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Abstract
A hypothesis related to the block structure of a covariance matrix under the doubly
multivariate normal model is studied. It is assumed that the block structure of the
covariance matrix belongs to a quadratic subspace, and under the null hypothesis,
each block of the covariance matrix also has a structure belonging to some quadratic
subspace. The Rao score and the likelihood ratio test statistics are derived, and the
exact distribution of the likelihood ratio test is determined. Simulation studies show
the advantage of the Rao score test over the likelihood ratio test in terms of speed
of convergence to the limiting chi-square distribution, while both proposed tests are
competitive in terms of their power. The results are applied to both simulated and
real-life example data.

Keywords Doubly multivariate model · Covariance structure · Quadratic subspace ·
Rao score test · Likelihood ratio test

Mathematics Subject Classification 62H15 · 62E20 · 62E15

1 Introduction

It is very common nowadays to collect multi-level multivariate data, which are hierar-
chical by nature. In particular, for each subject, theremaybe several variablesmeasured
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at various occasions (sites, locations, time points, etc.), resulting in so-called doubly
multivariate data, that is, multivariate on two levels. Thus, the variables of interest
can be naturally subdivided into certain groups, which results in a covariance matrix
having some block structure, also called a nested covariance structure. The particular
dependence pattern for variables from different groups (interclass dependence) leads
to the block structure of the covariance matrix, and the specific dependence pattern
for variables within each group (intraclass dependence) results in certain pattered sub-
blocks. For example, assuming equal dependence between any given pair of variables
from the same group results in a compound symmetry (CS) structure for each block of
the covariance matrix (cf. Wilks, 1946), while assuming equal dependence between
any given pair of variables from different groups results in a block compound symme-
try (BCS) covariance structure (for algebraic definitions of the structures see Sect. 2).
Clearly, in this case CS characterizes the intraclass dependence pattern, while BCS
describes the interclass dependence structure. In the literature (B)CS structures are
also called (block) exchangeable structures. Study of the BCS covariance structure
goes back to Arnold (1973, 1979), in connection with a general linear model where
the error vectors are assumed to be normally distributed.

Another typical dependence pattern is circular dependence (cf. Olkin and Press
1969, Eaton 1983, Nahtman and von Rosen 2008), common in many applications,
especially in medical (Louden and Roy 2010) and educational studies (Steinmetz
et al. 2012). A circular dependence structure, known also as a circular Toeplitz (CT)
structure, means that the correlation between two measurements depends only on the
circular distance between them, in other words, on the number of positions between
them on a circle. Circular dependence in blocks leading to a block circular Toeplitz
(BCT) structure was considered for example by Olkin (1973).

It should be emphasized that under doubly multivariate models, the number of
parameters in the covariancematrix increases quadratically with the dimensions (num-
ber of variables and occasions), which may cause problems with estimation. Imposing
some nested structure reduces the number of unknown parameters significantly, espe-
cially if this structure is block diagonal, BCS or BCT, or, more generally, belongs to
a quadratic subspace; cf. Seely (1971).

Before any statistical analysis is conducted, it is necessary to check the validity
of the covariance structure using a relevant testing procedure. There has been much
interest over the years in statistical testing problems in block covariance matrices, due
to demand for more efficient modeling and hence for extracting the inherent depen-
dence present in the data. For example, the Rao score test (RST) for a first-order
autoregression structure was derived by Chi and Reinsel (1989). Computationally
intensive procedures for testing covariance structures have also been developed, such
as parametric bootstrap tests and permutation tests. Hypothesis testing for a parallel
profile model with a CS random-effects covariance structure was considered by Sri-
vastava and Singull (2012), who observed that only the distinct eigenvalues of the CS
covariance matrix are required to be estimated, rather than the original (co)variance
parameters. In Filipiak et al. (2016, 2017), the RST of a separable covariance structure
in a doubly multivariate model was studied, and it was demonstrated that the RST is
much less biased than the corresponding likelihood ratio test (LRT) and is suitable for
small sample sizes. Similar results were obtained by Roy et al. (2018) for testing the

123



Testing covariance structures belonging...

BCS structure. Tests for the mean structure under a model with the BCS covariance
matrix were proposed in Zmyślony et al. (2018). Estimation of the BCS covariance
structure with a CS or CT intraclass pattern was studied in Liang et al. (2015), while
recently, the LRT for testing simultaneously the mean and circular structure of blocks
of the BCS covariance matrix was derived by Liang et al. (2022). The RST and Wald
test statistics, as well as the exact distribution of the LRT for testing independence of
features between any two repeated measures under the BCS structure, were studied
by Filipiak et al. (2023a).

It should be noted that all commonly used structures, such as diagonality (D),
CS, CT, or their interclass (block) versions, belong to certain quadratic subspaces.
Moreover, the intraclass dependence structure is often commutative, in contrast to the
situation when the only requirement on the subblocks of the covariance matrix is their
symmetry (note that two arbitrary symmetric matrices do not commute). Therefore,
in this article, we propose tests of a general hypothesis related to patterned covariance
matrices belonging to some (commutative) quadratic subspaces, formulated in (4). In
particular, our considerations cover, among others, tests for a block diagonal (BD)
with equal diagonal blocks having a CT structure versus BD with equal unstructured
symmetric diagonal blocks, BCT with CS blocks versus BCT with unstructured sym-
metric blocks, or BCT with CS blocks versus BCT with CT blocks. Three particular
hypotheses (see (16)) will later be used as illustrative examples of the results obtained,
however, the methods presented can also be applied to covariance structures that are
not yet named in the literature, but are common in real-life experiments.

The main goals of this paper are to derive the RST and LRT statistics for testing (4),
to establish the exact distribution of the LRT, to compare the speed of convergence
of the exact distribution of the LRT and the empirical distribution of the RST to the
limiting chi-square distribution, and to compare the powers of the RST and LRT. The
latter two aims will be verified via Monte Carlo simulation studies. The results will
be illustrated with applications to both simulated data and real-life data, taken from
Liang et al. (2015).

Finally, we note that in this paper we assume both of the dimensions (numbers of
variables andoccasions) to befixed.Under the standard (one-dimensional)multivariate
model some structures have also been considered under a high-dimensional setup; for
example, the distribution of tests related to the likelihood ratio and/or Rao score test has
been studied in Bai et al. (2009); Jiang et al. (2012) (for testing the identity matrix),
John (1971); Jiang (2016) (for testing sphericity), and Kato et al. (2010); Yamada
(2012); Yi and Xie (2018); Xie and Sun (2019); Tang et al. (2022); Klein et al. (2022)
(for testing compound symmetry). Very recently (Lai et al. 2023) proposed a test for
testing block-diagonality, based on U-statistics. Note however, that generalization of
the known results to the common structures for doublymultivariatemodels is relatively
challenging, and hence will be the topic of future research.

The structure of the paper is as follows. Section 2 introduces the statistical model
of interest and the hypothesis. The main results are stated in Sect. 3, where the RST
and LRT statistics are derived, and the null distribution of the LRT is determined. The
results of simulation studies related to the asymptotic behavior of the distributions
of the RST and LRT, as well as a comparison of their powers, are given in Sect. 4.
The theory presented is illustrated with both simulated data and a real-life example in
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Sect. 5. Finally, in Sect. 6, some conclusions are stated and further perspectives are
discussed.

2 Model and hypothesis

Let us consider the following doubly multivariate model, in which p features are
measured repeatedly q times on n independent subjects:

X ∼ Nn,qp(1nμ′, In,�), (1)

such that μ is a qp-dimensional general mean (the same for every subject), 1n is the
n-dimensional vector of ones, In is the identity matrix of order n, and the qp × qp
symmetric positive definite (p.d.) matrix � belongs to a quadratic subspaceA. Recall
that a subspaceA of the linear space of real symmetricmatrices is a quadratic subspace
if � ∈ A implies �2 ∈ A; cf. Seely (1971).

Assume that p = 1. Then, using spectral decomposition, the covariance matrix
� = �p=1 can be represented as

�p=1 =
ν∑

i=1

λiV i , (2)

where λi are the eigenvalues of �p=1 and V i = H iH ′
i , with H i consisting of the set

of eigenvectors corresponding to λi . Following Seely (1971, Lemma 6), the quadratic
subspace is commutative if and only if there exist matrices V i that are idempotent and
pairwise orthogonal, that is, V 2

i = V i and V iV j = 0 for each i �= j , i, j = 1 . . . , ν.
Throughout the paper we assume that V i , i = 1, . . . , ν, satisfy the aforementioned
conditions, and we denote by V the commutative quadratic subspace generated by V i .
Clearly, dimV = ν.

Note that the most common examples of structures belonging to a commu-
tative quadratic subspace V are: matrices proportional to the identity, �I =
λIq ; diagonal (D), �D = diag(λ1, . . . , λq); compound symmetric, �CS =
σ 2
[
(1 − ρ)Iq + ρ1q1′

q

]
, where σ 2 ∈ R

+ and ρ ∈ (−1/(q − 1), 1), cf. Olkin and

Press (1969); and circular Toeplitz,

�CT =

⎧
⎪⎨

⎪⎩

σ 2
[
Iq +∑�q/2�

i=1 ρi (C i + C ′i )
]

for odd q

σ 2
[
Iq +∑q/2−1

i=1 ρi (C i + C ′i ) + ρq/2Cq/2
]

for even q,

where σ 2 ∈ R
+, all �i are real and ensure the positive definiteness of �CT, and

C is a permutation matrix with all zero elements except the first subdiagonal and the
upper right corner, where the elements are equal to 1; cf. Basilevsky (1983); Olkin
and Press (1969). It can be seen that a CS matrix has all diagonal entries equal and all
off-diagonal entries equal, while a CT matrix is symmetric and each subsequent row
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is simply a circular shift of the previous one. Note that to obtain the representation (2),
both �CS and �CT should be expressed in terms of an idempotent basis of orthogonal
matrices; cf. Appendix C for the spectral decomposition of the structures in question.

For p > 1 each scalar entry of �p=1 can be replaced by a p× p symmetric matrix
representing intraclass dependence, that is,

� =
ν∑

i=1

V i ⊗ �i =: �1, (3)

where �i , i = 1, . . . , ν, are symmetric p.d. covariance matrices of order p. Observe
that �1 still belongs to a quadratic subspace; however, commutativity no longer holds
(as symmetric matrices do not commute). Denoting byW the space of all symmetric
p.d. matrices of order p (which is in fact a quadratic subspace), we will write that
�1 ∈ V � W . Note that in general V � W is a quadratic but not commutative
subspace; however, if we assume a particular structure on �i , i = 1, . . . , ν, that
implies commutativity, then the subspace V � W becomes commutative too. Observe
moreover, that if V represents one of the structures given in previous paragraph, then
�1 indicates respectively a block structure with the same matrices on the diagonal
(BI), block diagonal (BD), BCS, and BCT structures.

In this paper we are interested in testing the hypothesis that the intraclass depen-
dence is also patterned, and it belongs to some commutative quadratic subspace
U ⊂ W of dimension ω. We may therefore formulate the following hypothesis:

H0 : � ∈ V � U vs H1 : � ∈ V � (W\U), (4)

where V and U are commutative quadratic subspaces of dimension ν and ω, respec-
tively, while W is an arbitrary subspace of a p(p + 1)/2-dimensional space of
symmetric matrices of order p, with U ⊂ W . The symbol W\U denotes the sub-
spaceW with the subspace U excluded, and is used to stress the mutual exclusiveness
of the hypotheses.

Let {U1, . . . ,Uω} be an orthogonal basis of the commutative quadratic subspace
U of matrices of order p. Then the covariance matrix under the null hypothesis can be
expressed as

� =
ν∑

i=1

V i ⊗
ω∑

j=1

δi jU j =
ν∑

i=1

ω∑

j=1

δi j
(
V i ⊗ U j

) =: �0, (5)

where δi j are the eigenvalues associated with the eigenvectors forming V � U . Note
that �0 covers many combinations of known covariance structures, for example:

• BD matrices with D, CS or CT blocks (denoted respectively as �BD_D, �BD_CS,
and �BD_CT);

• BCS matrices with the same diagonal blocks and the same off-diagonal blocks,
having D, CS or CT structure (denoted respectively as �BCS_D, �BCS_CS, and
�BCS_CT);
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• BCTmatrices with the same diagonal blocks, the same blocks on the i th diagonal,
i = 1, . . . , �q/2�, having D, CS or CT structure (denoted respectively as�BCT_D,
�BCT_CS, and �BCT_CT);

• Kronecker products of any combination of D, CS or CT structures, e.g. CT ⊗ CS,
CT ⊗ CT.

Wewould also like to note that someof the structures considered here actually reflect
the dependence structure of the same data, which arises, however, from different label-
ing of the two levels. Algebraically, such a change is equivalent to multiplication of
the considered structures by relevant commutation matrices, as for each i = 1, . . . , ν,
j = 1, . . . , ω,

K p,q(V i ⊗ U j )Kq,p = U j ⊗ V i ; (6)

cf. Magnus and Neudecker (1986, formula (24)). Thus, one can observe that the above
multiplication transforms, for example, �BCT_CS into �BCS_CT because �BCS_CT =
K p,q�BCT_CSKq,p for certain p and q.

We also emphasize that in both, the null and alternative hypotheses of (4), the
space of the interclass structure is spanned by the same set of matrices. In view of
the previous comment, this implies that one of the quadratic subspaces (representing
the interclass or intraclass covariance structure) must be the same in both, null and
alternative hypotheses. For example, one can test a hypothesis such as �BCS_CS vs
�BCS_CT (the intraclass structure is the same) or �BCS_CT vs �BCT_CT (the interclass
structure is the same), although the hypothesis �BCS_CS vs �BCT_CT (with p, q ≥
4) is outside the scope of this paper. For the same reason, hypothesis (4) does not
cover the case when, for example, we examine the independence of measurements at
various occasions versus a BCS structure (cf. Filipiak et al. 2023a), as this would be
equivalent to testing �BI vs. �BCS. Moreover, it is easy to see that such a structure is
not hierarchical, as it is focused only on the interclass covariance structure.

Finally, note that the separable covariance structures of the form�⊗�,where� and
� are arbitrary unstructured symmetric positive definite matrices of order q and p, are
not considered in this paper, as long as� and� remain unstructured. This follows from
the fact that the tensor space of Kronecker products of two unstructured matrices is not
a linear space (is bilinear) and the space of unstructured matrices is not a commutative
quadratic subspace. Nevertheless, if one or both of the components of the Kronecker
product were to have a structure that belongs to a commutative quadratic subspace,
the obtained covariance matrix could then be tested via the methods presented here;
for example �CS ⊗ �UN = �BCS, �CS ⊗ �CS = �BCS_CS, where the subscript UN
denotes “unstructured".

3 Test statistics

In this section the main results of the paper are presented. First, we determine the
form of the RST, and in the second part we derive the likelihood ratio statistic and its
exact distribution. Since for both cases MLEs are needed, the considerations related
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to the test are preceded by establishing the form of theMLE of a structured covariance
matrix.

3.1 Maximum likelihood estimators

Let us denote by P A = A(A′A)−1A′ the orthogonal projector onto the column space
of A, and let QA = I − P A. Observing that under model (1) the expectation can
be presented as E(vec X) = (Iqp ⊗ 1n)μ and the covariance matrix D(vec X) =
� ⊗ In := �UN ⊗ In , where �UN denotes an unstructured matrix, it can be seen that
the space of expectation commutes with the space of covariance matrices. Indeed,

P Iqp⊗1n (�UN ⊗ In) = (Iqp ⊗ P1n )(�UN ⊗ In)
= �UN ⊗ P1n
= (�UN ⊗ In)(Iqp ⊗ P1n ) = (�UN ⊗ In)P Iqp⊗1n .

(7)

It is known that if (7) holds, then the likelihood equation for expectation does not
depend on the covariance matrix and thus its solution is an ordinary least squares
estimator. Therefore, the MLE of μ is simply the sample mean, μ̂ = 1

n X
′1n , and the

MLE of �UN has the following explicit form:

�̂UN = 1
n X

′ Q1nX =: 1
n S, (8)

where S ∼ Wqp(�UN, n − 1); cf. Anderson (2003); Filipiak et al. (2020). Since
the commutativity of the space of expectation and covariance matrix, as presented in
(7), holds regardless of the possible structure of �, the MLE of μ is always equal to
the sample mean. However, imposing the structure on the covariance matrix requires
determination of its MLE.

Following Filipiak et al. (2020), since both V � U and V � (W\U) are quadratic
subspaces, the MLEs of �0 and �1 can be represented as the projections of �̂UN
onto the space of corresponding structures. Thus, we may formulate the following
proposition, with a detailed proof in Appendix A. To present the MLE of a covariance
structure belonging to a quadratic subspace, we use the block trace operator, denoted
by BTr p A, defined as the sum of all diagonal p× p blocks of the qp×qp partitioned
matrix A; cf. Filipiak et al. (2018). Moreover, for i = 1, . . . , ν and j = 1, . . . , ω we
use the notation vi = tr(V i ) and u j = tr(U j ), where V i andU j are the basis matrices
of V and U , respectively.

Proposition 1 Under model (1) the MLE of the covariance matrix for the null and
alternative hypotheses in (4) is given, respectively, by

�̂0 =
ν∑

i=1

ω∑

j=1

δ̂i j
(
V i ⊗ U j

)
with δ̂i j = 1

n·vi ·u j
tr
[(
V i ⊗ U j

)
S
]
,

�̂1 =
ν∑

i=1

V i ⊗ �̂i with �̂i = 1
n·vi BTr p

[
(V i ⊗ I p)S

]
,
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where S is defined in (8).

Note that an alternative version of the proof might be obtained by starting with a
transformation of the original model (1) by (H ⊗ I p), where H = (H1, . . . , Hν)

consists of matrices forming a basis of V , that is,

Y = (X − 1nμ′)(H ⊗ I p) ∼ Nn,qp
(
0n×qp, In, (H ′ ⊗ I p)�(H ⊗ I p)

)
,

which is identical to ν independent MANOVA (multivariate analysis of variance)
models with zero mean.

3.2 Rao score test

Following Rao (2005), the Rao score test statistic is defined as

RS = s′(̂θ0)F−1(̂θ0)s(̂θ0),

where the score vector s(θ) consists of the first derivatives of the log-likelihood func-
tion with respect to the vector of parameters under the alternative hypothesis, F(θ) is
the Fisher information matrix, and θ̂0 is theMLE of the vector of parameters under the
null hypothesis. For a symmetric matrix A of order p, we define the vec-half operator
as the p(p+1)/2×1 vector that is obtained from vec A by eliminating all upper trian-
gle elements of A. In other words, if D p is a p2 × p(p + 1)/2 duplication matrix (cf.
Magnus andNeudecker, 1986), then D p vech A = vec A, and the vector of parameters
can be written under the alternative hypothesis as θ = (

μ′, vech′ �1, . . . , vech′ �ν

)′,
while under the null hypothesis as θ0 = (

μ′, δ11, δ12 . . . , δ1ω, . . . , δν2, . . . , δνω

)′.
Observe that since hypothesis (4) does not contain any restrictions on μ, the first
entry of the score vector (first derivative with respect to μ) will reduce to 0 when
μ is replaced by its MLE. Moreover, for the same reason, the off-diagonal entries
of the first row and column of the Fisher information matrix also reduce to 0. Thus,
throughout this section we consider θ and θ0 without the first component, as well as
a Fisher information matrix that is of order νω instead of νω + qp. Note also that all
matrix derivatives in this paper are computed according to the rules given in Magnus
and Neudecker (1988).

We give the following theorem presenting the form of the RST statistic.

Theorem 1 Under the hypothesis (4) the Rao score test statistic has the form

RS = n

2
tr
{ [

Iqp − �̂1�̂
−1
0

]2 }
,

where �̂0 and �̂1, the MLEs of �0 and �1, are as given in Proposition 1.

Proof The log-likelihood function under H1 can be presented as

ln L(μ,�1) = −nqp

2
ln(2π) − n

2

ν∑

i=1

(vi ln |�i |) − 1

2

ν∑

i=1

tr
[
Z′Z(V i ⊗ �−1

i )
]
,
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with Z = Z(μ) = X − 1nμ′ ∼ N (0, In,�1). Differentiation of the above with
respect to �i , i = 1, . . . , ν, with the use of Magnus and Neudecker (1986), Magnus
and Neudecker (1988), and Corollary 2.10 of Filipiak et al. (2018), gives

∂ ln L

∂�i
=
[

− nvi

2
vec′ �−1

i

+ 1
2 vec

′(Z′Z)(Iq ⊗ K p,q ⊗ I p)(vec V i ⊗ I p2)(�
−1
i ⊗ �−1

i )

]
D p

= n
2

(
−vi vec′ �−1

i + vec′ {BTr p[(V i ⊗ I p) 1n Z
′Z]} (�−1

i ⊗ �−1
i )
)
D p,

where K p,q is a commutation matrix of order pq such that for a p × q matrix A we
have K p,q vec A = vec A′; cf. Kollo and von Rosen (2005). Putting θ̂0 as given by
Proposition 1 and μ̂ as given in (8) into the above derivative, and using the notation

�̂i =
ω∑

j=1

δ̂i jU j , (9)

we obtain

s(̂θ0) = −n

2
(Iν ⊗ D′

p)(s
′
1, . . . , s

′
ν)

′,

where si = vi vec �̂
−1
i − 1

n

(
�̂

−1
i ⊗ �̂

−1
i

)
vec{BTr p[(V i ⊗ I p)S]}, i = 1, . . . , ν,

and S is given in (8). Since the block trace of the matrix given in this formula is
proportional to the MLE of �i (see Proposition 1), we may express each si as

si = vi

[(
�̂

−1
i ⊗ �̂

−1
i

)
vec

(
�̂i − �̂i

)]
.

To compute the Fisher information matrix, F(θ) = (Fik(θ)), i, k = 1, . . . , ν,
it is necessary to determine second-order partial derivatives and to calculate their
expected values. Using formula (1.4.23) from Kollo and von Rosen (2005), for each
i = 1, . . . , ν, we have

∂2 ln L

∂�2
i

= D′
p

[
nvi
2 (�−1

i ⊗ �−1
i )

− 1
2 (vec

′{BTr p[(V i ⊗ I p)Z′Z]} ⊗ I p2)(I p ⊗ K p,p ⊗ I p)

·(�−1
i ⊗ �−1

i ⊗ vec�−1
i + vec�−1

i ⊗ �−1
i ⊗ �−1

i )
]
D p,

and
∂2 ln L

∂�i∂�k
= 0 for i �= k and i, k = 1, 2, ..., ν.

Following Kollo and von Rosen (2005, Theorem 2.2.9(i)), under the alternative
hypothesis, E(Z′Z) = tr In · �1. Hence, using orthogonality and idempotency of V i

for i = 1, 2, ..., ν, we obtain
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Fi i (θ) = −E

(
∂2 ln L

∂�2
i

)

= − n
2 D

′
p

[
vi (�

−1
i ⊗ �−1

i )

−{vec′[BTr p(V i ⊗ �i )] ⊗ I p2}(I p ⊗ K p,p ⊗ I p)

·(�−1
i ⊗ �−1

i ⊗ vec�−1
i + vec�−1

i ⊗ �−1
i ⊗ �−1

i )
]
D p.

From Filipiak et al. (Filipiak et al. (2018), Lemma 2.11, Lemma 2.13) it can be shown
that BTr p(V i ⊗ �i ) = vi�i . Moreover, from Filipiak et al. (Filipiak et al. (2016),
Lemma 1) it is known that for a symmetric matrix A

(vec′ A ⊗ D′
p)(I p ⊗ K p,p ⊗ I p)(vec A−1 ⊗ I p2)

= (vec′ A ⊗ D′
p)(I p ⊗ K p,p ⊗ I p)(I p2 ⊗ vec A−1) = D′

p.

Hence, for every i = 1, 2, ..., ν, we obtain

Fi i (θ) = − nvi
2

[
D′

p(�
−1
i ⊗ �−1

i )D p

−(vec′ �i ⊗ D′
p)(I p ⊗ K p,p ⊗ I p)(I p2 ⊗ vec′ �−1

i )(�−1
i ⊗ �−1

i )D p

−(vec′ �i ⊗ D′
p)(I p ⊗ K p,p ⊗ I p)(vec′ �−1

i ⊗ I p2)(�
−1
i ⊗ �−1

i )D p

]

= − nvi
2

[
D′

p(�
−1
i ⊗ �−1

i )D p − 2D′
p(�

−1
i ⊗ �−1

i )D p

]

= nvi
2 D′

p(�
−1
i ⊗ �−1

i )D p.

Putting θ̂0 as given by Proposition 1 into the above formula, we finally obtain

Fi i (̂θ0) = nvi

2
D′

p(�̂
−1
i ⊗ �̂

−1
i )D p, i = 1, 2, ..., ν,

with �̂i as defined in (9).
From Filipiak et al. (Filipiak et al. (2016), Proposition 1 (iv)) it is known, that for

any nonsingular matrix A of order m

[
D′

p(A
−1 ⊗ A−1)D p

]−1 = D+
p (A ⊗ A)D+′

p ,

where D+
p is the Moore-Penrose inverse of D p. Therefore F−1

i i (̂θ0) = D+
p (�̂i ⊗

�̂i )D+′
p , i = 1, 2, ..., v, and finally

F−1(̂θ0) = 2

n
(Iν ⊗ D+

p )BDiag
(
�̂i ⊗ �̂i

)
(Iν ⊗ D+′

p ).

Taking the product of the score vector and Fisher information matrix we obtain
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RS = n
2 (s1, . . . , sν)(Iν ⊗ D pD+

p )BDiag
[
1
vi

(
�̂i ⊗ �̂i

)]
(Iν ⊗ (D pD+

p )′)(s′1, . . . , s′ν)′

= n
2

ν∑
i=1

[
vi vec′ (�̂i − �̂i

) (
�̂

−1
i ⊗ �̂

−1
i

)
D pD+

p

(
�̂i ⊗ �̂i

)
(D pD+

p )′

·
(
�̂

−1
i ⊗ �̂

−1
i

)
vec

(
�̂i − �̂i

)]
.

Since D pD+
p = N p, where N p = 1

2 (I p2 + K p,p) (cf. Magnus and Neudecker,
1986, formulas (54) and (33)) and because for any symmetric matrix A the formula
N p vec A = vec A holds (cf. Magnus and Neudecker, 1986, formula (36)), from the
symmetry of each �̂i we obtain

RS = n
2

ν∑
i=1

vi vec′(�̂i − �̂i )(�̂
−1
i ⊗ �̂

−1
i ) vec(�̂i − �̂i )

= n
2

ν∑
i=1

vi tr
[
(�̂i − �̂i )�̂

−1
i (�̂i − �̂i )�̂

−1
i

]

= n
2

ν∑
i=1

vi tr
(
I p − 2�̂i �̂

−1
i + �̂i �̂

−1
i �̂i �̂

−1
i

)
.

From the idempotency of V i , i = 1, 2, ..., ν, and since vi tr I p = tr
(
V i ⊗ I p

)
we

may rewrite the above as

RS = n
2 tr

[
Iqp − 2

ν∑
i=1

(
V i ⊗ �̂i

) (
V i ⊗ �̂

−1
i

)

−
ν∑

i=1

(
V i ⊗ �̂i

) (
V i ⊗ �̂

−1
i

) (
V i ⊗ �̂i

) (
V i ⊗ �̂

−1
i

)]
,

and finally, again using the orthogonality of V i , i = 1, . . . , ν,

RS = n

2
tr

[
Iqp − 2

(
ν∑

i=1

V i ⊗ �̂i

)(
ν∑

i=1

V i ⊗ �̂
−1
i

)

+
(

ν∑

i=1

V i ⊗ �̂i

)(
ν∑

i=1

V i ⊗ �̂
−1
i

)(
ν∑

i=1

V i ⊗ �̂i

)(
ν∑

i=1

V i ⊗ �̂
−1
i

)]

= n

2
tr
{ [

Iqp − �̂1�̂
−1
0

]2 }
.

��

3.3 Likelihood ratio test

The MLE of �i given in Proposition 1 is represented in terms of BTr p
[
(V i ⊗ I p)S

]
,

which can be equivalently written as BTr p
[
(H ′

i ⊗ I p)S(H i ⊗ I p)
]
with V i =

H iH ′
i ; cf. Filipiak et al. (2018). Thus, one can see that the block trace operator

merely sums vi blocks of order p of a vi p×vi p partitioned matrix. Such an operation
is equivalent to

∑vi
j=1(h

′
i j ⊗ I p)S(hi j ⊗ I p), with hi j being the j th column of H i ,
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or
∑vi

j=1 Y
′
i j Q1nY i j , with Y i j = X(hi j ⊗ I p), denoted by Liang et al. (2022) as

Si . The representation of the MLEs of the covariance structure under the null and
alternative hypotheses in terms of Si will be convenient for determining the likelihood
ratio statistic. Therefore, let

Si = BTr p
[
(H ′

i ⊗ I p)S(H i ⊗ I p)
]
. (10)

Using the fact that tr A = tr(BTr A) and Filipiak et al. (Filipiak et al. (2018), Lemma
2.11), the MLEs of δi j and �i in Proposition 1, i = 1, . . . , ν, j = 1, . . . , ω, can be
represented as

δ̂i j = 1
n·vi ·u j

tr
(
U j Si

)
and �̂i = 1

n·vi Si . (11)

Now we can formulate the likelihood ratio criterion.

Theorem 2 The likelihood ratio criterion � for testing (4) is given by

� =
⎧
⎨

⎩

ν∏

i=1

⎡

⎣|Si |vi
ω∏

j=1

(
u j

ti j

)vi u j

⎤

⎦

⎫
⎬

⎭

n/2

,

where ti j = tr(SiU j ) and Si is as defined in (10).

Proof The likelihood ratio is given by

� = maxH0 L(μ,�0)

maxH1 L(μ,�1)
,

with the maximum attained at the MLEs of �0 and �1 given in Proposition 1. Using
the representation (11), we can write

max
H0

L(μ,�0) = L(μ̂, δ̂i j ) = (2π)−
qpn
2

ν∏

i=1

ω∏

j=1

(
tr(SiU j )

nvi u j

)− nvi u j
2

e− qpn
2

and

max
H1

L(μ,�1) = L(μ̂, �̂i ) = (2π)−
qpn
2

ν∏

i=1

( |Si |
(nvi )p

)− nvi
2

e− qpn
2 ,

and the expression follows. ��
It is known that for increasing sample size the likelihood ratio test statistic,

LRT = −2 ln�, tends to the chi-square distribution with (p(p+ 1)/2− ω)ν degrees
of freedom; cf. Rao (2005). Nevertheless, it is also worthwhile to derive the exact dis-
tribution of the LRT. For this purpose we first present auxiliary lemmas which will be
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used in the subsequent proof. The notation “
d∼" is used to indicate that a random vari-

able “has the same distribution as" another, and β(a, b) denotes the beta distribution
with parameters a and b.

Lemma 1 (Muirhead, 1982, Theorem 3.2.15, p. 100) If A ∼ Wm(�, n), where n ≥ m

is an integer, then |A| / |�| d∼ ∏m
i=1 Xi , where Xi ∼ χ2

n−i+1, i = 1, . . . ,m, are
independent random variables.

Lemma 2 (Olkin and Press, 1969, Lemma 2) Let W0,W1, . . . ,Wm be independently
distributed random variables, W j ∼ χ2

2a j
, j = 0, 1, . . . ,m. If

L = mm

∏m
j=1 Wj

(W0 +∑m
j=1 Wj )m

,

then L
d∼ ∏m

j=1 X j , where X1, . . . , Xm are independently distributed,

X j ∼ β
(
a j , b j

)
, b j = a + j − 1

m
− a j , a =

m∑

j=0

a j .

Lemma 3 If A ∼ Wqp(�, n), where � can be represented as (3), then

BTr p[(V i ⊗ I p)A] ∼ Wp(�i , n · tr V i ).

Proof See Appendix B. ��
We can now formulate the following theorem.

Theorem 3 If the null hypothesis of (4) holds and n > p, then

LRT
d∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−n
ν∑

i=1

ω∑
j=2

u j∑
k=1

vi ln Bi jk if u1 = 1

−n
ν∑

i=1

ω∑
j=1

u j∑
k=1

vi ln Bi jk if u1 ≥ 2,

where

Bi jk ∼ β

(
(n − 1)vi

2
− s jk − 1

2
,
k − 1

u j
+ s jk − 1

2

)

and s jk = k +∑ j−1
c=0 uc, u0 = 0.

Proof Under H0 of (4), let us represent each matrix U j generating the basis of the
quadratic subspace U as G jG′

j , j = 1, . . . , ω, where G′
jG j = Iu j and G′

jG j ′ =
0u j×u j ′ and let G = (G1, . . . , Gω). From the orthogonality of G we have

∣∣G′SiG
∣∣ =
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|Si |, i = 1, . . . , ν. Moreover, in Theorem 2 each ti j = tr(SiU j ) is equal to the sum
of respective diagonal entries of matrices G′SiG. Thus, �2/n can be written as

�2/n =
ν∏

i=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣G′SiG
∣∣

ω∏
j=1

u
u j
j

ω∏
j=1

[ u j∑
k=1

(
G′SiG

)
s jk ,s jk

]u j

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

vi

, (12)

where s jk = k +∑ j−1
c=0 uc and u0 = 0. Due to Lemma 3, the matrices

Si ∼ Wp(�i , (n − 1)vi ),

i = 1, . . . , ν, are mutually independent, and hence all the factors in (12) are indepen-
dent. Furthermore, under the null hypothesis, if we denote by Di the block-diagonal
matrix with blocks δi j Iu j , j = 1, . . . , ω, on the diagonal, then for every i = 1, . . . , ν
it holds that

D−1/2
i G′SiGD−1/2

i ∼ Wp(I p, (n − 1)vi ).

Decomposing the above toW iW ′
i , whereW i is a lower triangular matrix with positive

diagonal elements, we have that all elements of W i are independent, the nonzero off-
diagonal entries being normally distributed, that is,Wi,kk′ ∼ N (0, 1), p ≥ k > k′ ≥ 1,
and W 2

i,kk ∼ χ2
(n−1)vi−k+1; cf. Kollo and von Rosen (2005, Theorem 2.4.4(i)). Since

|Si | = |G′SiG| =
∣∣∣D1/2

i W iW ′
i D

1/2
i

∣∣∣ = |Di | ·
p∏

k=1

W 2
i,kk =

⎛

⎝
ω∏

j=1

δ
u j
i j

⎞

⎠
p∏

k=1

W 2
i,kk,

we can write

p∏

k=1

W 2
i,kk =

ω∏

j=1

u j∏

k=1

Z (1)
is jk

, (13)

where Z (1)
is jk

∼ χ2
(n−1)vi−s jk+1. Note now that the factors in the denominator of (12)

can be represented as

u j∑
k=1

(
G′SiG

)
s jk ,s jk

= δi j

u j∑
k=1

(
W iW ′

i

)
s jk ,s jk

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δi jW 2
i,11 for u1 = 1

δi j

(
u1∑
k=1

W 2
i,kk +

u1∑
k=2

k−1∑
k′=1

W 2
i,kk′

)
for j = 1 and u1 ≥ 2

δi j

(
u j∑
k=1

W 2
i,s jk s jk

+
u j∑
k=1

s jk−1∑
k′=1

W 2
i,s jkk′

)
, for j = 2, . . . , ω.
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Since each squared diagonal component of W i is distributed as Z (1)
is jk

, each squared

off-diagonal component is distributed as Z ∼ χ2
1 , and all of these off-diagonal entries

are independent, we obtain

u j∑
k=1

(
G′SiG

)
s jk ,s jk

d∼

⎧
⎪⎨

⎪⎩

δi j Z
(1)
i1 for u1 = 1

δi j

( u j∑
k=1

Z (1)
is jk

+ Z (2)
i j

)
for j = 1, . . . , ω and u1 ≥ 2,

(14)

where Z (2)
i j ∼ χ2

d j
with d j = (2s j0 + u j − 1)u j/2. Substituting (13) and (14) into

(12), we obtain the following:

�2/n d∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ν∏
i=1

ω∏
j=2

[
u
u j
j ·∏u j

k=1 Z
(1)
is jk(∑u j

k=1 Z
(1)
is jk

+Z (2)
i j

)u j

]vi

for u1 = 1

ν∏
i=1

∏ω
j=1

[
u
u j
j ·∏u j

k=1 Z
(1)
is jk(∑u j

k=1 Z
(1)
is jk

+Z (2)
i j

)u j

]vi

for u1 ≥ 2.

Now, using Lemma 2, we can write

�2/n d∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν∏
i=1

ω∏
j=2

u j∏
k=1

Bvi
i jk if u1 = 1

ν∏
i=1

ω∏
j=1

u j∏
k=1

Bvi
i jk if u1 ≥ 2,

where

Bi jk ∼ β

(
a(1)
is jk

,
ai j + k − 1

u j
− a(1)

is jk

)

with

a(1)
is jk

= (n − 1)vi − s jk + 1

2
and ai j =

u j∑

k=1

a(1)
is jk

+ d j

2
.

Using the formulas for d j and s jk , the expression for ai j can be reduced as follows:

ai j =
u j∑

k=1

(n − 1)vi − s jk + 1

2
+ (2s j0 + u j − 1)u j

4

= u j
(n − 1)vi + 1

2
− 1

2

u j∑

k=1

s jk +
(
2
∑ j−1

c=0 uc + u j − 1
)
u j

4
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= u j
(n − 1)vi + 1

2
− 1

2

u j∑

k=1

⎛

⎝
j−1∑

c=0

uc + k

⎞

⎠+
(
2
∑ j

c=0 uc − u j − 1
)
u j

4

= u j
(n − 1)vi + 1

2
− u j ·∑ j−1

c=0 uc
2

− u j (u j + 1)

4
+
(
2
∑ j−1

c=0 uc + u j − 1
)
u j

4

= u j

2

⎡

⎣(n − 1)vi + 1 −
j−1∑

c=0

uc − u j

2
− 1

2
+

j∑

c=0

uc + u j

2
− 1

2

⎤

⎦

= (n − 1)u jvi

2

and the assertion follows. ��

4 Comparison of tests – simulation studies

It is known (Rao 2005) that for increasing sample size the null distributions of both
RST and LRT statistics tend to the χ2 distribution with the number of degrees of free-
dom equal to the difference between the numbers of parameters under the alternative
and null hypotheses. To assess the performance of the proposed tests, we conduct sim-
ulations to determine the speed of convergence to the limiting chi-square distribution
and the empirical power, computed as the ratio between the number of rejected null
hypotheses and the number of simulation runs. We consider the hypothesis

H0 : �0 = �BCT_CT vs H1 : �1 = �BCT, (15)

as one of the most general examples of hypothesis (4) related to known structures.
Note also that for this hypothesis the number of degrees of freedom of the limiting
distribution is (p(p + 1)/2 − ω)ν.

To analyze the empirical null distribution of the RST and to obtain the quantiles
necessary for determining the power of RST, for particular sets of parameters (p, q, n),
10,000 observation matrices from Nn,qp(0, In,�BCT_CT) were generated. To obtain
the exact null distribution of the LRT (and also its quantiles) we used the R package
CharFunToolR developed in Gajdoš (2018). In both tests, we always set n > p.

The following subsections show that the RST outperforms the LRT with respect to
the speed of convergence of the null distribution to the χ2 distribution, while there is
no significant difference in the behavior of the power of the tests: both of them are
competitive.

4.1 Convergence to the limiting distribution

The empirical distribution of the RST and the exact distribution of the LRT, together
with the limiting χ2 distribution, for various combinations of p and q equal to 3 and
5 and to 3 and 10 (except (p, q) = (3, 3)) with n ∈ {p + 1, 25, 50} are presented in
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Fig. 1 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
12 distribution (black) for p = 3, q = 5 (color figure online)

Fig. 2 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
24 distribution (black) for p = 5, q = 3 (color figure online)

Fig. 3 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
36 distribution (black) for p = 5, q = 5 (color figure online)

Figs. 1, 2, 3, 4, 5, 6. It is observed that with increasing n both null distributions tend
to the limiting distribution; however, the convergence of the RST is faster than that of
the LRT in all cases under consideration. Moreover, for relatively small p and q, the
empirical null distribution of the RST is close to the limiting distribution even for a
small sample size. In Figs. 1, 2, 3, with n = 50, the exact distribution center for the
LRT seems to be closer to the chi-square distribution than the corresponding center
for the RST. However, the tails, which are crucial for concluding a testing procedure,
are indistinguishable for both null distributions. Note, however, that increasing p and
q (especially p) slows down the convergence of both null distributions.

4.2 Power analysis

In this section we use a Monte Carlo simulation study to test the behavior of a power
function of the RST and LRT with respect to the discrepancy between the null and
alternative hypotheses, given respectively in (5) and (3), and with respect to the sample
size. As a measure of discrepancy between two multivariate normal distributions with
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Fig. 4 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
24 distribution (black) for p = 3, q = 10 (color figure online)

Fig. 5 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
98 distribution (black) for p = 10, q = 3 (color figure online)

Fig. 6 Empirical null distribution of RST (blue) and exact distribution of LRT (green) together with the
χ2
294 distribution (black) for p = 10, q = 10 (color figure online)

different covariance matrices, we use Kullback–Leibler divergence (cf. Stein 1956,
James and Stein 1961, Dey and Srinivasan 1985, Lin et al. 2014), which for δ = {δi j :
i = 1, . . . , ν, j = 1, . . . , ω} and D = {�i : i = 1, . . . , ν} has the form

ζ(δ,D) = tr

[(
ν∑

i=1
V i ⊗ �−1

i

)(
ν∑

i=1

ω∑
j=1

δi j
(
V i ⊗ U j

)
)]

− ln

∣∣∣∣

(
ν∑

i=1
V i ⊗ �−1

i

)(
ν∑

i=1

ω∑
j=1

δi j
(
V i ⊗ U j

)
) ∣∣∣∣ − pq.

Thus, for a given alternative (the set D), to determine the structure under the null
hypothesis (the set δ) with the lowest discrepancy we should determine

ξ(̃δ) = min
δi j

ζ(δ | D).
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Recalling that the matrices V i , i = 1, . . . , ν, are idempotent and orthogonal, and
using (17), the problem simplifies to

ξ(̃δ)=min
δi j

⎡

⎣
ν∑

i=1

ω∑

j=1

viδi j tr
(
�−1

i U j

)
+ln

∣∣∣
ν∑

i=1

V i ⊗ �i

∣∣∣−
ν∑

i=1

ω∑

j=1

vi u j ln(δi j )− pq

⎤

⎦ .

Differentiating the above with respect to δi j , we obtain

δ̃ =
{

δ̃i j = u j

tr(�−1
i U j )

: i = 1, . . . , ν, j = 1, . . . , ω

}
.

Since the Kullback-Leibler divergence function is not upper bounded, for power anal-
ysis we use a transformation of ξ(̃δ) in the form η(̃δ) = 1 − 1/(1 − ξ(̃δ)), to restrict
the possible discrepancy to the interval [0,1).

For simulation purposes, we henceforth assume �1 = �BCT and �0 = �BCT_CT.
In the first step we check the behavior of the power function of the RST and LRT

with respect to the discrepancy η(̃δ). For this purpose we set the parameters of the
experiment as (p, q) ∈ {(3, 5), (5, 3), (5, 5)} and n = 25, and we generate 100 p.d.
matrices �BCT, for which the discrepancies η(̃δ) are computed. Then, for each �BCT
we generate 10,000 observation matrices from Nn,qp(μ, In,�BCT), and for every
observation matrix we test the hypothesis (15) using the quantiles of, respectively, the
empirical null distribution of the RST and the exact null distribution of the LRT. In this
way we obtain 100 values of the power of each test, computed as the ratio between the
number of rejected null hypotheses and the number of simulation runs (10,000). The
results are presented in Fig. 7. In all of these graphs the power shows an upward trend
with increasing discrepancy, with slightly higher deviations between powers for the
RST than for the LRT. A similar phenomenon is observed by Filipiak et al. (2023b),
where various discrepancy measures are studied in the context of testing separability.

Finally, we compare the power of the RST and LRT with respect to the sample
size. For this purpose we choose p = 3, q = 5, and n ∈ {4, 15, 25, 35, 50, 75, 100},
and we choose two matrices �BCT such that η(̃δ) = 0.4 and two further matrices
for which η(̃δ) = 0.6. Each subgraph in Fig. 8 represents the empirical power of
the RST (blue line) and LRT (green line) for 10,000 data matrices generated from
Nn,qp(μ, In,�BCT), where the first column contains the results of simulation studies
for two matrices �BCT with discrepancy equal to η(̃δ) = 0.4, and the second contains
results for matrices �BCT with discrepancy η(̃δ) = 0.6 (the exact forms of these
matrices are available from the authors upon request). It can be seen that both of the
tests are competitively powerful: in some cases the power of the RST exceeds the
power of the LRT, while in others the order is reversed. It is also observed that, as
expected, the power of both tests increases with sample size, and the power of each
test depends on the discrepancy.
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Fig. 7 Empirical power of RST (first row) and LRT (second row) with respect to discrepancy, for various
combinations of p, q, and n = 25

5 Applications of the results—examples

In this section we illustrate the above results with examples based on simulated and
real-life data sets. For this purpose we consider three special cases of hypothesis (4),
namely

H (a)
0 : �0 = �BCT_CT vs H (a)

1 : �1 = �BCT,

H (b)
0 : �0 = �BCS_CS vs H (b)

1 : �1 = �BCS,

H (c)
0 : �0 = Iq ⊗ �CT vs H (c)

1 : �1 = Iq ⊗ �UN.

(16)

To clarify how the values of RST and LRT are computed, in Appendix Cwe present
the basis of the structures considered in (16). In Appendix C we also give the basis
of each structure with respect to the parameters q and p; see Table 3 for a simulated
example and Table 4 for a real-life example. Finally, also in Appendix C, due to
Theorem 3, we show the parameters of the beta distribution used to construct the exact
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Fig. 8 Empirical power of RST (blue) and exact power of LRT (green) for p = 3, q = 5 and two alternatives
with η(̃δ) = 0.4 (left column) and η(̃δ) = 0.6 (right column)

distribution of the LRT; see Table 5 for the simulated example and Table 6 for the
real-life example.

5.1 Simulated data example

We generate the data set from Nn,qp(0, In,�BCS_CS) with n = 25, q = 5, p = 7 and
�BCS_CS = P1q ⊗�1+ Q1q ⊗�2, where�1 = 2P1p +3Q1p ,�2 = 3P1p +2Q1p ,
and the projectors P1, Q1 of relevant order are as defined in Sect. 3; the data set is
available from the authors upon request.

For every hypothesis in (16), we computed the values of the RST and LRT statistics,
and also determined the empirical p-value for the RST using an empirical null distribu-
tion, and the exact p-value for the LRT using the CharFunToolR package in R (cf.
Gajdoš 2018). The results are presented in Table 1, together with the p-values of the
limitingχ2 distributionwith the followingdegrees of freedom: (p(p+1)/2−ω)ν = 72
under H (a)

0 , p(p + 1) − 4 = 52 under H (b)
0 , and p(p + 1)/2 − ω = 24 under H (c)

0 .
Moreover, in Fig. 9 we present the empirical null distribution of the RST (blue line),
the exact distribution of the LRT (green line), and the limiting χ2 distribution with the
respective number of degrees of freedom (black line) for each hypothesis.

It can be seen that for n = 25 the distribution of both the RST and LRT is close
to the limiting distribution. Thus, assuming α = 0.1, the decision taken based on
the empirical/exact distribution and the limiting distribution remains the same: reject
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Table 1 Test statistics and respective p-values for hypotheses (16) for a simulated data set

(a) (b) (c)

RST LRT RST LRT RST LRT

Statistic 101.154 107.681 65.517 68.386 41.062 38.460

Empirical / exact p-val 0.022 0.037 0.129 0.189 0.028 0.054

χ2 p-val 0.013 0.004 0.099 0.063 0.016 0.031
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Fig. 9 Empirical null distribution of RST statistic (blue) and exact distribution of LRT statistic (green)
together with the respective χ2 distribution (black) for n = 25, q = 5, p = 7, and null hypotheses in (16)

H (a)
0 , fail to reject H (b)

0 , and reject H (c)
0 . For α = 0.05 we observe that for hypothesis

(c) the p-value taken from the exact distribution of LRT slightly exceeds the nominal
level, while for the limiting distribution it is smaller than 0.05. This seems surpris-
ing, especially given that the null distribution of the LRT is closer to the chi-square
distribution than in the case of hypothesis (a), which can be observed either directly
from Fig. 9 or from the difference between the exact and limiting p-values for both
of the hypotheses. However, when we look into the values of the LRT statistics, we
observe that the area under the curve is larger for hypothesis (c) than for hypothesis
(a). Moreover, when we compare the values of the LRT and RST for hypotheses (c)
and (a), we see that in the case of (c) the value of the RST is higher than that of the
LRT, while for hypothesis (a) the order is reversed.

Finally note that, as expected from the assumptions of the experiment, both tests
fail to reject H (b)

0 .

5.2 Real data example

In this section we consider the real data example presented in Liang et al. (2015).
The data comes from an experiment in which n = 11 plants were selected, in each
plant three flowers were randomly chosen (q = 3), and then the lengths of all four
petals from each flower were measured (p = 4). As observed in Liang et al. (2015),
since the arrangement of petals in the flower is circular, it is reasonable to assume that
the correlation between the lengths of any two petals within a single flower depends
on the number of petals between them. In other words, we assume equal correlations
between observations from neighboring petals and equal correlations between obser-

123



Testing covariance structures belonging...

Table 2 Test statistics and respective p-values for hypotheses (16) for real data

(a) (b) (c)

RST LRT RST LRT RST LRT

Statistic 20.82 24.89 23.98 27.56 12.36 12.01

Empirical / exact p-val 0.133 0.159 0.107 0.158 0.111 0.177

χ2 p-val 0.106 0.036 0.090 0.036 0.089 0.100

vations from opposite petals. Hence, our aim is to test the circular Toeplitz structure
of intraclass dependence between petals on a single flower. Moreover, since the order
of flowers on a single plant is not important, a compound symmetry structure can
be applied to describe the inter-flower correlation (interclass dependence). Observe,
however, that since only three flowers are selected, the compound symmetry structure
is equivalent to the circular Toeplitz structure. Thus, in this case hypothesis (16)(a)
may be of interest.

If the researcher is additionally interested in verifying whether the correlation
between the length of petals depends on the distance between petals, it is reason-
able to study hypothesis (16)(b).

Another possibility is to test whether the measurements made on different flowers
are uncorrelated, while the lengths of petals on a particular flower depend on the
distance between the petals. In this case, hypothesis (16)(c) is of interest.

For the data under consideration, a hypothesis concerning the particular structure of
themean and circular Toeplitz or compound symmetry structure of covariance between
petals, assuming a compound symmetry structure of covariance between flowers, was
tested in Liang et al. (2022) using the LRT. Similarly to Liang et al. (2022), in this
paper we also test hypotheses (a) and (b) from (16); however, since we do not consider
any special structure of expectation, our results differ from those of Liang et al. (2022).
Finally, to illustrate the LRT and RST formulated in a general form, we additionally
test the hypothesis of block-sphericity with circular Toeplitz blocks given in (c) in
(16).

The computed values of the RST and LRT statistics, together with corresponding
p-values obtained using the exact and limiting chi-square distributions, are presented
in Table 2. The empirical p-value of the RST is determined from the empirical null
distribution of RST, while the p-value of the LRT is computed from the exact dis-
tribution of the LRT determined using the CharFunToolR package (cf. Gajdoš,
2018). Note that the number of degrees of freedom of the limiting chi-square distri-
bution is (p(p + 1)/2 − ω)ν = 14 under H (a)

0 , p(p + 1) − 4 = 16 under H (b)
0 , and

p(p + 1)/2 − ω = 7 under H (c)
0 .

Assuming a significance level of α = 0.05, it is observed that for hypotheses (a)
and (b) the decisions based on the exact and limiting distributions of the LRT differ
(thus, the respective p-values of chi-square distributions are given in bold). This is
because the exact distribution of the LRT is quite distant from the limiting distribution
for a small sample size (n = 11); cf. Fig. 10a, b. Such a problem does not arise either
for hypothesis (c) or for the inference based on the RST.
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Fig. 10 Empirical null distribution of RST statistic (blue) and exact distribution of LRT statistic (green)
together with the respective χ2 distribution (black) for n = 11, q = 3, p = 4, and null hypotheses in (16)
(color figure online)

Note that, reasoning from the empirical or limiting distribution of the RST or the
exact distribution of the LRT, all three null hypotheses are not rejected. Thus, one may
ask which structure to choose for further analysis. One approach would be to choose
the structure with the smallest p-values. Another good choice would be the structure
with the smallest number of parameters, because in this case more degrees of freedom
are left for estimation of the expectation.

Summing up, both tests work well; however, for the LRT the inference should be
based on the exact rather than the limiting distribution, and this requires the use of
specialized software and packages. Thus, we would recommend to practitioners the
use of the RST, as the limiting chi-square distribution is a good approximation of the
distribution even for a relatively small sample size, and is well known to researchers.

6 Final remarks

In this paper we have shown, via simulations, that for testing (4) the RST performs
better than the LRT in the sense of the speed of convergence to the limiting chi-square
distribution when n → ∞ and p, q are fixed. Since the exact distribution of the RST
remains unknown, we are not aware of any theoretical results supporting the conclu-
sions drawn from the simulation studies. Moreover, one can see that the condition
n > p imposed for both tests, where p is fixed, is required. Obviously, because the
relation (6)makes it possible to exchange the role of interclass and intraclass structures,
in such a case the requirement n > pwill be replaced by n > q. Nevertheless, it would
be beneficial to develop tests for the high-dimensional case where both p (respectively
q) and n tend to infinity, with p/n → c ∈ (0, 1] (respectively q/n → c ∈ (0, 1]).
However, the study in high-dimensional setup appears much more challenging, and
hence will be the topic of future research.
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Appendix A: Proof of Proposition 1

Proof Assume the covariance structure under H0. Because V ⊗ U is a commutative
quadratic subspace, from Filipiak et al. (2020, Theorem 4.1), the MLE of �0 can be
obtained by projecting �̂UN as given in (8) onto the orthonormal basis of V⊗U . Thus,

�̂0 =
ν∑

i=1

ω∑

j=1

〈
1
n S, ( 1√

vi
V i ⊗ 1√

u j
U j )

〉 (
1√
vi
V i ⊗ 1√

u j
U j

)
,

where 〈•, •〉 denotes the standard inner product. Hence, after simple calculations we
obtain the MLE of δi j , i = 1, . . . , ν, j = 1, . . . , ω, given in the Proposition.

Assume the covariance structure under H1. Note that �−1
1 = ∑ν

i=1 V i ⊗ �−1
i .

Moreover,

|�1| = ∣∣(H ′ ⊗ I p)�1(H ⊗ I p)
∣∣

=
∣∣∣∣∣

ν∑

i=1

H ′
iV iH i ⊗ �i

∣∣∣∣∣ =
∣∣∣∣∣

ν∑

i=1

Ivi ⊗ �i

∣∣∣∣∣ =
ν∏

i=1

|�i |vi , (17)

where H = (H1, . . . , Hν). Therefore, differentiating the log-likelihood function

ln L(�) = −nqp

2
ln(2π) − n

2

ν∑

i=1

(vi · ln |�i |) − 1

2

ν∑

i=1

tr
[
S(V i ⊗ �−1

i )
]

with respect to �i , we obtain ν normal equations of the form

n · vi · vec�i = (vec′ V i ⊗ I p2)(Iq ⊗ Kq,p ⊗ I p) vec S,

where Kq,p is the commutation matrix; cf. Kollo and von Rosen (2005). From
Filipiak et al. (2018, Corollary 2.10) we obtain the MLEs of �i presented in the
Proposition. ��
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Appendix B: Proof of Lemma 3

Proof Let A ∼ Wqp(�, n), where � can be represented as (3). Then, writing
H = (H1, . . . , Hν), we have

(H ′ ⊗ I p)A(H ⊗ I p) ∼ Wqp(BDiag(Ivi ⊗ �i ), n)

(cf. Kollo and von Rosen, 2005, Th. 2.4.2), where BDiag(·) is a block diagonal
matrix. This implies that the diagonal blocks of the above (H ′

i ⊗ I p)A(H i ⊗ I p) and
(H ′

j ⊗ I p)A(H j ⊗ I p), i, j = 1, . . . , ν, i �= j , are independent, and

(H ′
i ⊗ I p)A(H i ⊗ I p) ∼ Wνi p(Iνi ⊗ �i , n), i = 1, . . . , ν;

cf. Anderson (2003, Theorem 7.3.5, p. 261). Moreover, since each H i consists of
orthogonal columns, H i = (hi1, . . . , hivi ), the diagonal blocks of (H

′
i ⊗ I p)A(H i ⊗

I p), i = 1, . . . , ν, are independent, and

(h′
ik ⊗ I p)A(hik ⊗ I p) ∼ Wp(�i , n), i = 1, . . . , ν, k = 1, . . . , vi .

Note now that, since

BTr p
[
(H ′

i ⊗ I p)A(H i ⊗ I p)
] =

νi∑

k=1

(h′
ik ⊗ I p)A(hik ⊗ I p)

from Anderson (2003, Theorem 7.3.2, p. 260) , we obtain the assertion. ��

Appendix C: Basis of covariance structures and parameters of beta
distribution for simulated and real data examples

To clarify how the values of the RST and LRT are computed, we give here the basis
of the structures considered in (16). For simplicity we define the basis that follows
from the spectral decomposition, consisting of τ matrices W k of size t × t , which for
the interclass structure become a basis of ν matrices V i of size q × q, and for the
intraclass structure a basis ofωmatricesU j of size p×p. Denoting by L the orthogonal
matrix whose columns are the eigenvectors of the relevant covariance structure, we
can construct W k as a product LkL′

k , where:

• for matrices proportional to the identity: τ = 1 and L1 = I t ;
• for CS matrices: τ = 2 and L = (L1 : L2), with L1 = 1√

t
1t and L2 consisting of

t − 1 eigenvectors being orthogonal to 1t (cf. Olkin and Press, 1969);
• for CT matrices: τ = �t/2� + 1 and L = ( 1√

t
1t , �2, . . . , �t ), with the ath element

of �b, a ∈ {1, . . . , t}, b ∈ {2, . . . , t}, given by

�ab = 1√
t

[
cos

( 2π
t (b − 1)(a − 1)

)+ sin
( 2π

t (b − 1)(a − 1)
)]
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Table 3 The basis of the covariance structure related to the hypotheses considered in (16) for q = 5 and
p = 7

Hypothesis Interclass intraclass

ν vi V i ω u j U j

(a) 3 v1 = 1 V1 = P15 4 u1 = 1 U1 = P17

v2 = 2 V2 = �2�
′
2 + �5�

′
5 u2 = 2 U2 = �2�

′
2 + �7�

′
7

v3 = 2 V3 = �3�
′
3 + �4�

′
4 u3 = 2 U3 = �3�

′
3 + �6�

′
6

u4 = 2 U4 = �4�
′
4 + �5�

′
5

(b) 2 v1 = 1 V1 = P15 2 u1 = 1 U1 = P17

v2 = 4 V2 = Q15 u2 = 6 U2 = Q17

(c) 1 v1 = 5 V1 = I5 4 u1 = 1 U1 = P17

u2 = 2 U2 = �2�
′
2 + �7�

′
7

u3 = 2 U3 = �3�
′
3 + �6�

′
6

u4 = 2 U4 = �4�
′
4 + �5�

′
5

Table 4 Basis of the covariance structure related to the hypotheses considered in (16) for q = 3 and p = 4

Hypothesis Interclass Intraclass

ν vi V i ω u j U j

(a) 2 v1 = 1 V1 = P13 3 u1 = 1 U1 = P14

v2 = 2 V2 = Q13 u2 = 2 U2 = �2�
′
2 + �4�

′
4

u3 = 1 U3 = �3�
′
3

(b) 2 v1 = 1 V1 = P13 2 u1 = 1 U1 = P14

v2 = 2 V2 = Q13 u2 = 3 U2 = Q14

(c) 1 v1 = 3 V1 = I3 3 u1 =1 U1 = P14

u2 = 2 U2 = �2�
′
2 + �4�

′
4

u3 = 1 U3 = �3�
′
3

(cf. Basilevsky, 1983, Olkin and Press, 1969), where L1 = 1√
t
1t , Lk = (�k :

�t−k+2), k = 2, . . . , τ − 1, and Lτ =
{

(�τ : �τ+1) if t is odd
�τ if t is even.

It is also worthwhile to note that for the CS structure, W1 is simply P1t , while
W2 = Q1t , defined in Sect. 3.

In Tables 3 and 4 we give the basis of structures considered for each hypothesis,
respectively for q = 5, p = 7 and q = 3, p = 4. Recall that in each case the
same interclass structure is assumed in the null and alternative hypotheses, while the
intraclass dependency has a specified structure in the null hypotheses and remains
unstructured in each alternative. Therefore, the basis matrices V i for the interclass
structure in each alternative hypothesis is the same as in the respective null hypothesis.

In Tables 5 and 6 we give the parameters of the beta distributions used for con-
struction of the exact distribution of the LRT, presented in Theorem 3, respectively
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Table 5 Parameters of beta distributions related to the hypotheses considered in (16) for q = 5 and p = 7

Hypothesis (a) , ν = 3, ω = 4, v1 = 1, v2 = v3 = 2, u1 = 1, u2 = u3 = u4 = 2
j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)vi − 1]/2 1/2

2 2 [(n − 1)vi − 2]/2 3/2

3 1 3 [(n − 1)vi − 3]/2 3/2

2 4 [(n − 1)vi − 4]/2 5/2

4 1 5 [(n − 1)vi − 5]/2 5/2

2 6 [(n − 1)vi − 6]/2 7/2

Hypothesis (b) , ν = 2, ω = 2, v1 = 1, v2 = 4, u1 = 1, u2 = 6

j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)vi − 1]/2 1/2

2 2 [(n − 1)vi − 2]/2 3/2

3 3 [(n − 1)vi − 3]/2 5/2

4 4 [(n − 1)vi − 4]/2 7/2

5 5 [(n − 1)vi − 5]/2 9/2

6 6 [(n − 1)vi − 6]/2 11/2

Hypothesis (c) , ν = 1, ω = 4, v1 = 5, u1 = 1, u2 = u3 = u4 = 2

j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)q − 1]/2 1/2

2 2 [(n − 1)q − 2]/2 3/2

3 1 3 [(n − 1)q − 3]/2 3/2

2 4 [(n − 1)q − 4]/2 5/2

4 1 5 [(n − 1)q − 5]/2 5/2

2 6 [(n − 1)q − 6]/2 7/2

for q = 5, p = 7 and q = 3, p = 4. Note that in the examples considered u1 = 1 for
each hypothesis, and thus each set of parameters begins with j = 2.
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Table 6 Parameters of beta distributions related to the hypotheses considered in (16) for q = 3 and p = 4

Hypothesis (a) , ν = 2, ω = 3, v1 = 1, v2 = 2, u1 = 1, u2 = 2, u3 = 1
j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)vi − 1]/2 1/2

2 2 [(n − 1)vi − 2]/2 3/2

3 1 3 [(n − 1)vi − 3]/2 3/2

Hypothesis (b) , ν = 2, ω = 2, v1 = 1, v2 = 2, u1 = 1, u2 = 3

j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)vi − 1]/2 1/2

2 2 [(n − 1)vi − 2]/2 3/2

3 3 [(n − 1)vi − 3]/2 5/2

Hypothesis (c) , ν = 1, ω = 3, v1 = 3, u1 = 1, u2 = 2, u3 = 1

j k s jk − 1 beta distribution parameters

2 1 1 [(n − 1)q − 1]/2 1/2

2 2 [(n − 1)q − 2]/2 3/2

3 1 3 [(n − 1)q − 3]/2 3/2
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