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Abstract
The Benford hypothesis is the statement that a random sample is made of realizations
of an absolutely continuous random variable distributed according to Benford’s law.
Its potential interest spans over many domains such as detection of financial frauds,
verification of electoral processes and investigation of scientific measurements. Our
aim is to provide a principled framework for the statistical evaluation of this state-
ment. First, we study the probabilistic structure of many classical univariate models
when they are framed in the space of the significand and we measure the closeness
of each model to the Benford hypothesis. We then obtain two asymptotically equiva-
lent and powerful tests. We show that the proposed test statistics are invariant under
scale transformation of the data, a crucial requirement when compliance to the Ben-
ford hypothesis is used to corroborate scientific theories. The empirical advantage of
the proposed tests is shown through an extensive simulation study. Applications to
astrophysical and hydrological data also motivate the methodology.
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1 Introduction

Benford’s law is amuch studiedprobability distribution for significant digits,whichhas
been challenging mathematicians and practitioners for decades (Berger and Hill 2011,
2015; Miller 2015a). It has also attracted the interest of statisticians mainly thanks
to the limit theorem presented by Hill (1995), which motivates the adoption of the
law as the digit-generating model in many real-world situations. We then call Benford
hypothesis the statement, to be made more precise in the following sections, that a
random sample of n observations is made of realizations of an absolutely continuous
random variable X which is distributed according to Benford’s law.

Statistical assessment of the Benford hypothesis is crucial for many purposes. For
instance, when the Benford hypothesis is expected to hold for genuine observations,
deviations from it can be taken as evidence of possible data manipulation. A selection
of effective developments of this idea can be found in a growing number of fields,
including the analysis of financial statements (Tam Cho and Gaines 2007; Nigrini
2012), electoral processes (Mebane 2010; Pericchi and Torres 2011; Fernández-Gracia
and Lacasa 2018) and international trade (Barabesi et al. 2018; Cerioli et al. 2019;
Lacasa 2019; Barabesi et al. 2021). The Benford hypothesis may also help to cor-
roborate or disprove scientific theories. Shao and Ma (2010) theoretically prove that
the first-digit pattern complies with Benford’s law for famous physical models such
as the Boltzmann–Gibbs, the Fermi–Dirac and the Bose–Einstein statistics. Nigrini
and Miller (2007) check the conformity of streamflow data arising in hydrology and
conclude that data related to water bodies should adhere to the Benford hypothesis,
except in cases where the data quality is poor, or the sampling mechanism is flawed, or
the hydrological process follows a power law with a large exponent. In astrophysics,
a wealth of research has been recently conducted in order to address the question
whether the distribution of the digits of physical quantities of celestial bodies is in
good agreement with Benford’s law (Alexopoulos and Leontsinis 2014; de Jong et al.
2020; Melita and Miraglia 2021). In the case of distances from the Earth to galax-
ies, Hill and Fox (2016) theoretically explain—using astrophysical arguments and
the mathematical properties of Benford’s law—why these distances should follow the
Benford hypothesis and conclude that empirical observation of such an agreementmay
be viewed as a new independent evidence of the validity of Hubble’s law. Accurate
statistical assessment of the Benford hypothesis would then be required, but most of
the applied astrophysical literature either rely on diagnostic checks of the data or just
perform statistical evaluation of the looser hypothesis of first-digit compliance (see,
e.g., Melita and Miraglia 2021).

Formal tests of the Benford hypothesis already exist and have been widely debated
in the literature: see, e.g., Kossovsky (2015, Section 3) for a general account and
Barabesi et al. (2022), Cerasa (2022) and Cerqueti and Lupi (2023) for a few recent
proposals. Notwithstanding the difficulty of separating statistical significance from
practical importance of an empirical observed deviation from Benford’s law, which
implies that formal testsmight be judged too severe in rejecting theBenford hypothesis
especially in large samples (Kossovsky 2015), in this work we stress that most existing
tests suffer from two main drawbacks. The first shortcoming is that they are rather ad-
hoc in nature, being derived on the basis of some specific properties of Benford’s law.
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Table 1 Synthetic data set of
n = 30 observations 101 102 103 131 145 148 150 155 165 185

242 245 246 267 268 299 329 341 356 363

393 404 432 471 521 586 632 781 856 932

Each property may yield good statistical performance under certain alternatives, but
poorer behavior in other circumstances; see Barabesi et al. (2022) for a detailed study
and comparison of two such properties. As a consequence, a uniformly most powerful
test does not exist. The second drawback of the available test statistics is their lack
of scale invariance, except for the trivial case of multiplication by a power of 10. For
example, consider the synthetic data set of n = 30 observations displayed in Table 1.
On these data the classical first-digit Pearson statistic, which is introduced in Sect. 4.1
and there denoted by χ2, equals 1.79 and yields an exact p-value of 0.998. If all the
observations in the table are multiplied by the fixed scaling factor σ = 373, we instead
obtain χ2 = 16.73 and an exact p-value of 0.036. The same happens with another
popular first-digit discrepancy measure, the mean absolute deviation also introduced
in Sect. 4.1 and there denoted by M , for which we obtain M = 0.022 (with an exact
p-value of 0.984) on the data of Table 1, and M = 0.055 (with an exact p-value of
0.147) after scaling by σ . While lack of invariance may be tolerable to some extent in
certain domains, it has certainly to be avoided for the purpose of validating scientific
theories and, more generally, in the analysis of scientific data.

The main goal of this paper is to provide a principled and unified framework for the
assessment of the Benford hypothesis. Our aim is achieved by taking two alternative
but connected routes that originate from the same source: the characteristic function of
a suitable transform of the (univariate) random variable which is assumed to define the
data generating process. One path leads to measure how close is the statistical model
of interest from the Benford hypothesis, while the second track takes an inferential
perspective and develops powerful and scale-invariant test statistics of this hypothesis.

Specifically, in the first part of the manuscript we develop a general relationship
between the distribution of X and that of its significand S(X), to be defined in Sect. 2.
This relationship allows us to study the probabilistic structure of many standard uni-
variatemodels for X when they are framed in the significand space. Although a number
of scattered results exist on this topic (see, e.g., Engel and Leuenberger 2003; Nigrini
andMiller 2007; Dümbgen and Leuenberger 2008; Miller 2015b; Leemis 2015; Düm-
bgen and Leuenberger 2015; Berger and Twelves 2018), most of the findings reported
in Sect. 3 are new. Even more importantly, our approach is general, being based on the
study of the characteristic function of a convenient transform of X . It is thus readily
available for potential extension to other univariate models not considered here and for
developments in more complex schemes, such as mixtures and contamination models.
We establish the closeness of a particular model to the Benford hypothesis through
a suitable Kolmogorov distance, and we suggest an easy strategy for regularization.
The proposed metric is a natural choice in our framework and could be potentially
extended to deal with outlier contamination in situations where robust validation and
testing are of interest (Álvarez-Esteban et al. 2012; del Barrio et al. 2020). We argue
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that providing a general relationship between the distribution of X and that of its sig-
nificand S(X) can be fruitful for two orders of reasons. One is that it helps to translate
much of the well-understood knowledge on X into the more slippery world of the sig-
nificand space (see Berger and Hill 2021 for a list of surprisingly common mistakes
in the field). The second advantage is that the computed discrepancy between X and
the Benford hypothesis helps to sharpen the meaning of what might be called “almost
Benford” behavior (Demidenko 2020, Section 2.1.6). Most real-world data generat-
ing processes do not exactly follow Benford’s law, although it is known that some
of them may closely resemble the law for certain parameter configurations; see, e.g.,
Berger and Hill (2015, p. 55), Miller (2015b, Section 3.5.3) and Cerqueti and Maggi
(2021). Therefore, our discrepancy measure allows us to represent deviations from
the Benford hypothesis in terms of more comfortable and understandable variations
in the parameters of X .

The relationship between the distributions of X and S(X) leads, in the second part
of our work, to effective test statistics for assessing the Benford hypothesis when
a random sample from X is available. Our approach takes advantage of a density
estimation step based on a possibly unknown number of nonnegative trigonometric
polynomials. Under this approach, we obtain, in Sect. 4, two test statistics of the
Benford hypothesis which are shown to be asymptotically equivalent. One of them
provides the so far missing likelihood ratio test of the Benford hypothesis, while the
other statistic is as an extension of the well-known Rayleigh test which is effective
against multimodal alternatives. We allow for a data-driven selection of the number of
nonnegative trigonometric polynomials and we show that the proposed test statistics
are invariant under scale transformation of the data.

In Sect. 5 the empirical advantage of the proposed tests of the Benford hypothesis
is shown through an extensive simulation study encompassing many classical mod-
els for X . Two applications of scientific interest, one to astrophysical data and the
other to hydrological data, conclude the paper in Sects. 6 and 7, respectively. These
applications further motivate our developments and clearly point to the requirement
of scale-invariant test statistics. All the technical proofs are deferred to the Appendix,
available through the Supplementary Materials. There, we also provide a Supplement
with additional simulation results, details about the simulation algorithm and links
both to the code that we have used for our computations and to the data on which our
tests are performed.

2 Preliminaries

We provide some basic definitions and properties of Benford’s law that are required
by the developments of the following sections.

The (base-10) significand function S : R \ {0} → [1, 10[ is defined as

S(x) = 10〈log10|x |〉,

where 〈a〉 = a − �a�, and �a� = max{n ∈ Z : n ≤ a}. Let X be an absolutely
continuous random variable defined on the probability space (�,F , P). According
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to Berger and Hill (2015, p.30), X is a Benford random variable if the distribution
function of S(X) is

FS(X)(u) = log10 u, u ∈ [1, 10[. (1)

We say that the distribution of X satisfies the Benford hypothesis when (1) holds.
In our perspective it is often convenient to refer to the (base-10) log-significand

function

s(x) = 〈log10|x |〉,

with the assumption that s(0) := 0. If Fs(X) is the distribution function of s(X), the
Benford hypothesis is then equivalently stated as

Fs(X)(u) = u, u ∈ [0, 1[. (2)

We are interested in providing a bridge between the usual statistical approach,
where a model is placed on the distribution of X , and the Benford hypothesis. For
this purpose, we acknowledge the contribution of Pinkham (1961), who provided a
pioneering theoretical discussion of why and to what extent Benford’s law must hold.
The key finding given by Pinkham (1961) consists in the following Theorem.

Theorem 1 Let X be an absolutely continuous random variable defined on the proba-
bility space (�,F , P). Moreover, let ϕY be the characteristic function of the random
variable Y = 2π log10|X |, i.e.,

ϕY (t) = E
[
e2π it log10|X |] , t ∈ R. (3)

If ϕY (t) = O(|t |−h) when |t | → ∞ for a given h > 0, we have

Fs(X)(u) = u + 1

2π

∑
k∈Z,k 
=0

1 − e−2π iku

ik
ϕY (k), u ∈ [0, 1[. (4)

Proof See Pinkham (1961). ��
An alternative (andmoremanageable) expression for (4) is introduced in the following
corollary.

Corollary 1 We have

Fs(X)(u) = u + 1

π

∑
k∈N

|ϕY (k)|
k

(sin(ϑk) − sin(ϑk − 2πku)), u ∈ [0, 1[, (5)

where ϑk = arg(ϕY (k)).

Proof See the Appendix in the Supplementary Materials. ��
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It is apparent from Corollary 1 that the coefficients (|ϕY (k)|)k≥1 are central, since
they determine the series representation (5). Moreover, the N th partial sum of (5) is
denoted by

GN (u) = u + 1

π

N∑
k=1

|ϕY (k)|
k

(sin(ϑk) − sin(ϑk − 2πku)), u ∈ [0, 1[. (6)

A series representation for the probability density function of s(X), say fs(X), is
also obtained in the following corollary, albeit this result is not adopted in the sequel
of the paper.

Corollary 2 If
∑

k∈N|ϕY (k)| < ∞, we have

fs(X)(u) = 1 + 2
∑
k∈N

|ϕY (k)| cos(ϑk − 2πku), u ∈ [0, 1[.

Proof See the Appendix in the Supplementary Materials. ��

For instance, the condition in Corollary 2 is satisfied when |ϕY (k)| = O(k−h) with
h > 1 or when ϕY is absolutely integrable, since

∑
k∈N|ϕY (k)| ≤ ∫ ∞

−∞|ϕY (t)|dt .
Actually, the common parametric families of absolutely continuous circular densities
(considered, e.g., by Mardia and Jupp 2000) satisfy such an assumption. Moreover,
almost all the laws considered in this paper also satisfy the condition, the only excep-
tions being the Beta distribution with shape parameter β ≤ 1 and the generalized
Benford distribution.

We measure the closeness of the distribution of X to the Benford hypothesis (2)
through the Kolmogorov distance between the distribution function of the uniform
law on [0, 1[ and (6) for N ∈ N. This distance is

ΔN = sup
u∈[0,1[

|GN (u) − u|

= sup
u∈[0,1[

∣∣∣∣∣
1

π

N∑
k=1

|ϕY (k)|
k

(sin(ϑk) − sin(ϑk − 2πku))

∣∣∣∣∣ . (7)

It is apparent that ΔN is completely determined by the vector (ϕY (1), . . . , ϕY (N )).
Furthermore, the Kolmogorov distance (7) provides a further equivalent statement of
the Benford hypothesis as ΔN = 0 for each N ∈ N.

Another recurrent theme of our work is the effect of scaling. Let Xσ = σ X denote
the scaled version of the random variable X for σ ∈ R

+. A basic and easily seen
property of the significand is that Fs(Xσ ) has a periodic behavior with respect to the
scale parameter σ , i.e.,

Fs(Xσ ) = Fs(X10nσ ), n ∈ N. (8)
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We expect this feature to be retrieved from the behavior of the Kolmogorov distance
(7). However, as already anticipated in Sect. 1, it does not automatically translate into
a sensible invariance property when testing conformance to (1) and (2).

We finally introduce the symbols Δ∞ = lim
N

ΔN and C = log10 e, to be used in

the developments that follow.

3 Statistical models under the Benford lens

In this section we build on (3) and (5) to assess the structure of the coefficients
(|ϕY (k)|)k≥1 for some well-known models for X , which are representative of a wide
range of probabilistic behavior. It is clear from (5) that these coefficients have a key
role in assessing the discrepancy of the distribution of a given random variable from
the distribution of a Benford random variable. For well-behaved statistical models, the
first few coefficients should reasonably “characterize” the underlying distribution in
the Benford’s framework, in such a way that GN provides a suitable approximation
of Fs(X) even for a small N . Therefore, an appropriate analysis of these quantities is
required.

Our aim is to recast the structure of some basic models for X in terms of their
agreement with the Benford hypothesis. We argue that these relationships can help to
better link the usual approach where the focus is on X to the alternative statistical view
where the reference space is that of S(X) (or, equivalently, that of s(X)). The reward of
such a link is twofold. On the one hand, we can better understand the instances where
the data generating process may be expected to be close to (or far from) the Benford
behavior by relating this behavior to statistical models that are well understood after
many decades (and even centuries) of research and empirical applications. On the
other hand, if we trust a statistical model for X to be adequate for our problem of
interest, we should find the corresponding information also in the significand space.
When it is not the case, suspicion on the data should then arise. Such a dual role of the
statistician, looking both at the observed value of X and at its digits, is also envisaged
byKossovsky (2015, p. 3–4) as a herald of fruitful statistical investigations.We believe
that the results provided in this section could be helpful in this direction as well.

The ratio behindour selection of distributions stems from thewell-knownpopularity
of these probability laws. The choice was also carried out in order to cover a wide
range of values with respect to the skewness and kurtosis indexes. Moreover, despite
their central importance, we are not aware of existing results on the structure of the
coefficients (|ϕY (k)|)k≥1 for the normal and positive stable distributions, as well as
for mixture of laws.

3.1 Normal law

We start our journey under the Benford umbrella from the ubiquitous normal law.
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1486 L. Barabesi et al.

Proposition 1 If the random variable X follows the normal law N (μ, σ 2), then

ϕY (t) = 1√
π

(2σ 2)π iCt 


(
1

2
+ π iCt

)
M

(
−π iCt,

1

2
,− μ2

2σ 2

)
, t ∈ R,

while

|ϕY (t)| = 1√
cosh(π2Ct)

∣∣∣∣M
(

−π iCt,
1

2
,− μ2

2σ 2

)∣∣∣∣ ,

where M(a, b, z) is the Kummer confluent hypergeometric function and a, b, z ∈ C.

Proof See the Appendix in the Supplementary Materials. ��

Noteworthy, simple expressions can be derived from Proposition 1 when μ = 0,
since M(a, b, 0) = 1 in that case. It is also apparent that the coefficients (|ϕY (k)|)k≥1
are solely functions of the ratio ρ = |μ|/σ . Numerical evaluation of these coefficients
is provided inTable 2 for k ≤ 5 and selected values ofρ.We can see that the coefficients
are increasing (and approach one) for a fixed k asρ increases, while they are decreasing
(and approach zero) for a fixed ρ as k increases. In addition, the Kolmogorov distance
ΔN is reported in Table 3 for N ≤ 5 and some pairs (μ, σ ). These distances are
fluctuating for a fixed σ and for a varyingμ, while they tend to decrease as σ increases
for a fixed μ. They also have a periodic behavior with respect to the scale parameter σ

for a fixed ρ, in agreement with (8). Finally, from the joint analysis of Tables 2 and 3,
it can be seen that a good approximation to Fs(X) is obtained by truncating the series
in (5) at the first term.

3.2 Gamma law

Another long-standing distribution with fruitful applications in many domains,
including survival analysis, actuarial science and economics, is the Gamma law.

Proposition 2 If the random variable X follows the Gamma law G(α), where α is the
shape parameter, then

ϕY (t) = 
(α + 2π iCt)


(α)
, t ∈ R,

while

|ϕY (t)| =
∞∏
n=0

1√
1 + 4π2C2t2

(α+n)2

.

Proof See the Appendix in the Supplementary Materials. ��
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Table 2 Coefficients |ϕY (k)| for k ≤ 5 and selected parameters of one-population laws

k Normal law N (μ, σ 2), with ρ = |μ|/σ
ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 5

1 0.1658 0.2261 0.4445 0.6407 0.8506

2 0.0195 0.0418 0.1251 0.2575 0.5470

3 0.0023 0.0071 0.0295 0.0830 0.2859

4 0.0003 0.0011 0.0063 0.0234 0.1281

5 0.0000 0.0002 0.0013 0.0060 0.0511

k Gamma law G(α)

α = 1.0 α = 1.5 α = 2.0 α = 3.0 α = 4.0

1 0.0570 0.1079 0.1655 0.2800 0.3785

2 0.0011 0.0029 0.0061 0.0179 0.0371

3 0.0000 0.0001 0.0002 0.0006 0.0019

4 0.0000 0.0000 0.0000 0.0000 0.0001

5 0.0000 0.0000 0.0000 0.0000 0.0000

k Beta law Be(α, β)

β = 1.0 β = 2.0

α = 0.5 α = 1.0 α = 1.5 α = 0.5 α = 1.0 α = 1.5

1 0.1802 0.3441 0.4817 0.0868 0.2034 0.3254

2 0.0912 0.1802 0.2650 0.0242 0.0620 0.1104

3 0.0610 0.1213 0.1802 0.0110 0.0288 0.0526

4 0.0458 0.0912 0.1361 0.0062 0.0164 0.0304

5 0.0366 0.0731 0.1093 0.0040 0.0106 0.0197

k Positive stable law PS(α)

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1 0.0000 0.0001 0.0195 0.1904 0.6547

2 0.0000 0.0000 0.0003 0.0303 0.4066

3 0.0000 0.0000 0.0000 0.0048 0.2526

4 0.0000 0.0000 0.0000 0.0008 0.1569

5 0.0000 0.0000 0.0000 0.0001 0.0974

Some simplifications occur in special cases. As an example, since for b ∈ R it
holds

|
(1 + ib)| =
√

πb

sinh(πb)
, (9)
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Table 3 Kolmogorov distance ΔN for the laws of Table 2 and N ≤ 5

N Normal law N (μ, σ 2)

σ = 1 σ = 5

μ = 0 μ = 3 μ = 5 μ = 0 μ = 3 μ = 5

1 0.0547 0.2324 0.5244 0.1035 0.1120 0.1266

2 0.0607 0.2651 0.5097 0.1035 0.1116 0.1220

3 0.0605 0.2629 0.4786 0.1038 0.1117 0.1222

4 0.0605 0.2655 0.4753 0.1038 0.1117 0.1221

5 0.0605 0.2656 0.4770 0.1038 0.1117 0.1221

N Gamma law G(α)

α = 1.0 α = 1.5 α = 2.0 α = 3.0 α = 4.0

1 0.0307 0.0683 0.1009 0.1085 0.1803

2 0.0305 0.0682 0.1015 0.1135 0.1704

3 0.0305 0.0682 0.1015 0.1135 0.1704

4 0.0305 0.0682 0.1015 0.1135 0.1704

5 0.0305 0.0682 0.1015 0.1135 0.1704

N Beta law Be(α, β)

β = 1.0 β = 2.0

α = 0.5 α = 1.0 α = 1.5 α = 0.5 α = 1.0 α = 1.5

1 0.1138 0.2123 0.2877 0.0451 0.1187 0.2017

2 0.1170 0.2259 0.3169 0.0437 0.1140 0.1966

3 0.1265 0.2362 0.3206 0.0438 0.1176 0.2041

4 0.1288 0.2458 0.3405 0.0442 0.1173 0.2027

5 0.1311 0.2458 0.3443 0.0441 0.1174 0.2043

N Positive stable law PS(α)

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1 0.0000 0.0001 0.0100 0.1204 0.2747

2 0.0000 0.0001 0.0101 0.1206 0.3770

3 0.0000 0.0001 0.0101 0.1215 0.4165

4 0.0000 0.0001 0.0101 0.1215 0.4244

5 0.0000 0.0001 0.0101 0.1214 0.4218

for the Exponential distribution (α = 1) we have

|ϕY (t)| =
√

2π2Ct

sinh(2π2Ct)
,
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on the basis of Olver et al. (2010, Formula 5.4.3). Similar closed-form expressions can
be obtained for α = n + 1

2 and α = n + 1, with n ∈ N, by considering the properties
of the Gamma function.

Numerical computation of the coefficients (|ϕY (k)|)k≥1 for k ≤ 5 is again provided
in Table 2 for selected values of α. For a fixed k, the coefficients are increasing (and
approach one) as α increases, while they are decreasing (and approach zero) as k
increases. Table 3 displays the Kolmogorov distancesΔN , which consistently increase
with α. Finally, it is seen that also for the Gamma law a good approximation to Fs(X)

can be achieved by truncating the series in (5) at the first term.

3.3 Beta law

The Beta law is a classical model for random variables that have a finite range.

Proposition 3 If the random variable X follows the Beta law Be(α, β), where α and
β are the shape parameters, then

ϕY (t) = 
(α + β)
(α + 2π iCt)


(α)
(α + β + 2π iCt)
, t ∈ R,

while

|ϕY (t)| =
∞∏
n=0

√√√√√
1 + 4π2C2t2

(α+β+n)2

1 + 4π2C2t2

(α+n)2

.

Proof See the Appendix in the Supplementary Materials. ��
Similarly to the Gamma law, the expression of |ϕY (t)| can be simplified in some

special cases. For the uniform distribution it reduces to

|ϕY (t)| =
√

1

1 + 4π2C2t2
.

If α = β = 1
2 , i.e., when the arcsine distribution is considered, we obtain

|ϕY (t)| =
√
tanh(2π2Ct)

2π2Ct
,

since for b ∈ R it holds
∣∣∣∣∣

( 12 + ib)


(1 + ib)

∣∣∣∣∣ =
√
tanh(πb)

b
.

Moreover, closed-form expressions for |ϕY (t)| can be derived when α and β take the
values n + 1

2 or n + 1, with n ∈ N.
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We give the coefficients (|ϕY (k)|)k≥1 for k ≤ 5 in Table 2, and the Kolmogorov
distances ΔN in Table 3, for selected pairs (α, β). For a fixed k, the coefficients are
increasing (and approach one) as α increases for a fixed β, they are decreasing (and
approach zero) as β increases for a fixed α, while they are decreasing (and approach
zero) as k increases. Also for the Beta model, the final consideration is that a good
approximation to Fs(X) is reached by truncating the series in (5) at the first term, or at
most at the second one.

3.4 Positive stable law

We consider the positive stable law with Laplace transform LX (t) = e−tα , for �(t) ∈
R

+, as a representative of the class of skewed and heavy-tailed laws.

Proposition 4 If the random variable X follows the positive stable law PS(α), where
α is the tail parameter, then

ϕY (t) = 

(
1 − 2π iCt

α

)


(1 − 2π iCt)
, t ∈ R,

while

|ϕY (t)| =
√√√√ sinh(2π2Ct)

α sinh
(
2π2Ct

α

) .

Proof See the Appendix in the Supplementary Materials. ��
The coefficients (|ϕY (k)|)k≥1 for k ≤ 5 are displayed in Table 2 for selected values

of α. For a fixed k, they are increasing with α, while they are decreasing (and approach
zero) as k increases. Table 3 reports the values of theKolmogorov distancesΔN , which
steadily increase with α. Finally, also in the present model a suitable approximation
to Fs(X) is achieved by truncating the series in (5) at the first couple of terms.

3.5 Mixtures

A more complicated situation of interest arises when X is distributed as a mixture
of L laws with normalized weights (w1, . . . , wL), so that its probability density is
fX = ∑L

l=1 wl fZl , where fZl is the density of Zl . Mixture models have gained huge
popularity, since they can be seen as the building blocks of bothmodel-based clustering
and outlier-contaminationmodels (see, e.g., Farcomeni and Punzo 2020;Hennig 2022;
Ingrassia et al. 2022). In the case of a mixture, if Vl = 2π log10|Zl | and ϕVl is the
characteristic function of Vl , the characteristic function of Y = 2π log10|X | is given
by

ϕY (t) =
L∑

l=1

wlϕVl (t). (10)
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Table 4 As Table 2, but now for
the normal mixtures (a)–(f)

k (a) (b) (c) (d) (e) (f)

1 0.0537 0.0476 0.0394 0.0779 0.0711 0.1985

2 0.1441 0.2820 0.1843 0.2125 0.2045 0.2667

3 0.0076 0.0148 0.0110 0.0358 0.0270 0.0722

4 0.0081 0.0284 0.0121 0.0137 0.0147 0.0334

5 0.0004 0.0016 0.0010 0.0038 0.0029 0.0101

It is difficult to envisage the effect that the components of the convex combina-
tion exert on the distribution of s(X), as simple relationships between |ϕY (k)| and
|ϕV1(k)|, . . . , |ϕVL (k)| do not exist. Result (10) thus anticipates a general lack of pre-
dictability in the power results under a mixture model for X . Nevertheless, an amusing
specialization of (10) occurs if we assume a location-scale family for the distribution
of Zl such that the ratio of the location parameter to the scale parameter is given by
the fixed constant ρ = μ

σ
.

Proposition 5 Let fZ be the probability density of a standard random variable Z, and
let (Z1, . . . , ZL) be absolutely continuous randomvariableswith probability densities

fZl (x) = 1

klσ
fZ

(
x − klμ

klσ

)
, l = 1, . . . , L,

where μ ∈ R, σ ∈ R
+ and kl > 0. If X is a mixture with probability density

fX = ∑L
l=1 wl fZl , then

ϕY (t) = ϕY1(t)ϕY2(t), t ∈ R,

where Y1 = 2π log10|X1| and Y2 = 2π log10|X2|, while X1 and X2 are independent
random variables such that X1 is discrete with P(X1 = kl) = wl , for l = 1, . . . , L,

and X2
L= σ Z + μ.

Proof See the Appendix in the Supplementary Materials. ��
We also see from Proposition (5) that the stochastic representation

Y
L= Y1 + Y2

holds irrespectively of the number of mixture components.
For concreteness, we show the results obtained from Proposition (5) in the case of

normal mixtures. Numerical computation of the coefficients (|ϕY (k)|)k≥1 for k ≤ 5
and selected pairs (μ1, σ1) and (μ2, σ2) is provided in Table 4. The chosen parameters
are such that themeans belong to [0.5, 3.5] and the standard deviations are in [1.5, 3.5],
but they are representative of a much wider behavior. Their values are reported below,
where they are ordered to show increasing departures from the uniform distribution
in terms of Δ∞:
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Table 5 As Table 3, but now for
the normal mixtures (a)–(f)

N (a) (b) (c) (d) (e) (f)

1 0.0327 0.0276 0.0226 0.0313 0.0433 0.1175

2 0.0363 0.0548 0.0692 0.0716 0.0855 0.1139

3 0.0372 0.0531 0.0692 0.0712 0.0848 0.1207

4 0.0372 0.0544 0.0679 0.0731 0.0867 0.0974

5 0.0372 0.0565 0.0680 0.0735 0.0870 0.1189

(a) μ1 = 1.0, μ2 = 3.5, σ1 = 0.5, σ2 = 1.5 (Δ∞ = 0.0372)
(b) μ1 = 1.5, μ2 = 5.0, σ1 = 0.5, σ2 = 1.5 (Δ∞ = 0.0565)
(c) μ1 = 2.5, μ2 = 7.5, σ1 = 1.0, σ2 = 3.0 (Δ∞ = 0.0680)
(d) μ1 = 1.5, μ2 = 5.0, σ1 = 0.5, σ2 = 2.0 (Δ∞ = 0.0735)
(e) μ1 = 1.5, μ2 = 4.5, σ1 = 0.5, σ2 = 2.0 (Δ∞ = 0.0871)
(f) μ1 = 1.0, μ2 = 4.0, σ1 = 0.5, σ2 = 1.0 (Δ∞ = 0.1191)

For a given parameter combination, the coefficients are decreasingwith k, although not
monotonically in this case. Table 5 reports the corresponding values of theKolmogorov
distances ΔN for N ≤ 5.

4 Testing the Benford hypothesis

4.1 Statement of the problem

Working with representation (2), a straightforward translation of the Benford hypoth-
esis into a null hypothesis to be tested is

H0 : s(X)
L= U , (11)

where U is a uniform random variable on [0, 1[. Given a random sample of n obser-
vations from X , say (X1, . . . , Xn), several statistics already exist for testing (11).
The simplest and possibly most popular one in applications is the first-digit Pearson
statistic

χ2 =
9∑

d=1

(n p̂d − npd)2

npd
, (12)

where, for d ∈ {1, 2, . . . 9},

pd = log10

(
d + 1

d

)
(13)
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is the theoretical first-digit probability for digit d when H0 is true, while

p̂d = 1

n

n∑
i=1

1{d}(D1(Xi ))

is its sample estimate, based on the first significant digit function D1(x) = �S(x)�,
and 1B denotes the indicator function of the set B.

Strictly speaking, χ2 would test the hypothesis that the first-digit distribution of
X conforms to (13), which is a weaker hypothesis than the Benford one. Indeed, the
Benford hypothesis (11) on the significand implies that the first digit is Benford, i.e.,
that expression (13) holds, even if (13) does not imply the significand to be Benford
(see, e.g., Berger and Hill 2015). We refer to Barabesi et al. (2022) for a detailed study
of the relationships between (11), (13) and another amazing feature of Benford’s law
known as the (first-digit) sum-invariance property. However, since disagreement with
(13) implies rejection of (11), χ2 is also a legitimate test of the Benford hypothesis,
provided that its null distribution is derived under H0.

A popular competitor of χ2 is the mean absolute deviation of first-digit proportions
and Benford’s probabilities

M = 1

9

9∑
d=1

| p̂d − pd |,

which is usually called the MAD. A more or less formal use of this statistic is often
advocated for anti-fraud purposes in financial applications (Nigrini 2012; Barney and
Schulzke 2016), perhaps after extension to the second digit, on the ground that this
statistic gives the same weight to all the digits under consideration. A test statistic
specifically tailored to (11) is instead the Kolmogorov–Smirnov (two-sided) statistic
defined as

K = sup
t∈[1,10[

|F̂S(X)(t) − log10 t |, (14)

where F̂S(X) is the empirical distribution function of (S(X1), . . . , S(Xn)).
The test statistics considered above, aswell as other related test statistics, suffer from

twomain drawbacks. First, most of them are derived under specific and non-equivalent
properties of Benford’s law, such as the first-digit behavior (13) which underlies both
χ2 and M , or the sum-invariance property which motivates the Hotelling-type statistic
described in the SupplementaryMaterials. Therefore, as such, they can show excellent
performance under certain circumstances but not in general, as shownbyBarabesi et al.
(2022). Second, as anticipated in Sect. 1, they are not scale invariant. A scale invariant
version of K is the Kuiper statistic which is computed as

V =
{
max
1≤i≤n

(
1

n
− S(i)

)
+ max

1≤i≤n

(
S(i) − i − 1

n

)}
, (15)
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where S(i) < · · · < S(n) are the order statistics of (S(X1), . . . , S(Xn)). However,
a serious drawback of V is its loss of power under multimodal alternatives (Pycke
2010).

4.2 Rayleigh-type tests

Examination of (6) inspires the simple strategy of assessing whether a monotone
function of the coefficients (|ϕY (k)|)k≥1 is non-null. An off-the-shelf option for testing
H0 is thewell-knownRayleigh statistic for directional data, which in our problem takes
the form Z2

1,n = 2n|ϕ̂Y (1)|2, where ϕ̂Y (k) = C̄k,n + iS̄k,n , with

C̄k,n = 1

n

n∑
i=1

cos(2πks(Xi )), S̄k,n = 1

n

n∑
i=1

sin(2πks(Xi )).

Unfortunately, this test validates antipodal symmetry, which features both uniform
shapes and several multimodal structures. It can thus be safely used only against
unimodal alternatives. For a given N , Buccheri and De Jager (1989) introduced the
statistic

Z2
N ,n = 2n

N∑
k=1

(C̄2
k,n + S̄2k,n),

which is effective against more general alternative hypotheses. Such a test statistic has
been investigated by Bogdan et al. (2002) in a parametric framework for directional
data, showing that it is asymptotically optimal for testing uniformity within the family
of circular exponential distributions. Data-driven criteria for the selection of N are
considered in Sect. 4.4. Before then, we provide a firm foundation to Z2

N ,n by showing
that it is the score statistic for testing (11) with a fixed N .

4.3 Likelihood ratio test of the Benford hypothesis

As we have seen in Sect. 3, GN proves to be a suitable approximation of (5) even
for small N . Thus, a general model for the probability density function of s(X) may
be obtained by differentiating (6). We denote this function by g = G ′

N , where the
subscript N is suppressed for simplicity of notation. Reparametrizing, we thus have

g(u) = 1 + 2
N∑

k=1

(ak cos(2πku) + bk sin(2πku)), u ∈ [0, 1[, (16)

where ak = |ϕY (k)| cos(ϑk) and bk = |ϕY (k)| sin(ϑk), for k = 1, 2, . . . , N .
In order to achieve a nonnegative trigonometric polynomial in (16), i.e., a bona fide

probability density function, the Fejér–Riesz condition must hold. More precisely,
expression (16) is nonnegative for each u ∈ [0, 1[ if there exists a vector of order
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(N + 1) of complex numbers, say c = (c0, c1, . . . , cN )T, such that for k = 1, . . . , N

ak − ibk =
N−k∑
j=0

c j+kc
∗
j ,

with
∑N

k=0|ck |2 = 1 and where c∗
k denotes the complex conjugate of ck . Model (16)

corresponds to a large family of distributions first introduced by Fernández-Durán
(2004) in the framework of directional statistics. On the basis of the Fejér–Riesz
Theorem (Grenander and Szegö 1984, Section 1.12), g(u) can be written in a different
parametrization as

g(u) = c∗Tuc, u ∈ [0, 1[, (17)

where c∗ is the conjugate transpose of vector c, while Tu = (tk, j,u) is a Toeplitz matrix
of order (N + 1) such that tk, j,u = e2π i(k− j)u . The parameter space is assumed to be
C = {c ∈ C

N+1 : c0 ∈ R, c∗c = 1}. Hence, there exist (2N + 2) parameters in model
(17), even if solely 2N of them are free owing to the two constraints. Under model
(17), the Benford hypothesis becomes equivalent to

H0 : ck = 0, k = 1, . . . , N , (18)

for a given N . The likelihood ratio test statistic for assessing (18) is

RN ,n =
n∏

i=1

(̂c ∗Ts(Xi )ĉ )−1,

where ĉ is the maximum likelihood estimator of c, which can be obtained by means
of the algorithm proposed by Fernández-Durán and Gregorio-Domínguez (2010). In
addition, the null finite-sample distribution of RN ,n can be approximated through a
simple but computationally efficient Monte Carlo algorithm, by bearing in mind that
the random variable

X = 10U (19)

satisfies the Benford property (1) and that S(10U ) = 10U . The usual null large-sample

approximation ΛN ,n = −2 log RN ,n
L→ χ2

2N is also available as n → ∞.
The following proposition states the large-sample equivalence of ΛN ,n and Z2

N ,n .

Its proof proceeds by showing that Z2
N ,n is the score test statistic for assessing H0

under model (17). Therefore, ΛN ,n and Z2
N ,n share the same optimal properties in the

large-sample setting.

Proposition 6 Under H0, ΛN ,n = Z2
N ,n + oP (1).

Proof See the Appendix in the Supplementary Materials. ��
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4.4 Estimating the number of trigonometric components

Proposition 6 allows us to extend the asymptotic properties of ΛN ,n to Z2
N ,n , and vice

versa. Model selection principles have been mainly addressed from the point of view
of the score test. If a simplified version of the BIC criterion is used (see Kallenberg
and Ledwina 1995), N is chosen as the smallest integer for which

ψ(N ) = Z2
N ,n − 2N log(n) (20)

is maximum. Therefore, the estimated number of trigonometric components in a data-
driven version of Z2

N ,n is

N̂ = inf{N ∈ N : ψ(N ) ≥ ψ(M), M ∈ N}. (21)

It follows from the results of Bogdan et al. (2002) that P(N̂ = ∞) = 0 and that,

under (18), N̂
P→ 1 as n → ∞, while the test based on Z2

N̂ ,n
is consistent against every

alternative to uniformity. In addition, Z2
N̂ ,n

L→ χ2
2 as n → ∞, even if convergence

has been shown to be slow by Bogdan et al. (2002). In Sect. 5 we thus obtain Monte
Carlo estimates of the null critical values of Z2

N̂ ,n
through relationship (19).

The asymptotic equivalence of the two tests shown in Proposition 6 ensures that the
results on data-driven selection of N for Z2

N ,n hold forΛN ,n aswell. As a consequence,
selection rule (21) is still valid when ΛN̂ ,n is the test statistic of choice if we take

ψ(N ) = ΛN ,n − 2N log(n) (22)

as our objective function. The proper BIC criterion is adopted in this case.

4.5 Scale invariance

A desirable property of a test statistic T = T (X1, . . . , Xn) is its invariance under
scale transformation of the data, which requires that

P(T (X1, . . . , Xn) = T (σ X1, . . . , σ Xn)) = 1,

for σ ∈ R
+. Given a conversion from parsecs to light-years (as in the application

of Sect. 6), or from decimeters to feet (as in the application of Sect. 7), while the
observation valuesmay change, any inferential statement about theBenford hypothesis
should remain unaffected. However, most of the available test statistics are based on
functions of the first significant digits and do not share this property.

It is well known that significant digits are scale invariant if and only if the underlying
random variable X is Benford (Berger and Hill 2015, Section 5.1). But even when the
Benford hypothesis holds, if we consider for instance the first-digit chi-square statistic

χ2 = χ2(X1, . . . , Xn), it only follows that χ2(X1, . . . , Xn)
L= χ2(σ X1, . . . , σ Xn).
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Table 6 Estimated 0.95th quantiles under the Benford hypothesis for different sample sizes and B = 106

replicates

n Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

50 6.0 9.4 6.9 (1.020) 6.1 9.9 7.5 (1.026)

100 6.0 9.4 6.4 (1.010) 6.0 9.6 6.5 (1.011)

200 6.0 9.5 6.2 (1.006) 6.0 9.6 6.2 (1.007)

500 6.0 9.5 6.1 (1.002) 6.0 9.5 6.1 (1.002)

∞ 5.991 9.488 5.991 5.991 9.488 5.991

For Z2
N̂ ,n

and ΛN̂ ,n , the estimate of E[N̂ ] is reported within parentheses

On theother hand, both the score and the likelihood ratio tests of theBenfordhypothesis
satisfy the following:

Proposition 7 The statistics Z2
N ,n and RN ,n are scale invariant.

Proof See the Appendix in the Supplementary Materials. ��

5 Simulation experiments

In this section we provide simulation evidence of the empirical advantages of the
tests derived in Sect. 4. We compare the performance of the score and likelihood ratio
tests—both with N ∈ {1, 2} and N selected from the data—to those of χ2 and M ,
taken as representatives of first-digit tests, theKolmogorov–Smirnov test (14), perhaps
the most obvious choice for assessing the uniformity hypothesis (11), and the scale-
invariant Kuiper test (15). For simplicity we relegate to the Supplementary Materials
the results for two other tests that we have taken into account in our experiments, the
first-digit Hotelling-type test of Barabesi et al. (2022) and the two-digit version of χ2,
but we can summarize that comparison with the score and likelihood ratio tests yields
similar qualitative findings. We only display power results for n = 100, while those
for different sample sizes are reported in the Supplementary Materials, together with
further details about the simulation algorithm.

5.1 Exact null distributions

In our first simulation, B Monte Carlo replicates of the test statistic T =
T (X1, . . . , Xn) are generated under the Benford hypothesis as

T †
b = T (10Ub,1 , . . . , 10Ub,n ), b = 1, . . . , B, (23)

where Ub,1, . . . ,Ub,n are independent uniform random variables on [0, 1[. For a
realization t of T , the exact p-values are computed as p†T (t) = 1 − F†

T (t), where

F†
T (t) = 1

B

∑B
b=1 1]−∞,t](T †

b ). In Table 6 we show the estimated (1 − γ )th quantile

123



1498 L. Barabesi et al.

t†T ,1−γ = inf{t ∈ R : F†
T (t) ≥ 1 − γ }

for each of the test statistics described in Sects. 4.2–4.4, for γ = 0.05 and using
B = 106 replicates under the Benford hypothesis. We also compare the estimated
exact quantiles to their asymptotic counterparts. It is clearly seen that asymptotic
quantiles are already very accurate with n = 50 for both Z2

N ,n and ΛN ,n if N is
fixed in advance, a result that parallels those of Cerioli et al. (2019) and Barabesi et al.
(2022) for χ2 and other first-digit statistics. Convergence is instead much slower when
N is selected from the data. The estimates N̂ exhibit non-negligible positive bias in
small samples both under (20) and (22), with respect to the true value N = 1 under
the Benford hypothesis. These issues point to the use of the reported exact quantiles
in the power comparisons that follow.

5.2 Power comparisons

Thepower of each test under comparison is computedwith respect to the corresponding
exact 0.95th quantile estimated through (23), with B = 106. We first compare the
power, based on 104 replicates, of the various test statistics under the same models for
X studied in Sect. 3, to highlight agreement with the computed Kolmogorov distances.

In the one-population setting, Table 7 shows that the score and likelihood ratio tests
behave very similarly. They are the most powerful ones, except when X is distributed
as Be(1/2, 1), a case which is equivalent to the generalized Benford law of parameter
1/2 (see Table 9 and the related comments below). The best performance is reached
with N = 1, since the distribution of s(X) is unimodal under all the considered
alternatives and the series (5) is well approximated by the first term, in agreement
with the results proved in Sect. 3. Nevertheless, the data-driven choice of N performs
almost equally well if no prior information is available. The power of the Kuiper
test, although generally inferior, is not too far from that of the top performers in such
unimodal scenarios, while it often improves over the non-invariant tests.

The advantage of Z2
N̂ ,n

and ΛN̂ ,n is instead paramount under the two-component
mixtures considered in Table 8. There, estimation of the number of components
becomes crucial, since both Z2

1,n and Λ1,n fail to detect the underlying structure,

while the best performers Z2
2,n andΛ2,n require knowledge that the second term dom-

inates in the series (5) (see Table 4). Not surprisingly, also the Kuiper test shows a
major gap under most of these two-populations alternatives and the ordering among
V , χ2, M and K becomes less clear.

Our second power scenario widens the perspective by considering a worst-case
instance for the likelihood ratio and score tests. Specifically, we assume that X is a
generalized Benford random variable with parameter α. In this case we have

Fs(X)(u) =
{
u α = 0
10αu−1
10α−1 α 
= 0

for u ∈ [0, 1[ and α ∈ R. This model has been introduced to represent digit distri-
butions when X follows a power-law (Pietronero et al. 2001; Barabesi and Pratelli
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Table 7 Estimated power under the one-population models of Sect. 3, when n = 100

N (μ, σ 2)

μ σ χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

0 1 0.295 0.347 0.251 0.496 0.550 0.444 0.522 0.554 0.448 0.519

0 5 0.355 0.411 0.536 0.494 0.545 0.434 0.514 0.549 0.437 0.511

3 5 0.392 0.414 0.605 0.562 0.611 0.508 0.585 0.616 0.510 0.584

3 10 0.301 0.369 0.274 0.508 0.559 0.447 0.529 0.560 0.450 0.529

5 5 0.537 0.475 0.684 0.798 0.840 0.755 0.821 0.841 0.758 0.820

5 10 0.315 0.398 0.331 0.523 0.578 0.467 0.549 0.580 0.470 0.548

G(α)

α χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

1.0 0.063 0.075 0.095 0.095 0.103 0.086 0.097 0.102 0.084 0.094

1.5 0.100 0.146 0.252 0.235 0.257 0.200 0.234 0.256 0.198 0.234

2.0 0.200 0.261 0.494 0.485 0.541 0.428 0.513 0.545 0.425 0.508

3.0 0.714 0.733 0.633 0.940 0.961 0.918 0.953 0.964 0.922 0.956

4.0 0.987 0.994 0.972 0.999 1.000 0.999 1.000 1.000 0.999 1.000

Be(α, β)

α β χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

0.5 1.0 0.686 0.677 0.860 0.682 0.623 0.611 0.614 0.619 0.605 0.612

1.0 1.0 0.999 0.999 1.000 1.000 0.997 0.998 0.997 0.997 0.998 0.997

0.5 2.0 0.120 0.134 0.126 0.169 0.178 0.144 0.169 0.181 0.145 0.169

1.0 2.0 0.559 0.626 0.683 0.727 0.750 0.683 0.730 0.756 0.692 0.737

1.5 2.0 0.973 0.983 0.996 0.995 0.994 0.993 0.994 0.994 0.994 0.994

PS(α)

α χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

0.5 0.047 0.050 0.049 0.056 0.056 0.052 0.054 0.055 0.053 0.054

0.6 0.103 0.113 0.114 0.126 0.145 0.110 0.134 0.145 0.110 0.132

0.7 0.445 0.464 0.642 0.626 0.679 0.571 0.652 0.682 0.573 0.650

0.8 0.994 0.990 0.997 0.999 1.000 0.999 1.000 1.000 0.999 0.999

The exact test size is γ = 0.05

2020) and describes the leading-digit distribution of the sequences of prime num-
bers and non-trivial Riemann zeta zeroes (Luque and Lacasa 2009). It may also help
to smoothly represent departure from the Benford property, which arises in the case
α = 0 by continuity.

The new insight provided by this scenario is that it shows the effect of modeling
the significand transform s(X) instead of X itself, providing harmful alternatives
to the Benford hypothesis. Indeed, the probability density function of s(X) is now
monotonically increasing or decreasing on [0, 1[, according to the sign of α. The
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Table 8 As Table 7, but now for the two-component normal mixtures 0.5N (μ1, σ
2
1 ) + 0.5N (μ2, σ

2
2 )

Case χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

(a) 0.201 0.201 0.104 0.183 0.100 0.373 0.277 0.094 0.371 0.281

(b) 0.665 0.667 0.217 0.531 0.087 0.935 0.894 0.089 0.936 0.903

(c) 0.330 0.367 0.220 0.228 0.073 0.559 0.440 0.082 0.560 0.457

(d) 0.358 0.443 0.252 0.404 0.152 0.746 0.625 0.176 0.749 0.644

(e) 0.262 0.369 0.306 0.353 0.134 0.682 0.562 0.116 0.674 0.570

(f) 0.890 0.861 0.608 0.903 0.690 0.975 0.936 0.644 0.971 0.930

See Sect. 3.5 for the definition of cases (a)–(f)

Table 9 Estimated power when X is a generalized Benford random variable of parameter α, for different
values of α and n = 100

α χ2 M K V Z2
1,n Z2

2,n Z2
N̂ ,n

Λ1,n Λ2,n ΛN̂ ,n

−1.0 0.997 0.999 1.000 0.999 0.998 0.998 0.998 0.997 0.998 0.997

−0.8 0.954 0.978 0.998 0.985 0.963 0.969 0.965 0.962 0.967 0.963

−0.6 0.712 0.802 0.952 0.850 0.794 0.794 0.791 0.787 0.787 0.783

0.6 0.842 0.839 0.950 0.844 0.783 0.786 0.783 0.780 0.783 0.775

0.8 0.982 0.981 0.998 0.982 0.960 0.967 0.961 0.959 0.964 0.960

1.0 0.999 1.000 1.000 1.000 0.996 0.998 0.997 0.996 0.997 0.997

The exact test size is 0.05

Table 10 Estimate of E[N̂ ] when X is a generalized Benford random variable of parameter α, for different
values of α and n = 100

α = −1.0 α = −0.8 α = −0.6 α = 0.6 α = 0.8 α = 1.0

Simplified BIC (20) 1.454 1.236 1.117 1.111 1.238 1.453

Likelihood BIC (22) 1.415 1.228 1.118 1.111 1.223 1.406

generalized Benford model is thus particularly unfavorable to the proposed tests, since
several terms are needed to approximate the series (5). Table 9 shows empirical powers
under this model for some values of α, while Table 10 reports the estimate of E[N̂ ]
for both (20) and (22). It is seen that the performances of the score and likelihood ratio
tests are very similar, although the non-invariant statistic K turns out to be the most
powerful solution. As anticipated, a value N > 1 is required to capture the monotone
shape of fs(X), a task which is best accomplished by (21) in large samples (see the
Supplementary Materials).
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6 Astronomical distances

6.1 Motivation and data

In our first experiment, we perform two related analyses on the distribution of star
distances from Earth, whose original source is the HYG (Hipparcos–Yale–Gliese)
database available at https://www.astronexus.com/hyg. The first investigation is con-
cerned with the data introduced by Alexopoulos and Leontsinis (2014), who explored
the star-distance agreement with Benford’s law on the basis of the marginal empir-
ical distribution of their first-three significant digits. In our second computation, we
improve the analysis by considering a cleaner and more complete version of the same
distance database. Our interest in the topic is inspired by several reasons. First, the
data are at the center of a quite recent debate in astrophysics and conformance to the
Benford hypothesis is for them a still open issue, since there is noticeable uncertainty
on the conclusions when comparing empirical evidence with theory. Additionally, pre-
vious empirical investigation of this kind of data mostly rely on informal diagnostic
checks and single-digit assessment through the non-invariant chi-square test (12). A
further reason that motivates our interest is that the validity of the Benford hypothesis
has been formally predicted by establishing a link with Hubble’s constant for a related
problem that involves galaxy distances (Hill and Fox 2016).

Formal statistical inference has not been rigorously conducted on the cited star-
distance data in order to validate their fit to Benford’s law. Indeed, de Jong et al. (2020)
note that the size of astronomical databases is so large that even small departures from
the law would constitute an adverse empirical evidence due to huge test power. The
HYG 2.0 database contains around 115,000 observations, and this dimension is still
very small if compared to the second release of the GAIA database that includes
1.3 billion parallaxes. Therefore, the usual practice has been to calculate a discrep-
ancy index and then judge if it is big (small) enough to informally disprove (support)
Benford’s law on the basis of its membership to one in a set of subjectively prede-
fined value categories, without any distributional argument. Our suggested strategy
for inference on the Benford hypothesis instead relies on bootstrapping the available
distance databases for sample sizes comparable to those explored in Sect. 5 and in the
Supplementary Materials. A relatively high proportion of rejections of (11) even in
these moderately sized random samples would then cast doubt on the Benford nature
of the random process generating the observed distances.

The first database that we analyze, and that we name Stars 1, consists of the
first-three significant digits of star distances to Earth explored by Alexopoulos and
Leontsinis (2014) and further examined byHill and Fox (2016). In the second instance,
called Stars 2, we replicate a similar experiment on a cleaned version of the HYG 3.0
database, containing 109,398 positive distances recorded in parsecs. Cleaning is per-
formed by removing more than 10,000 stars whose coordinates are deemed to be
uncertain and for which distances are replaced by a nonfactual label in the original
HYG 3.0 database. In Fig. 1 we include a graphical comparison between theoretical
and observed frequencies of the first significant digit in each of the two data sets.
Shapes appear to be similar. In both cases the observed data have higher frequencies
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Fig. 1 Left: Comparison of the first significant digit of star distances in database Stars 1 (grey) with
Benford’s law (white). Right: The same, but for database Stars 2

Table 11 Astronomical
distances. Proportion of
rejections of the Benford
hypothesis in 1000 samples of
size n drawn with replacement
from each database, at exact test
size γ

n γ Stars 1 Stars 2

χ2 Λ1,n χ2 Λ1,n

200 0.10 0.332 0.606 0.291 0.587

300 0.05 0.337 0.673 0.275 0.650

500 0.01 0.330 0.726 0.268 0.686

for the first three digits, and smaller for the others, perhaps suggesting a convolution
between a noise law and the Benford one. This would call for a cleaner and possibly
larger database, as suggested by de Jong et al. (2020).

6.2 Results

In our analysis we draw 1000 samples of sizes 200, 300 and 500 with replacement
from both star-distance databases. All the generated distance samples can be accessed
through the Supplementary Materials. We then compute the proportion of rejections
of the Benford hypothesis in each scenario, at exact size γ , for all the tests considered
in Sect. 5. Detailed results are given in the Supplementary Materials, while Table 11
focuses on the comparison between χ2 and Λ1,n for a few representative values of
γ . The score statistic Z2

1,n and the data-driven selection of N available through (20)
and (22) are seen to yield similar conclusions. There is considerable evidence against
the Benford hypothesis, with rejection proportions systematically much larger than γ

and withΛ1,n showing to be even less ambiguous than its competitors. Our likelihood
ratio approach thus advises that the qualitative assessment ofAlexopoulos andLeontsi-
nis (2014) might have been overoptimistic, when contrasted to the full probabilistic
structure of s(X) implied by (11).

We argue that one possible explanation of the disagreement between our results
and optimistic expectations about the Benford behavior of star distances may reside
in the actual quality of available data. While in the Supplementary Material we show
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Fig. 2 Astronomical distances. Distributions of the differences between the p-values of χ2 resulting from
data expressed first in parsecs and then in light years

that truncation of X to three significant digits, as is the case in database Stars 1,
should not alter conclusions about the Benford hypothesis with the sample sizes under
consideration, we note that the data-cleaning step operated on the distances of Stars 2
slightly reduces the disagreement with (11). More importantly, many ties appear in the
HYG database and are then reflected in the realized values of s(X), even when several
digits are considered. These ties should not occur under Benford’s law and their effect
is magnified when looking at the empirical distribution of s(X). Therefore, the current
levels of measurement precision and the associated errors that affect databases such
as HYG seem to hinder formal statistical support to the sophisticated mathematical
arguments put forth by Hill and Fox (2016).

A similar conclusion may also be reached by considering the measurement error
model used in the Hipparcos and GAIA data processing (Bailer-Jones 2015). For a
star at true distance r , its true but unknown parallax is 1/r . The measured parallax
� is a noisy measurement of 1/r under the small angle approximation. It is assumed
that � is normally distributed with unknown mean 1/r and known standard deviation
σ� , which ultimately depends on the inverse of the number of photons received from
the star. It is then hard to anticipate conformance to the Benford hypothesis in view
of the results of Sect. 3. Correspondingly, such a measurement-error model may lead
to the simulation of synthetic astronomic data, under the Benford hypothesis, as the
convolution of a Benford random variable with a suitable noise random variable.

We conclude our analysis of astronomical distances by briefly addressing the issue
of lack of scale invariance of standard tests when applied to star-distance data. It is well
known that parsecs and light years are two similarly popular scales for these distances.
The results for χ2 in Table 11 refer to parsecs. Figure2 shows the distributions of
the differences between the p-values for χ2 that are obtained when the values in each
sample are rescaled tomeasure distances in light years.We observe bell shapes roughly
centered on zero and an ubiquitous remarkable variability. This confirms that the
adoption of a differentmeasurement unit can lead to strongly different resultswith digit
statistics, a hardly acceptable outcome in the scientific context under consideration.
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Fig. 3 Comparison of the first
significant digit of the
streamflow data (grey) with
Benford’s law (white)
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7 Streamflow data

Inspired by a Referee, we present a second case study related to water flows (in cubic
feet per second) recorded at more than 17,000 streamgage sites in the U.S. over an
extended period of time spanning from 1874 to 2004. This quite extensive collection,
that contains 457,440 observations, was obtained and analyzed by Nigrini and Miller
(2007) after deletion of blanks, zeroes (possibly corresponding to absence of water
flows), negative numbers (possibly corresponding to data errors) and duplicate records.
Such a large hydrological data set comeswith theR package benford.analysis available
at the web address https://github.com/carloscinelli/benford.analysis, from which we
have retrieved it (see also Cinelli 2022).

Nigrini and Miller (2007) and Nigrini (2012, Chapter 12), through a detailed data
description and a battery of formal digit tests, conclude that the streamflow data set
exhibits a practically excellent fit to Benford’s law, in spite of the possible “excess of
power” related to the big sample size and in spite of some potential sampling bias in
the spatial distribution of the measuring stations. Based on first digit counts reported
in Fig. 3, we easily agree since the visual fit is nearly perfect. Therefore, differently
from the astronomical case study, our aim here is to inspect how our findings apply
when the Benford hypothesis is a reasonable approximation to the true digit generating
process.

As a first experiment, we test the whole data set, obtaining p-values equal to 0.0342
and 0.0144 forχ2 andΛ1,n , respectively. Although such quantitiesmay appear smaller
than expected, they are in good agreement with the evidence provided by Nigrini and
Miller (2007). We thus see that also our likelihood ratio approach does not lead to
strong evidence against the Benford hypothesis in spite of the huge available sample
and of possible inaccuracies in the data collection process. By way of comparison,
we note that for the astronomical distance data both tests yield a virtually null p-
value, even with a smaller sample size. We then repeat the sub-sampling procedure of
Sect. 6 to streamflow data. Again, we see in Table 12 that both tests exhibit rejection
proportions which are very close to nominal test sizes, thus further corroborating the
plausibility of the Benford hypothesis in this problem.
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Table 12 Streamflow data.
Proportion of rejections of the
Benford hypothesis in 2000
samples of size n drawn with
replacement from the database,
at exact test size γ

n γ χ2 Λ1,n

200 0.10 0.090 0.104

300 0.05 0.044 0.045

500 0.01 0.009 0.010
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Fig. 4 Streamflow data. Distributions of the differences between the p-values of χ2 resulting from data
expressed first in cubic feet and then in cubic decimeters per second

We conclude our analysis, as in Sect. 6, by assessing the effect of changing the
measurement unit of streamflows from cubic feet to cubic decimeters per second.
Figure4 repeats the frame of Fig. 2 by reporting the distributions of the differences
between the p-values ofχ2 after this change of unit. The results are similar and perhaps
evenmore alarming,meaning that the distributions are clearly less concentrated around
zero. This empirical evidence appears to be very interesting because it shows that the
sensitivity of χ2 to the data scale does not alleviate even if the data are close to being
genuinely Benford.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-023-00881-y.
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