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Abstract
Functional data analysis (FDA) is a fast-growing area of research and development
in statistics. While most FDA literature imposes the classical L2 Hilbert structure on
function spaces, there is an emergent need for a different, shape-based approach for
analyzing functional data. This paper reviews and develops fundamental geometrical
concepts that help connect traditionally diverse fields of shape and functional analyses.
It showcases that focusing on shapes is oftenmore appropriate when structural features
(number of peaks and valleys and their heights) carry salient information in data. It
recaps recent mathematical representations and associated procedures for comparing,
summarizing, and testing the shapes of functions. Specifically, it discusses three tasks:
shape fitting, shape fPCA, and shape regression models. The latter refers to the models
that separate the shapes of functions from their phases and use them individually in
regression analysis. The ensuing results provide better interpretations and tend to pre-
serve geometric structures. The paper also discusses an extension where the functions
are not real-valued but manifold-valued. The article presents several examples of this
shape-centric functional data analysis using simulated and real data.
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1 Introduction

Statistical analysis of functional data has become a prominent field of research and
practice in recent years. The growing importance of this field stems from massive
improvements in data collection, storage, and processing power, allowing one to view
sampled data in near continuous time. Scientific,medical, and civilian domains provide
many functional data types that require statistical tools for analysis and inferences.
A prominent source of functional data in a modern digital society is visual, com-
ing from cameras, imagers, and other sensors. Cameras have become a significant
source for capturing information, especially in medicine, robotics, leisure, manufac-
turing, and bioinformatics. These devices produce a high volume of static images and
video streams that can be viewed as functional variables with spatial and temporal
indices. Analysis of such large data volumes requires modern statistical methods for
representing and analyzing the information content pertinent to the overall goals.

Historically the analysis of functional data appeared in several places. For example,
analyzing stochastic processes involves mathematical treatments of function spaces.
One examines the sample paths of stochastic processes as random functional vari-
ables and defines functional operators and metrics for their statistical modeling.
Several notable developments in stochastic processes, including the pioneering works
of Grenander (1956, 1981), led the field in the early research. The more modern
approach to functional data analysis (FDA) is due to the leadership of Ramsay, Sil-
verman, and colleagues (Ramsay and Silverman 2005; Ramsay et al. 2009), who
recognized the advantages of modeling functional variables explicitly and devel-
oped numerous computational procedures for statistically analyzing functional data.
Through their fundamental contributions, FDA has become an important, active field
in statistics, with significant involvement in various scientific and engineering fields.
Several textbook-level treatments of FDA are now available (Ferraty et al. 2007; Hsing
and Eubank 2015; Zhang 2013; Srivastava and Klassen 2016; Kokoszka and Reimherr
2017). Additionally, many review-type articles have also covered different aspects of
FDA (Morris 2015; Wang et al. 2016).

Driven by the abundance of functional data and the emergence of exciting applica-
tions, the field of functional data analysis has proliferated in recent years. Naturally,
there are multiple perspectives and research foci in this field. The traditional main-
stream approaches seek convenient extensions of past multivariate techniques by
adapting them to handling new challenges, including the infinite dimensionality of
function spaces. Although convenient, this paper argues that these extensions often
fail to provide interpretable and meaningful solutions. Specifically, we motivate and
develop an alternative perspective natural for image and functional data. We argue
that an essential aspect of functional data is their shape. Accordingly, one should
seek statistical techniques that are cognizant of the shapes of functions. For scalar
functions, shape relates to the number and heights of peaks and valleys but is less con-
cerned with their placements. For instance, two bimodal functions are deemed to have
similar shapes if the heights of their peaks and valleys are similar, but the locations
of these extrema may differ. For planar and space curves, shape relates to the bends,
corners, and regions of high curvatures. Functional data often represent the temporal
evolution of a phenomenon of interest, and modes correspond to significant events
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Shape-based functional data analysis 3

in that process. For instance, in statistical analysis of COVID-19 data, the discussion
has centered on the waves attributed to different mutations of the SARS-COV2 virus.
Even though the waves occurred at different times in different geographical regions,
they had similar impacts due to similar peak intensities. Here, the number and heights
of waves are considered more important than the actual time occurrences of the waves.
Similarly, in data depicting the consumption of utilities (electricity, gas, etc.) by indi-
vidual households, the peaks correspond to high energy usage and are essential for
planning by utility companies. As these and other examples presented later suggest,
shapes are often the main focus in certain functional data.

The next issue is: How to mathematically define and quantify shapes of functions
and develop statistical techniques to analyze these shapes? The shape is a geometric
characteristic, and this pursuit requires essential tools from the differential geometry
of functional spaces. Unfortunately, the widely used mathematical platform in FDA,
namely the Hilbert structure provided by the L2 metric, does not provide meaningful
results when analyzing shapes, and better alternatives are needed. While the vector
space structure supported by the L2 metric may seem convenient and allows natural
extensions of classical multivariate statistics to functional data, the results are counter-
intuitive when we employ this metric for quantifying shapes. With this background,
this paper has two broad goals: (1) motivate the need and importance of shape-based
functional data analysis in broad application contexts, and (2) review and extend some
essential tools for shape-based FDA.

We present some popular tools under both paradigms—the traditional FDA and the
shape-based FDA—to compare and contrast the two approaches. Some popular tools
in FDA include function estimation or curve fitting, functional PCA and dimensional
reduction, functional ANOVA, and functional regression models. After reviewing the
traditional approaches, we will develop similar concepts for shape data analysis of
functions. Specifically, we will discuss the estimation of shapes from discrete obser-
vations, PCA and modeling of shape data, and regression models involving shape
variables. We note that some of our developments are rather preliminary and serve as
invitations to the readers to help advance this field.

Scope of this paper: Although functional data comes in many forms, with various
combinations for domains and ranges, we will focus on functions of the type f :
I → R where I is a fixed interval. This restriction allows us to discuss statistical
shape analysis of f for a broad audience without getting too technical. Of course,
the cases where domain I is two- or three-dimensional, or the range space is R

d

(for d > 1), are also of great interest. Most of the discussion presented here applies
to these more general cases, albeit at a different computational cost and sometimes
additional theoretical machinery. We will not go into these setups in this paper. One
exception to this exclusion is functions of the type f : I → M where M is a nonlinear
Riemannian manifold and I is still an interval. We will discuss an extension to these
manifold-valued (orM-valued) functions as they have proven very pertinent inmodern
applications.

This paper highlights some developments at the crossroads of functional and shape
data analysis. Being an overview, it focuses on the main ideas and avoids getting
into algorithmic details or theoretical depths found in other, more technical literature.
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4 Y. Wu et al.

While most of the pedagogical material presented here is gleaned from the existing
literature, there are some novel ideas presented in Sects. 3.5, 4.1, 4.3, and 5.1. It also
lists some open problems in the field and invites interested researchers to take on these
challenges. The rest of the paper is organized as follows. Section2 summarizes the
well-used L

2 Hilbert structure for FDA and presents some standard statistical tools
used in data analysis. Section3 introduces the notion of the shape of scalar functions
on one-dimensional domains and presents some examples. Some statistical tools for
analyzing shapes of functional data are presented in Sect. 4. The paper then goes into
manifold-valued or M-valued curves in Sect. 5 and outlines some preliminary ideas
in that problem domain. It lists some open problems relating to shape-based FDA in
Sect. 6, and finally, the paper ends with a summary.

2 Basic functional data analysis

To start the discussion, we review tools that form essential building blocks in current
FDA techniques and practices. Underlying these tools is a popular and convenient
Hilbert structure on functional spaces, and we start by summarizing this framework.

2.1 Current perspective

In the early FDA research, it seemed essential to develop techniques that are natural
extensions of past multivariate methods. For statistical analysis, one needs to be able
to compare, summarize, model, and test functional data. The definition of a metric
(or distance) is central to achieving these goals. Accordingly, a standard mathemat-
ical platform for developing FDA is the Hilbert-space structure of square-integrable
functions. The set of square-integrable functions is given by:

L
2(I ,R) = { f : I ∈ R : ‖ f ‖ < ∞}

where ‖ f ‖ =
√∫

I f (t)2 dt . L2(I ,R) or simply L2 is a vector space endowed with a

natural inner-product 〈 f , g〉 = ∫
I f (t)g(t) dt . This Hilbert structure has been popular

for several reasons:

• Cross-sectional or pointwise analysis: Comparisons and summarizations of func-
tional data under theL2 norm reduce to cross-sectional or pointwise computations.
Here, pointwise implies that when studying a set of functions, say f1, f2, . . . , fn ,
one uses the same argument t for all functions in a computation. Or, when study-
ing covariance, one uses the same pair (s, t) for all observations. For example, the
comparison of two functions f1, f2 under the L2 metric uses:

‖ f1 − f2‖ =
(∫

I
( f1(t) − f2(t))

2 dt

)1/2

.

In the integral, only the values of f1 and f2 at the same time t are compared; it
never uses f1(t1) − f2(t2) for t1 �= t2.
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Fig. 1 Top row: The left panel shows functions f1 and f2, the middle panel shows vertical registration, and
the rightmost shows a linear interpolation using vertical registration. Bottom row: The middle panel shows
a more intuitive shape-based registration and the right shows corresponding linear interpolation

A matching of points across the two functions is also called registration, and the
L
2 norm uses vertical registration for comparing functions. The top row of Fig. 1

shows a pictorial illustration of this vertical registration. The left panel shows two
functions, f1 and f2, and the middle panel shows that the functions are matched
vertically, and only the vertical separations are considered. The right panel shows
a pointwise linear interpolation between these functions (1 − τ) f1(t) + τ f2(t)
indexed by τ ∈ [0, 1]. From a geometric perspective, this interpolation does not
seem natural. The intermediate functions have shapes different from f1 and f2.
In order to motivate a later discussion on shapes and shape-based interpolations,
we illustrate a different registration in the bottom row. Here, the peak is matched
with the peak and valley with valley across f1 and f2. This oblique registration
provides a more natural interpolation of functions, as shown in the right panel, and
it results from shape considerations presented later in this chapter.
When we seek the average of a set of functions under the L2 norm, we arrive at a
familiar quantity, the cross-sectional mean:

f̄ = argmin
f ∈L2

(
n∑

i=1

‖ f − fi‖2
)

	⇒ f̄ (t) = 1

n

n∑
i=1

fi (t), t ∈ I .

Similarly, one can obtain cross-sectional variance using, σ 2
f (t) =(

1
n−1

∑n
i=1( fi (t) − f̄ (t))2

)
, for any t ∈ I . Once again, we see that these sum-

maries result from considering values of fi ’s synchronously, i.e., the averaging
is pointwise. The top row of Fig. 2 shows COVID data for daily new infec-
tions, hospitalizations, and deaths in 25 European countries over the time period
09/2020–10/2022. The middle row shows the cross-sectional means as well as
one-standard-deviation bands ( f̄ (t)−σ f (t), f̄ (t)+σ f (t)) for these data. As these
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6 Y. Wu et al.

Fig. 2 Cross-sectional statistics: In each column, the top row shows a data set, the middle shows the cross-
sectional mean f̄ and one standard-deviation band f̄ ± σ f , and the bottom shows some individual data
points

examples suggest, the mean function often shows a softening or disappearance
of peaks and valleys due to poor alignment. In some cases, the opposite may
happen, i.e., averaging of unaligned functions may create new peaks. While this
cross-sectional averaging is useful in traditional statistical settings, especially
when modeling data as a signal plus zero-mean noise, it can also result in the loss
of structures in the original signal. The bottom row shows data for some individual
countries; these plots have noticeably more peaks and valleys than the average f̄ .
For instance, the daily infection rates of Spain, Italy, and Ukraine show multiple
peaks (or pandemic waves) in 2022. However, these peaks are lost in the average
profile of 25 countries. The need to preserve geometric structures when computing
data summaries motivates the use of shape analysis.

• Dimension reduction and multivariate approximation: Functional spaces are
infinite-dimensional, presenting a big hurdle in statistical modeling and inferences
of functional data. A natural course is to map the problem to a finite-dimensional
vector space, either linearly or nonlinearly, and then apply standard tools from
multivariate statistics. SinceL2 is a familiar vector space, it providesmany intuitive
choices of orthonormal bases, allowing linear projections to finite-dimensional
spaces. A set of functionsB forms an orthonormal basis ofL2 if: (i) for any bi , b j ∈
B, we have

〈
bi , b j

〉 =
{
1, i = j
0, i �= j

, and (ii) span(B) is dense inL2. For example, the

set of Fourier functions:B = {1, 1√
2|I | sin(2nπ t), 1√

2|I | cos(2nπ t), n = 1, 2, . . . }
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Shape-based functional data analysis 7

provides a convenient orthonormal basis for elements of L2. For any f ∈ L
2,

we can write: f (t) = ∑∞
j=1 c j b j (t). In fact, the Parseval’s identity states that

‖ f ‖2 = ∑∞
j=1

〈
f , b j

〉2 for any f ∈ L
2, relating the L

2 vector space with the

�2 vector space. This implies that the series
∑J

j=1

〈
f , b j

〉2 converges to finite

value, and therefore, one can approximate f ≈ ∑J
j=1 c j b j for a large J , where

c j = 〈
f , b j

〉
. This approximation facilitates the replacement of f by a finite vector

c ∈ R
J , and the classical multivariate analysis becomes applicable. Many tools

from multivariate statistics—principal component analysis, discriminant analysis,
multiple hypothesis testing, etc.—have made their way into FDA through this
relationship. As described in the next section, one can also use functional PCA, or
fPCA, to learn an orthonormal basis from the data.

2.2 Essential FDA tools: curve-fitting, fPCA, regression

Given the cross-sectional or pointwise nature of the L2 metric, and the flat geometry
(or vector space structure) of L2(I ,R), several ideas from multivariate statistics can
be naturally extended to FDA.

2.2.1 Curve fitting

Theoretically, functions are represented on a continuous domain, but, in practice,
one needs to discretize them for computing norms, inner products, averages, and
covariances. This discretization requires evaluating functions at arbitrary points on
the domain I . For example, given two discretized functions: f1, sampled at points
{t1,i ∈ I , i = 1, 2, . . . , n1} and f2, sampled at points {t2,i ∈ D, i = 1, 2, . . . , n2}, say
we want to approximate their inner product 〈 f1, f2〉? One way is to fix the sampling
of f1 and to resample f2 at the points {t1,i , i = 1, 2, . . . , n1}. This resampling, in turn,
requires curve fitting and is outlined next.

Given a set of time-indexed points {(ti , yi , i = 1, 2, . . . , n) ∈ I × R}, where ti s
form an ordered set, one can fit a function according to a penalized squared-error
criterion:

f̂1 = argmin
f ∈L2

(
n∑

i=1

(yi − f (ti ))
2 + κR( f )

)
(1)

ĉ = argmin
c∈RJ

⎛
⎝

n∑
i=1

(yi −
J∑

j=1

c j b j (ti ))
2 + κcT Mc

⎞
⎠ . (2)

The two equations are equivalent under the constraint f (t) = ∑J
j=1 c j b j (t). The

first equation states the problem in F , while the second equation uses a finite basis to
rephrase the problem in a vector space RJ . Here, M is a pre-computed (roughness)
matrix that comes from the inner products of derivatives of b j s. For example, when
using a second-order penalty, the entries of M are given by Mkl = 〈

b̈k, b̈l
〉
. Figure 3
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Fig. 3 Fitting continuous functions to discrete data. Each example shows the data points (blue dots) and
three estimated curves for different values of κ (small, medium, and large) (color figure online)

shows three examples of fitting curves for the sample size n = 10. For each set of n
data points, we plot three fitted curves corresponding to different values of the penalty
coefficient κ . A smaller value of κ allows more data fidelity, while a larger κ favors
a smoother fitted function. Once we have an estimated curve f̂ , we can resample it
arbitrarily. For example, one can compute f̂ at points needed to approximate an inner
product with another function.

The curve fitting problem manifests itself in several ways in statistics, including
regression (see Sect. 2.2.3). Similar to Eq. 2, one often uses an orthonormal basis for
representing and estimating in regressionmodels. Insteadof choosing apre-determined
basis, one can also estimate basis functions from the training data, and fPCA (discussed
next) is a standard solution.

2.2.2 fPCA and dimension reduction

Given a set of functions, one can use fPCA for dimension reduction andmapping some
problems from a function space to a finite-dimensional vector space. As described in
Marron andDryden (2021), fPCA analysis has become a central tool in the preliminary
inspection of functional data.

Let { fi ∼ π, i = 1, 2, . . . , n} where π denotes a probability model on the function
space F . Let μ(t) = Eπ [ fi (t)] denote the pointwise mean and let

C(s, t) = E[( fi (t) − μ(t))( fi (s) − μ(s))]

denote the covariance function of fi . Define C to be the linear operator onF associated
with the function C(s, t) according to:

C : F → F , C( f )(t) =
∫

C(s, t) f (s) ds .

Since C is a bounded, linear, and self-adjoint operator, it admits a spectral decompo-
sition C = ∑∞

j=1 σ 2
i ψ j (s)ψ(t), where the eigenfunctions {ψ j } form an orthonormal

basis of the function space F = L
2 (Hsing and Eubank 2015). Using the Riesz

representation theory, we can represent any fi ∼ π using the eigenfunctions φ j ’s
according to: fi (t) = ∑∞

j=1 x jψ j (t). Here, {x j } are scalar random variables that
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Fig. 4 FPCA example. Top row: The left panel shows daily death-rate curves for 25 European countries,
and the right panel shows 21 simulated bimodal functions, with their cross-sectional means overlaid in
black. The second and third rows depict variations along their three principal directions

capture the variability of f . In practice, one can obtain this decomposition by dis-
cretizing the domain I and replacing the integral

∫
I fi (t) f j (t) dt by the summation

δ
∑

k fi (tk) f j (tk) (assuming that {tk} denotes the uniform partition of I with width
δ). This replaces the fPCA procedure with the finite-dimensional PCA using standard
matrix algebra.

We demonstrate this idea with two examples. The top row of Fig. 4 shows two sets
of functional data; the left set is for daily death rates for 25 European countries over
a certain period, and the right set contains some simulated bimodal functions. These
panels also show their cross-sectional means f̄ in black. The second row shows the
three principal directions of variation for the death-rate data: each panel contains three
curves { f̄ −σ jψ j , f̄ , f̄ +σ jψ j }, for j = 1, 2, 3, to capture how the function changes
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10 Y. Wu et al.

along ψ j direction. Intuitively, one would expect f̄ ± σ jψ j to cover f̄ from top and
bottom, capturing the data’s vertical variability. However, this is not always the case.
We see that in some places the curves f̄ − σ jψ j , f̄ , and f̄ + σ jψ j actually intersect.
This indicates the presence of horizontal variability, termed phase variability (made
precise later in this paper) in the data. The definition and handling of phase variability
is an essential tool in the shape analysis of functions. We use the simulated bimodal
dataset from the top-right panel to further highlight this issue, with results shown in
the bottom row. In this case, the variability is almost vertical for j = 2 and j = 3,
but for j = 1, the variability has a large horizontal component. Generally speaking,
if some eigendirections move the peaks horizontally and others change their heights,
their linear combinations can create or destroy peaks and valleys in the data. Thus, if
one is concerned with preserving the modality (number of peaks), thisL2-based fPCA
is inappropriate. An alternate fPCA approach, based on shape analysis of function,
has better properties and interpretability.

As these examples illustrate, one can use fPCA to gain some understanding of the
functional data before further modeling and testing steps. The textbook (Marron and
Dryden 2021) describes the strength of such PCA-based screening tools for functional
and other nonlinear data.

2.2.3 Functional regression models

A central tool in statistical modeling is regression, and not surprisingly, a signif-
icant effort in FDA has been devoted to regression models involving functional
variables. Most of these regression models rely on the L2 Hilbert structure (see Mor-
ris 2015 and references therein), either explicitly or implicitly. In broad terms, we
have three scenarios for regression: (a) scalar responses and functional predictors
or (Scalar-on-function regression); (b) functional responses and vector predictors or
(Function-on-vector regression); and (c) functional responses and functional predic-
tors or (Function-on-function regression).Wewill review themain ideas (parametric,
semi-parametric, and nonparametric approaches) in each of these three categories:

• Scalar-on-function regression: An initial model of this type, named functional
linear regression model (FLRM) was introduced by Ramsay and Dalzell (1991)
and expressed by Hastie and Mallows (1993) as:

yi = α0 + 〈
f xi , β

〉 + εi , (3)

where α0 ∈ R is the intercept, β ∈ L
2 is the regression coefficient, {yi ∈ R}

are the responses, { f xi ∈ L
2} are the functional predictors, and εi ∈ R are zero-

mean, finite-variance random noise. If we express β using an orthonormal basis
β(t) = ∑J

j=1 c j b j (t), then we can reduce the estimation of β to a standard least
squares problem. Subsequently, several authors (Cardot et al. 1999; Ahn et al.
2018; Reiss et al. 2017; Goldsmith and Scheipl 2014; Fuchs et al. 2015; Qi and
Luo 2018; Luo and Qi 2017; Cai and Hall 2006), have studied and advanced
this model. The variations include parametric models such as Shin (2009)
which proposed functional partial-linear models extending Eq. 3 to include both
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Shape-based functional data analysis 11

functional and vector predictors. Similarly, Marx and Eilers (1999) proposed gen-
eralized functional-linear models via a known link function for exponential family
responses; Gertheiss et al. (2013), Goldsmith et al. (2012) extended the literature
to longitudinal functional-linear models via the introduction of the random effects
into model (3); and (Yao andMüller 2010) introduced functional quadratic regres-
sion models that include full quadratic terms like

∫ ∫
f xi (t)Xi (s)β2(t, s) dt ds

into model (3). Some semi-parametric approaches have been investigated as
well. Specifically, functional single-index models or functional multiple-index
models were proposed in Fan et al. (2015), Li et al. (2010), Marx et al. (2011),
which incorporated nonlinearities in model (3) by involving smooth functions:
yi = α0 + ∑K

k=1 hk(
〈
f xi , βk

〉
) + εi , where functions hk : R → R, k = 1, . . . , K ,

are unknown. Besides the parametric and semi-parametric approaches, the litera-
ture has fully nonparametric paradigm (Ferraty et al. 2007), where the model for
the conditional mean E[yi | f xi ] is not only nonlinear but essentially unspecified.
The common strategy here is to apply functional PCA on the predictors first
and then apply smoothing methods to estimate the unspecified conditional mean
function (Müller and Yao 2008;Wong et al. 2019; Zhu et al. 2014). One advantage
of nonparametric approaches is that they are flexible and suitable for more general
data spaces such as nonlinear Riemannian manifolds.

• Function-on-vector regression: A basic linear function-on-vector regression
model is given by

f yi (t) =
K∑

k=1

xikβk(t) + εi (t), t ∈ I (4)

where f yi ∈ L
2 is the functional response, {xik ∈ R, k = 1, . . . , K } are the pre-

dictors, and {βk ∈ L
2} are functional coefficients representing the partial effect of

predictor xik on the response f yi at position t, i = 1, . . . , n. The set {εi ∈ L
2}ni=1

are the residual error deviations, frequently assumed to be a Gaussian process with
covariance function�(t, s), whose structure describes the within-function covari-
ance. Sometimes the error deviations are split into a combination of individual
random effect functions and white noise residual errors. This model assumes that
the value of f yi at time t depends only on the current value of

∑K
k=1 xikβk(t),

and not the past or future values. Hence, it is often called a concurrent regression
model (Wang et al. 2016).
A vast majority of existing parametric approaches to function-on-vector regres-
sion can be related back to model (4). The methods differ in how they smooth the
mean function (or functional coefficient), with different choices of basis functions
(e.g., principle components, splines, and wavelets) or regularization approaches,
and also in how they model the correlation over t in the curve-to-curve deviations
(see Morris 2015 and reference therein). We note that the function-wise indepen-
dence assumption in model (4) is often violated in practice. In order to capture this
correlation induced by the experimental design, there are two popular approaches:
(i) specifying a function-wise covariance structure (Zhang et al. 2016) and (ii)
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adding random effect functions (Guo 2002; Scheipl et al. 2015). In contrast to the
parametric approaches, which involve mean functions that are nonparametric in
t but linear in x , some semi-parametric and nonparametric approaches, e.g.,
(Scheipl et al. 2015; Wood 2017), have been proposed where the idea of general-
ized additive model (Hastie and Tibshirani 1987) has been extended to model (4)
via terms that are either parametric or nonparametric in x .
The goal of functional-on-vector regression models is often different from that of
scalar-on-function regression models. Here the focus is on estimation of βk(t),
followed by either testing whether βk(t) = 0 or assessing for which t we have
βk(t) �= 0. Thus, some hypothesis testing problems and estimation of confidence
bands problems have been thoroughly investigated in Fan and Zhang (2008) and
Zhu et al. (2014), and Zhu et al. (2012). A special case arises when the predictor is
a scalar variable, such as time. In this case, one can view the problem of regression
as a simple curve fitting. Rich literature exists on fitting curves to time series data
on both Euclidean (see Sect. 2.2.1) and non-Euclidean domains (see Sect. 5.1).

• Function-on-function regression: The third situation is when both the predictors
and responses are functions. Compared to the first two categories, little work has
been done on function-on-function regression problems. A function-on-function
regression model with unconstrained surface coefficient β(s, t)was first proposed
in Ramsay and Dalzell (1991):

f yi (t) = β0(t) +
∫

f xi (s)β(t, s)ds + εi (t) = β0(t) + (Aβ f xi )(t) + εi (t), (5)

which can be treated as an extension of (3) when the scalar response y is replaced
by f y ∈ L

2 and the coefficient function β ∈ L
2(I × I ,R) varies with t and

s, leading to a bivariate coefficient surface. Corresponding to β, there is a linear
operator Aβ : L2 → L

2 that operates on f xi . Also, model (5) can be treated as an
extension of (4) by changing the inner product from a finite space to a function
space (L2).
The estimation in this situation is challenging because the model (5) faces issues
present in both scalar-on-function regression and functional-on-vector regression
settings, including (i) regularizations of the predictor function, coefficient surface
in both dimensions and structural modeling of within-function correlation in the
residual errors (Ivanescu et al. 2015;Wu andMüller 2011); and (ii) specification of
function-wise correlationwhen the response curves are correlated (e.g., covariance
structure or random effect functions) (Meyer et al. 2015; Scheipl et al. 2015).

So far, we have summarized essential items from the current FDA, with functional
data treated as elements of theHilbert spaceL2. Next, we introduce a novel perspective
where the shapes of functions, rather than full functions, become the main focus.
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Original functions(B) Shapes Phases

(A) ShapesOriginal functions Phases

Fig. 5 (A)Hospitalization rates (per million) for 16 European countries from April 1, 2020, to July 1, 2021.
(B) The Google search trends data (normalized search times) for the topic “Vaccine" in 17 countries from
October 11, 2020, to October 2, 2022. The left columns show the original data; the middle columns focus
on the shapes through alignments; and the right columns show the phases

3 Shapes: motivation, definition, and analysis

This section starts with some applicationsmotivating the need to focus on the shapes of
functions. Then, it introduces a formal definition of shape and presents some essential
tools for shape analysis.

3.1 Motivation for shape analysis

Generally, the shape refers to the number and heights of extremal points in a function.
For instance, it could simply refer to the number of modes in functions or can include
the heights of these modes also. (We will present a precise mathematical definition in
the next section but keep the discussion abstract for now.) In some situations, one is
more interested in the number and (relative) heights of modes of a function than their
locations. For example, this has been the case in COVID research, where the shapes of
COVID curves (daily infection rates, hospitalization counts, death rates, etc.) are the
main focus. Significant peaks in these data curves represent waves of infections and
are medically attributed to a newmutation of the SAR-Cov2 virus. The emphasis is on
detecting and characterizing these waves and their impacts on different populations.
The top left panel of Fig. 5shows the plots of hospitalization rates (per million) over
time for several European countries. The period covered here is from April 1, 2020,
to July 1, 2021. Different countries had major waves at different asynchronous times,
but still, there was an underlying pattern to the waves for the region as a whole. This
pattern is evident if we align the peaks and valleys of these curves in some way, as
shown in the middle panel. Most countries had three big waves centered around 05/20,
12/20, and 05/21. Some countries also had an additional small wave during 03/21. The
rightmost panel shows the time-warping functions used to align the original functions.

To gauge public interest in COVID vaccine developments and research, we stud-
ied data from Google trend counts for the word “vaccine." The bottom left panel of
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Fig. 6 Illustrating the problem with using L2 norm in comparing shapes. In each case, the distance between
f1 and f3 is smaller than f1 and f2, despite f1, f2 having similar shapes and f3 being very different

Fig. 5 shows the plots of normalized search frequencies over time for several countries
worldwide. The search period is from October 11, 2020, to October 2, 2021. Once
again, notice that although the peak searches are at different time points in different
countries, the underlying trends of the change in vaccine popularity are similar. This
pattern becomes clear once we align the peaks and valleys, as shown in the middle
panel.

These examples indicate that peaks and valleys broadly capture the shapes of
scalar functions, and properly aligning them across observations helps elucidates their
shapes. The question arises: How can we mathematically represent the shapes? How
can we quantify the similarities and dissimilarities between the shapes of functions
naturally and effectively? As mentioned, a classical and obvious choice would be the
L
2 norm. However, theL2 norm has several limitations in this regard, leading to coun-

terintuitive results. Figure 6 demonstrates the problem in using L
2 norm to analyze

shapes of functions. In both panels, functions f1 (red line) and f2 (blue line) have
a similar shape, i.e., the same number and the same heights of peaks. The magenta
line f3 in the left panel illustrates a flatter unimodal function, while f3 in the right
panel represents a constant function. Note that d13, the L2 distance between functions
f1 and f3, is smaller than d12 in both examples. The functions with the same shapes
have larger L2 distances than the totally different functions. Thus, using the L2 norm
verbatim to quantify the shape differences leads to counterintuitive results.

3.2 Definition: shape of a function

The main question is: How can we quantify the notion of shape of a scalar function
mathematically precisely? Most commonly, the shape is associated with the count of
the peaks of a function. For instance, onemayconsider unimodal functions (Fig. 7(left))
to be similar in shape and bimodal functions (Fig. 7(right)) to be different from the
unimodal functions but similar to each other. Further, it also seems pertinent to include
the heights of these peaks in the shape discussion. Any two bimodal functions with
similar heights of their corresponding peaks (and valleys) will have similar shapes
compared to two bimodal functions with very different heights of their peaks (and
valleys). The locations of the peaks or valleys in I seem less useful in defining shapes.
In other words, the horizontal movements of peaks, often called the phase variability
(Marron et al. 2014, 2015), do not affect the shape of a function. The vertical translation
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Fig. 7 Notion of shapes of functions relates closely to the number and relative heights of peaks and valleys
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Fig. 8 Illustration of time warping of a function. The left panel shows γid and γ ; the right shows an f and
its warping f ◦ γ

is another transformation that preserves the shape: f (t) �→ f (t)+ c, c ∈ R. Together
these properties lead to the notion of invariance of shape. While these qualitative
discussions aremeaningful, one needs precisemathematical representations to develop
statisticalmodels and inferences.Weneed frameworks that respect our intuitive notions
of shape and facilitate statistical analyses.

We introduce a group of time-warping functions to help develop a precise notion
of shape. Let � denote the set of all orientation-preserving diffeomorphisms of I to
itself. A diffeomorphism is a smooth, invertible function, and its inverse is smooth.
Naturally, such a diffeomorphism preserves the boundaries of I . Notably, this set � is
a group with composition being the group operation. For any γ1, γ2 ∈ �, the function
γ1(γ2(t)) = (γ1 ◦γ2)(t) is also in �. The identity element of � is the identity function
γid(t) = t , and for every γ ∈ �, we have a γ −1 ∈ � such that γ ◦ γ −1 = γid . Why
is � being a group important? As we will see later, the group structure of � is critical
in establishing certain invariant properties of shapes.

In the discussion on traditional FDA, we used F = L
2, the set of square-integrable

functions, as the function space. In the shape-based FDA, we will use a restricted set.
LetF be the set of all absolutely-continuous functions on the interval I . For any f ∈ F
and γ ∈ �, the composition f ◦γ is said to be time-warping of f by γ . This operation
only moves the values in the graph of f horizontally; no points move vertically. An
example of this warping is illustrated in Fig. 8 . In the FDA literature, this is also
called changing the phase of f . Any two functions f1 and f2 are said to have the same
shape if they differ only in their phases, i.e., there is γ ∈ � such that f1 = f2 ◦ γ .
Since � is a group, and every γ has an inverse, this also implies that f1 ◦ γ −1 = f2.
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16 Y. Wu et al.

Furthermore, one can check that this denotes an equivalence relationship; we will
denote it by f1 ∼ f2. One can check that if f1 ∼ f2 and f2 ∼ f3, we have f1 ∼ f3.
The equivalence class of a function f is denoted by the set [ f ] = { f ◦ γ : γ ∈ �}.
In mathematics, one calls the set [ f ] the orbit of f under �. Any two equivalence
classes are either disjoint or equal. With this setup, we are now ready to provide a
formal definition of the shape of a function.

Definition 1 (Shape of a function) For any function f , its equivalence class [ f ] under
the equivalence relation ∼ is called the shape of f . The set of all shapes S = {[ f ] :
f ∈ F} is called the shape space of functions. It is also denoted by the quotient space
F/�.

The shape is a property that does not lend to Euclidean calculus, and that causes
a major difficulty in representing and quantifying shapes. One cannot simply add,
subtract, or scale shapes. In order to compare and quantify shapes, one needs a proper
metric on the set S, and several choices are discussed in the literature. In an approach
called elastic shape analysis (Srivastava and Klassen 2016), this distance is as follows.
Define the square-root velocity function (SRVF) of a function f ∈ F to be q ∈ L

2,
where q(t) = sign( ḟ (t))

√
| ḟ (t)|. The use of SRVFs in shape analysis is motivated

by several properties. Please refer to the book (Srivastava and Klassen 2016) for a
detailed development. It is important to note that SRVF is a bijection fromF toL2 (up
to a constant), and one can reconstruct f from its SRVF q. That is, given (q, f (0)),
the original function is given by f (t) = f (0) + ∫ t

0 |q(s)|q(s)ds. However, since the
vertical translation of a function is usually shape-preserving, the SRVF q is sufficient
to describe the shape of f .

If the SRVF of f is q, then the SRVF of ( f ◦ γ ) is given by (q ◦ γ )
√

γ̇ . We will
denote the last quantity by q�γ for brevity. It is interesting to note that for all q ∈ L

2

and γ ∈ �, we have:

‖q�γ ‖2 =
∫

I
((q ◦ γ )

√
γ̇ )2 dt =

∫

I
q(s)2 ds = ‖q‖2 . (6)

In other words, the transformation q �→ q�γ is norm preserving. Notably, the same
does not hold for L2 norm and time warping, i.e., in general ‖ f ◦ γ ‖ �= ‖ f ‖ except
for some special cases. Hence, the shortcomings of traditional methods in registration
and shape analysis. We caution that even though the mapping q �→ q�γ is unitary, not
all the unitary mappings can be expressed in this fashion. Even if a mapping q �→ q̃
is unitary and results from such a transformation, it is not straightforward to find the
corresponding γ analytically, but the numerical solutions exist.

Analogous to the definition of shape as an equivalence class [ f ] ⊂ F , we can define
the shape of an SRVF q by [q] = {q�γ : γ ∈ �}. The shape difference between any
two curves is given by comparing their equivalence classes:

ds([q1], [q2]) = inf
γ∈�

‖q1 − (q2�γ )‖ = inf
γ∈�

‖q2 − (q1�γ )‖ . (7)

If γ ∗ is the optimizer for the middle term in Eq. 7, then the functions f1 and f2 ◦ γ ∗
are said to be optimally aligned. That is, for any t ∈ I , the vertical registration of f1(t)
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with f2(γ ∗(t)) best aligns the peaks and valleys in the two functions. The quantity ds
is called the shape metric and is used to impose a metric structure on S. If any two
functions are optimally aligned, then they do not have any phase variability between
them.

The isometry condition (Eq. 6) mentioned above is of fundamental importance in
shape-based FDA. There are several interesting consequences of that condition that
are critical in shape analysis. We list some of them below without proofs but refer the
reader to Srivastava and Klassen (2016) for the full list.

• If γ ∗ is in the set arg infγ∈� ‖q1 − (q2�γ )‖, then γ ∗−1 is an element of the set
arg infγ∈� ‖q2 − (q1�γ )‖. That is, the optimization problem stated in Eq. 7 is
inverse consistent.

• For any q1, q2 ∈ L
2 and c ∈ R+, the solution arg infγ∈� ‖q1 − c(q2�γ )‖ does

not depent on c. Consequently, we have that the identity function γid is in the set
arg infγ∈� ‖q1 − c(q1�γ )‖. That is, a multiplication by a positive constant does
not change the phase of a function.

• The quantity ds is a proper metric on the shape space S = F/�. That is, it satisfies
symmetry, positive-definiteness, and the triangle inequality.

In general, there is no readily available expression for optimization over � in Eq. 7.
However, a well-known numerical procedure called dynamic programming (Bertsekas
1995) has been used for several problems, including optimal path finding on discrete
graphs. If we discretize I using T partition points, then the computational complexity
of this algorithm is O(T 2k) where k dictates bounds on the slope of γ̇ during opti-
mization. Note that the mapping t �→ γ (t) provides the optimal slanted matching
(between f1 and f2) referred to in Sect. 2.1.

Whynot use the quantity ‖ f1−( f2◦γ )‖ (instead of ‖q1−(q2�γ )‖) forminimization
in Eq. 7. After all, the L

2 norm is a popular tool in FDA for comparing functions!
The problem is that using ‖ f1 − ( f2 ◦ γ )‖ leads to a degeneracy: one can severely
distort f2 by time warping and arbitrarily reduce that cost function. This phenomenon
is called the pinching effect. Figure 9 shows an example of pinching in the top row.
To avoid pinching, many past papers have used a penalized optimization approach:

inf
γ∈�

‖ f1 − ( f2 ◦ γ )‖2 + λR(γ ), (8)

to perform functional alignment and phase removal. Here, R denotes a penalty term
on γ and is introduced to avoid severe distortion of f2. Despite its popularity (Eq. 8 is
at the heart of past efforts in functional alignment including PACE (Tang and Müller
2008; Yao et al. 2005)), this formulation is fundamentally flawed. Figure 9 illustrates
some of the issues resulting from this approach. The figure starts with two functions
f1, f2 (top left) and studies their pairwise alignment using the penalized-L2 given in
Eq. 8. The first column shows the optimal alignment of f2 to f1, and the second column
aligns f1 to f2. The third column shows the optimal γ s for the two cases: γ1 and γ2. In
order to study the symmetry of this solution, we compute their composition γ1 ◦ γ2 in
the fourth column. The first three rows correspond to solutions for different λs. When
λ = 0 or no penalty, the solution has inverse symmetry, i.e., γ1 ◦ γ2 = γid , but this
solution exhibits the pinching effect or degeneracy of the solution. As λ increases, the
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Fig. 9 Comparing alignment of two functions f1, f2 (top left) using penalized L2 method (top three rows)
and the elastic method (bottom row). Each row shows the alignment of f2 to f1, the alignment of f1 to f2,
the corresponding time warpings, and the composition of two warpings

pinching and alignment decrease, and the solution becomes inverse asymmetric. The
bottom row shows the solution from the elastic approach (Eq. 7); it is perfectly inverse
asymmetric, the alignment level is impressive, and no choice of parameter is involved.

When we get functional data for analysis, we cannot be certain just by visual
inspection if it contains phase variability on not.Wewant to automate that decision, i.e.,
wewant amethod that separates the phase only if needed but leaves the data unchanged
if the data is already aligned. Equation 7 provides this situation, while Eq. 8 does not.
Consider the results in Fig. 10. Here, we take two functions that are perfectly aligned
already, f1(t) = sin(2π t) and f2(t) = 2 f1(t). Ideally, an alignment algorithm should
leave them unchanged, but applying Eq. 8 results in significant distortions depending
on the penalty. Also, note this method’s lack of inverse consistency when the penalty
is present. In contrast, Eq. 7 leaves the functions unchanged as desired.

So far, we have discussed alignment and shape comparisons of two functions.What
if we are given a set of n functions f1, f2, . . . , fn , and we want to analyze or visualize
their shapes? Let q1, q2, . . . , qn represent their SRVFs. Then, solve for their mean μ

according to an iterative computation:

μ = 1

n

n∑
i=1

(qi�γi ), where γi = argmin
γ∈�

‖μ − (qi�γ )‖2 . (9)

These are two mutually dependent equations, and one iterates between them until
convergence to solve for the mean shape μ. The resulting optimal warpings {γ ∗

i }
capture the data’s horizontal or phase variability, so we call them their phases. After
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2

Fig. 10 Testing alignment methods on two functions with the same shapes. Top row: Results from Eq. 8
with no penalty. Middle row: Results from Eq. 8 with some penalty. Bottom row: Results from Eq. 7

optimal alignment to the mean, the only information left in the aligned functions
f̃i = fi ◦γi are the heights of the peaks and valleys, and we define them as the shapes.
Figure 11 illustrates the utility of elastic alignment of data with three examples. The
first two rows are simulated data, and the third row presents the data for new COVID
deaths in 25 European countries from September 2020 to July 2021. Column (A)
presents the original functions.We compute themean functionwith andwithout elastic
alignment and show the time point-wise variance on the mean function, colored by the
scaled variance level. As shown in column (B), the variance and shape differences are
significant over most of the domain I before functional alignment. However, after the
elastic alignment using SRVF, the shape differences are primarily seen in the peaks
of the functions (column (C)), which reflects the accurate information in the shape
pattern of the data. More importantly, the misalignment errors that often overwhelm
sample shape variance have been removed.

3.3 Alignment and clustering comparison

Next, we present a comparative study on registering functions and clustering shapes.
We compare the functional data registration and clustering results using the elastic
approach and a pairwise functional data synchronization method used in the PACE
package (Tang and Müller 2008; Yao et al. 2005).

Figure 12 presents the results of an experiment on aligning functions using SRVFs
and PACE. The data are made up of simple shapes that have been time-warped using
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Fig. 11 Time point-wise variance of functions. ColumnAOriginal functions with phase variability. Column
B Variance without function alignment. Column C Variance after function alignment. Color in B and C
indicates the variance of the time point scaled by the maximum of the variances with and without alignment

random warping functions. We start with three types of basic shapes as shown left in
panel (A): unimodal g1 (red), bimodal g2 (blue), and trimodal g3 (yellow). Then, we
generate random timewarping functions γi ’s with themodel γi = t+zi t(t−1), where
zi ∼ U [−1, 1]. Next, we apply these random timewarping functions γi , i = 1, . . . , 90
((A) right) to the simple shapes, respectively, to simulate functions { fi } = {g1 ◦ γi :
i = 1, . . . , 30} ∪ {g2 ◦ γi : i = 31, . . . , 60} ∪ {g3 ◦ γi : i = 61, . . . , 90}. Note that
the 90 randomly warped functions ((A) left) fall into three clusters (30 unimodal, 30
bimodal, and 30 trimodal), with only phase variability separating functions inside a
cluster.

The results in panel (B) show that theSRVF framework succeeds in removingphases
and discovering the tri-cluster structure. The results from alignment tools in the PACE
package are not as good, as there is still a substantial amount of phase variability in the
data. The distance heatmaps in panel (C) further quantify the alignment results. They
show matrices of pairwise L2 distances between functions (after the joint alignment
by each method) as images. Functions aligned with SRVF show much tighter three
clusters, with larger intercluster and smaller intracluster distances.

To quantify clustering performance, we compare the resulting clusters with the
original three shapes (unimodal, bimodal, and trimodal) used in data simulation. If a
function with one shape gets clustered with functions of different shapes, we label it an
error. In this experiment, the SRVF registration gets an accuracy of 90/90, the PACE
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Fig. 12 Simulation experiment of functional data registration and analysis. A Data simulation bases:
unimodal, bimodal, and trimodal functions; Random time warping functions γi . B Functions randomly
time-warped, functions aligned using SRVF framework, and functions aligned with PACE package.C Pair-
wise L2distance matrices viewed as heatmaps for the original functions, aligned using SRVF, and aligned
using PACE

registration has an accuracy of 69/90, and the original (randomly warped) functions
without registration have an accuracy rate of 64/90.

3.4 Shape discovery

What is the effect of using the shape metric (Eq. 7) for alignment and averaging
functions? Figure 13 shows the enhancement of geometrical features due to temporal
alignments of functions. The top row is a repeat from Fig. 2 showing the cross-
sectional mean and variance for daily infections, hospitalizations, and death counts for
25 European countries. The bottom row has similar statistics, but the phase variability
has been removed this time, and only the shape variability is left. The two results—top
and bottom—provide different pictures of the summary statistics in the FDA. One can
interpret the bottom row as discovering and focusing on the shape variability in the
data. Notably, one can better recognize the waves in pandemic data after alignment
than before.
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Fig. 13 European COVID data (Fig. 2 revisited). The left column is for daily infections, the middle is for
hospitalizations, and the right is for daily death counts. The top row is taken from the middle of Fig. 2. The
bottom row shows corresponding plots of standard deviation around cross-sectional means after aligning
the functional data

3.5 Extension: modal shape analysis

We have developed a notion of shape via an equivalence relation; a shape is an equiva-
lence class of functions that are within time warping of each other. There is a different
mathematical representation of this class that can be extended to amore abstract notion
of shape. This notion, relating to the number of modes in a function but independent
of their heights, can be helpful in some contexts. We develop this representation next.
To understand this representation, consider the following result.

Lemma 1 Let f0 ∈ F be any function such that the set E = {x ∈ I | ḟ0 = 0} has
measure zero. For such an f0, there is a unique piecewise-linear function f0,p ∈ [ f0].

See Theorem 1 in Lahiri et al. (2015) for a proof. This lemma can be understood as
follows.On any interval between adjacent peak andvalley, the function f0 ismonotonic
and can be time-warped into a straight line. Since these domains are disjoint, and their
union is I , we can concatenate these piecewisewarpings to forma fullwarping function
γ on I such that f0,p = f0 ◦ γ0 is piecewise linear. Note that the boundary points of I
are either peaks or valleys. (One can extend this concept to include constant functions
on intervals, but we avoid that situation here to keep the discussion simple.)

Any piecewise-linear function is representable by a sequence of heights denot-
ing the ordered peaks and valleys. Assuming that the number of peaks is finite,
the length of this vector is variable but finite. Note that in shape analysis, the
locations of these geometric features are irrelevant and hence are dropped from
the notation. Only the heights are kept. For instance, a vector of heights x =
(x0+, x1−, x2+, x3−, x4+, x5−, x6+, x7−) represents a piecewise-linear function
with peaks at x0, x2, x4, x6, and valleys at x1, x3, x7. The ‘+’ mark denotes a peak,
and ‘-’ denotes a valley. Naturally, there are some constraints that the elements of
x should satisfy. For instance, any valley xi− should be lower than its neighboring
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peaks xi−1+ and xi+1+. Such a vector describes a piecewise linear function and its
entire shape class. One can construct a piecewise linear function f0,p from its vector
X by placing these peaks and valleys at points ti = i/n, i = 0, 1, . . . , n + 1 and
connecting them by straight lines. This construction leads to an equivalence class:
[ f0,p] = { f0,p ◦ γ | γ ∈ �}. The reader can verify that [ f0,p] is equal to [ f0].

What is the advantage of this vector-based shape representation? One cannot
directly compare the shapes of functions by comparing their corresponding vectors. In
other words, even though a vector represents the shape, the set of shapes is still not a
vector space. One runs into the same registration problem discussed earlier. Different
functions may have vectors of various sizes, and comparing them requires registering
elements of these vectors. Lahiri et al. (2015) has studied this registration of piecewise
linear functions using such vector representation. We are going to use this vector to
extend our notion of shape.

Mode count as shape: A more general notion of shape, relative to the one stated
Definition 1, counts the number of its modes or peaks and ignores their heights. For
instance, labeling a function as bimodal implies that it has two peaks (and valleys
around these peaks) but does not specify the heights of these peaks (and valleys).
In terms of a vector description, one can capture it using a string of polarities m =
(−,+,−,+,−). Compared to the vector x above, thism does not contain information
about the heights xi s attached to these polarities. There is a many-to-one relationship
from x tom: for a bimodal function

(−,+,−,+,−) ≡ {(x1−, x2+, x3−, x4+, x5−) |
xi ∈ R, x2 > x1, x2 > x3, x4 > x3, x4 > x5} . (10)

In Fig. 7, all the functions in the left panel have the same modal shape and can
be represented by (−,+,−). Similarly, all the functions in the right panel have the
same shape and are represented by (−,+,−,+,−). Some past literature has used
the number of modes as shapes of functions, especially for constraining probability
density functions in their estimation (Cheng et al. 1999; Hall and Huang 2002; Bickel
and Fan 1996;Wegman 1970; Rao 1969; Birge 1997). However, in practice, those past
efforts have mostly been restricted to unimodal functions, and the current discussion
goes much further.

In summary, the shape of a function can be characterized in terms of its extreme
values in several ways. Under one definition, shape description includes geometric
features such as the heights and counts of the peaks and valleys (ignoring their place-
ments). In another definition, we ignore the heights also and only count the extremal
points.

4 Essential shape data analysis tools

Now that we have established a definition or two of shape, how can we use these
notions in statistical data analysis? We start with the problem of fitting a given shape
to discrete data.
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Fig. 14 Shape fitting to discrete data: Results from optimization in Eq. 11 for κ = 0, 1, 3

4.1 Shape-constrained curve fitting

As discussed in Sect. 2.2.1, in the FDA, one needs techniques to fit continuous func-
tions to the given observed (noisy, discrete) data for multiple reasons. One of the
motivations is to be able to resample these fitted functions at arbitrary points to allow
for comparisons with other functions. Section2.2.1 described a basic nonparametric
approach that uses a penalized, least-squares objective function to fit elements ofL2 to
given data. The only constraint in this approach is the penalty imposed on the rough-
ness of the fitted function to encourage smoother solutions. Otherwise, this approach
is entirely unconstrained and nonparametric.

In shape data analysis, one is often concerned with fitting shapes, rather than func-
tions, to the given data. Given a set of time-indexed points {(ti , yi ) ∈ I × R}, we are
interested in fitting a function f but with the constraint that f ∈ [ f0] for some given
f0 ∈ F . In other words, the unknown function f is assumed to be in the shape class of
a known function f0. Since [ f0] = { f0 ◦ γ | γ ∈ �}, the problem changes to finding
an appropriate γ according to:

γ̂ = argmin
γ∈�

(
n∑

i=1

(yi − f0(γ (ti )))
2 + κ

∫ 1

0
ḟ0(γ (t))2γ̇ (t)2 dt

)
, or

γ̂ = argmin
γ∈�

(
n∑

i=1

(yi − f0(γ (ti )))
2 + κ

∫ 1

0
γ̇ (t)2 dt

)
. (11)

The difference between the two is that the roughness penalty is imposed on γ , instead
of f0 ◦ γ , in the second equation.

Comparing this optimization with that in Eq. 1, we notice that when we optimize
over full L2, we can exploit the vector space structure and reach a simple least-square
solution. However, now the search is restricted to the set [ f0], or equivalently over �,
and the role of γ in this setup is nonlinear. One cannot reach a straightforward solution
since [ f0] is not a vector space. Taking a numerical approach, we use the dynamic
programming algorithm (Bertsekas 1995; Srivastava and Klassen 2016) to solve the
second formulation. We refer the reader to these references for the implementation
details but only present some examples. Figure 14 shows an example where we gen-
erate random data from a sine function sin(2π t) to form the observations {yi }s. The
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Fig. 15 Mode constrained curve
estimation
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green points denote these observations, the pink curve is f0, and the other curves are
f0 ◦ γ̂ for different values of the penalty weight κ . (Here, we use the penalty on γ

directly, i.e., use the second option in Eq. 11.) The f0 used here is different in shape
from the sine function used to generate the original data, so we don’t expect a perfect
fit here. The right panel shows the corresponding γ̂ s for different κ values. We can
see that as κ increases, the time warping functions get increasingly closer to γid .

Remark 1 Several other published techniques can also potentially provide an element
of the correct shape class in function estimation. However, they do not ascribe any
notion of optimality to that solution. For example, by modifying the bandwidth, one
can easily fit a k-modal function to the data using a kernel estimator. It is not enough to
provide an element of the correct shape class; the answer should be optimal somehow.
In our approach, Eq. 11 defines an optimality criterion, and the dynamic programming
algorithm helps find the optimal solution.

The previous section also developed a more abstract notion of shape that is purely
based on the modal count and ignores the heights of the peaks and valleys. One can
imagine an estimation problem where only the mode count is provided a priori instead
of the equivalence class [ f0] of the function. In other words, given observed data
{(ti , yi ) ∈ I × R}, how can we estimate a function that is constrained to have a fixed
number, say k, of peaks? Interestingly, there is rich literature on estimating probability
densities under shape constraints. However, that literature is basically restricted to
elementary shapes, e.g., unimodal density estimation (Cheng et al. 1999; Hall and
Huang 2002; Bickel and Fan 1996; Wegman 1970; Rao 1969; Birge 1997). Dasgupta
et al. (2018), Dasgupta (2019) has developed a general mathematical framework for
fittingmode-constrained functions to the given datawith an arbitrary number ofmodes.
The formulation involves solving a penalized-ML problem on both the placements
and heights of the peaks. Figure 15 shows an example of this estimation. The blue
dots represent the data points {(ti , yi )} and three function estimates under k-modal
constraint with k = 1, k = 2, and k = 3. A recent paper (Kim et al. 2023) studies the
complementary problem of estimating the number of peaks in the functional data using
a novel geometric representation termed peak-persistence diagram. This estimation
of the number of peaks, combined with the shape-constrained function estimation
procedure, provides an end-to-end solution to the inference problem.
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4.2 Shape-based fPCA

An essential FDA tool mentioned in Sect. 2.2.2 is dimension reduction using PCA.
We often need to approximate functions with finite-dimensional vectors to be able
to apply multivariate statistical analysis. For instance, we perform fPCA to develop
generative models of functional data. Here, we introduce a novel perspective on cap-
turing variability in functional data while focusing on preserving shapes. We call the
approach shape fPCA to contrast it with the previously discussed fPCA analysis.

We have discussed earlier the process of extracting shapes from functional data by
registering or time-warping the given functions { fi }. Instead of analyzing the origi-
nal functions, we decompose the data into two more interpretable parts: phases and
shapes. Consequently, we perform the fPCA of these components separately. Let the
SRVFs of the aligned functions { f̃i } be {q̃i }. We can obtain the covariance function
of these SRVFs and reach the directions of principle variability in the given shapes
by conducting the SVD of the covariance function, Cs = Us�sV T

s . Note that we are
computing the PCA in the SRVF space of the aligned functions (the phase is already
separated). This is why we call it the shape fPCA. To perform fPCA of the phase
terms, we compute their own SRVFs according to q∗

γi
= √

γ̇ ∗
i . Then, we can obtain

the directions of principal variability in phase space by using the covariance function
of these {q∗

γi
}. Note that the SRVFs of phase functions should have unit L2 norm. In

practice, we impose that condition by normalizing any SRVF that does not satisfy unit
normality.

Shown in panels (A) and (B) of Fig. 16 are two examples of simulated datasets with
low phase variability and high phase variability, respectively. The remaining panels
show illustrations of the shape and phase PCA of these two datasets. The second
column shows the first dominant direction of the shape fPCA, and the third column
shows the first dominant direction of phase PCA by plotting the functions from μ−σ

toμ+σ in each case. The two datasets differ only in the level of their phase variability
but are similar in shapes. The example shown in panel (B) has more significant phase
variability, as illustrated by amore extensive deformation in the first principal direction
of phase PCA. Also, since we separately analyze the shape and phase variability, the
first shape PC is perfectly vertical and shows the explicit variability in the height of
peaks and valleys. This separation of phase and shape components helps us understand
the nature of data when dealing with underlying scientific questions.

Once we get the shape-PCA principal directions, we can calculate the principal

coefficients as cs,ik = 〈
qi ,Us,k

〉
and cp,ik =

〈
q∗
γi

,Up,k

〉
. {cs,ik} and {cp,ik} are

the finite-dimensional Euclidean representations of the aligned (shapes) and phase
functions. Then, one can impose probability models on the principal coefficients and
generate randomly sampled shapes h̃ and phases γ̃ using their respective PCAbasesUs

and Up. The compositions f̃ = h̃ ◦ γ̃ provide random elements of the function space
F according to the underlying probability model. Panel (C) in Fig. 16 presents two
examples of randomly generating functions according to independent Gaussian distri-
butions on the principal coefficients. We first generate random principal coefficients
of the first three dominant shape fPCA directions following the Gaussian distributions
and then reconstruct the random shape and warping functions h̃ and γ̃ , as shown in
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Fig. 16 Shape fPCA and generative model results. A A low phase variability example. B A high phase
variability example. C Comparisons between the generated samples of fPCA and shape fPCA. In A and
B, from left to right: original functions, first dominant amplitude PC direction (μ − σ → μ + σ ), first
dominant phase PC direction (μ − σ → μ + σ ), first dominant fPCA PC direction (μ − σ → μ + σ ). Top
row in (C): low phase variability functions generation example. Bottom row in (C): high phase variability
functions generation example. Panel (C) from left to right: functions modeled from the first three fPCA
directions, amplitudes modeled from the first three amplitude PC directions, phases modeled from the first
three phase PC directions, functions modeled by the composition of random amplitudes and phases

the second and third column. The fourth column shows their compositions, i.e., the
randomly sampled functions following the Gaussian distribution. For comparison, we
follow the same model for the fPCA of given functional data directly (without shape
and phase separation) and generate random functions shown in the first column. The
functions modeled with shape fPCA are more consistent with the original functions,
especially when large phase variability exists in the original data (second row in panel
(C)).

4.3 Shape regressionmethods

Section 2.2.3 discussed some basic regression models involving random functions
as inputs, either as predictors, responses, or both. Now, we shall consider situations
where the interest lies in the shapes of these functions as regression variables. In other
words, the phase components are treated either as nuisance variables wholly or of
relatively less importance. Therefore, it becomes essential to separate the phase and
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shape components and treat them appropriately. The question is:What is the definition
of phase for shape regression? Not surprisingly, this definition may differ from the
one used for function registration or shape fPCA.

We aim to modify, adapt, and apply the models presented in Sect. 2.2.3 to the
problem of shape regression. As stated, these models do not account for the phase
variability in functions and require some modifications. We use equivalence classes
of functions rather than individual functions as variables to represent shapes. Thus,
a regression model should not depend on which specific elements of the equivalence
classes are selected. Since the only variability inside an equivalence is due to phase, a
shape regression model should be invariant to the phase variability. There are several
ways to accomplish this:

• Direct maps to and from shape spaces: The natural idea is to utilize mappings
intrinsic to the shape space S and use them as conditional means in shape regres-
sion models. For example, one can use a map h : S → R for scalar-on-shape
regression or a map h : S → S for shape-on-shape regression. The question is:
How to define these maps that are intrinsic to a shape space? Many of the past
functional regression models are essentially linear (although some involve using a
link function to introduce nonlinearity). Since S is nonlinear, one cannot directly
apply those ideas here. Recall that in Sect. 3.5, we established a vector notation
x f = (x+

0 , x−
1 , . . . ) to capture the shape of a function f . The elements of this

vector are the heights of the extrema of f . (Also note that the set of valid x is not
a vector space due to different dimensionalities and relative height constraints.)
The design of valid and interpretable mappings from the shape representative x to
a response space R, when the dimensions of x are variable, remains challenging.

• Pre-registration: Another, albeit less intrinsic, approach is toworkwith individual
functions but remove the phase variability via an additional optimization step.
Depending on the context, one can do this removal for all functions—responses,
predictors, or both. For instance, in a scalar-on-shape problem, one can apply
optimization over γi s stated in Eq. 9 to obtain the shape-phase pairs {( f̃i , γi )}
from the predictor functions { fi }. Then, discard the phases and use the shapes { f̃i }
as if they are elements of F . This approach is called pre-registration because it
removes the phases before regression analysis starts, while practical, it has several
problems: (1) The relationship between predictors and responses is not utilized
in this phase removal. It only uses the information within the functions that form
the predictors. Thus, in the context of regression, this approach is sub-optimal.
(2) A complete pre-removal of phase only makes sense when phases are a non-
informative nuisance in regression models. If the phases carry some information
relevant to the predictor-response relationship, one should not throw them out
completely.

• Registration inside regression model: Another way to focus on the shape is
to formulate an optimization problem similar to Eq. 9 but in conjunction with a
regression model. That is, redefine and isolate the phase as a part of the regression
analysis, not in a pre-processing step. This approach has the advantage of letting
the context guide the definition of phase rather than using the previous definitions.
For example, suppose we apply this approach to the scalar-on-shape problem. In
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that case, the definition (and subsequent removal) of the phase from the predictor
functionswill also depend on the response variable. By definition, this phase-shape
separation should perform better than the pre-registration approach.

• Separate and include both shape and phase in regression: Lastly, we mention
an option that separates phase and shape using Eq. 9, and instead of discarding
the phases, includes them (along with shapes) as separate regression variables. For
example, consider the scalar-on-shape regression problem. Let {( fi , y) ∈ F ×R}
denote the prediction-response pair data and let { fi ≡ ( f̃i , γi )} denote the shape-
phase separation of functional predictors using Eq. 9. Then, we can include both
{ f̃i } and {γi } as predictors in this approach for predicting the response {yi }.

In this paper, we will pursue the third option, namely that of registration inside a
regression model. This leads to a new definition of the phase, different from the one
used for functional alignment and shape fPCA. We start the discussion by studying
the consequences of ignoring phase variability in the classical functional regression
models when they (phases) are indeed nuisance variables.

4.3.1 Consequences of ignoring phase variability

What happens whenwe use the full functions { fi }, instead of their shapes, in situations
where only the shapes carry the relevant information? In other words, how does the
presence of random and uninformative phases affect the performance of a classical
regression model? We use some examples to investigate this question. Consider Eq. 9
that defines the decomposition of a function fi into its shape [ fi ] (represented by f̃i )
and the nuisance transformation γi . Since current methods work with fi , instead of
[ fi ], they contain arbitrary transformations γi .

Scalar-on-function regression model: We start with the case of phase variability in
functional predictors. Consider the simple, functional linear regression model men-
tioned in Eq. 3. Given the data {(yi , f xi )}, we have techniques for estimating the
regression coefficient β. Suppose, instead of observing precise f xi s, one observes
f̃ xi = f xi ◦γi , where γi ∈ � is an arbitrary time-warping of f xi s which is independent
of yi . In other words, the shapes are given to us as arbitrary elements of their orbits.
This scenario is similar to having errors in the time indices for functional data and has
been discussed in Carroll et al. (2006).

We use a simulation experiment to demonstrate this issue, with results shown in
Fig. 17. The main idea is to quantify the deterioration of prediction performance as the
amount of random warping in the predictor functions increases. The left panel shows
the predictors { f xi } used in these experiments. For a fixed β0, we simulate responses
yi s using Eq. 3, and use the data { f xi , yi } to estimate the model parameters, including
β̂. Using this estimated β̂, we predict the response variable for predictors that are now
contaminated by time-warping { f̃ xi }. We quantify prediction performance using R2

and study its value as the warping noise increases. The warping functions used in this
experiment are γi (t) = t + αi t(1 − t), where αi ∼ U (−a, a); larger the value of a,
larger is the warping noise. The middle two plots show examples of warping functions
for a = 0.02 and a = 1. The last panel shows a plot of R2 versus a (averaged over

123



30 Y. Wu et al.

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

{fi} a = 0.02 a = 1 a

Fig. 17 Deterioration in prediction performance as the phase variability increase in predictor functions

Fig. 18 Errors in the estimation of β increase as random rotations in the response variable grows

200 runs)—a superlinear performance decay due to the introduction of random phases
and the resulting misalignments.

Function-on-scalar regression model: As a different example, we now demonstrate
consequences of random phases in the response variable. Consider the following
function-on-vector regression model:

f yi (t) = xi,1β1(t) + xi,2β2(t) + εi (t), i = 1, . . . , n, t ∈ [0, 1] (12)

where f yi ∈ F is a functional response, (xi,1, xi,2) ∈ R
2 are Euclidean predictors,

εi ∈ F represents the measurement error, and (β1, β2) ∈ F × F are prespecified
functional coefficients. Given samples {( f yi , xi,1, xi,2)}, the smoothing techniques
can be adopted for estimating β1 and β2. The main issue with this framework is that
it fails to account for potential misalignment in the functional responses. Suppose
that instead of observing { f yi }, one observes f̃ yi (t) = f yi (γi (t)), with the random
warping functions γi (t) = t + αi t(1 − t). Here αi ∼ U (−a, a), and a are set as
0, 0.05, 0.1, 0.3, 0.5, 0.7, 1, respectively.
The results from this simulation experiment are shown in Fig. 18. In this simulation,
the sample size n = 50, the predictors {(xi,1, xi,2)}ni=1 were independently generated

from multivariate normal distribution with covariance matrix � =
(

1 0.6
0.6 1

)
, and

the measurement error {εi }ni=1 were independently generated from a Gaussian process

GP(0, 0.5‖s−s′‖). The main idea is to quantify the estimation accuracy of functional
coefficients as the bound a increases. The true values of functional coefficients β1(t)
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and β2(t) with predefined patterns are shown in the left two panels of Fig. 18. The
functional responses { f yi (s)}ni=1 were simulated through Eq. 12, then contaminated
via warping functions. Then, the functional coefficients were estimated using this
data via the local linear kernel smoothing method (Fan and Zhang 1999). To quantify
estimation errors, we use two metrics: mean integrated absolute error (MIAE) and
mean integrated squared error (MISE). As shown in the last two panels of Fig. 18,
both MIAEs and MISEs for these two coefficient functions increase as the amount of
misalignment (i.e., the bound a) increases.

Now, we discuss some techniques for using shape variables in regression models
that can nullify the presence of arbitrary phases in the data.

4.3.2 Scalar-on-shape regression

Scalar-on-shape is a natural problem that frequently arises in statistical shape analy-
sis. Applications include regression of clinical measures of diseases using shapes of
physiological or anatomicalmeasurements. For example,Physionet (https://physionet.
org/) is a website devoted to datasets that study relationships between physiological
measurements (functional data) of human subjects and clinical outcomes relating to
health. Similarly, other shape data has been used to predict Euclidean outcomes by
solving the scalar-on-shape regression problems. Specifically, let {[ f xi ], yi }ni=1 be the
observed data, where [ f xi ] is an element of a shape space S, and yi ∈ R is a Euclidean
variable. Then, the scalar-on-shape regression model (Lin et al. 2019; Niu et al. 2019;
Lin and Yao 2021) can be written as

yi = g([ f xi ]) + εi , i = 1, . . . , n, (13)

where g : S → R is the regression function on R, and {εi }ni=1 are independent errors.
Several kernel-based approaches have been used to estimate the unknown function
g(·), including extrinsic approaches that model Gaussian processes on the embedding
space of S (Lin et al. 2017) or on the tangent space of S (Lin and Yao 2021). Intrinsic
approaches use Brownian motion sample paths generated on the shape space S (Niu
et al. 2019). The shape spaces in these cases may differ from those in the current paper.

Earlier, we discussed several approaches for incorporating shapes in a regression
model. In the pre-registration approach, phase separation or alignment is performed
independently of the response variable. In other words, the values {yi } do not play any
role in the alignment. In contrast, the registration-inside-regression approach, where
the phase separation is a part of the estimation of model parameters, seems more
natural. An example of this approach is the so-called elastic functional regression
model (Ahn et al. 2020, 2018; Lin and Yao 2018; Tucker et al. 2019; Wang et al.
2016):

yi = g

(
sup
γi∈�

〈β, f xi ∗ γi 〉
)

+ εi , i = 1, . . . , n, (14)

where g(·) is a single index function and f xi ∗ γi = ( f xi ◦ γi )
√

γ̇i . For alignment, one
can represent the predictor f xi in the pre-shape space using the square-root velocity
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function (SRVF) transformation (Srivastava and Klassen 2016). Compared to the pre-
alignment-based approaches, the elastic functional regression model is more powerful
as the phase separation is performed inside the regressionmodel. In addition, themodel
(Eq. 14) has nice theoretical properties, including nonlinear relationship captured by
the function g(·), invariance to the phase, and identifiability of the coefficient β (Ahn
et al. 2020).

4.3.3 Shape-on-scalar regression

In order to model the relationships between shape responses and covariates of interest
in Euclidean space, various approaches can be grouped into two broad categories:
extrinsic regression and intrinsic regression. To understand these two categories better,
let {[ f yi ], xi }ni=1 be the observed data, where [ f yi ] is an element of a shape space S,
and xi ∈ R

p is a Euclidean variable. In the extrinsic regression framework, the shape
responses {[ f yi ]}ni=1 are usually embedded onto a subspace in the higher dimensional
Euclidean space Rm . Then, the classical regression models in that space are applied,
and the estimated models and predictions are projected back onto the original shape
space. Specifically, given the covariate x , the estimated extrinsic model, i.e., ĝ(x), is
derived as

ĝ(x) = h−1

(
argmin
q∈Rm

‖q − g̃(x; {h([ f yi ]), xi }ni=1)‖
)

, (15)

where h : S → R
m is an embedding of S onto some subspace in R

m and h−1 is the
corresponding inverse embedding map. Here, g̃(x; {h([ f yi ]), xi }ni=1) is an estimator
of the relationship between the embeddings h([ f yi ]) ∈ R

m and covariates of interest
xi and an example is the kernel-based estimator (Lin et al. 2017, 2019). However, for
these extrinsic approaches, the local shape geometry is not well-preserved through the
embedding map h(·) and the existence of the inverse embedding map h−1(·) to the
shape space is not always guaranteed (Tsagkrasoulis and Montana 2018).

In contrast, the intrinsic approaches are natural generalizations of regressionmodels
fromEuclidean spaces to non-Euclidean shape geometries, typically using exponential
maps and tangent space representations. Specifically, we denote the tangent space at
[ f yi ] ∈ S by T[ f yi ](S) and the inner product of u, v ∈ T[ f yi ](S) by 〈u, v〉. For any
v ∈ T[ f yi ](S), there is a unique geodesic curve ξ : [0, 1] → R, with initial conditions

ξ(0) = [ f yi ] and ξ ′(0) = v. The exponential map at [ f yi ], exp[ f yi ](·) : T[ f yi ](S) → S
is locally diffeomorphic and defined as exp[ f yi ](v) = ξ(1). Meanwhile, the inverse

exponential map is defined as exp−1
[ f yi ](·) : S → T[ f yi ](S). Then, one can apply a

commonly used geodesic regression model:

[ f yi ] = expκ(xi )(εi ), κ(xi ) ∈ S, εi ∈ Tκ(xi )(S), (16)

where expκ(xi )(·) : Tκ(xi )(S) → S is the exponential map at κ(xi ), and Tκ(xi )(S) is
the corresponding tangent space. Model (16) involves two key terms: the conditional
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mean shape κ(xi ) and the error εi ∈ Tκ(xi )S. The conditional mean shape κ(xi ) can
be treated as a link function including the typical parametric setting, i.e., expμ(Bxi ),
where μ ∈ S and columns in B are coefficient vectors lying in the tangent space
Tμ(S) (Fletcher 2013; Kim et al. 2014; Cornea et al. 2017; Zhang 2020), and some
other nonparametric settings, such as the link function model, i.e., g(xi ), where g(·)
is an unknown map from R

p to the shape space S (Shi et al. 2009; Stöcker and
Greven 2021; Xiong et al. 2022). On the other hand, the error term εi can be specified
using parametric, such as the Riemannian Normal (RN) distribution (Fletcher 2013),
semiparametric, such as the first-order moment condition (Shi et al. 2009; Cornea et al.
2017), or completely nonparametric models (Kim et al. 2014).

In the intrinsic approaches, the shape response [ f yi ] should be an orbit of a pre-
shape space under the rotation group (Srivastava and Klassen 2016). In practice, it is
common to take a representative element of the pre-shape space, aligned or rotated
appropriately through somepreprocessing steps.However, there are several limitations
of geodesic regression models caused by using the pre-aligned elements, including
(i) misalignment issue in pre-aligned responses (Ahn et al. 2018; Zhang et al. 2018;
Shin and Oh 2020); (ii) non-optimal alignment due to imaging heterogeneity (Huang
2019); and (iii) lack of spatial correlation structure in modeling (Fletcher 2013; Kim
et al. 2014). To address these limitations, a geodesic factor regression model (Huang
et al. 2021) is proposed as follows:

ψ( f yi ◦ γi ) | xi , zi ∼ RN
(
expψ(μ)(Bxi + �zi ), σ

)
, zi ∼ N(0, Iq), (17)

where ψ(·) is a one-to-one map such that the preshape space is equivalent to a unit
hypersphere, and γi denotes the time warping that forms the individual nuisance trans-
formation. Compared to the pre-aligned elements, the timewarpings {γi } inmodel (17)
are applied on preshapes and learned inside the regression model itself. In addition,
compared to other intrinsic approaches, the spatial correlation structure in model (17)
is established as a low-dimensional representation, including latent factors through
a factor analysis framework on the tangent space and error term modeled using the
isotropic RN distribution (Pennec 2006).

Some other important topics related to shape-on-scalar regressions have also been
investigated in existing literature, including hypothesis testing (Shi et al. 2009, 2012;
Cornea et al. 2017; Huang et al. 2021) and longitudinal shape analysis (Fishbaugh
et al. 2012; Durrleman et al. 2013; Gerig et al. 2016; Kim et al. 2017; Bône et al.
2018; Chakraborty et al. 2018; Nava-Yazdani et al. 2019; Zhang et al. 2023). For
the hypothesis testing problems, one is interested in investigating the comparison of
shape responses across different groups or detecting the change in shapes across time.
Taking the geodesic regression model (16) with κ(xi ) = expμ(Bxi ) as an example,
the scientific question can usually be formulated as the following hypothesis:

H0 : β j = 0 vs. H1 : β j �= 0, (18)

whereβ j is the coefficient corresponding to the j-th covariate of interest, j = 1, . . . , p.
Different test statistics, such as the Score test statistic (Shi et al. 2009, 2012) and
Wald test statistic (Cornea et al. 2017; Huang et al. 2021), are constructed, and their
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asymptotic properties under H0 are derived as well. In practice, the parametric boot-
strap procedure is also proposed to derive the empirical distribution and the p-value
(Huang et al. 2021). For the longitudinal shape analysis, the linear mixed effects
model (LMEM) can be extended in many ways to the shape space. Specifically,
let { f yi, j , xi, j , j = 1, . . . ,mi }ni=1 be the longitudinal observed data, where f yi, j is
the shape from the i-th subject at the j-th time point, and xi, j is the corresponding
covariates. Then, a natural extension of LMEM (Kim et al. 2017) can be written as

f yi, j = expμi, j
(εi, j ), μi, j = expκ(xi, j )(Ui zi, j ), κ(xi, j ) = expμ(Bxi, j ), (19)

where B represents the fixed effect in the tangent space Tμ(S) while Ui represents
the random effects in another tangent space Tκ(xi, j )(S). Some other methods are also
adopted to capture the temporal correlations among the longitudinal shapes, such as
the deformationmodel (Fishbaugh et al. 2012;Durrleman et al. 2013;Gerig et al. 2016;
Bône et al. 2018), recurrent neural network (Chakraborty et al. 2018), and functional
data analysis (Zhang et al. 2023).

4.3.4 Shape-on-shape regression

Finally, we consider the regression setup where both the predictor and the response
variables are shapes of functions. This problem arises, for example, when one is
interested in modeling changes in anatomical shapes after a medical intervention. The
shape of a function before the treatment can be used to model its shape after the
treatment. One can use such a regression model to test the efficacy of the intervention.
This shape-on-shape regression is the most challenging of the shape regression setups
because of the complexity of both the predictor and the response. Consequently, there
is limited literature on this topic currently.

Let [ f xi ], [ f yi ] denote the shape of the predictor and response, respectively. To
develop shape-on-shape regression, we seek a model of the type:

[ f yi ] = Aβ([ f xi ]) ⊕ [εi ] (20)

whereAβ is an operator from the shape space S to itself and⊕ represents an operation
where the effect of additive noise εi on only the shape is considered, its effect on the
phase is ignored. Associated withAβ is a surface β(s, t) that represents the coefficient
of regression, similar to the function-on-function model presented in Eq. 5. The key
requirement here is that the model should not depend on the phases of either f xi or f yi .
One way to define the operatorAβ is through a special inner product 〈〈β(s, ·), f 〉〉 �〈
qβ(s, ·), q f

〉
, where qβ(s, ·), q f are the SRVFs of β(s, ·) and f , respectively. Note

that the quantity 〈〈β(s, ·), f 〉〉 is a function of s but represents a shape rather than an
element ofF . Tomotivate this definition, wemention the isometric property of SRVFs
that states:

〈
qβ(s, ·), q f

〉 = 〈
qβ(s, ·)�γ, q f �γ

〉
for any γ ∈ �. One consequence of

this property is that:

sup
γ∈�

〈
qβ(s, ·), q f �γ

〉 = sup
γ∈�

〈
(qβ(s, ·)�γ1), (q f �γ2)�γ

〉
.
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That is, the supremum of the inner product is unaffected by the phases of q f

and qβ(s, ·). Thus, using SRVFs and this invariance to time-warping helps define
the desired operator A: Aβ([ f ])(s) = supγ∈�

〈
qβ(s, ·), q f �γ

〉
. Putting these ideas

together, we reach a regression model:

qy
i (s) =

((
sup
γi∈�

〈
qβ(s, ·), q f xi

�γi

〉
+ εi (s)

)
�γ

y
i (s)

)
.

The inclusion of the last γ y
i implies that f yi is observed with an arbitrary phase. The

additive noise εi ∈ F affects not just the shape but also the phase of the mean function.
However, the effect on phase is nullified by the inclusion of an arbitrary phase γ

y
i in

the model. The estimation of β corresponds to the optimization:

β̂ = argmin
β

n∑
i=1

(
inf

γ
y
i ∈�

‖(qy
i �γ

y
i ) − sup

γi∈�

〈
qβ, q f xi

�γi

〉
‖2

)
(21)

Of course, there are several potential variations of this model and one can choose
according to the situation. Experimental evaluations of this model and its application
to real data are left for future efforts.

5 Manifold-valued functions

A significant portion of FDA literature is focused on scalar or Euclidean vector-valued
functions on domain I . However, in mathematics, the concept of functional variables
and function spaces is much broader. It also includes functions where the range spaces
are non-Euclidean. In this section, we consider the shapes of functions of the type
f : I → M , where M is a Riemannian manifold. In the previous sections, we have
relied on SRVFs to analyze shapes of function, but now M is a nonlinear manifold,
and the nature of SRVFs changes. Since SRVFs are essentially scaled derivatives
of functions, and derivatives on manifolds correspond to tangent vectors, we cannot
directly compare tangent vectors of different functions. We will need additional tools
like parallel transport that allows one to transport tangent vectors from one point to
another and then compare SRVFs.

To keep the discussion non-technical, we will assume that the functions are smooth,
i.e., and one can compute as many derivatives of f as needed. The Riemannian struc-
ture of M allows us to compute intrinsic distances and other geometric quantities on
M as needed. As a simpler visual example, we can use M = S

2 to help facilitate
the discussion. Such functions are also called manifold-valued curves or trajectories
(Zhang et al. 2018a, b). For instance, when M is the shape space of objects the M-
valued functions have been called shape curves (Kenobi et al. 2010; Kume et al. 2007;
Jupp and Kent 1987; Su et al. 2011).

Given a Riemannian structure on M , one can define a distance dM : M×M → R+
such that the length of the shortest path (or geodesic) between any two points p, q ∈ M
equals dM (p, q). This geodesic length can be used to establish a sample mean on M
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as follows. For a set of points {pi ∈ M, i = 1, 2, . . . , n} sampled from a distribution,
their sample mean is defined to be:

p̄n = argmin
p∈M

n∑
i=1

dM (p, pi )
2. (22)

This quantity has alternatively been called the Karcher, intrinsic, or Fréchet mean.
There is a well-known algorithm for estimating this mean from the given data, and we
will not repeat it here (Le 2001; Le and Kendall 1993; Srivastava and Klassen 2016).
We point out that there also exist tools for computing sample median (Fletcher and
Venkatasubramanian 2009; Pennec et al. 2019) and sample modes on manifolds and
help derive robust statistical inferences (Deng et al. 2022). Such summarizing tools
can be readily used for computing pointwise summaries of M-valued functions.

One can also establish a notion of the sample covariance but not directly on the
manifold M . Since M is not a vector space, this computation is performed on the
manifold’s tangent space, a vector space. Let Tp̄n (M) denote the space of vectors
tangents to the manifold M at the sample mean p̄n . For each observation pi , we can
map it to the tangent space according to pi �→ vi , vi = exp−1

p̄n
(pi ). It is the analog

of the different pi − p̄n in a Euclidean space and can then be used to compute the
sample covariance matrix according to Ĉ = 1

n−1

∑n
i=1 viv

T
i ∈ R

m×m . Note that the
vectors vi s are elements of the same tangent space, so they can be treated as Euclidean
and analyzed conventionally. For instance, one uses singular value decomposition of
Ĉ to perform PCA, and this approach is called a tangent PCA or TPCA. TPCA results
in tangential directions on M at the point p̄n , which can then be mapped on M to
visualize principal (geodesic) paths on M . This TPCA on M , in turn, helps facilitate
pointwise fPCA of M-valued functions.

5.1 Essential tools forM-valued functions

In order to perform data statistical analysis of M-valued functions, we need some
basic tools. Similar to the previous sections, one can develop a core set of tools for
analyzing M-valued functions.

1. Curve fitting: The problem of fitting scalar functions on I can be extended to
estimating M-valued functions using the optimization:

f̂ = argmin
f ∈L2(I ,M)

(
n∑

i=1

dM (yi , f (ti ))
2 + κR( f )

)
(23)

whereR( f ) is a measure of roughness of f . Some common choices ofR( f ) are:

∫

I

〈
ḟ (t), ḟ (t)

〉
f (t) dt or

∫

I

〈
D ḟ (t)

dt
,
D ḟ (t)

dt

〉

f (t)
dt .
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Here, ḟ (t), D ḟ (t)
dt denote the velocity and acceleration along f (t), respectively. D

dt
represents a covariant derivative, ensuring the derivative is tangent to themanifold.
For any function f : I → M , the ordinary derivative ḟ (t) lies in the tangent
space T f (t)(M) automatically, so the first derivative need is already covariant.
However, the second ordinary derivative, f̈ (t), may not necessarily be in the

tangent space and requires an additional projection to make it tangential and D ḟ (t)
dt

is that projection.

Comparing Eq. 23 with Eq. 1, we see that the terms are simply the manifold
analog of Euclidean terms. The Euclidean square error is replaced by the man-
ifold distance dM squared error. The solutions to this problem are also called
smoothing splines, and there is now extensive literature on estimating smoothing
splines from noisy, discrete data. Numerous papers including (Noakes et al. 1989;
Camarinha et al. 1995; Crouch et al. 1999; Hofer and Pottmann 2004; Machado
et al. 2006; Machado and Leite 2006; Samir et al. 2012) have studied variations of
these problems and their computational solutions. The problems of fitting smooth
curves and interpolating between landmark-based shape representations, called
shape curves have been studied by Dryden, Kent, and collaborators (Jupp and
Kent 1987; Kenobi et al. 2010; Kume et al. 2007). A common thread among these
solutions is the need to evaluate the Riemannian curvature tensor on M . While
this tensor is available for some of the commonly used manifolds in statistics (unit
spheres, positive-definite matrices, and some shape manifolds), it is generally not
the case. This limits the past developments on spline-type techniques for fitting
curves to M-valued data. Also, these methods are helpful only when the time
samples are reasonably dense. In the case of temporally sparse data, there is
insufficient information to provide meaningful dense interpolations. Zhang et al.
(2023) utilized a flattening approach for interpolating in the shape space of 3D
subcortical objects using sparse data points.

Figure 19 shows an example of fitting smoothing splines to points in a shape
space of 3D curves. The specific shape space used in this example is not devel-
oped here explicitly, as we use it only as an example. The top left shows four
shapes observed at time points t = 1, 6, 11, 16, and the bottom left shows a spline
interpolation between them using elastic shape analysis. This elastic interpolation
uses an optimal registration of points between successive curves, shown in the top
right. The bottom-right panel shows a piecewise-linear interpolation between the
given 3D curves for comparison. One can see that the spline curve in shape space
better preserves the geometric features (bends and twists) in the newly interpolated
shapes.

2. Cross-sectional statistics: As an essential tool for summarizing M-valued func-
tional data, one would like to compute cross-sectional or pointwise averages.
Given a set of functions { fi : I → M}, we assume they are temporally registered.
For any t ∈ I , the points { fi (t)} correspond to each other in some interpretable
way. Then, for any t ∈ I , we can compute summaries of the points { fi (t) ∈ M}
using the sample mean defined in Eq. 22. This results in a cross-sectional mean
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Fig. 19 Example of a smoothing spline in the shape space of 3D curves. Top left: Four shapes at observed
times t = 1, 6, 11, 16. The top right shows the optimal matching of points across adjacent curves. Bottom
left shows a spline interpolation in shape space. Bottom right: Simple point-wise interpolation between
curves at given registrations

function f̄ : I → M that represents the functions mean of all fi s. Using the
inverse exponential map mentioned above, we can compute the tangent vectors
vi (t) = exp−1

μ(t)( fi (t)) and form a sample covariance matrix Ĉ(t). This sample
matrix can be used to perform TPCA at each tangent space separately. One short-
coming of this idea is that we are not using covariances of fi (t)s across times to
help determine the principal directions of complete functions. In that sense, this
process is not a functional PCA but a collection of individual M-valued TPCAs.
(In contrast, the analysis in Sect. 2.2.2 used the full fPCA of functions.) The
complete functional data analysis requires defining a cross-covariance between
fi (t) and fi (s), which requires additional machinery.

Figure 20 shows examples of cross-sectional statistics for functions on M =
S
2. The left column shows original data sets: the top shows Swainson hawks’

migration paths, and the bottom shows trajectories of recent hurricanes originating
in the Atlantic Ocean. The middle columns show their cross-sectional mean as the
central curve. It also shows cross-sectional covariances at some chosen points using
ellipses to depict 2D covariance matrices. It is noticeable that in the top examples,
the ellipses are oriented along the mean function direction. This indicates that
these functions are not well registered, i.e., they have large phase variability. We
discuss the tools for registering M-valued functions next.
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Fig. 20 Computing means of S2-valued functions. Left column: shows the original functions; Middle
column shows cross-sectional mean and variance without temporal registrations; Right: Mean and variance
of functions after registration

5.2 Flattening using parallel transport

Another way to analyze M-valued functional data is to transform them into Euclidean
functions and then apply the Euclidean techniques discussed earlier. Naturally, there
are multiple ways to “flatten" M-valued functions. A naïve approach is to choose a
global reference point p0 on M and map each point fi (t) to the tangent space Tp0(M)

using the inverse exponential maps ft (t) �→ exp−1
p0 ( fi (t)) (Su et al. 2014). However,

this mapping can introduce a large distortion in the pairwise distances between points,
especially when the points are scattered away from p0 on M . An alternative is to use
the parallel transport of tangent vectors, which reduces the distortions but uses the time
derivatives of functions (Zhang et al. 2018a, b). This approach has also been called
unrolling or unwrapping in the shape analysis literature (Kume et al. 2007).

To make the discussion concrete, we will assume I = [0, 1]. For a function fi :
[0, 1] → M let ḟt (t) denote the velocity vector along fi at times t . By definition, this
velocity ḟi (t) is an element of the tangent space T fi (t)(M). Using fi (0) as the reference
point, we parallel transport (please refer to the definition of the parallel transport in
Srivastava and Klassen 2016) this vector along the curve to reach a tangent vector at
the starting point fi (0); we denote it by ( ḟi (t)) fi (t)→ fi (0). Repeating it for all t ∈ [0, 1]
results in a function vi (t) : I → T fi (0)(M) with values in a vector space T fi (0)(M).

One wants to use the flat nature of initial tangent spaces T fi (0)(M) to analyze data.
However, there is still one hurdle left in that the vector spaces T fi (0)(M) are different
for different observation indices i . Thus, one cannot directly compare functions lying
in different spaces. To reconcile this, we can compute their mean f̄ (0) of the set
{ fi (0), i = 1, 2, . . . , n} on M and treat it as a global reference point. In other words,
we transport all the curves vi from fi (0) to this global reference point to bring all the
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functions to the same coordinate system; Call these functions gi : I → T f̄ (0)(M).
Since gi s are functions in the same vector space, one can directly apply the tools
discussed inSect. 2. For example,we can performphase-shape separation and temporal
register these curves. The rightmost column of Fig. 20 shows the cross-sectional mean
and covariances after the data have been registered in this way. Notice that the ellipses
are now mainly oriented perpendicular to the curves rather than along them.

5.3 Shapes ofM-valued curves

The next question is: What is the notion of shapes for M-valued functions or trajecto-
ries? Similar to Sect. 3.2, one can define the time-warping group on I and define the
shape as an equivalence class. The time warping of a function f : I → M does not
alter the graph (and thus the shape) of f and is called a re-parameterization of f . The
re-parameterization group, �, is shape-preserving and thus needs to be removed when
we focus on shapes of M-valued functions. (Re-parameterization here also performs
temporal registration of functions across observations.) Similar to Definition 1 for
Euclidean functions, we can define a notion of shape here.

Definition 2 (Shape of a function) For any function f : I → M , its equivalence class
[ f ] = { f ◦ γ : γ ∈ �} is called the shape of f . The set of all shapes SM = {[ f ] :
f ∈ F} is called the shape space of functions.

In order to compare shapes of such functions, the notion of square-root velocity
functions (SRVF) has been extended to the transported SRVFs (Su et al. 2014; Zhang
et al. 2018b, a). Define the transported square-root velocity function (TSRVF) of f to
be

q(t) =
(

ḟ (t)√
‖ ḟ (t)‖

)

f (t)→ f (0)

.

The subscript f (t) → f (0) denotes the parallel translation of the scaled tangent vector
ḟ (t)√
‖ ḟ (t)‖ from f (t) to f (0) along f . Consequently, the function q is a function on I

with values in the tangent space T f (0)(M). Note that one can reconstruct f from its
SRVF q and the seed point f (0). That is, given (q, f (0)), the original function f (t) =
exp f (0)(

∮ t
0 ‖q(t)‖(q(t)) f (0)→ f (t−)dt). Here,

∮
denotes the covariant integration of the

vector q(t) from f (0) to a point f (t−) just before t .
The TSRVF of a function f : I → M is a function q : I : T f (0)(M). Thus,

TSRVFs of different functions take values in different tangent spaces. In order to
register and compare any two of them, we need to parallel transport them to the same
space. For example, consider two M-valued functions f1, f2 : I → M and their
TSRVFs qi : I → T fi (0)(M). If we parallel transport q1(t) from f1(0) to f2(0) along

a geodesic, for all t ∈ I , resulting in q‖
1 (t), then we can compare them in the same

way as the scalar functions are handled in Eq. 7.

ds([q1], [q2]) = inf
γ∈�

∥∥∥q‖
1 − (q2�γ )

∥∥∥ . (24)
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Fig. 21 Example of registering two S2-valued functions using Eq. 24. The left picture shows original f1, f2
with arbitrary registration, the middle picture shows the optimal registration, and the right panel shows the
optimal γ

Figure 21 shows an example of this registration for two S2-valued functions. The left
panel shows the original functions f1, f2 with colors depicting their parameterizations.
The middle panels show the registration using Eq. 24, and the function f1 is now
re-parameterized using the optimal γ . The optimal warping is shown in the right
panel.

Similar to Eq. 9, this framework for pairwise shape comparisons can be extended
to phase-shape separation for a set of M-valued functions. Further statistical analyses,
including shape summaries and regression models, can also be pursued in a similar
manner although with some additional computational challenges.

6 Some open problems

In this section, we list some open problems for future research in the field of shape-
based FDA. This is not a comprehensive list and contains only the most relevant
problems.

• Adaptive definition of phase of functions: As highlighted in this paper, the def-
inition of phase (and this shape) of a function is not universal. Early in Sect. 3.2,
we defined phase of a function as the time-warping (of I ) that facilitates optimal
alignment of peaks, valleys, and slopes between functions. Later on, in Sect. 4.3,
we defined the phase differently for the regression models. Here, the phase is
time warping of variables that optimizes the prediction power from the predic-
tor to the response. In other situations requiring some other statistical aims, the
phase can have yet another definition. One needs to develop adaptive definitions of
phases of functions according to the situation, and reconcile their behaviors across
definitions.

• Direct maps to and from shape spaces for regression models: Section 4.3
outlines several ways to develop statistical regression models involving shape
variables. We focused on approaches that involve explicit phase-shape separation,
but methods that use direct maps to and from shape spaces (quotient spaces) are
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Fig. 22 Graph of a parameterized curve does not change by time warping (re-parametrization) of its coor-
dinate functions. a 2D curve f (blue) and its reparameterization f ◦ γ (red) – they should coincide but one
has been translated for clarity; b the reparameterization function γ ; c, d the coordinate functions fx , fy
(blue) and their time warpings fx ◦ γ, fy ◦ γ (red)(color figure online)

yet to be developed. Thesemapsmust be invariant to the time-warping of functions
to focus solely on their shapes. Some general nonparametric approaches involv-
ing kernels and shape metrics can be applied here (Ferraty and Vieu 2006), but
techniques that further exploit shape space geometry are currently missing.

• Theoretical foundations for FDA of M-valued functions: The textbook (Hsing
and Eubank 2015) provides a comprehensive theoretical foundation for FDAunder
the standard Hilbert geometry for scalar- or Euclidean-valued functions. The lit-
erature lacks a similar, foundational treatment of M-valued functions. Therefore,
several tools are lacking when it comes to FDA of M-valued functions. For exam-
ple, the computation of covariance forM-valued functions in Sect. 5.1 treated each
point along the function independently. In other words, that process did not define
a joint covariance operator for all pairs of times (s, t), as is usually the case in
fPCA. We were able to define a full (s, t)-indexed covariance but only after using
a flattening approach, not in an intrinsic way on the manifolds. This field requires
a lot of work to reach the maturity level of Euclidean FDA.

• Beyond scalar functions: Note that while our primary focus in this paper is on
functions of the type f : I → R, where I is a one-dimensional space, several of
the ideas presented here also apply to curves of the type f : I → R

d for d > 1.
For d > 1, the notion of shapes and shape statistics remain the same. However,
one important difference between d = 1 and d > 1 is that time warping does
not change the graph of the function for d > 1. Figure22 shows an example
with d = 2. The leftmost panel shows a curve f : I → R

2 in blue under the
uniform parameterization (equally spaced points). For the γ function shown in
the second panel, the time warping of the coordinate functions fx �→ fx ◦ γ ,
fy �→ fy ◦ γ are shown in the last two panels. The curve ( fx ◦ γ, fy ◦ γ ) goes
through the same points as ( fx , ty) but at a different rate, as can be seen by a
different spacing of points. The blue and red curves do completely coincide, but
one has been shifted for display purposes. The statistical shape analysis of such
Euclidean curves f : I → R

d is a well-developed field but has been left out of
the discussion here.

• Beyond interval domains: Another way to generalize scalar functions is to study
f : [0, 1]k → R

d , where k > 1. For example, the case of k = 2 corresponds
to shape analysis of images and surfaces, interesting and well-studied problems
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(Jermyn et al. 2017; Laga et al. 2017). A number of papers have covered shape
analysis of surfaces and registration of images, but statistical treatments for such
high-dimensional objects remain a wide-open field. For instance, the problem of
using their shapes in regression models is yet to be developed.

7 Conclusion

The presence of functional data in many scientific disciplines has led to rapid growth
in research and the application of functional data analysis. This paper outlines a novel
approach to functional data analysis where the focus is on the shape of functions rather
than full functions. The shape of a function is characterized by the number and heights
of its peaks and valleys, or even just the number on extrema in some cases. This shape-
basedFDAoften providesmore interpretable results as it better preserves the geometric
structures in functional data when compared to the traditional approach. The paper
uses examples and illustrations to present broad ideas for function estimation, shape
fPCA, and shape regression models as candidates for their current FDA counterparts.
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