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Abstract
The ongoing replication crisis in science has increased interest in the methodology
of replication studies. We propose a novel Bayesian analysis approach using power
priors: The likelihood of the original study’s data is raised to the power of α, and then
used as the prior distribution in the analysis of the replication data. Posterior distri-
bution and Bayes factor hypothesis tests related to the power parameter α quantify
the degree of compatibility between the original and replication study. Inferences for
other parameters, such as effect sizes, dynamically borrow information from the orig-
inal study. The degree of borrowing depends on the conflict between the two studies.
The practical value of the approach is illustrated on data from three replication studies,
and the connection to hierarchical modeling approaches explored. We generalize the
known connection between normal power priors and normal hierarchical models for
fixed parameters and show that normal power prior inferences with a beta prior on the
power parameter α align with normal hierarchical model inferences using a general-
ized beta prior on the relative heterogeneity variance I 2. The connection illustrates that
power prior modeling is unnatural from the perspective of hierarchical modeling since
it corresponds to specifying priors on a relative rather than an absolute heterogeneity
scale.
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1 Introduction

Power priors form a class of informative prior distributions that allow data analysts
to incorporate historical data into a Bayesian analysis (Ibrahim et al. 2015). The most
basic version of the power prior is obtained by updating an initial prior distribution
with the likelihood of the historical data raised to the power of α, where α is usually
restricted to the range from zero (i.e., complete discounting) to one (i.e., complete
pooling). As such, the power parameter α specifies the degree to which historical data
are discounted, thereby providing a quantitative compromise between the extreme
positions of completely ignoring and fully trusting the historical data.

One domain where historical data are per definition available is the analysis of
replication studies. One pertinent question in this domain is the extent to which a
replication study has successfully replicated the result of an original study (National
Academies of Sciences, Engineering, and Medicine 2019). Many methods have been
proposed to address this question (Bayarri and Mayoral 2002a; Verhagen and Wagen-
makers 2014; Johnson et al. 2016; Etz and Vandekerckhove 2016; van Aert and van
Assen 2017; Ly et al. 2018; Hedges and Schauer 2019; Mathur and VanderWeele
2020; Held 2020; Pawel and Held 2020, 2022; Held et al. 2022, among others). Here
we propose a new and conceptually straightforward approach, namely to construct a
power prior for the data from the original study, and to use that prior to draw inferences
from the data of the replication study. The power prior approach can accommodate
two common notions of replication success: First, the notion that the replication study
should provide evidence for a genuine effect. This can be quantified by estimating
and testing an effect size θ , typically by assessing whether there is evidence that θ is
different from zero. Second, the notion that the data from the original and replication
studies should be compatible. This can be quantified by estimating and testing of the
power parameter α. Values close to α = 1 indicate compatibility as there is a complete
pooling of both data sets, and values close to α = 0 indicate incompatibility as the
original data are completely discounted.

Below we first show how power priors can be constructed from data of an original
study under a meta-analytic framework (Sect. 2). We then shown how the power prior
can be used for parameter estimation (Sect. 2.1) and Bayes factor hypothesis testing
(Sect. 2.2). Throughout, themethodology is illustrated by application to data from three
replication studies which were part of a large-scale replication project (Protzko et al.
2020). In Sect. 3, we explore the connection to the alternative hierarchical modeling
approach for incorporating the original data (Bayarri andMayoral 2002a, b; Pawel and
Held 2020), which has been previously used for evidence synthesis and compatibility
assessment in replication settings. In doing so, we identify explicit conditions under
which posterior distributions and tests can be reverse-engineered from one framework
to the other. Essentially, power prior inferences using the commonly assigned beta
prior on the power parameter α align with normal hierarchical model inferences if
either a generalized F prior is assigned to the between-study heterogeneity variance
τ 2 which scales with the variance of the original data, or if a generalized beta prior is
assigned to the relative heterogeneity I 2. This perspective also explains the observed
difficulty ofmaking conclusive inferences about the power parameterα, as it is difficult
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to make inferences about a variance from two observations alone, and also because
the commonly assigned beta prior on α is entangled with the variance from the data.

2 Power prior modeling of replication studies

Let θ denote an unknown effect size and θ̂i an estimate thereof obtained from study
i ∈ {o, r} where the subscript indicates “original” and “replication”, respectively.
Assume that the likelihood of the effect estimates can be approximated by a normal
distribution

θ̂i | θ ∼ N(θ, σ 2
i )

with σi the (assumed to be known) standard error of the effect estimate θ̂i . The effect
size may be adjusted for confounding variables, and depending on the outcome vari-
able, a transformation may be required for the normal approximation to be accurate
(e. g., a log-transformation for an odds ratio effect size). This is the same framework
that is typically used in meta-analysis, and it is applicable to many types of data and
effect sizes (Spiegelhalter et al. 2004, chapter 2.4). There are, of course, situations
where the approximation is inadequate and modified distributional assumptions are
required (e. g., for data from studies with small sample sizes and/or extreme effect
sizes).

The goal is now to construct a power prior for θ based on the data from the original
study. Updating of an (improper) flat initial prior f (θ) ∝ 1 by the likelihood of the
original data raised to a (fixed) power parameter α leads to the normalized power prior

θ | θ̂o, α ∼ N
(
θ̂o, σ

2
o /α

)
(1)

as first proposed by Duan et al. (2005), see also Neuenschwander et al. (2009). There
are different ways to specify α. The simplest approach fixes α to an a priori reasonable
value, possibly informed by background knowledge about the similarity of the two
studies. Another option is to use the empirical Bayes estimate (Gravestock and Held
2017), that is, the value of α that maximizes the likelihood of the replication data
marginalized over the power prior. Finally, it is also possible to specify a prior distri-
bution for α, the most common choice being a beta distribution α | x, y ∼ Be(x, y)

for a normalized power prior conditional on α as in (1). This approach leads to a joint
prior for the effect size θ and power parameter α with density

f (θ, α | θ̂o, x, y) = N(θ | θ̂o, σ
2
o /α) Be(α | x, y) (2)

where N(· | m, v) is the normal density function with mean m and variance v, and
Be(· | x, y) is the beta density with parameters x and y. The uniform distribution
(x = 1, y = 1) is often recommended as the default choice (Ibrahim et al. 2015). We
note that α does not have to be restricted to the unit interval but could also be treated as
a relative precision parameter (Held and Sauter 2017). We will, however, not consider
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such an approach since power parameters α > 1 lead to priors with more information
than what was actually supplied by the original study.

2.1 Parameter estimation

Updating the prior (2) with the likelihood of the replication data leads to the posterior
distribution

f (α, θ | θ̂r , θ̂o, x, y) =N(θ̂r | θ, σ 2
r ) N(θ | θ̂o, σ

2
o /α) Be(α | x, y)

f (θ̂r | θ̂o, x, y)
. (3)

The normalizing constant

f (θ̂r | θ̂o, x, y) =
∫ 1

0
N(θ̂r | θ̂o, σ

2
r + σ 2

o /α) Be(α | x, y) dα (4)

is generally not available in closed formbut requires numerical integrationwith respect
to α. If inference concerns only one parameter, a marginal posterior distribution for
either α or θ can be obtained by integrating out the corresponding nuisance parameter
from (3). In the case of the power parameter α, this leads to

f (α | θ̂r , θ̂o, x, y) =N(θ̂r | θ̂o, σ
2
r + σ 2

o /α) Be(α | x, y)

f (θ̂r | θ̂o, x, y)
(5)

whereas for the effect size θ , this gives

f (θ | θ̂r , θ̂o, x, y) = N(θ̂r | θ, σ 2
r )B(x + 1/2, y)

f (θ̂r | θ̂o, x, y)
√
2πσ 2

o B(x, y)

× M

{
x + 1/2, x + y + 1/2,− (θ̂o − θ)2

2σ 2
o

}

with B(z, w) = ∫ 1
0 t z−1(1− t)w−1 dt = {�(z)�(w)}/�(z +w) the beta function and

M(a, b, z) = {∫ 1
0 exp(zt)ta−1(1 − t)b−a−1 dt}/B(b − a, a) the confluent hypergeo-

metric function (Abramowitz and Stegun 1965, chapters 6 and 13).

2.1.1 Example “Labels”

We now illustrate the methodology on data from the large-scale replication project by
Protzko et al. (2020). The project featured an experiment called “Labels” for which
the original study reported the following conclusion: “When a researcher uses a label
to describe people who hold a certain opinion, he or she is interpreted as disagreeing
with those attributes when a negative label is used and agreeing with those attributes
when a positive label is used” (Protzko et al. 2020, p. 17). This conclusion was
based on a standardized mean difference effect estimate θ̂o = 0.21 and standard error
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θ̂r1 = 0.09, σr1 = 0.05 θ̂r2 = 0.21, σr2 = 0.06 θ̂r3 = 0.44, σr3 = 0.04
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Fig. 1 Joint (top) and marginal (bottom) posterior distributions of effect size θ and power parameter α

based on data from the “Labels” experiment (Protzko et al. 2020). The dashed lines depict the posterior
density for the effect size θ when the replication data are analyzed in isolation without incorporation of the
original data. The horizontal error bars represent the corresponding 95% highest posterior density credible
intervals. The dotted line represents the limiting posterior density of the power parameter α for perfectly
agreeing original and replication studies

σo = 0.05 obtained from 1577 participants. Subsequently, four replication studies
were conducted, three of them by a different laboratory than the original one, and all
employing large sample sizes. Since the same original study was replicated by three
independent laboratories, this is an instance of a “multisite” replication design (Mathur
and VanderWeele 2020). While in principle it would be possible to analyze all of these
studies jointly, we will show separate analyses for each pair of original and replication
study as it reflects the typical situation of only one replication study being conducted
per original study. Section4 discusses possible extensions of the power prior approach
for joint analyses in multisite designs.

Figure 1 shows joint andmarginal posterior distributions for effect size θ and power
parameter α based on the results of the three external replication studies and a power
prior for the effect size θ constructed from the original effect estimate θ̂o = 0.21 (with
standard error σo = 0.05) and an initial flat prior f (θ) ∝ 1. The power parameter
α is assigned a uniform Be(x = 1, y = 1) prior distribution. The first replication
found an effect estimate which was smaller than the original one (θ̂r1 = 0.09 with
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132 S. Pawel et al.

σr1 = 0.05), whereas the other two replications found effect estimates that were either
identical (θ̂r2 = 0.21 with σr2 = 0.04) or larger (θ̂r3 = 0.44 with σr3 = 0.06) than
that reported in the original study. This is reflected in the marginal posterior distribu-
tions of the power parameter α, shown in the bottom right panel of Fig. 1. That is, the
marginal distribution of the first replication (yellow) is slightly peaked aroundα = 0.2
suggesting some incompatibility with the original study. In contrast, the second repli-
cation shows a marginal distribution (green) which is monotonically increasing so
that the value α = 1 receives the highest support, thereby indicating compatibility
of the two studies. Finally, the marginal distribution of the third replication (blue) is
sharply peaked around α = 0.05 with 95% credible interval from 0 to 0.62 indicating
strong conflict between this replication and the original study. The sharply peaked
posterior is in stark contrast to the relatively diffuse posteriors of the first and second
replications which hardly changed from the uniform prior. This is consistent with the
asymptotic behavior of normalized power priors identified in Pawel et al. (2023a); In
case of data incompatibility, normalized power priors with beta prior assigned to α

permit arbitrarily peaked posteriors for small values of α. In contrast, for perfectly
agreeing original and replication studies (θ̂o = θ̂r ) there is a limiting posterior for α

that gives only slightly more probability to values near one. The limiting posterior is
in this case a Be(3/2, 1) distribution, whose density is indicated by the dotted line.
One can see, that the (green) posterior from the second replication is relatively close
to the limiting posterior, despite its finite sample size. Similarly, the corresponding
(green) 95% credible interval from 0.12 to 1 suggests that a wide range of very low
to very high α values remain credible despite the excellent agreement of original and
replication study.

The bottom left panel of Fig. 1 shows the marginal posterior distribution of
the effect size θ . Shown is also the posterior distribution of θ when the repli-
cation data are analyzed in isolation (dashed line), to see the information gain
from incorporating the original data via a power prior. The degree of compatibil-
ity with the replication study influences how much information is borrowed from
the original study. For instance, the (green) marginal posterior density based on
the most compatible replication (θ̂r2 = 0.21) is the most concentrated among the
three replications, despite the standard error being the largest (σr2 = 0.06). Con-
sequently, the 95% credible interval of θ is substantially narrower compared to
the credible interval from the analysis of the replication data in isolation (dashed
green). In contrast, the (blue) marginal posterior of the most conflicting estimate
(θ̂r3 = 0.44) borrows less information and consequently yields the least peaked pos-
terior, despite the standard error being the smallest (σr3 = 0.04). In this case, the
conflict with the original study even inflates the variance of posterior compared to
the isolated replication posterior given by dashed blue line. This is, for example,
apparent through its 95% credible interval (0.31 to 0.5) being even wider than the
credible interval (0.35 to 0.52) based on the analysis of the replication data in isola-
tion.
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2.2 Hypothesis testing

In addition to estimating θ and α, we may also be interested in testing hypotheses
about these parameters. Let H0 and H1 denote two competing hypotheses, each of
themwith an associated prior f (θ, α |Hi ) and a resultingmarginal likelihood obtained
from integrating the likelihood of the replication data with respect to the prior

f (θ̂r |Hi ) =
∫

N(θ̂r | θ, σ 2
r ) f (θ, α |Hi ) dθ dα (6)

for i ∈ {0, 1}. A principled Bayesian hypothesis testing approach is to compute the
Bayes factor

BF01(θ̂r ) = Pr(H0 | θ̂r )

Pr(H1 | θ̂r )

/
Pr(H0)

Pr(H1)
= f (θ̂r |H0)

f (θ̂r |H1)

since it corresponds to the updating factor of the prior odds to the posterior odds of the
hypotheses based on the data θ̂r (first equality), or because it represents the relative
accuracy with which the hypotheses predict the data θ̂r (second equality) (Jeffreys
1939; Good 1958; Kass and Raftery 1995). A Bayes factor BF01(θ̂r ) > 1 provides
evidence forH0, whereas a Bayes factor BF01(θ̂r ) < 1 provides evidence forH1. The
more the Bayes factor deviates from one, the larger the evidence. In the following we
will examine the Bayes factors related to various hypotheses about θ and α.

2.2.1 Hypotheses about the effect size�

Researchers may be interested in testing the null hypothesis that there is no effect
(H0 : θ = 0) against the alternative that there is an effect (H1 : θ �= 0). We note that
while the point null hypothesis H0 is often unrealistic, it is usually a good approx-
imation to more realistic interval null hypotheses that assign a distribution tightly
concentrated around zero (Berger and Delampady 1987; Ly and Wagenmakers 2022).
UnderH0 there are no free parameters, but under the alternativeH1 the specification
of a prior distribution for θ and α is required. A natural choice is to use the normalized
power prior based on the original data along with a beta prior for the power parameter
as in (2). The associated Bayes factor is then given by

BF01{θ̂r |H1 : α ∼ Be(x, y)} = f (θ̂r |H0 : θ = 0)

f {θ̂r |H1 : θ | α ∼ N(θ̂o, σ 2
o /α), α ∼ Be(x, y)}

= N(θ̂r | 0, σ 2
r )∫ 1

0 N(θ̂r | θ̂o, σ 2
r + σ 2

o /α) Be(α | x, y) dα
. (7)
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134 S. Pawel et al.

An intuitively reasonable choice for the prior of α under H1 is a uniform
α ∼ Be(x = 1, y = 1) distribution. However, it is worth noting that assigning a
point mass α = 1 leads to

BF01(θ̂r |H1 : α = 1) = f (θ̂r |H0 : θ = 0)

f {θ̂r |H1 : θ | α ∼ N(θ̂o, σ 2
o /α), α = 1}

= N(θ̂r | 0, σ 2
r )

N(θ̂r | θ̂o, σ 2
o + σ 2

r )
, (8)

which is the replication Bayes factor under normality (Verhagen and Wagenmakers
2014; Ly et al. 2018; Pawel andHeld 2022), that is, the Bayes factor contrasting a point
null hypothesis to the posterior distribution of the effect size based on the original data
(and in this case a uniform initial prior). A fixed α = 1 can also be seen as the limiting
case of a beta prior with y > 0 and x → ∞. The power prior version of the replication
Bayes factor is thus a generalization of the standard replication Bayes factor, one that
allows the original data to be discounted to some degree.

2.2.2 Hypotheses about the power parameter˛

To quantify the compatibility between the original and replication study, researchers
may also be interested in testing hypotheses regarding the power parameter α. For
example, we may want to test the hypothesis that the data sets are “compatible”
and should be completely pooled (Hc : α = 1) against the hypothesis that they are
incompatible or “different” and the original data should be discounted to some extent
(Hd : α < 1).

One approach is to assign a point prior Hd : α = 0 which represents the extreme
position that the original data should be completely discounted. This leads to the issue
that for a flat initial prior f (θ) ∝ 1, the power prior with α = 0 is not proper and so
the resulting Bayes factor is only defined up to an arbitrary constant. Instead of the flat
prior, we may thus assign an uninformative but proper initial prior to θ , for instance,
a unit-information prior θ ∼ N(0, κ2) with κ2 the variance from one (effective)
observation (Kass and Wasserman 1995) as it encodes minimal prior information
about the direction or magnitude of the effect size (Best et al. 2021). Updating the
unit-information prior by the likelihood of the original data raised to the power of
α leads then to a θ | α ∼ N{μα = (αθ̂o)/(α + σ 2

o /κ2), σ 2
α = 1/(1/κ2 + α/σ 2

o )}
distribution, so the Bayes factor is

BFdc(θ̂r |Hd : α = 0) = f {θ̂r |Hd : θ | α ∼ N(μα, σ 2
α ), α = 0}

f {θ̂r |Hc : θ | α ∼ N(μα, σ 2
α ), α = 1}

= N(θ̂r | 0, σ 2
r + κ2)

N(θ̂r | sθ̂o, σ 2
r + sσ 2

o )
(9)

with s = 1/(1 + σ 2
o /κ2).

An alternative approach that avoids the specification of a proper initial prior
for θ is to assign a prior to α under Hd. A suitable class of priors is given by
Hd : α ∼ Be(1, y) with y > 1. The Be(1, y) prior has its highest density at α = 0
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and is monotonically decreasing thus representing the more nuanced position that the
original data should only be partially discounted. The parameter y determines the
extent of partial discounting and the simple hypothesis Hd : α = 0 can be seen as a
limiting case when y → ∞. The resulting Bayes factor is given by

BFdc{θ̂r |Hd : α ∼ Be(1, y)} = f {θ̂r |Hd : θ | α ∼ N(θ̂o, σ
2
o /α), α ∼ Be(1, y)}

f {θ̂r |Hc : θ | α ∼ N(θ̂o, σ 2
o /α), α = 1}

=
∫ 1
0 N(θ̂r | θ̂o, σ

2
r + σ 2

o /α) Be(α | 1, y) dα

N(θ̂r | θ̂o, σ 2
r + σ 2

o )
. (10)

2.2.3 Example “Labels” (continued)

Table 1 displays the results of the proposed hypothesis tests applied to the three
replications of the “Labels” experiment. The Bayes factors contrasting H0 : θ = 0 to
H1 : θ �= 0 with normalized power prior with uniform prior for the power parameter α
under the alternative (column BF01{θ̂r |H1 : α ∼ Be(1, 1)}) indicate neither evidence
for absence nor presence of an effect in the first replication, but decisive evidence for
the presence of an effect in the second and third replication. In all three cases, the
Bayes factors are close to the standard replication Bayes factors with α = 1 under the
alternative (column BF01(θ̂r |H1 : α = 1)).

In order to compute the Bayes factor for testing Hd : α = 0 versus Hc : α = 1
we need to specify a unit variance for the unit-information prior. A crude approxi-
mation for the variance of a standardized mean difference effect estimate is given by
Var(θ̂i ) = 4/ni with ni the total sample size of the study, and assuming equal sample
size in both groups (Hedges and Schauer 2021, p. 5). We may thus set the variance of
the unit-information prior to κ2 = 2 since a total sample size of ni = 2 (at least one
observation from each group) is required to estimate a standardized mean difference.
Based on this choice, the Bayes factors BFdc(θ̂r |Hd : α = 0) in Table 1 indicate that
the data provide substantial and strong evidence for the compatibility hypothesis Hc
in the first and second replication study, respectively, whereas the data indicate strong
evidence for complete incompatibility Hd in the third replication study. The Bayes
factor BFdc{θ̂r |Hd : α ∼ Be(1, y = 2)} in the right-most column with the partial dis-
counting prior assigned under hypothesisHd indicates absence of evidence for either
hypothesis in the first and second replication, but strong evidence for incompatibil-
ity Hd in the third replication. The apparent differences to the Bayes factor with the
complete discounting prior (column BFdc(θ̂r |Hd : α = 0)) illustrate that in case of no
conflict (study 2) or not toomuch conflict (study 1) the test with the partial discounting
prior is less sensitive in diagnosing (in)compatibility, but in case of substantial conflict
(study 3) it is more sensitive.

The previous analysis is based on a beta prior with y = 2 corresponding to a linearly
decreasing density in α, Fig. 2 shows the Bayes factor for other values of y. We see
that in the realistic range of y = 1 (uniform prior) to y = 100 (almost all mass at
α = 0) the results for the first and third replication hardly change, while for the second
replication the Bayes factor shifts from anecdotal evidence to stronger evidence for
compatibility.
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Fig. 2 Sensitivity of the Bayes factor BFdc{θ̂r |Hd : α ∼ Be(1, y)} with respect to the parameter y of the
partial discounting prior underHd

To conclude, our analysis suggests that only the second replication was fully suc-
cessful in the sense that it provides evidence for the presence of an effect while also
being compatiblewith the original study. For the other two replications the conclusions
are more nuanced: In the first replication, there is neither evidence for the absence nor
the presence of an effect, but substantial evidence for compatibility when a complete
discounting prior is used, and no evidence for (in)compatibility when a partial dis-
counting prior is used. Finally, in the third replication there is decisive evidence for
an effect, but also strong evidence of incompatibility with the original study.

2.2.4 Bayes factor asymptotics

Some of the Bayes factors in the previous example provided only modest evidence
for the test-relevant hypotheses despite the large sample sizes in original and repli-
cation study. It is therefore of interest to understand the asymptotic behavior of the
proposed Bayes factors. For instance, we may wish to understand what happens when
the standard error of the replication study σr becomes arbitrarily small (through an
increase in sample size). Assume that θ̂r is a consistent estimator of its true underlying
effect size θr , so that as the standard error σr goes to zero, the estimate will converge in
probability to the true effect size θr . The true replication effect size θr may be different
from the true original effect size θo, for example, because the participant populations
from both studies systematically differ.

The limiting Bayes factors for testing the effect size θ from (7) and (8) are then
given by

lim
σr ↓0

BF01{θ̂r |H1 : α ∼ Be(x, y)} = δ(θr )
√
2π B(x, y)

B(x + 1/2, y)

× M

{
x + 1/2, x + y + 1/2,− (θr − θ̂o)

2

2σ 2
o

}−1
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and

lim
σr ↓0

BF01(θ̂r |H1 : α = 1) = δ(θr )

N(θr | θ̂o, σ 2
o )

,

with δ(·) the Dirac delta function. Both Bayes factors are hence consistent (Bayarri
et al. 2012) in the sense that they indicate overwhelming evidence for the correct
hypothesis (i. e., the Bayes factors go to infinity/zero if the true effect size θr is
zero/non-zero). In contrast, theBayes factors for testing the power parameterα from (9)
and (10) converge to positive constants

lim
σr ↓0

BFdc(θr |Hd : α = 0) = √
1 − s exp

[
−1

2

{
θ2r

κ2 − (θr − sθ̂o)
2

sσ 2
o

}]
(11)

and

lim
σr ↓0

BFdc{θr |Hd : α ∼ Be(1, y)} = B(3/2, y)

B(1, y)
M

{
y, y + 3/2,

(θr − θ̂o)
2

2σ 2
o

}
. (12)

The amount of evidence one can find for either hypothesis thus depends on the original
effect estimate θ̂o, the standard error σo, and the true effect size θr . For instance, in
the “Labels” experiment we have an original effect estimate θ̂o = 0.21, a standard
error σo = 0.05, and a unit variance κ2 = 2. The bound (11) is minimized for a
true effect size equal to the original effect estimate θr = θ̂o = 0.21, so the most
extreme level we can obtain is limσr ↓0 BFdc(θr |Hd : α = 0) = 1/28. Similarly, the
bound (12) is minimized for θr = θ̂o = 0.21 since then the confluent hypergeometric
function term becomes one, leading to limσr ↓0 BFdc{θr |Hd : α ∼ Be(1, y = 2)} =
B(3/2, y)/B(1, y) = 1/1.9. Even in a perfectly precise replication study we cannot
findmore evidence, and hence the posterior probability ofHc : α = 1 cannot converge
to one.

While the Bayes factors (9) and (10) are inconsistent if the replication data become
arbitrarily informative, the situation is different when also the original data become
arbitrarily informative (reflected by also the standard error σo going to zero and the
original effect estimate θ̂o converging to its true effect size θo). The Bayes factor with
Hd : α = 0 from (9) is then consistent as the limit (11) goes correctly to infinity/zero
if the true effect size of the replication study θr is different/equivalent from the true
effect size of the original study θo. In contrast, the Bayes factor withHd : α ∼ Be(1, y)

from (10) is still inconsistent since it only shows the correct asymptotic behavior when
the true effect sizes are unequal (i. e., the Bayes factor goes to infinity) but not when
the effect sizes are equivalent, in which case it is still bounded by B(3/2, y)/B(1, y).

2.2.5 Bayes factor design of replication studies

Now assume that the replication study has not yet been conducted and we wish to
plan for a suitable sample size. The design of replication studies should be aligned
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with the planned analysis (Anderson and Maxwell 2017) and if multiple analyses are
performed, a sample size may be calculated that guarantees a sufficiently conclusive
analysis in each case (Pawel et al. 2023b). In the power prior framework, samples size
calculations may be based on either hypothesis testing or estimation of the effect size
θ or the power parameter α. Estimation based approaches have been developed by
Shen et al. (2023). Here, we focus on samples size calculations based on Bayes factor
hypothesis testing as the methodology is still lacking.

In the case of testing the effect size θ , Pawel and Held (2022) studied Bayesian
design of replication studies based on the Bayes factor (8) with α = 1 under H1,
i.e., the replication Bayes factor under normality. They obtained closed-form expres-
sions for the probability of replication success under H0 and H1 based on which
standard Bayesian design can be performed (Weiss 1997; Gelfand and Wang 2002;
De Santis 2004; Schönbrodt and Wagenmakers 2017). For the Bayes factor (7) with
α ∼ Be(x, y) underH1, closed-form expressions are not available anymore and sim-
ulation or numerical integration have to be used for sample size calculations.

For tests related to the power parameterα, there are also closed-form expressions for
the probability of replication success based on the Bayes factor (9) with α = 0 under
Hd. We will now show how these can be derived and used for determining the repli-
cation sample size. With some algebra, one can show that BFdc(θ̂r |Hd : α = 0) ≤ γ

is equivalent to

{
θ̂r − θ̂o (σ 2

r + κ2)

κ2

}2

≤ X (13)

with

X = (σ 2
r + κ2)(σ 2

r + sσ 2
o )

κ2 − sσ 2
o

{
log γ 2 − log

(
σ 2

r + sσ 2
o

σ 2
r + κ2

)
− s2θ̂2o

sσ 2
o − κ2

}

and s = 1/(1 + σ 2
o /κ2). Denote by mi and vi the mean and variance of θ̂r under

hypothesis i ∈ {d, c}. The left hand side of (13) then follows a scaled non-central
chi-squared distribution under both hypotheses. Hence the probability of replication
success is given by

Pr(BFdc ≤ γ |Hi ) = Pr
(
χ2
1,λi

≤ X/vi

)
(14)

with non-centrality parameter

λi =
{

mi − θ̂o (σ 2
r + κ2)

κ2

}2 /
vi .

To determine the replication sample size, we can now use (14) to compute the
probability of replication success at a desired level γ over a grid of replication standard
errors σr , and under either hypothesis Hd and Hc. The appropriate standard error σr
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Fig. 3 Probability of replication success as a function of relative variance for the three replications of
experiment “Labels” regarded as original study. The arrows point to the relative variance associated with
an 80% probability under the respective hypotheses

is then chosen so that the probability for finding correct evidence is sufficiently high
under the respective hypothesis, and sufficiently low under the wrong hypothesis.
Subsequently, the standard error σr needs to be translated into a sample size, e. g., for
standardized mean differences via the aforementioned approximation nr ≈ 4/σ 2

r .

2.2.6 Example “Labels” (continued)

Figure 3 illustrates Bayesian design based on the Bayes factor BFdc(θ̂r |Hd : α = 0)
testing the power parameter α from (9). The three replication studies from the exper-
iment “Labels” are now regarded as original studies, and each column of the figure
shows the corresponding design of future replications. In each plot, the probability
for finding strong evidence for Hc : α = 1 (top) or Hd : α = 0 (bottom) is shown
as a function of the relative sample size. In both cases, the probability is computed
assuming that either Hc (blue) or Hd (yellow) is true.

The curves look more or less similar for all three studies. We see from the lower
panels that the probability for finding strong evidence for Hd is not much affected
by the sample size of the replication study; it stays at almost zero under Hc, while
underHd it increases from about 75% to about 90%. In contrast, the top panels show
that the probability for finding strong evidence forHc rapidly increases underHc and
seems to level off at an asymptote. Under Hd the probability stays below 5% across
the whole range.

The arrows in the plots also display the required relative sample size to obtain
strong evidence with probability of 80% under the correct hypothesis. We see that
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original studies with smaller standard errors require smaller relative sample sizes in
the replication to achieve the same probability of replication success. Under Hc the
required relative sample sizes are larger than underHd. However, while the probability
of misleading evidence under Hc seems to be well controlled under the determined
sample size, underHd it stays roughly 5% for all three studies, and even for very large
replication sample sizes. Choosing the sample size based on finding strong evidence
for Hc assuming Hc is true thus also guarantees appropriate error probabilities for
finding strong evidence forHd in all three studies. At the same time, it seems that the
probability for finding misleading evidence for Hc cannot be reduced below around
5% which might be undesirably high for certain applications.

3 Connection to hierarchical modeling of replication studies

Hierarchical modeling is another approach that allows for the incorporation of histor-
ical data in Bayesian analyses; moreover, hierarchical models have previously been
used in the replication setting (Bayarri and Mayoral 2002a, b; Pawel and Held 2020).
Wewill now investigate how the hierarchicalmodeling approach is related to the power
prior approach in the analysis of replication studies, both in parameter estimation and
hypothesis testing.

3.1 Connection to parameter estimation in hierarchical models

Assume a hierarchical model

θ̂i | θi ∼ N(θi , σ
2
i ) (15a)

θi | θ∗ ∼ N(θ∗, τ 2) (15b)

f (θ∗) ∝ k (15c)

where for study i ∈ {o, r} the effect estimate θ̂i is normally distributed around a study
specific effect size θi which itself is normally distributed around an overall effect size
θ∗. The heterogeneity variance τ 2 determines the similarity of the study specific effect
sizes θi . The overall effect size θ∗ is assigned an (improper) flat prior f (θ∗) ∝ k, for
some k > 0, which is a common approach in hierarchical modeling of effect estimates
(Röver et al. 2021).

We show in Appendix A that under the hierarchical model (15) the marginal pos-
terior distribution of the replication specific effect size θr is given by

θr | θ̂o, θ̂r , τ
2 ∼ N

(
θ̂r/σ

2
r + θ̂o/(2τ 2 + σ 2

o )

1/σ 2
r + 1/(2τ 2 + σ 2

o )
,

1

1/σ 2
r + 1/(2τ 2 + σ 2

o )

)
, (16)

that is, a normal distribution whose mean is a weighted average of the replication
effect estimate θ̂r and the original effect estimate θ̂o. The amount of shrinkage of the
replication towards the original effect estimate depends on how large the replication
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standard error σr is relative to the heterogeneity variance τ 2 and the original standard
error σo. There exists a correspondence between the posterior for the replication effect
size θr from the hierarchical model (16) and the posterior for the effect size θ under
the power prior approach. Specifically, note that under the power prior and for a fixed
power parameter α, the posterior of the effect size θ is given by

θ | θ̂o, θ̂r , α ∼ N

(
θ̂r/σ

2
r + (θ̂oα)/σ 2

o

1/σ 2
r + α/σ 2

o
,

1

1/σ 2
r + α/σ 2

o

)
. (17)

The hierarchical posterior (16) and the power prior posterior (17) thus match if and
only if

α = σ 2
o

2τ 2 + σ 2
o

, (18)

respectively

τ 2 =
(
1

α
− 1

)
σ 2

o

2
, (19)

which was first shown by Chen and Ibrahim (2006). For instance, a power prior model
with α = 1 corresponds to a hierarchical model with τ 2 = 0, and a hierarchical model
with τ 2 → ∞ corresponds to a power prior model with α ↓ 0. In between these two
extremes, however, α has to be interpreted as a relative measure of heterogeneity since
the transformation to τ 2 involves a scaling by the variance σ 2

o of the original effect
estimate. For this reason, there is a direct correspondence between α and the popular
relative heterogeneity measure I 2 = τ 2/(τ 2 + σ 2

o ) (Higgins and Thompson 2002)
computed from τ 2 and the variance of the original estimate σ 2

o , that is,

α = 1 − I 2

1 + I 2
,

with inverse of the same functional form. Figure4 shows α and the corresponding τ 2

and I 2 values which lead to matching posteriors.
It has remained unclear whether or not a similar correspondence exists in cases

whereα and τ 2 are random and assigned prior distributions. Herewe confirm that there
is indeed such a correspondence. Specifically, the marginal posterior of the replication
effect size θr from the hierarchical model matches with the marginal posterior of the
effect size θ from the power prior model if the prior density functions fτ 2(·) and fα(·)
of τ 2 and α satisfy

fτ 2(τ
2) = fα

(
σ 2

o

2τ 2 + σ 2
o

)
2σ 2

o

(2τ 2 + σ 2
o )2

(20)

for every τ 2 ≥ 0, see Appendix B for details. Importantly, the correspondence con-
dition (20) involves a scaling by the variance from the original effect estimate σ 2

o ,

123



Power priors for replication studies 143

τ2 I2

0.000 0.025 0.050 0.075 0.100 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
α

Fig. 4 The heterogeneity τ2 and relative heterogeneity I 2 = τ2/(τ2 + σ 2
o ) of a hierarchical model versus

the power parameter α from a power prior model which lead to matching posteriors for the effect sizes θ

and θr . The variance of the original effect estimate σ 2
o = 0.052 from the “Labels” experiment is used for

the transformation to the heterogeneity scale τ2

meaning that also in this case α acts similar to a relative heterogeneity parameter. This
can also be seen from the correspondence condition betweenα and I 2 = τ 2/(σ 2

o +τ 2),
which can be derived in exactly the same way as the correspondence between α and
τ 2. That is, the marginal posteriors of θ and θr match if the prior density functions
f I 2(·) and fα(·) of I 2 and α satisfy

f I 2(I 2) = fα

(
1 − I 2

1 + I 2

)
2

(1 + I 2)2
(21)

for every 0 ≤ I 2 ≤ 1.
Interestingly, conditions (21) and (20) imply that a beta prior on the power

parameter α ∼ Be(x, y) corresponds to a generalized F prior on the heterogene-
ity τ 2 ∼ GF(y, x, 2/σ 2

o ) and a generalized beta prior on the relative heterogeneity
I 2 ∼ GBe(y, x, 2), see Appendix C for details on both distributions. This connection
provides a convenient analytical link between hierarchical modeling and the power
prior framework, as beta priors for α are almost universally used in applications of
power priors. The result also illustrates that the power prior framework seems unnat-
ural from the perspective of hierarchical modeling since it corresponds to specifying
priors on the I 2 scale rather than on the τ 2 scale. The same prior on I 2 will imply
different degrees of informativeness on the τ 2 scale for original effect estimates θ̂o

with different variances σ 2
o since I 2 is entangled with the variance of the original effect

estimate.
Figure 5 provides three examples of matching priors using the variance of the

original effect estimate from the “Labels” experiment for the transformation to the
heterogeneity scale τ 2. The top row of Fig. 5 shows that the uniform prior on α corre-
sponds to a f (τ 2) ∝ σ 2

o /(2τ 2+σ 2
o )2 prior which is similar to the “uniform shrinkage”

prior f (τ 2) ∝ σ 2
o /(τ 2 + σ 2

o )2 (Daniels 1999). This prior has the highest density at
τ 2 = 0 but still gives some mass to larger values of τ 2. Similarly, on the scale of
I 2 the prior slightly favors smaller values. The middle row of Fig. 5 shows that the
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Fig. 5 Priors on the heterogeneity τ2 ∼ GF(y, x, 2/σ 2
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o +
τ2) ∼ GBe(y, x, 2) (middle) and the power parameter α ∼ Be(x, y) (right) that lead to matching marginal
posteriors for effect sizes θ and θr . The variance of the original effect estimate σ 2

o = 0.052 from the
“Labels” experiment is used for the transformation to the heterogeneity scale τ2

α ∼ Be(2, 1) prior—indicating more compatibility between original and replication
than the uniform prior—gives even more mass to small values of τ 2 and I 2, and also
has the highest density at τ 2 = 0 and I 2 = 0. In contrast, the bottom row of Fig. 5
shows that the α ∼ Be(1, 2) prior—indicating less compatibility between original and
replication than the uniform prior—gives less mass to small τ 2 and I 2, and has zero
density at τ 2 = 0 and I 2 = 0.

3.2 Connection to hypothesis testing in hierarchical models

Two types of hypothesis tests can be distinguished in the hierarchical model; tests
for the overall effect size θ∗ and tests for the heterogeneity variance τ 2. In all cases,
computations of marginal likelihoods of the form

f (θ̂r |Hi ) =
∫

N(θ̂r | θ∗, σ 2
r + τ 2) f (θ∗, τ 2 |Hi ) dθ∗ dτ 2 (22)

with i ∈ { j, k} are required for obtaining Bayes factors
BF jk(θ̂r )= f (θ̂r |H j )/ f (θ̂r |Hk)which quantify the evidence that the replication data
θ̂r provide for a hypothesisHk over a competing hypothesisH j . Under each hypothesis
a joint prior for τ 2 and θ∗ needs to be assigned.
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As with parameter estimation, it is of interest to investigate whether there is a
correspondence with hypothesis tests from the power prior framework from Sect. 2.2.
For two tests to match, one needs to assign priors to τ 2 and θ∗, respectively, to α and
θ so that the marginal likelihood (22) equals the marginal likelihood from the power
prior model (6) under both test-relevant hypotheses.

Concerning the generalized replication Bayes factor from (7) testing H0 : θ = 0
versus H1 : θ �= 0, one can show that it matches with the Bayes factor contrasting
H0 : θ∗ = 0 versus H1 : θ∗ �= 0 with

H0 : θ∗ = 0 versus H1 : θ∗ | τ 2 ∼ N(θ̂o, σ
2
o + τ 2)

τ 2 = 0 τ 2 ∼ GF(y, x, σ 2
o /2)

for the replication data in in the hierarchical framework. The Bayes factor thus com-
pares the likelihood of the replication data under the hypothesis H0 postulating that
the global effect size θ∗ is zero and that there is no effect size heterogeneity, relative
to the likelihood of the data under the hypothesis H1 postulating that θ∗ follows the
posterior based on the original data and an initial flat prior for θ∗ along with a gener-
alized F prior on the heterogeneity τ 2. Setting the heterogeneity to τ 2 = 0 under H1
instead produces the replication Bayes factor under normality from (8).

The Bayes factor (9) that tests complete discouting Hd : α = 0 versus complete
compatibilityHc : α = 1 can be obtained in the hierarchical framework by contrasting

Hd : θ∗ ∼ N(0, κ2) versus Hc : θ∗ ∼ N(s θ̂o, s σ 2
o )

τ 2 = 0 τ 2 = 0

with s = 1/(1 + σ 2
o /κ2). Hence, the Bayes factor compares the likelihood of the

replication data under the initial unit-information prior relative to the likelihood of the
replication data under the unit-information prior updated by the original data, assuming
no heterogeneity under either hypothesis (so that the hierarchical model collapses to a
fixed effects model). Although this particular test relates to the power parameter α in
the power prior model, it is surprisingly unrelated to testing the heterogeneity variance
τ 2 in the hierarchical model.

The Bayes factor (10) testing Hd : α < 1 versus Hc : α = 1 using the partial
discounting prior Hd : α ∼ Be(1, y) corresponds to testing Hd : τ 2 > 0 versus
Hc : τ 2 = 0 with priors

Hd : θ∗ | τ 2 ∼ N(θ̂o, σ
2
o + τ 2) versus Hc : θ∗ | τ 2 ∼ N(θ̂o, σ

2
o + τ 2)

τ 2 ∼ GF(y, 1, σ 2
o /2) τ 2 = 0

The test for compatibility via the power parameter α is thus equivalent to a test for
compatibility via the heterogeneity τ 2 (to which a generalized F prior is assigned)
after updating of a flat prior for θ∗ with the data from the original study.
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3.3 Bayes factor asymptotics in the hierarchical model

Like the original test of Hc : α = 1 versus Hd : α ∼ Be(1, y), the corresponding test
of τ 2 is inconsistent in the sense that when the standard errors from both studies go to
zero (σo ↓ 0 and σr ↓ 0) and their true effect sizes are equivalent (θo = θr ), the Bayes
factor BFdc does not go to zero (to indicate overwhelming evidence for Hc : τ 2 = 0)
but converges to a positive constant. It is, however, possible to construct a consistent
test for Hc : τ 2 = 0 when we assign a different prior to τ 2 under Hd : τ 2 > 0. For
instance, when we assign an inverse gamma prior Hd : τ 2 ∼ IG(q, r) with shape q
and scale r , the Bayes factor is given by

BFdc{θ̂r |Hd : τ 2 ∼ IG(q, r)} =
∫
N(θ̂r | θ̂o, σ

2
r + σ 2

o + 2τ 2) IG(τ 2 | q, r) dτ 2

N(θ̂r | θ̂o, σ 2
r + σ 2

o )

with IG(· | q, r) the density function of the inverse gamma distribution. The limiting
Bayes factor is therefore

lim
σo,σr ↓0

BFdc{θ̂r |Hd : τ 2 ∼ IG(q, r)} = �(q + 1/2){r + (θr − θo)
2/4}−(q+1/2)

δ(θr − θo)
√
4π

,

so it correctly goes to zero/infinity when the effect sizes θr and θo are equiva-
lent/different. To understand why the test with Hd : τ 2 ∼ IG(q, r) is consistent, but
the original test with Hd : α ∼ Be(1, y) is not, one can transform the consistent test
on τ 2 to the corresponding test on α. The inverse gamma prior for τ 2 implies a prior
for α with density

f (α | q, r) = rq

�(q)

αq−1

(1 − α)q+1

(
2

σ 2
o

)q

exp

{
− 2 r α

σ 2
o (1 − α)

}
. (23)

The Bayes factor contrastingHc : α = 1 versusHd : α < 1 with prior (23) assigned to
α underHd will thus produce a consistent test. The prior is shown in Fig. 6 for different
parameters q and r and original standard errors σo. We see that the prior depends on
the standard error of the original effect estimate σo, the smaller σo the more the prior
is shifted towards zero. For example, the standard error σo = 0.05 from the “Labels”
experiment leads to priors that are almost indistinguishable from a pointmass atα = 0.
The prior thus “unscales” α from the original standard error σo, thereby leading to a
consistent test for study compatibility and resolving the inconsistency property of the
beta prior.

4 Discussion

We showed how the power prior framework can be used for design and analysis
of replication studies. The approach supplies analysts with a suite of methods for
assessing effect sizes and study compatibility. Both aspects can be tackled from an
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Fig. 6 Prior for the power parameter α implied by an inverse gamma prior Hd : τ2 ∼ IG(q, r) in a
hierarchical model with consistent test forHc : τ2 = 0 versus Hd : τ2 > 0

estimation or a hypothesis testing perspective, and the choice between the two is pri-
marily philosophical. We believe that both perspectives provide valueable inferences
that complement each other. Visualizations of joint and marginal posterior distribu-
tions are highly informative in terms of the available uncertainty. However, the power
parameter α is an abstract quantity disconnected from actual scientific phenomena.
Testing hypotheses of complete discounting versus complete pooling may therefore
be more intuitive for researchers. Both approaches also suffer from similar problems:
If the original and replication data are in perfect agreement, the posterior distribution
of α hardly changes from the prior. For example, for the commonly used uniform prior
α ∼ Be(x = 1, y = 1), we can at best obtain a α | θ̂r ∼ Be(x + 1/2 = 3/2, y = 1)
posterior (Pawel et al. 2023a). This means that for a “compatibility threshold” of, say,
0.8, we can never have a posterior probability higher than Pr(α > 0.8 | θ̂r ) = 0.28,
and for a threshold of 0.9 it is even lower Pr(α > 0.9 | θ̂r ) = 0.15. The fact that the
Bayes factor for testing Hd : α ∼ Be(1, y) against Hc : α = 1 is inconsistent, i.e.,
bounded from below by a positive constant B(3/2, y)/B(1, y), simply presents the
problem from a different perspective.

We also showed how the power prior approach is connected to hierarchical mod-
eling, and gave conditions under which posterior distributions and hypothesis tests
correspond between normal power prior models and normal hierarchical models. This
connection provides an intuition forwhy evenwith highly precise and compatible orig-
inal and replication study one can hardly draw conclusive inferences about the power
parameter α; the power parameter α has a direct correspondence to the relative hetero-
geneity variance I 2, and an indirect correspondence to the heterogeneity variance τ 2
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in a hierarchical model. Making inferences about a heterogeneity variance from two
studies alone seems like a virtually impossible task since the “unit of information”
is the number of studies and not the number of samples within a study. Moreover,
Bayes factor hypothesis tests related to α have the undesirable asymptotic property of
inconsistency if a beta prior is assigned to α. This is because the prior scales with the
variance of the original data, just as a beta prior for I 2 would in a hierarchical model.
The identified link may also have computational advantages, e.g., it may be possible
to estimate power prior models using the hierarchical model estimation procedures, or
vice versa, but more research is needed on the connection in more complex situations
that depart from normality assumptions.

Which of the two approaches should data analysts use in practice? We believe that
the choice should be primarily guided by whether the hierarchical or the power prior
model is scientifically more suitable for the studies at hand. If data analysts deem it
scientifically plausible that the studies’ underlying effect sizes are connected via an
overarching distribution then the hierarchicalmodelmay bemore suitable, particularly
because the approach naturally generalizes to more than two studies. On the other
hand, if data analysts simply want to downweight the original studies’ contribution
depending on the observed conflict, the power prior approach might be more suitable.
The identified limitations for inferences related to the power parameter α should,
however, be kept in mind when beta priors are assigned to the power parameter α.

There are also situations where the hierarchical and power prior frameworks can
be combined, for example, when multiple replications of a single original study are
conducted (multisite replications). In that case, one may model the replication effect
estimates in a hierarchical fashion but link their overall effect size to the original
study via a power prior. Multisite replications are thus the opposite of the usual situ-
ation in clinical trials where several historical “original” studies but only one current
“replication” study is available (Gravestock and Held 2019).

Another commonly used Bayesian approach for incorporating historical data are
robust mixture priors, i. e., priors which are mixtures of the posterior based on the
historical data and an uninformative prior distribution (Schmidli et al. 2014). We
conjecture that inferences based on robust mixture priors can be reverse-engineered
within the framework of power priors through Bayesian model averaging over two
hypotheses about the power parameter; however, more research is needed to explore
the relationship between the two approaches.

The proposed methods are based on the standard meta-analytic assumption of
approximate normality of effect estimates with known variances. This makes our
methodology applicable to a wide range of effect sizes that may arise from different
data models. However, in some situations this assumption may be inadequate, for
example, when studies have small sample sizes. In this case, the methods could be
modified to use the exact likelihood of the data (e. g., binomial or t), as in Bayarri
andMayoral (2002a), who used a t likelihood. However, the methodology would need
to be adapted for each effect size type. Therefore, future work may examine specific
data models in more detail to obtain more precise inferences. In this case, however,
using the exact likelihood typically requires numerical methods to evaluate integrals
that can be evaluated analytically under normality.
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We primarily focused on the evaluation of (objective) Bayesian properties of the
proposed methods. Further work is needed to evaluate their frequentist properties, for
example, with a carefully planned simulation study (Morris et al. 2019). As in other
recent studies (Muradchanian et al. 2021; Freuli et al. 2022), it would be interesting to
simulate the realistic scenario of questionable research practices and publication bias
affecting the original study to see how the adaptive downweighting of power priors
can account for the inflated original results.
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Appendix A: Posterior distribution under the hierarchical model

Under the hierarchical model from (15), the joint posterior conditional on a hetero-
geneity τ 2 is given by

f (θr , θo, θ∗ | θ̂o, θ̂r , τ
2) =

∏
i∈{o,r} N(θ̂i | θi , σ

2
i ) N(θi | θ∗, τ 2) k

f (θ̂o, θ̂r | τ 2) (24)

with normalizing constant

f (θ̂o, θ̂r | τ 2) =
∫ ∏

i∈{o,r}
N(θ̂i | θi , σ

2
i ) N(θi | θ∗, τ 2) k dθo dθr dθ∗

=
∫ ∏

i∈{o,r}
N(θ̂i | θ∗, σ 2

i + τ 2)k dθ∗

= k N(θ̂r | θ̂o, σ
2
o + σ 2

r + 2τ 2). (25)
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To obtain the marginal posterior distribution of the replication effect size θr we need
to integrate out θo and θ∗ from (24). This leads to

f (θr | θ̂o, θ̂r , τ
2) =

∫ ∏
i∈{o,r} N(θ̂i | θi , σ

2
i ) N(θi | θ∗, τ 2) k dθo dθ∗

f (θ̂o, θ̂r | τ 2)
= N(θ̂r | θr , σ

2
r )

∫
N(θr | θ∗, τ 2) N(θ̂o | θ∗, σ 2

o + τ 2) dθ∗
N(θ̂r | θ̂o, σ 2

o + σ 2
r + 2τ 2)

= N(θ̂r | θr , σ
2
r ) N(θr | θ̂o, σ

2
o + 2τ 2)

N(θ̂r | θ̂o, σ 2
o + σ 2

r + 2τ 2)

which can be further simplified to identify the posterior given in (16).
When the heterogeneity τ 2 is also assigned a prior distribution, the posterior distri-

bution can be factorized in the posterior conditional on τ 2 from (24) and the marginal
posterior of τ 2

f (τ 2, θr , θo, θ∗ | θ̂o, θ̂r ) = f (θr , θo, θ∗ | θ̂o, θ̂r , τ
2) f (τ 2 | θ̂o, θ̂r ).

Integrating out θr , θo, and θ∗ from the joint posterior and using the previous results (25),
the marginal posterior of τ 2 can be derived to be

f (τ 2 | θ̂o, θ̂r ) =
∫ ∏

i∈{o,r} N(θ̂i | θi , σ
2
i ) N(θi | θ∗, τ 2) k f (τ 2) dθo dθr dθ∗

f (θ̂o, θ̂r )

= f (θ̂r , θ̂o | τ 2) f (τ 2)∫
f (θ̂r , θ̂o | τ 2) f (τ 2) dτ 2

= N(θ̂r | θ̂o, σ
2
o + σ 2

r + 2τ 2) f (τ 2)∫
N(θ̂r | θ̂o, σ 2

o + σ 2
r + 2τ 2) f (τ 2) dτ 2

.

Appendix B: Conditions for matching posteriors

For the marginal posteriors of θr and θ to match it must hold for every θ = θr that

f (θr | θ̂o, θ̂r ) = f (θ | θ̂o, θ̂r )∫ ∞

0
f (θr | θ̂o, θ̂r , τ

2) f (τ 2 | θ̂o, θ̂r ) dτ
2 =

∫ 1

0
f (θ | θ̂o, θ̂r , α) f (α | θ̂o, θ̂r ) dα. (26)

By applying a change of variables (18) or (19) to the left or right hand side of (26),
the marginal posteriors conditional on τ 2 and α match. It is now left to investigate
whether there are priors for τ 2 and α so that also the marginal posteriors of τ 2 and α

match. The marginal posterior distribution of α is proportional to

f (α | θ̂o, θ̂r ) ∝ fα(α) N(θ̂r | θ̂o, σ
2
r + σ 2

o /α).
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After a change of variables τ 2 = (1/α − 1) (σ 2
o /2) the marginal posterior becomes

f (τ 2 | θ̂o, θ̂r ) ∝ fα

(
σ 2

o

2τ 2 + σ 2
o

)
2σ 2

o

(2τ 2 + σ 2
o )2

N(θ̂r | θ̂o, σ
2
r + σ 2

o + 2τ 2),

Since, as shown in Appendix A, the marginal posterior of τ 2 under the hierarchical
model is proportional to

f (τ 2 | θ̂o, θ̂r ) ∝ fτ 2(τ
2) N(θ̂r | θ̂o, σ

2
r + σ 2

o + 2τ 2),

the marginal posteriors of the effect sizes θ and θr match if

fτ 2(τ
2) = fα

(
σ 2

o

2τ 2 + σ 2
o

)
2σ 2

o

(2τ 2 + σ 2
o )2

holds for every τ 2 ≥ 0.

Appendix C: The generalized beta and F distributions

A random variable X ∼ GBe(a, b, λ) with density function

f (x | a, b, λ) = λa xa−1 (1 − x)b−1

B(a, b) {1 − (1 − λ)x}a+b
1[0,1](x) (27)

follows a generalized beta distribution (in the parametrization of Libby and Novick
1982) with 1S(x) denoting the indicator function that x is in the set S. A random
variable X ∼ GF(a, b, λ) with density function

f (x | a, b, λ) = λa xa−1

B(a, b) (1 + λx)a+b
1[0,∞)(x) (28)

follows a generalized F distribution (in the parametrization of Pham-Gia and Duong
1989).

Software and data

The CC-By Attribution 4.0 International licensed data were downloaded from https://
osf.io/42ef9/. All analyses were conducted in the R programming language version
4.3.0 (RCore Team, 2020). The code and data to reproduce this manuscript is available
at https://github.com/SamCH93/ppReplication. A snapshot of the GitHub reposi-
tory at the time of writing this article is archived at https://doi.org/10.5281/zenodo.
6940237. We also provide an R package for estimation and testing under the power
prior framework https://CRAN.R-project.org/package=ppRep. The package can be
installed by running install.packages("ppRep") from an R console.
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