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Abstract
The lens depth of a point has been recently extended to general metric spaces, which
is not the case for most depths. It is defined as the probability of being included in
the intersection of two random balls centred at two random points X and Y , with
the same radius d(X ,Y ). We prove that, on a separable and complete metric space,
the level sets of the empirical lens depth based on an iid sample, converge in the
Painlevé–Kuratowski sense, to its population counterpart.We also prove that, restricted
to compact sets, the empirical level sets and their boundaries are consistent estima-
tors, in Hausdorff distance, of their population counterparts, and analyse two real-life
examples.

Keywords Depth measures · Lens depth · Level sets · Metric spaces · Phylogenetic
tree

Mathematics Subject Classification 62R20 · 62G35 · 62G05

1 Introduction

Statistical depth functions have gained importance in the last three decades. The best
well known and most studied among them include the half space depth (Tukey 1975),
the simplicial depth (Liu 1990, 1992), and the multivariate L1 depth.
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Other well-known depths are the convex hull peeling depth (Barnett 1976), the
Oja depth (Oja 1983), and the spherical depth (Elmore et al. 2006), among oth-
ers. They have been extended to functional spaces, see (Fraiman and Muniz 2001;
López-Pintado and Romo 2009; Claeskens et al. 2014; Cuevas and Fraiman 2009), to
Riemannian manifolds, see (Fraiman et al. 2019), and also to general metric spaces,
see (Cholaquidis et al. 2020). Several different applications of depths notions have
been proposed, in particular for classification problems, by means of the depth-depth
method (Vencálek 2017), or to functional data, see (Mosler and Mozharovskyi 2017).
Most classical notions of depth, introduced initially onRd , cannot be directly extended
to general metric spaces or even to functional spaces or manifolds. Some of them are
computationally infeasible onhigh-dimensional spaces, such asLiu’s orTukey’s depth,
because the computational complexity is exponential in the dimension.

This is not the case of the lens depth, introduced in (Liu andModarres 2011), whose
computational complexity is of order n2, and, as we will see, it can be easily extended
to general metric spaces. This makes the lens depth particularly suitable for estimating
its level sets, by means of the level sets of its empirical version, based on an iid sample,
which is one of the main goals of this manuscript.

The estimation of the level sets of a depth measure is of current interest, see (Brunel
2019). As indicated in Laketa and Nagy (2021), “a definition of depth-based central
regions of the data, which are the regions where the depth exceeds given thresholds,
ensues naturally”. Level set estimation of depths was initially studied in (Tukey 1975),
as a key tool for the visualization and exploration of data. Other significant contribu-
tions can be found in (Koshevoy et al. 1997; Zuo and Serfling 2000; Serfling 2002;
Dyckerhoff 2016). As it was pointed out in (Liu et al. 1999), “the shape and size of
these levels, as well as the direction and speed at which they expand, provides insight
into the dispersion, kurtosis, and asymmetry of the underlying distribution”. It also
allows to extend the notion of quantiles to multivariate or functional data and can
be used for outlier detection, see, for instance, (Febrero et al. 2008; Dai and Genton
2019), as well as for supervised classification, see (Ruts and Rousseeuw 1996; Hubert
et al. 2017). The boundary of the level sets allows to extend the notion of quantile, see
(Agostinelli 2018). As shown in the two real data sets we analyse, the shape of the
level sets of the lens depth can help to detect outliers. This is of crucial importance,
when dealing with vectorcardiograms, because outliers mean data from children with
possibly cardiological problems. More precisely, during the electrical activity of the
heart, myocardial cells depolarize and repolarize, producing current flows of different
magnitudes and directions. The sum of all these current flows gives rise to a vector
indicating the main direction of the flow. Thus, an atrial depolarization vector, three
ventricular depolarization vectors and a ventricular repolarization vector are identi-
fied. In reality, these vectors do not occur independently of each other, but rather the
current, once it begins to flow, originates a vector whose size and magnitude are mod-
ified at each moment. Vectorcardiography is the recording of the electrical activity of
the heart through the originating vectors, which have the form of a closed loop.

An extension to Riemannian manifolds of the lens depth (called weighted lens
depth) was recently introduced in (Cholaquidis et al. 2020) to tackle the supervised
classification problem, and a point-wise a.s consistency result is obtained (seeTheorem
2 in (Cholaquidis et al. 2020)). Here, we address themore challenging problem of level
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944 A. Cholaquidis et al.

set estimation of the lens depth on general metric spaces, while in (Cholaquidis et al.
2020) weighted lens depth is introduced to deal with the density f together with the
underlying Riemannian structure to perform supervised classification by means of the
depth-depth-G method introduced in Cuesta-Albertos et al. (2017).

In our setting, the lens depth is defined as follows: let X1, X2 be two random
elements defined on a (rich enough) probability space (�,A,P), taking values in a
complete separable metric space (M, d) endowed with the Borel σ -algebra. Assume
that they are independent and identically distributed. In what follows, the distribution
of a random element X of M will be denoted by PX .

Given x1, x2 ∈ M define their “associate lens” by

A(x1, x2) := B(x1, d(x1, x2)) ∩ B(x2, d(x1, x2)),

where B(p, r) is the closed ball centred at p with radius r > 0. The lens depth of
a point x ∈ M is defined by LD(x) = P(x ∈ A(X1, X2)). Given an iid sample
Xn = {X1, . . . , Xn} from a distribution PX , the empirical version of LD is given by
the U -statistics of order two,

̂LDn(x) =
(

n

2

)−1
∑

1≤i1<i2≤n

1A(Xi1 ,Xi2 )(x). (1)

To gain some insight into the shape of {̂LDn ≥ λ}, see Fig. 1.
The level set estimation problem is required to define a topology in which the level

set estimators will converge. InMolchanov (1998) almost sure consistency is obtained,
when the level sets are intersected with compact sets, and the topology inherited from
Hausdorff distance is considered. In Cuevas et al. (2006), they are assumed to be
compact.

To ask compactness is not too restrictive for data in the classical finite-dimensional
Euclidean space. However, this is not the case for infinite-dimensional spaces like in
the functional data setting. To overcome this problem, other weaker topologies were
considered, for instance, Mosco or Wijsman topology, see Terán (2016).

Following this idea, we prove first that the empirical version of the level sets of the
lens depth is almost surely (a.s.) consistent estimators of their population counterpart
in the Painlevé–Kuratowski topology.

The general approach we use to obtain a.s. consistency results for the plug-in
estimator {̂LDn ≥ λ} to its population counterpart {LD ≥ λ} is to prove the uniform
convergence of ̂LDn to LD on the whole space for separable and complete metric
spaces. This has interest in itself and extends the results in Liu and Modarres (2011)
for the finite-dimensional Euclidean space.

Next, we prove that the empirical version of the level sets of the lens depth converges
a.s. in Hausdorff distance, when they are met with any compact set.

This paper is organized as follows. Section2 introduces the notation, some previous
definitions, and the notion of Painlevé–Kuratowski convergence. In Sect. 3, we state
the a.s. convergence of level sets in such topology. The a.s. uniform consistency of
̂LDn is stated in Sect. 4. Section5 addresses the problem of a.s. convergence of level
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Fig. 1 Level sets of the lens depth based on a sample of 15 iid random vectors, distributed as a bivariate
standard normal distribution. The intensity of blue represents the depth

sets in the Hausdorff distance, as well as the a.s. convergence in measure, together
with the a.s. consistency of their boundaries. All proofs are given in Appendix.

Lastly, in Sect. 6 we tackle the study of two interesting real data sets, the
vectorcardiogram data set (see Sect. 6.1), and the influenza data set (see Sect. 6.2).

2 Preliminaries

In this section,wewill introduce the notation andnecessary definitions used throughout
this paper. Given a metric space (M, d), which will be assumed to be separable and
complete, we denote by B(x, r) the closed ball centred at x with radius r > 0. The
boundary of a set A ⊂ M is denoted by ∂A. Given x ∈ Ac, we denote d(x, A) =
infa∈A d(x, a) and diam(A) = supx,y∈A d(x, y). Given two non-empty closed sets
A, B, the Hausdorff distance between them is defined as

dH (A, B) := max
{

max
a∈A

d(a, B), max
b∈B d(b, A)

}

, (2)

where dH (∅, B) = +∞ with B 	= ∅ and dH (∅,∅) = 0.
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946 A. Cholaquidis et al.

Given a finite Borel measure ν and two measurable sets A and B, the distance in
measure between them is defined as dν(A, B) = ν(A\B) + ν(C\B).

Given a function f : M → R and λ ∈ R, we denote by { f ≥ λ} the λ-level set
{x ∈ M : f (x) ≥ λ}.

2.1 Painlevé–Kuratowski convergence

We will prove first the convergence of the estimated level sets to its population coun-
terpart in the Painlevé–Kuratowski sense. Given a sequence of sets An ⊂ M , the
Painlevé–Kuratowski limit inferior of An as n → ∞ is

Li
n→∞An =

{

x ∈ M : limsup
n→∞

d(x, An) = 0
}

.

The Painlevé–Kuratowski limit superior of An as n → ∞ is

Ls
n→∞An =

{

x ∈ M : liminf
n→∞ d(x, An) = 0

}

.

In general Li
n→∞An ⊂ Ls

n→∞An . When they agree, the common set is called the

Painlevé–Kuratowski limit. It is immediate to prove that if dH (An, A) → 0, then
An → A in the Painlevé–Kuratowski sense. The converse implication is not true
in general, unless M is totally bounded, see Corollary 5.1.11 and page 147 in Beer
(1993), since we are assuming that M is complete.

3 Painlevé–Kuratowski convergence of level set estimators

We will prove that the limit in the Painlevé–Kuratowski sense of the sequence of sets
{̂LDn ≥ λ}, is the set {LD ≥ λ}. This will follow from the uniform convergence of the
empirical version of the lens depth given in the next section and the fact that LD(x)
is a continuous function of x , which follows from Proposition 3 in (Cholaquidis et al.
2020).

Theorem 1 Let (M, d) be a complete separable metric space and PX a Borel measure
on M. Assume that PX (∂B(x, δ)) = 0 for all x ∈ M and δ > 0. Assume also that
λ is such that if LD(x) = λ, there exist un → x such that LD(un) > λ. Then, with
probability one, for n large enough,

{LD ≥ λ} = Li
n→∞{̂LDn ≥ λ} = Ls

n→∞{̂LDn ≥ λ}.

Remark 1 Observe that if PX (∂B(x, δ)) 	= 0, lens depth may be pathological in
infinite-dimensional spaces. Indeed, suppose that the distribution PX is a discrete dis-
tribution supported on an orthogonal basis of L2 on the unit sphere. Then, all points
in the support of the distribution have lens depth one. Regarding the hypothesis on the
λ-level set, the following proposition states that the set of λ for which this condition
does not holds is at most countable.
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Proposition 1 Let (M, d) be a separable metric space and f : M → R. Let us denote

A = {λ : f −1(λ) contains at least a local maximum}.

Then, A is countable.

4 Uniform consistency of ̂LDn

A key argument to prove the consistency of level sets in the Painlevé–Kuratowski
topology (aswell as in theHausdorff distance) is to prove that ̂LDn converges uniformly
to LD a.s., which is the main goal of this section.

For that purpose, we will use the following version of Theorem 1 in (Billingsley
and Topsøe 1967).

Theorem 2 (Billingsley and Topsøe (1967)) Let B(M × M) be the class of all real
valued, bounded, measurable functions defined on the metric space (M × M, ρ),
where ρ(z, y) = max{d(z1, y1), d(z2, y2)}. Suppose F ⊂ B(M × M) is a subclass
of functions. Then,

sup
f ∈F

∣

∣

∣

∫

f d Pn −
∫

f d P
∣

∣

∣ → 0,

for every sequence Pn that converges weakly to P if, and only if,

sup{| f (z) − f (t)| : f ∈ F , z = (z1, z2), t = (t1, t2) ∈ M × M} < ∞, (3)

and for all ε > 0,

lim
δ→0

sup
f ∈F

P
[

{y = (y1, y2) : ω f {Bρ(y, δ)} ≥ ε}
]

= 0, (4)

where ω f (A) = sup{| f (z) − f (t)| : z, t ∈ A} and Bρ(y, δ) is the open ball in the
metric space (M × M, ρ) of radius δ > 0.

Theorem 3 Let (M, d) be a complete separable metric space and PX a Borel measure
on M. Assume that PX (∂B(x, δ)) = 0 for all x ∈ M and δ > 0. Then,

sup
x

|̂LDn(x) − LD(x)| → 0 a.s., as n → ∞.

The previous result is proven for M = R
d in (Liu and Modarres 2011), endowed

with the Euclidean norm.
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5 Level set estimation in Hausdorffmetric

To obtain the consistency in Hausdorff distance of the level set estimator, Theorem
2.1 in (Molchanov 1998) will play a key role, together with the uniform convergence
of the previous section. We will make use of the following slightly restricted version.

Theorem 4 (Molchanov (1998)) Let fn, f : M → R be continuous functions. Assume
that for each compact set K0, supx∈K0

| fn(x) − f (x)| → 0. Assume that for all
λ ∈ [c1, c2], { f ≥ λ} ⊂ { f > λ}. Then,

sup
c1≤λ≤c2

dH
({ fn ≥ λ} ∩ K0, { f ≥ λ} ∩ K0

) → 0.

Given positive numbers c1 < c2, assume that for all λ ∈ [c1, c2], we have { f ≥
λ} ⊂ { f > λ}. From Theorem 2.1 in (Molchanov 1998) together with Theorem 3, and
the fact that LD is a continuous function, we get

sup
c1≤λ≤c2

dH
({̂LDn ≥ λ} ∩ K , {LD ≥ λ} ∩ K

) → 0 a.s., as n → ∞

for any compact set K . If ν({LD = λ}) = 0, it follows easily from Theorem 3 that for
all compact K ,

dν

({̂LDn ≥ λ} ∩ K , {LD ≥ λ} ∩ K
) → 0 a.s., as n → ∞.

being dν any finite Borel measure.
The convergence of the boundaries of the level sets is in general more involved, to

that aim we will use the following result.

Theorem 5 (Cuevas et al. (2006)) Given a continuous function f : M → R, let fn =
fn(ω, ·), with ω ∈ �, a sequence of functions fn : M → R, n = 1, 2, . . . ,. Assume
that for each n, fn is continuous with probability one. Assume that the following
assumptions are fulfilled.

(h1) M is locally connected.
(h2) For all x ∈ ∂{ f ≥ λ}, there exist sequences un, ln → x such that f (un) > λ

and f (ln) < λ.
( f1) ∂{ f ≥ λ} 	= ∅. Moreover, there exists λ− < λ such that the set { f ≥ λ−} is

compact.

If supx∈M
∣

∣ f (x) − fn(x)
∣

∣ → 0 a.s., then

dH
(

∂{ f ≥ λ}, ∂{ fn ≥ λ}) → 0, a.s., as n → ∞.

The following theorem states that ∂{̂LDn ≥ λ} ∩ K is a consistent estimator of
∂{LD ≥ λ}∩K . The proof follows the same lines used to prove Theorem 5. However,
we cannot apply that theorem directly because ̂LDn(x) is not a continuous function,
since the range of ̂LDn(x) is contained in the set {k(n2

)−1 : k = 0, . . . ,
(n
2

)}.
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Theorem 6 Let λ > 0 be such that {LD ≥ λ} 	= ∅. Under the assumptions of Theorem
3, together with hypotheses h1 and h2 of Theorem 5, we have that

lim
n→∞ dH

(

∂{̂LDn ≥ λ} ∩ K , ∂{LD ≥ λ} ∩ K
) = 0 a.s.,

for all compact sets K .

6 An application to the study of two sets of real data

Inwhat follows, we analyse two interesting real data sets: the vectorcardiogram (VCG)
and the influenza data sets.

6.1 The vectorcardiogram data set

Until the half of twentieth century, electrocardiograms were the non-invasive method-
ology used to detect heart diseases. In Frank (1956), an alternative and complementary
methodology is introduced, called vectorcardiography (VCG). In many cases, electro-
cardiogram (ECG) records are not sufficient and complementary studies are necessary
for the detection of cardiac failure, such as myocardial infarction, see Hafshejani et al.
(2021). In this respect, the VCG can be of great help, but its interpretation is more
difficult than an ECG in general. As mentioned in Pastore et al. (2019) “from the
year 2000 until the present decade an increasing number of publications related to
electrovectorcardiography has been observed. In this context, and mainly regarding
the definition of arrhythmogenic substrates, it was observed that the association of
the ECG and the vectorcardiogram (VCG) methods could provide much more infor-
mation about the cardiac electrical phenomena, thus increasing its employment and
allowing us to differentiate potentially fatal cases from benign ones". Therefore, an
automatic procedure that detects possible anomalous VCGs may be useful for the
medical community.

The vectorcardiography is a method that produces a three-dimensional curve which
comprises the records of the magnitude and direction of the electrical forces generated
by the heart over time. These curves are calledQRS loops, see Fig. 2. From the location
in the body of the electrodes (I , E,C, A, M, H , F) (see Fig. 2), it is possible to obtain
electric vectorial signals of the heart in an orthogonal system (x, y, z), called Frank’s
derivatives

⎧

⎨

⎩

x = 0.610A + 0.171C − 0.781I
y = 0.655A + 0.345C − 1.000I
z = 0.133A + 0.736M − 0.264I − 0.374E − 0.231C .

Our aim is to detect outliers on a real data set of vectorcardiograms of children,
corresponding to children with (possibly) cardiological problems, by means of the
shape and size of the level sets of lens depth. We consider a real-life data set that
consists of 98 vectorcardiograms from children with ages varying between 2 and 19,
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950 A. Cholaquidis et al.

Fig. 2 a Location of the electrodes to obtain Frank’s derivatives, in an orthogonal coordinate system
(x, y, z). b QRS curve loop. The plane in blue is the best two-dimensional approximation of the curve by
least squares

where the data belong to the Stiefel manifold SO(3, 2) of all orthonormal 2-frames in
R
3 considered as 3 × 2 orthogonal matrices (see (Hatcher 2002)).
In (Downs and Liebman 1969), there is associated with each curve an element of

SO(3, 2) that represents some of the information of the curve, see also (Downs 1972),
where they describe the phenomena as “... given thematrix X = (X1, X2) ∈ SO(3, 2),
the unitary vector X1 ∈ R

3 is the direction from the vertex to the apex of the so-called
QRS loop, which is the most important loop among the three virtually planar loops
contained in the vectorcardiogram (lies in the plane of the loop). And the vector unitary
X2 ∈ R

3 is orthogonal to X1 and to the plane of the loop, where the sense of X2 is
determined by the direction of motion of the moving point generating the loop”.

This sample has been previously analysed in the literature, see, for instance,
(Chikuse 2012; Chakraborty and Vemuri 2019; Pal et al. 2019).

Figure3 represents each matrix in SO(3, 2) by two points in S2, one for each
column.They are joined by an arc in S2. The arc joining the deepest pair of observations
(w.r.t. lens depth) is represented in violet, while the outliers (for a level λ = 0.10) are
represented as red arcs.

6.2 Influenza data set

A problem of great importance, and of current interest in the scientific community, is
the early detection of new variants of a virus in a given community. One method to
address this problem is to analyse the temporal dynamics of the variability of the virus
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Fig. 3 Data visualization of the
data from SO(3, 2). The violet
arc represents the deepest
observation according to lens
depth. The outliers represented
by red arcs correspond to the
data outside the λ = 0.10 level
set of the depth

genetic chain. Roughly speaking, an increase in gene-chain diversity over a period of
time may indicate diversification of the virus into new variants.

This data set consists of longitudinal data of the influenza virus, belonging to the
familyOrthomyxoviridae. An important problem analysed in (Cholaquidis et al. 2020)
is to model the genomic evolution of the virus, see (Smith et al. 2004). In this paper,
we focus on another important issue: modelling the temporal variability of the virus
by means of the lens depth, and use this to predict and anticipate a possible pandemic.
The influenza virus has an RNA genomic which is very common: it produces diseases
like yellow fever and hepatitis and annually costs half a million deaths worldwide. It
is well known that these viruses change their genetic pattern over time, which is vital
for developing a possible vaccine. We will study the H3N2 variant of the virus, in
particular, the subtype haemagglutinin (HA), which produced the SARS pandemic in
2002. This variant is known to have a variability in its genetic arrangement over time,
see (Altman 2006; Monod et al. 2018).

Thedata set canbe found inGI-SAIDEpiFluT M database,1 providing1089genomic
sequences of H3N1 from 1993 to 2017 in New York, aligned using MUSCULE, see
(Edgar 2004). We used reduced trees of 5 leaves, as in (Monod et al. 2018), to capture
the structure of the data. This set of trees can be endowed with a distance, see (Billera
et al. 2001). The database usedwas obtained from theGitHub repository https://github.
com/antheamonod/FluPCA.

For this kind of data, constructing measures of centrality and variability, as well
as confidence regions, is a problem that has been previously addressed in the litera-
ture, see, for instance, (Barden et al. 2018; Brown and Owen 2020; Willis 2019) and
references therein.

1 www.gisaid.org.
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Fig. 4 Diameters of the lens depth level sets from the sample of trees for the different years, with respect
to λ

For each year we computed the empirical lens depth of the trees, considered on
the manifold of phylogenetic trees. We estimated the diameter of the level sets from
the sample points that belong to the level sets, see Fig. 4. As can be seen, there is a
larger dispersion in the years prior to the pandemic of 2002 compared to later years.
Early detection of this increased variability may have an impact on health policy
decision-making, with the aim of preventing the proliferation of the virus variants.
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Appendix

Proof of Theorem 1 Let us prove that {LD ≥ λ} ⊂ Li
n→∞{̂LDn ≥ λ}. Take a such

that LD(a) = λ + ε with ε > 0. By the law of large numbers for U-statistics,
with probability one, for all n large enough |̂LDn(a) − LD(a)| < ε/2. Then with
probability one for n large enough ̂LDn(a) > λ, therefore d(a, {̂LDn ≥ λ}) = 0,
which entails that a ∈ Li

n→∞{̂LDn ≥ λ}. Let δ > 0 arbitrarily small, if LD(a) = λ,

there exists uk → a such that LD(uk) > λ and d(a, uk) < δ. With probability one,
for n large enough, ̂LDn(uk) > λ and then d(a, {̂LDn ≥ λ}) ≤ d(a, uk) < δ for
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all n large enough, from where it follows that a ∈ Li
n→∞{̂LDn ≥ λ}. This proves that

{LD ≥ λ} ⊂ Li
n→∞{̂LDn ≥ λ}.

The second inclusion in Theorem 1 holds by definition; let us prove the third one.
Let a ∈ Ls

n→∞{̂LDn ≥ λ}, then there exists zn → a such that ̂LDn(zn) ≥ λ. Let

S = {{zn} ∪ a}, then from Theorem 3,

lim
n→∞ sup

y∈S
|̂LDn(y) − LD(y)| = 0 a.s.

Next we bound,

|LD(a) − ̂LD(zn)| ≤ |LD(a) − LD(zn)| + |LD(zn) − ̂LD(zn)|
≤ |LD(a) − LD(zn)| + sup

y∈S
|̂LDn(y) − LD(y)|.

Lastly, LD(a) ≥ λ follows from the continuity of LD [see Proposition 3 in
(Cholaquidis et al. 2020)]. �


Proof of Proposition 1 Assume by contradiction that A is uncountable. Then, there
exists an uncountable set I ⊂ R such that for all λ ∈ I , there exists yλ ∈ M such
that yλ is a local maximum of f and f (yλ) = λ. Since yλ is a local maximum, there
exists q = q(yλ) ∈ Q such that f (x) ≤ f (yλ) for all x ∈ B(yλ, q). Since {yλ}λ∈I is
uncountable, there exists at least one q∗ ∈ Q and an uncountable subset J ⊂ I , such
that f (x) ≤ f (yλ) for all x ∈ B(yλ, q∗) and for all λ ∈ J . Let us consider {yλ}λ∈J the
local maximum for which this q∗ works. Since M is separable, there exists y∗ ∈ M
and a subsequence of distinct yλn , associated with distinct λn , such that yλn → y∗. Let
n0 such that for all n, n′ > n0 d(yλn′ , yλn ) < q/4. Then, yλn′ ∈ B(yλn , q), fromwhere
it follows t λn′ ≤ λn . Also, yλn ∈ B(yλn′ , q), and then, λn ≤ λn′ . Lastly, λn = λn′ ,
which contradict that all the λn are distinct. �


To prove that (4) is fulfilled, we will use the following lemma.

Lemma 1 Let δ > 0, x ∈ M and y = (y1, y2) ∈ M × M be such that
d(x, ∂A(y1, y2)) > 3δ. Then, ω fx {Bρ(y, δ)} = 0, where fx (t1, t2) = IA(t1,t2)(x)
with t1, t2 ∈ M.

Proof If z = (z1, z2) ∈ Bρ(y, δ), then d(z1, y1) < δ and d(z2, y2) < δ. Let us prove
first that

{x ∈ A(y1, y2) : d(x, ∂A(y1, y2)) > 2δ} ⊂ A(z1, z2) (5)

for all z = (z1, z2) ∈ Bρ(y, δ). If x ∈ A(y1, y2) and d(x, ∂A(y1, y2)) > 2δ, then
d(x, y1) ≤ d(y1, y2) − 2δ ≤ d(y1, z1) + d(z1, z2) + d(z2, y2) − 2δ ≤ d(z1, z2). In
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the same way, if d(x, y2) ≤ d(z1, z2), then x ∈ A(z1, z2), which implies (5). Next,
let us prove that

A(z1, z2) ⊂ {x : d(x, A(y1, y2)) ≤ 3δ} (6)

For any x ∈ A(z1, z2), d(x, y1) ≤ d(x, z1)+d(z1, y1) ≤ d(z1, z2)+δ ≤ d(y1, y2)+
3δ. In the same way, d(x, y2) ≤ d(x, z2)+ δ ≤ d(z1, z2)+ δ ≤ d(y1, y2)+3δ. Then,
x ∈ {x : d(x, A(y1, y2)) ≤ 3δ}. To prove that ω fx {Bρ(y, δ)} = 0, it is enough to
prove that for all (z1, z2), (t1, t2) ∈ Bρ((y1, y2), δ)

|IA(z1,z2)(x) − IA(t1,t2)(x)| = 0. (7)

Observe that if x ∈ A(y1, y2) and d(x, ∂A(y1, y2)) > 3δ, then by (5), x ∈ A(z1, z2),
so IA(z1,z2)(x) = 0 and x ∈ A(t1, t2). Hence, IA(t1,t2)(x) = 0 which then shows that
(7) holds. Proceeding in the same way if x /∈ A(y1, y2) and d(x, ∂A) > 3δ, by (6)
x /∈ A(z1, z2), which implies that IA(z1,z2)(x) = 0. Also, x /∈ A(t1, t2), which implies
that IA(t1,t2)(x) = 0, so again (7) holds. �

Proof of Theorem 3 We will apply Billingsley’s theorem to the set of functions

F = { fx (z, y) = IA(z,y)(x)},

where the sequence Pn of probability measures on M × M is such that Pn(Xi , X j ) =
(1/2)

(n
2

)−1 if i 	= j and Pn(Xi , X j ) = 0 if i = j . Let P be the product measure
PX × PX . In this case,

sup
f ∈F

∣

∣

∣

∫

f d Pn −
∫

f d P
∣

∣

∣ = sup
x∈K

|̂LDn(x) − LD(x)|.

Clearly, sup{| f (z) − f (t)| : f ∈ F , z, t ∈ M × M} = 2. So we have to prove that
(4) holds. By Lemma 1, to prove (4), it is enough to prove that

lim
δ→0

sup
x

PX × PX {(y1, y2) : d(x, ∂A(y1, y2)) ≤ 3δ} = 0. (8)

Let 0 < ε < 1, and let K be a compact set such that PX (Kc) < ε

sup
x

PX × PX {(y1, y2) : d(x, ∂A(y1, y2)) ≤ 3δ}
≤ sup

x
PX × PX

{

(y1, y2) : y1, y2 ∈ K , d(x, ∂A(y1, y2)) ≤ 3δ
} + 2ε

sup
x

PX × PX {(y1, y2) : y1, y2 ∈ K , d(x, ∂A(y1, y2)) ≤ 3δ}
∫

K
PX (y2 : d(y2, ∂B(y1, d(y1, y2))) ≤ 3δ)PX (dy1)

∫

K
PX (y2 : d(y2, ∂B(y1, d(y1, y2))) ≤ 3δ)PX (dy1)
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≤ sup
y1∈K

PX (y2 : d(y2, ∂B(y1, d(y1, y2))) ≤ 3δ)

Since PX (∂B(x, δ)) = 0 for all δ > 0 for a fixed y1,

PX (y2 : d(y2, ∂B(y1, d(y1, y2))) ≤ δ) → 0 as δ → 0 (9)

By the dominated convergence theorem, it follows that for fixed δ, PX (y2 :
d(y2, ∂B(y1, d(y1, y2))) ≤ δ) is a continuous function of y1. Then, the supremum
supy1∈K PX (y2 : d(y2, ∂B(y1, d(y1, y2))) ≤ 3δ) it attained, at some y∗ ∈ K for
which PX (y2 : d(y2, ∂B(y∗, d(y∗, y2))) ≤ 3δ) → 0 as δ → 0. Then, for all
0 < ε < 1

lim
δ→0

sup
x

PX × PX {(y1, y2) : d(x, ∂A(y1, y2)) ≤ 3δ} < 2ε,

which implies (8), and concludes the proof of Theorem 3 �

Proof of Theorem 6 Let K be any compact set. Observe that {LD ≥ λ−} ∩ K is non-
empty and compact for any 0 < λ− < λ. Following the same ideas as those used in
the proof of Theorem 1 in (Cuevas et al. 2006), one can derive that for all ε > 0

∂{LD ≥ λ} ⊂ B(∂{̂LDn ≥ λ}, ε).

The proof of

∂{̂LDn ≥ λ} ∩ K ⊂ B(∂{LD ≥ λ} ∩ K , ε)

is slightly different from the analogous inclusion in (Cuevas et al. 2006). If we proceed
by contradiction, there exists an xn ∈ {̂LDn ≥ λ} ∩ K , but

d(xn, ∂{LD ≥ λ} ∩ K ) > ε. (10)

Observe that if xn ∈ ∂{̂LDn ≥ λ} ∩ K , then xn ∈ ∂A(Xi , X j ) for some Xi 	= X j .
If xn is in the boundary of two or more sets A(Xi , X j ), we can take yn such that
d(yn, xn) < ε/2n , yn ∈ ∂{̂LDn(x) ≥ λ}, yn in the boundary of only one ∂A(Xi , X j )

and |̂LDn(yn)−λ| <
(n
2

)−1. If xn is in the boundary of only one A(Xi , X j ), we choose

xn = yn . In this case, we clearly also have |̂LDn(yn) − λ| <
(n
2

)−1

Since K is compact, there exists an x ∈ K such that xn, yn → x (by considering
a subsequence if necessary). Then, |LD(x) − λ| ≤ |LD(x) − LD(yn)| + |LD(yn) −
̂LD(yn)| + |̂LD(yn) − λ|. The first terms converge to 0 by the continuity of LD at x .
The second term converges to 0 a.s., because the set K ′ = {⋃n{yn}} ∪ {x} is compact
and by Theorem 3, supz∈K ′ |̂LDn(z) − LD(z)| → 0. The last term is bounded from

above by
(n
2

)−1 → 0 as n → ∞. Then, LD(x) = λ, which implies that d(xn, ∂{LD ≥
λ} ∩ K ) ≤ d(xn, x) → 0, which contradicts (10). �
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