Skip to main content

Advertisement

Log in

Model checking for generalized partially linear models

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We propose a residual-marked empirical process test to check goodness of fit for generalized partially linear models. The proposed test can gain dimension reduction, is shown to be consistent, and can detect root-n local alternatives. We further establish asymptotic distributions of the proposed test under the null hypothesis and analyze asymptotic properties under the local and global alternatives, and suggest a bootstrap procedure for calculating the critical value. We investigate its numerical performance by simulation experiments and illustrate its utilization in two real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bierens HJ (1982) Consistent model specification tests. J Econom 20:105–134

    Article  MathSciNet  MATH  Google Scholar 

  • Boente G, He X, Zhou J (2006) Robust estimates in generalized partially linear models. Ann Stat 34(6):2856–2878

    Article  MathSciNet  MATH  Google Scholar 

  • Chen B, Zhou X-H (2013) Generalized partially linear models for incomplete longitudinal data in the presence of population-level information. Biometrics 69(2):386–395

    Article  MathSciNet  MATH  Google Scholar 

  • Dikta G, Kvesic M, Schmidt C (2006) Bootstrap approximations in model checks for binary data. J Am Stat Assoc 101:521–530

    Article  MathSciNet  MATH  Google Scholar 

  • Escanciano JC (2006) A consistent diagnostic test for regression models using projections. Econom Theory 22:1030–1051

    Article  MathSciNet  MATH  Google Scholar 

  • Flynn PM, Rudy BJ, Douglas SD, Lathey J, Spector SA, Martinez J, Silio M, Belzer M, Friedman L, D’Angelo L, McNamara J, Hodge J, Hughes MD, Lindsey JC (2004) Virologic and immunologic outcomes after 24 weeks in HIV type 1-infected adolescents receiving highly active antiretroviral therapy. J Infect Dis 179:271–279

    Article  Google Scholar 

  • Härdle W, Huet S, Mammen E, Sperlich S (2004) Bootstrap inference in semiparametric generalized additive models. Econom Theory 20(02):265–300

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Mammen E, Müller M (1998) Testing parametric versus semiparametric modeling in generalized linear models. J Am Stat Assoc 93:1461–1474

    MathSciNet  MATH  Google Scholar 

  • Härdle W, Müller M, Sperlich S, Werwatz A (2004) Nonparametric and semiparametric models. New York

  • He X, Fung WK, Zhu Z (2005) Robust estimation in generalized partial linear models for clustered data. J Am Stat Assoc 100(472):1176–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Horowitz JL (2001) Nonparametric estimation of a generalized additive model with an unknown link function. Econometrica 69:499–513

    Article  MathSciNet  MATH  Google Scholar 

  • Horowitz JL, Mammen E (2007) Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions. Ann Stat 35(6):2589–2619

    Article  MathSciNet  MATH  Google Scholar 

  • Hunsberger S (1994) Semiparametric regression in likelihood-based models. J Am Stat Assoc 89:1354–1365

    Article  MathSciNet  MATH  Google Scholar 

  • Hunsberger S, Albert PS, Follmann DA, Suh E (2002) Parametric and semiparametric approaches to testing for seasonal trend in serial count data. Biostatistics 3:289–298

    Article  MATH  Google Scholar 

  • Kosorok MR (2008) Introduction to empirical processes and semiparametric inference. Springer

    Book  MATH  Google Scholar 

  • Leng C, Liang H, Martinson N (2011) Efficient variable selection for semiparametric generalized partially linear models with applications in study of condom use for HIV patients. Stat Med 30:2015–2027

    Article  MathSciNet  Google Scholar 

  • Liang H, Wu H, Carroll R (2003) The relationship between virologic and immunologic responses in AIDS clinical research using mixed-effect varying-coefficient ssemiparametric models with measurement error. Biostatistics 4:297–312

    Article  MATH  Google Scholar 

  • Severini TA, Staniswalis JG (1994) Quasi-likelihood estimation in semiparametric models. J Am Stat Assoc 89:501–511

    Article  MathSciNet  MATH  Google Scholar 

  • Severini TA, Wong WH (1992) Generalized profile likelihood and conditionally parametric models. Ann Stat 20:1768–1802

    Article  MATH  Google Scholar 

  • Smith JW, Everhart J, Dickson W, Knowler W, Johannes R (1988) Using the adap learning algorithm to forecast the onset of diabetes mellitus. IEEE Computer Society Press, pp 261–265

  • Stute W, Zhu L-X (2002) Model checks for generalized linear models. Scand J Stat Theory Appl 29:535–545

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Z, Chen F, Liang H, Ruppert D (2022) Efficient diagnosis for parametric regression models with distortion measurement errors incorporating dimension-reduction. Stat Sin 32:1661–1681

    MATH  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer-Verlag

    Book  MATH  Google Scholar 

  • Wang L, Liu X, Liang H, Carroll R (2011) Estimation and variable selection for generalized additive partial linear models. Ann Stat 39:1827–1851

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhang J, Yu L, Yin G (2015) Generalized partially linear single-index model for zero-inflated count data. Stat Med 34(5):876–886

    Article  MathSciNet  Google Scholar 

  • Weber G-W, Çavuşoğlu Z, Özmen A (2012) Predicting default probabilities in emerging markets by new conic generalized partial linear models and their optimization. Optimization 61(4):443–457

    Article  MathSciNet  MATH  Google Scholar 

  • Wood SN (2017) Generalized additive models, Texts in statistical science series. CRC Press, Boca Raton. FL, An introduction with R

  • Wu H, Kuritzkes D, Clair M, Spear G, Connick E, Landay A, Lederman M (1999) Characterizing individual and population viral dynamics in HIV-1-infected patients with potent antiretroviral therapy: correlations with host-specific factors and virological endpoints. J Infect Dis 179:799–897

    Article  Google Scholar 

  • Xia Y, Li W, Tong H, Zhang D (2004) A goodness-of-fit test for single-index models. Stat Sin 14(1):1–28

    MathSciNet  MATH  Google Scholar 

  • Zheng X, Qin G, Tu D (2017) A generalized partially linear mean-covariance regression model for longitudinal proportional data, with applications to the analysis of quality of life data from cancer clinical trials. Stat Med 36(12):1884–1894

  • Zhu Z-Y, He X, Fung W-K (2003) Local influence analysis for penalized Gaussian likelihood estimators in partially linear models. Scand J Stat 30(4):767–780

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two referees for their helpful suggestions and constructive comments. Li’s research was partially supported by NNSFC grant 11871294. Härdle gratefully acknowledges the financial support of the European Union’s Horizon 2020 research and innovation program “FIN-TECH: A Financial supervision and Technology compliance training programme" under the grant agreement No 825215 (Topic: ICT-35-2018, Type of action: CSA), the European Cooperation in Science & Technology COST Action grant CA19130 - Fintech and Artificial Intelligence in Finance - Towards a transparent financial industry, and the Deutsche Forschungsgemeinschaft’s IRTG 1792 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liang.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical details

Appendix: Technical details

We need the representations of \(\widehat{\varvec{\beta }}_n-\varvec{\beta }_0\) and \(\widehat{m}_n(Z_i) - m_0(Z_i)\), which play a critical role in the proofs of the main results and need the following assumptions modified from Wang et al. (2011).

Let \(\nu \) be a positive integer and \(\alpha \in (0,1] \) such that \(\zeta =\nu +\alpha >2\). Let \({\mathcal {H}}(\zeta )\) be the collection of functions G on [0, 1] whose \(\nu \)th derivative, \(G^{(\nu )}\), exists and satisfies a Lipschitz condition of order \(\alpha \), \(|G^{(\nu ) }(s^{*})-G^{(\nu )}(s) | \le C| {s^{*}}-s| ^{\alpha }\), for \(0\le {s^{*}}, s\le 1\), where C is a positive constant. Let \(\rho _{\ell }(s)=\{{dG(s)/ds}\}^{\ell }/ \sigma \{G(s)\} \) and \(q_{\ell }(s, y) =\partial ^{\ell }/\partial s^{\ell }Q\{G(s),y\}\), so that

$$\begin{aligned} q_{1}(s,y)= & {} \partial /\partial s Q\{G(s),y\} =\{y-G(s)\} \rho _{1}(s),\\ q_{2}(s,y)= & {} \partial ^{2}/\partial s^{2}Q\{G(s),y\} =\{y-G(s)\} \rho _{1}^{\prime }(s) -\rho _{2}(s). \end{aligned}$$

Write \(\textbf{A}^{\otimes 2}=\textbf{A} \textbf{A}^{\top }\) for any matrix or vector \(\textbf{A}\). We make the following assumptions.

  1. (C1)

    The function \(m^{(2)}(\cdot )\) is continuous and \(m(\cdot )\in {\mathcal {H}}(\zeta )\).

  2. (C2)

    The function \(q_{2}(s, y) <0\) and \(c_{q}<| q_{2}^{k}(s, y) | <C_{q}\) (\(k=0,1\)) for \(s\in R\) and y in the range of the response variable.

  3. (C3)

    The distribution of Z is absolutely continuous and its density f is bounded away from zero and infinity on [0, 1].

  4. (C4)

    The random vector X satisfies that

    $$\begin{aligned} c\le E(X^{\otimes 2}|Z=z)\le C. \end{aligned}$$
  5. (C5)

    The number of knots \(N_n\) satisfies \(n^{1/(2\zeta ) }\ll N_{n}\ll n^{1/4}\).

  6. (C6)

    For \(\rho _{\ell }\), we have

    $$\begin{aligned} |\rho _{\ell }(s_0) | \le C_{\rho }\text { and }| \rho _{\ell }(s) -\rho _{\ell }( s_0) | \le C_{\rho }^{*}|s-s_0| \text { for all }|s-s_0| \le {C_{s},\ \ell =1,2}, \end{aligned}$$

    where and below s and \(s_0\) appearing in \(\rho _{\ell }(\cdot )\) correspond to \(X^{\top }\varvec{\beta }+m(Z)\) and \(X^{\top }\varvec{\beta }_0+m_0(Z)\), respectively.

  7. (C7)

    There exists a positive constant \(C_{0}\), such that \(E[\{Y-G(X^{\top }\varvec{\beta }+m(Z))\}^{2}|V] \le C_{0}\), almost surely.

Let \(\alpha _n=n^{-1/4}\log n\).

$$\begin{aligned} \widehat{\varvec{\beta }}_n-\varvec{\beta }_0 = \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} \frac{1}{n} \sum \limits ^n_{i=1} S_{i,1} \widetilde{X}_i+o_p (n^{-1/2}), \end{aligned}$$
(A.1)

and

$$\begin{aligned} \widehat{m}_n(Z_i) - m_0(Z_i) = \{E(S_{i,2} |Z_i)\}^{-1} E(S_{i,2} X_i^{\top } |Z_i) (\widehat{\varvec{\beta }}_n -\varvec{\beta }_0)+o_p(\alpha _n). \end{aligned}$$
(A.2)

The proof of (A.1) is referred to the proof of Theorem 1 of Wang et al. (2011), and the proof of (A.2) is referred to the proof of the last line on page 1847 of Wang et al. (2011).

Proof of Theorem 1

By the definition of \(M_{n}(u, W)\), we have

$$\begin{aligned} M_{n}(u, W)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n [ Y_i-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}] I(V_i^{\top } W\le u)\nonumber \\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n [Y_i-G\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\}] I(V_i^{\top } W\le u)\nonumber \\{} & {} -\frac{1}{\sqrt{n}}\sum _{i=1}^n [G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}-G\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\}]I(V_i^{\top } W\le u)\nonumber \\:= & {} B_{n1}(u, W)-B_{n2}(u, W). \end{aligned}$$
(A.3)

It follows from model (2) that

$$\begin{aligned} B_{n1}(u, W)=\frac{1}{\sqrt{n}}\sum _{i=1}^n \varepsilon _i I(V_i^{\top } W\le u). \end{aligned}$$
(A.4)

Let us examine \(X_i^{\top } (\widehat{\varvec{\beta }}_n-\varvec{\beta }_0)+\widehat{m}_n(Z_i)-m_0(Z_i)\). This expression can be simplified as follows using (A.1) and (A.2).

$$\begin{aligned}{} & {} X_i^{\top } (\widehat{\varvec{\beta }}_n-\varvec{\beta }_0)+\widehat{m}_n(Z_i)-m_0(Z_i)\\{} & {} \quad =X_i^{\top } (\widehat{\varvec{\beta }}_n-\varvec{\beta }_0)- \{E(S_{i,2} |Z_i)\}^{-1} E(S_{i,2} X_i^{\top } |Z_i) (\widehat{\varvec{\beta }}_n -\varvec{\beta }_0)+o_p(\alpha _n)\\{} & {} \quad =\widetilde{X}_i^{\top } (\widehat{\varvec{\beta }}_n-\varvec{\beta }_0)+o_p(n^{-1/2})\\{} & {} \quad =\widetilde{X}_i^{\top } \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} \sum _{j=1}^n S_{j,1}\widetilde{X}_j+o_p(\alpha _n) \end{aligned}$$

The second term \(B_{n2}(u, W)\) in (A.3) can be simplified as follows:

$$\begin{aligned}{} & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n \left[ \frac{1}{n}\widetilde{X}_i^{\top } \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} \sum _{j=1}^n S_{j,1}\widetilde{X}_j\right] I(V_i^{\top } W\le u)\\{} & {} \quad \qquad G'\{X_i^{\top }\varvec{\beta }_0 +m_0(Z_i)\}+o_p(\alpha _n)\\{} & {} \quad = \frac{1}{\sqrt{n}}\sum _{j=1}^n \left[ \frac{1}{n}\sum _{i=1}^n\widetilde{X}_i^{\top } \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} I(V_i^{\top } W\le u)\right. \\{} & {} \quad \qquad \left. G'\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\}\right] S_{j,1}\widetilde{X}_j +o_p(\alpha _n)\\{} & {} \quad = \frac{1}{\sqrt{n}}\sum _{j=1}^n E\left[ \widetilde{X}_1^{\top } \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} I(V_1^{\top } W\le u) G'\{X_1^{\top }\varvec{\beta }_0+m_0(Z_1)\}\right] \\{} & {} \quad \qquad \times \frac{G'\{X_j^{\top }\varvec{\beta }_0+m_0(Z_j)\}}{\sigma (G\{X_j^{\top }\varvec{\beta }_0 +m_0(Z_j)\})}\varepsilon _j \widetilde{X}_j+o_p(\alpha _n). \end{aligned}$$

Recall \(\Gamma (u)=E\left[ \widetilde{X}_1^{\top } \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} I(V_1^{\top } W\le u) G'\{X_1^{\top }\varvec{\beta }_0+m_0(Z_1)\}\right] \). As a result, we have

$$\begin{aligned} B_{n2}(u, W)=\frac{1}{\sqrt{n}}\Gamma (u)\sum _{i=1}^{n} \frac{G'\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\}}{\sigma (G\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\})}\widetilde{X}_i \varepsilon _i+o_p(1). \end{aligned}$$
(A.5)

So, we have the following expression for \(M_{n}(u, W)\).

$$\begin{aligned} M_{n}(u, W)\!=\!\frac{1}{\sqrt{n}}\sum _{i=1}^n \left[ I(V_i^{\top } W\!\le \! u)-\Gamma (u)\frac{G'\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\}}{\sigma (G\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\})}\widetilde{X}_i\right] \varepsilon _i+o_p(1).\nonumber \\ \end{aligned}$$
(A.6)

It is easy to see that \(I(V^{\top } W\le u)\) is monotone with respect to u. By Lemma 9.10 of Kosorok (2008), the function class \(\{I(V^{\top } W\le u): u\in {\mathbb {R}}^1\}\) is a VC-class. Similarly the function class \(\{\Gamma (u): u\in {\mathbb {R}}^1\}\) is a VC-class as well. By Theorem 2.6.8 of van der Vaart and Wellner (1996), the function classes \(\{\varepsilon I(V^{\top } W\le u): u\in {\mathbb {R}}^1\}\) and the class \(\{\Gamma (u)\frac{G'\{X^{\top }\varvec{\beta }_0+m_0(Z)\}}{\sigma (G\{X^{\top }\varvec{\beta }_0 +m_0(Z)\})}\widetilde{X}: u\in {\mathbb {R}}^1\}\) are all VC-class. Then, by Lemma 9.17 of Kosorok (2008), the function class \(\{\Psi _{u}({u},{y},\varepsilon ,w): u\in {\mathbb {R}}^1\}\) is a VC-class. By Theorem 2.6.7 and Theorem 2.5.2 of van der Vaart and Wellner (1996), we can prove that the estimated empirical process \(M_{n}(u, W)\) converges weakly to M(u) in the Skorokhod space \(S[\Pi ]\). By the continuous mapping theorem, we prove the result for \(T_{n}\). \(\square \)

Proof of Theorem 2

Under the local alternatives (8), we have

$$\begin{aligned} \widehat{\varvec{\beta }}_n-\varvec{\beta }_0= & {} \{E(S_{1,2} \widetilde{X}_1 \widetilde{X}_1^{\top })\}^{-1} \frac{1}{n} \sum \limits ^n_{i=1} S_{i,1} \widetilde{X}_i \varepsilon _i\\{} & {} + \{E(S_{1,2} \widetilde{X}_1\widetilde{X}_1^{\top })\}^{-1} E\{S_{1,2}\widetilde{X}_1\widetilde{D}(V_1)\}+o_p (n^{-1/2}). \end{aligned}$$

Along the line to prove Theorem 1, we can validate that, under the alternatives (8),

$$\begin{aligned} M_{n}(u, W)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n \left[ I(V_i^{\top } W\le u)-\Gamma (u)\frac{G'\{X_i^{\top }\varvec{\beta }_0+_0m(Z_i)\}}{\sigma (G\{X_i^{\top }\varvec{\beta }_0+m_0(Z_i)\})} \widetilde{X}_i\right] \varepsilon _i\\{} & {} +r_n n^{1/2}E\left[ \frac{G'\{X^{\top }\varvec{\beta }_0+m_0(Z)\}}{\sigma (G\{X^{\top }\varvec{\beta }_0+m_0(Z)\})} \widetilde{D}(V_1)I(V_1^{\top } W\le u)\right] +o_p(1). \end{aligned}$$

When \(r_nn^{1/2}\rightarrow \infty \), the second term tends to infinity. So the first assertion holds. When \(r_nn^{1/2}\rightarrow C_r\), we have

$$\begin{aligned} T_{n}{\longrightarrow }\int \left( M(u)+C_r E\left[ \frac{G'\{X^{\top }\varvec{\beta }_0+m_0(Z)\}}{\sigma (G\{X^{\top }\varvec{\beta }_0+m_0(Z)\})} \widetilde{D}(V_1)I(V_1^{\top } W\le u)\right] \right) ^2F(du). \end{aligned}$$

\(\square \)

Proof of Theorem 3

Let \(\widehat{\varvec{\beta }}_n^*\) and \(\widehat{m}_n^*(\cdot )\) be the regression spline-based estimators of \(\varvec{\beta }\) and \(m(\cdot )\) based on the bootstrap samples \(\{(V_i, Y_i^*), i=1, \cdots , n\}\), where \(Y^*_i\) has the success probability \(p_i\). Analogously to establish (A.1) and (A.2), we can prove that

$$\begin{aligned} \widehat{\varvec{\beta }}_n^*-\widehat{\varvec{\beta }}_n= \sum _{i=1}^n \frac{G'\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\}}{\sigma (G\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\})} \widetilde{X}_i[Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}. \end{aligned}$$
(A.7)
$$\begin{aligned} \widehat{m}_n^*(Z_i) - \widehat{m}_n(Z_i) = \{E(S_{i,2} |Z_i)\}^{-1} E(S_{i,2} X_i^{\top } |Z_i)(\widehat{\varvec{\beta }}_n^* -\widehat{\varvec{\beta }}_n)+o_p(\alpha _n). \end{aligned}$$
(A.8)

Write the bootstrap version of \(M_{n}(u, W)\) as \( M^*_{n}(u, W)=1/\sqrt{n}\sum _{i=1}^n [Y^*_i-G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}]I(V_i^{\top } W\le u)\). Note that \(Y^*_i-G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\} =[Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}] -[G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}].\) Then, we have

$$\begin{aligned} M^*_{n}(u, W)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n\Big ([Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}] \end{aligned}$$
(A.9)
$$\begin{aligned}{} & {} -[G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}]\Big ) I(V_i^{\top } W\le u)\nonumber \\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n [Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}] I(V_i^{\top } W\le u)\nonumber \\{} & {} -\frac{1}{\sqrt{n}}\sum _{i=1}^n [G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}]I(V_i^{\top } W\le u) \nonumber \\:= & {} M^*_{n1}(u, W)-M^*_{n2}(u, W). \end{aligned}$$
(A.10)

Applying (A.7) along with the similar proof to that for (A.5) yields that

$$\begin{aligned} M^*_{n2}(u, W)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n[G\{X_i^{\top }\widehat{\varvec{\beta }}_n^*+\widehat{m}_n^*(Z_i)\}-G\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\}]I(V_i^{\top } W\le u)\nonumber \\= & {} \frac{1}{\sqrt{n}}\textrm{E}\left\{ \frac{G'\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\}}{\sigma (G\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\})}\widetilde{X}_i I(V^{\top } W\le u)\right\} \nonumber \\{} & {} \sum _{i=1}^{n} [Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}]+o_p(1). \end{aligned}$$
(A.11)

It follows from (A.9)–(A.11) that

$$\begin{aligned} M^*_{n}(u, W)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n [Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}] [I(V_i^{\top } W\le u)\nonumber \\{} & {} -\frac{1}{\sqrt{n}}\Gamma (u) \sum _{i=1}^{n}\frac{G'\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\}}{\sigma (G\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\})}\nonumber \\{} & {} \quad \widetilde{X}_i[Y_i^*-G\{X_i^{\top }\widehat{\varvec{\beta }}_n+\widehat{m}_n(Z_i)\}]+o_p(1). \end{aligned}$$
(A.12)

Note that \(E(Y_i^*|\textrm{data})=G\{X_i^{\top }\widehat{\varvec{\beta }}_n +\widehat{m}_n(Z_i)\}.\) The similar arguments to the proof of Theorem 1 along the line with the proof of Theorem 2 in Dikta et al. (2006) can prove that the conditional distribution of \(T^*_{n}\) converges in distribution to the limiting null distribution of \(T_{n}\).

Note that the validity of (A.7) is independent of \(D(V)=0\). We can similarly prove that the conditional distribution of \(T^*_{n}\) converges in distribution to the limiting alternative distribution of \(T_{n}\). Theorem 3 follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liang, H., Härdle, W. et al. Model checking for generalized partially linear models. TEST (2023). https://doi.org/10.1007/s11749-023-00897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11749-023-00897-4

Keywords

Mathematics Subject Classification

Navigation