR/

which is

n_spikes = floor(0.01 ∗ n);p = zeros(n,1); q = randperm(n);
p(q(1 : n_spikes)) = sign(randn(n_spikes,1));B = randn(m,n);
B = orth(B′)′;bf = B ∗ p; b = bf + sigma ∗ randn(m,1);

with λ = λ1 = λ2 = 1
2 max(|AT b|). We conclude this section by solving this sparse

recovery problem with OSGA-O, OSGA, and the other methods described in the
previous section. We show the results in Fig. 5. In this implementation, we apply
OSGA-O to the problem, stop it after 10 iterations and save the best function value
attained ( fs), and run the others until either the same function value is achieved or the
number of iterations reaches 5000. From Fig. 5, it is clear that that OSGA-O attains
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(b) �1 minimization, subgradient-based methods
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(c) Elastic Net, proximal-based methods

10 0 10 1 10 2 10 3 10 4

iterations

10 0

10 1

10 2

10 3

10 4

OSGA-O
OSGA
NSDSG
NES83
NESCS
NES05

(d) Elastic Net, subgradient-based methods

Fig. 5 Function values versus iterations for the �1 minimization and elastic net problems: a, b display the
results for PGA, FISTA, NESCO, NESUN, OSGA, and OSGA-O for the �1 minimization; c, d illustrate
the results for NSDSG, NES83, NESCS, NES05, OSGA, and OSGA-O for the elastic net problem
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the best performance compared with the others for both �1 minimization and elastic
net problems.

6 Conclusions

This paper discusses the solution of structured nonsmooth convex optimization prob-
lems with the complexity O(ε−1/2), which is optimal for smooth problems with
Lipschitz continuous gradients. First, if the nonsmoothness of the problem is man-
ifested in a structured way, the problem is reformulated so that the objective is smooth
with Lipschitz continuous gradients in the price of adding a functional constraint to the
feasible domain. Then, a new setup of the optimal subgradient algorithm (OSGA-O)
is developed to solve the reformulated problem with the complexity O(ε−1/2).

Next, it is proved that the OSGA-O auxiliary problem is equivalent to a proximal-
like problem, which is well-studied due to its appearance in Nesterov-type optimal
methods for composite minimization. For several problems appearing in applications,
either an explicit formula or a simple iterative scheme for solving the corresponding
proximal-like problems is provided.

Finally, some numerical results with random data and a sparse recovery problem
are given indicating a good behavior of OSGA-O compared to some state-of-the-art
first-order methods, which confirm the theoretical foundations.
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