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Abstract
Wepropose a novel class of first-order integer-valuedAutoRegressive (INAR(1))mod-
els based on a new operator, the so-called geometric thinning operator, which induces a
certain non-linearity to the models. We show that this non-linearity can produce better
results in terms of prediction when compared to the linear case commonly considered
in the literature. The new models are named non-linear INAR(1) (in short NonLI-
NAR(1)) processes. We explore both stationary and non-stationary versions of the
NonLINAR processes. Inference on the model parameters is addressed and the finite-
sample behavior of the estimators investigated through Monte Carlo simulations. Two
real data sets are analyzed to illustrate the stationary and non-stationary cases and the
gain of the non-linearity induced for our method over the existing linear methods. A
generalization of the geometric thinning operator and an associated NonLINAR pro-
cess are also proposed and motivated for dealing with zero-inflated or zero-deflated
count time series data.
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1 Introduction

Afirst-order integer-valued autoregressive (INAR(1)) process is defined by a sequence
of non-negative integer-valued random variables {Xt }t∈N satisfying

Xt = α ◦ Xt−1 + εt , t ∈ N, (1)

where “◦” is the binomial thinning operator by Steutel and van Harn (1979), which is
defined by α ◦ Xt−1 ≡ ∑Xt−1

k=1 ζt,k , {ζt,k}t,k∈N is a doubly infinite array of independent
and identically distributed (iid) Bernoulli random variables with P (ζt,k = 1) = 1 −
P (ζt,k = 0) = α ∈ (0, 1), and {εt }t∈N is assumed to be a sequence of iid non-negative
integer-valued random variables, with εt independent of Xs−1 and ζs,k , for all k ≥ 1
and for all s ≤ t . INAR processes have been commonly used to fit count time series
data. In the context of branching process, the random variable Xt can be seen as the
total population at time t , α ◦ Xt−1 is the number of survivors at time t − 1, while
εt stands for the immigration at time t . The random variable ζt,k denotes the survival
or not of the k-th individual of the population at time t − 1. Observe that, under the
assumption that με ≡ E(εt ) < ∞, the conditional expectation of Xt given Xt−1 is
linear on Xt−1, that is,

E(Xt |Xt−1) = αXt−1 + με. (2)

The INAR process given in (1) has been studied by Alzaid and Al-Osh (1987),
McKenzie (1988), and Dion et al. (1995). Conditional least squares estimation for this
model was explored, for instance, by Wei and Winnicki (1990), Ispány et al. (2003),
Freeland and McCabe (2005), and Rahimov (2008). For a comprehensive review on
thinning-based INAR processes and some of their generalizations, see Scotto et al.
(2015).

Alternative integer-valued processes based on non-additive innovation through
maximum and minimum operations have been proposed in the literature. Littlejohn
(1992) and Littlejohn (1996) considered a discrete minification processes based on
a thickening operator; see also Kalamkar (1995) for an alternative class of mini-
fication processes. Scotto et al. (2016) defined a class of max-INAR processes by
Xt = max{α ◦ Xt−1, εt }, for t ≥ 1, with “◦" being the binomial thinning operator,
while Aleksić and Ristić (2021) used the minimum function and a modified nega-
tive binomial INAR-operator to define their processes as Xt = min{α � Xt−1, εt },
where α � X = ∑1+X

i=1 Gi , for a non-negative random variable X , with {Gi }i∈N being
a sequence of iid geometric distributed random variables with mean α > 0, where
{εt }t∈N is defined as before.

For the count processes {Xt }t∈N considered in theseworks, a certain non-linearity is
induced in the sense that the conditional expectation E(Xt |Xt−1) is non-linear on Xt−1
(and also the conditional variance) in contrast with (2). We refer to these models as
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Non-linear INAR(1) processes under an alternative geometric thinning… 697

“non-linear" throughout this paper. On the other hand, the immigration interpretation
in a populational context is lost due to the non-additive innovation assumption.

Our chief goal in this paper is to propose a novel class of non-linear INAR(1) pro-
cesses that preserve the additive innovation,while still having a practical interpretation,
in contrast with the existing non-linear INARmodels, where this interpretation is lost.
With that purposewe introduce a new INAR-operator, the so-called geometric thinning
operator, which is of own interest. The new models are named non-linear INAR(1) (in
short NonLINAR(1)) processes. We show that the proposed NonLINAR(1) processes
can produce better results in terms of prediction when compared to the linear case,
which is commonly considered in the literature. We now highlight other contributions
of the present paper:

(i) development of inferential procedures and numerical experiments, which are not
well-explored for the existing non-linear models aforementioned;

(ii) properties of the novel geometric thinning operator are established;
(iii) a particular NonLINAR(1) process with geometric marginals is investigated in

detail, including an explicit expression for the autocorrelation function;
(iv) both stationary and non-stationary cases are explored, being the latter impor-

tant for allowing the inclusion of covariates, a feature not considered by the
aforementioned papers on non-linear INAR models;

(v) a generalization of the geometric thinning operator and an associatedNonLINAR
process are also proposed and motivated for dealing with zero-inflated or zero-
deflated count time series data.

The paper is organized as follows. In Sect. 2, we introduce the new geometric thin-
ning operator and explore its properties. Section3 is devoted to the development of
the NonLINAR processes based on the new operator, with a focus on the case where
the marginals are geometrically distributed. Two methods for estimating the model
parameters are discussed in Sect. 4, including Monte Carlo simulations to evaluate
the proposed estimators. In Sect. 5, we introduce a non-stationary NonLINAR pro-
cess allowing for the inclusion of covariates and provide some Monte Carlo studies.
Section6 is devoted to two real data applications. Finally, in Sect. 7, we develop a gen-
eralization of the geometric thinning operator and an associated NonLINAR model.

2 Geometric thinning operator: definition and properties

In this section, we introduce a new thinning operator and derive its main properties.
We begin by introducing some notation. For two random variables X and Y , we write
min{X , Y } := X ∧ Y to denote the minimum between X and Y . The probability gen-
erating function (pgf) of a non-negative integer-valued random variable Y is denoted
by

�Y (s) = E
(

sY
)

=
∞∑

k=0

sk P (Y = k),
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698 W. Barreto-Souza et al.

for all values of s for which the right-hand side converges absolutely. The n-th deriva-
tive of �Y (x) with respect to x and evaluated at x = x0 is denoted by �

(n)
Y (x0).

Let Z be a geometric random variable with parameter α > 0 and probability
function assuming the form

P (Z = k) = αk

(1 + α)k+1 , k = 0, 1, . . . .

In this case, the pgf of X is

�Z (s) = 1

1 + α(1 − s)
, |s| < 1 + α−1, (3)

and the parameter α has the interpretation α = E(Z) > 0. The shorthand notation
Z ∼ Geo(α) will be used throughout the text. We are ready to introduce the new
operator and explore some of its properties.

Definition 1 (Geometric thinning operator) Let X be a non-negative integer-valued
random variable, independent of Z ∼ Geo(α), with α > 0. The geometric thinning
operator � is defined by

α�X ≡ min (X , Z) . (4)

Remark 1 The operator � defined in (4) satisfies α�X ≤ X , like the classic binomial
thinning operator ◦. Therefore, � is indeed a thinning operator.

In what follows, we present some properties of the proposed geometric thinning
operator. We start by obtaining its probability generating function.

Proposition 1 Let X be a non-negative integer-valued random variable with pgf �X .
Then, the pgf of α�X is given by

�α�X (s) =
1 + α(1 − s)�X

(
αs

1 + α

)

1 + α(1 − s)
, |s| < 1 + α−1.

Proof By the independence assumption between X and Z , it holds that

P (α�X = k) = P (α�X ≥ k) − P (α�X ≥ k + 1)

= P (Z ≥ k)P (X ≥ k) − P (Z ≥ k + 1)P (X ≥ k + 1)

=
(

α

1 + α

)k [

P (X = k) + 1

1 + α
P (X ≥ k + 1)

]

.

Hence,

�α�X (s) =
∞∑

k=0

(
αs

1 + α

)k

P (X = k) + 1

1 + α

∞∑

k=0

(
αs

1 + α

)k

P (X ≥ k + 1)
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= �X

(
αs

1 + α

)

− 1

1 + α
�X

(
αs

1 + α

)

+ 1

1 + α

∞∑

k=0

(
αs

1 + α

)k

P (X ≥ k)

= α

1 + α
�X

(
αs

1 + α

)

+ 1

1 + α

∞∑

k=0

(
αs

1 + α

)k

P (X ≥ k).

The second term on the last equality can be expressed as

1

1 + α

∞∑

k=0

(
αs

1 + α

)k

P (X ≥ k) = 1

1 + α

∞∑

k=0

(
αs

1 + α

)k ∞∑

l=k

P (X = l)

= 1

1 + α

∞∑

l=0

l∑

k=0

(
αs

1 + α

)k

P (X = l)

= 1

1 + α − αs

[

1 − αs

1 + α
�X

(
αs

1 + α

)]

.

The result follows by rearranging the terms. �
The next result gives us the moments of α�X , which will be important to discuss

prediction and forecasting in what follows.

Proposition 2 Let � be the geometric thinning operator in (4). It holds that the n-th
factorial moment of α�X is given by

E
(
(α�X)n

) = n!αn

⎧
⎨

⎩
1 −

n−1∑

k=0

�
(k)
X

(
α

1+α

)

k!(1 + α)k

⎫
⎬

⎭
,

for n ∈ N, where (α�X)n ≡ α�X × (α�X − 1) × · · · × (α�X − n + 1).

Proof The result follows by using the pgf given in Proposition 1 and the generalized
Leibniz rule for derivatives, namely (d1d2)(n)(s) = ∑n

k=0

(n
k

)
d(n−k)
1 (s)d(k)

2 (s), with

d1(s) = 1 + α(1 − s)�X

(
αs

1 + α

)

and d2(s) = 1

1 + α(1 − s)
. �

In what follows, the notation X ⇒ Y means X weakly converges to Y .

Proposition 3 Let � be the geometric thinning operator in (4). Then,

(i) α�X ⇒ 0, as α → 0,
(ii) α�X ⇒ X , as α → ∞.

Proof The proof follows immediately from Proposition 1 and the Continuity Theorem
for pgf’s. �

We now show a property of the operator � of own interest.
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700 W. Barreto-Souza et al.

Proposition 4 Let Z1, . . . , Zn be independent geometric random variables with
parameters α1, . . . , αn, respectively. Assume that X1, . . . , Xn are non-negative
integer-valued random variables independent of the Z’s, and let αi�Xi =
min (Xi , Zi ). Then,

∧n
k=1 αk�Xk = α̃n� ∧n

k=1 Xk, (5)

with α̃n =
∏n

k=1 αk
∏n

k=1(1 + αk) −∏n
k=1 αk

, n ∈ N.

Proof We prove (5) by induction on n. For n = 2, it holds that

∧2
k=1αk�Xk = ∧2

k=1(Xk ∧ Zk) = (X1 ∧ X2) ∧ (Z1 ∧ Z2) = α̃2� ∧2
k=1 Xk,

where α̃2 =
∏2

k=1 αk
∏2

k=1(1 + αk) −∏2
k=1 αk

. Assume that ∧n−1
k=1αk�Xk = α̃n−1� ∧n−1

k=1

Xk . Since

∧n
k=1αk�Xk = (∧n−1

k=1αk�Xk) ∧ (αn�Xn) = ( α̃n−1� ∧n−1
k=1 Xk) ∧ (αn�Xn)

= α̃n� ∧n
k=1 Xk,

the proof is complete. �
Wefinish this section bydiscussing the zero-modifiedgeometric (ZMG)distribution

and some of its properties. Such a distribution will play an important role in the
construction of our model in Sect. 3. We say that a random variable Y follows a ZMG
distribution with parameters μ > 0 and π ∈ (−1/μ, 1) if its probability function is
given by

P (Y = k) =

⎧
⎪⎪⎨

⎪⎪⎩

π + (1 − π)
1

(1 + μ)
, for k = 0,

(1 − π)
μk

(1 + μ)k+1 , for k = 1, 2, . . . .

We denote Y ∼ ZMG(π, μ). The geometric distribution with mean μ is obtained
as a particular case when π = 0. For π < 0 and π > 0, the ZMG distribution is
zero-deflated or zero-inflated with relation to the geometric distribution, respectively.

For π ∈ (0, 1), Y satisfies the following equality in distribution: Y
d= B Z , where B

and Z are independent random variables with Bernoulli (with success parameter π )
and geometric (with mean μ) distributions, respectively. The associated pgf can be
computed as

�Y (s) = 1 + πμ(1 − s)

1 + μ(1 − s)
, |s| < 1 + μ−1. (6)
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Now, assume that X ∼ Geo(μ), with μ > 0. We have that

P (α�X > z) = P (X > z)P (Z > z) =
[(

μ

1 + μ

)(
α

1 + α

)]z+1

, z = 0, 1, . . . ,

which means α�X ∼ Geo

(
αμ

1 + α + μ

)

.

In the next section,we introduce our class of non-linear INARprocesses and provide
some of their properties.

3 Non-linear INAR(1) processes

In this section, we introduce a novel class of non-linear INAR(1) processes based on
the new geometric thinning operator � defined in Sect. 2 and explore a special case
when the marginals are geometrically distributed.

Definition 2 A sequence of random variables {Xt }t∈N is said to be a non-linear
INAR(1) process (in short NonLINAR(1)) if it satisfies the stochastic equation

Xt = α�Xt−1 + εt , t ∈ N, (7)

with α�Xt−1 = min (Xt−1, Zt ), {Zt }t∈N being a sequence of iid random variables
with Z1∼Geo(α), {εt }t∈N being an iid non-negative integer-valued random variables
called innovations, where εt is independent of Xt−l and Zt−l+1, for all l ≥ 1, and X0
is some starting non-negative value/random variable.

Remark 2 The random variable Zt in Definition 2 determines the number of survivals
at time t . Either the previous population is reduced to Zt individuals if Zt < Xt−1 or
everybody survives if Zt ≥ Xt−1. As argued in Remark 1, � is a thinning operator.
We remark that the minimum operation to construct count processes is also known
in the literature as minimization; for instance, see Littlejohn (1992). Non-linearity
for count time series models is achieved by using minimum or maximum operations,
but differently from the existing literature, our proposed methodology induces non-
linearity to the model and keeps the additive innovation assumption at the same time.
Therefore, the populational interpretation (with survivals and immigration processes)
is still valid under our framework.

We now obtain some properties of the NonLINAR(1) processes.

Proposition 5 The 1-step transition probabilities of the non-linear INAR(1) process,
say P (x, y) ≡ P (Xt = y | Xt−1 = x), are given by

P (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−1∑

k=0

P (Z = k) P (εt = y − k) + P (Z ≥ x) P (εt = y − x), for x ≤ y,

y∑

k=0

P (Z = k) P (εt = y − k), for x > y,

(8)
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for x, y = 0, 1, . . . . In particular, we have P (0, y) = P (εt = y).

Proof For x = 0, we have that P (0, y) = P (α�0+ εt = y) = P (εt = y). For x > 0,
it follows that

P (x, y) = P (α�x + ε = y) =
y∑

k=0

P (α�x = k)P (ε = y − k),

where

P (α�x = z) =

⎧
⎪⎨

⎪⎩

0, for x < z,

P (Z ≥ z), for x = z,

P (Z = z), for x > z.

This gives the desired transition probabilities in (8). �

Theorem 6 Let {Xt }t∈N be a NonLINAR(1) process. Then, {Xt }t∈N is stationary and
ergodic.

Proof Note that {Xt }t∈N is a homogeneousdiscrete timeMarkovchain (seeProposition
(5)). Therefore, using the Markov property, it is not hard to see that (X1, . . . , Xm) and
(Xk, . . . , Xk+m) have the same distribution, for all m ∈ N and for all k ∈ N. This
gives the stationarity of the process. To prove ergodicity, let σ(Xt , Xt+1, . . . ) be the
sigma-field generated by the random variables Xt , Xt+1 . . . . Definition (7) leads to

σ(Xt , Xt+1, . . . ) ⊂ σ(α�Xt , εt , α�Xt+1, εt+1, . . . ),

where {α�Xt }t∈N and {εt }t∈N are independent sequences. Hence

∞⋂

t=1

σ(Xt , Xt+1, . . . ) ⊂
∞⋂

t=1

σ(α�Xt , εt , α�Xt+1, εt+1, . . . ) ≡ T .

Since T is a tail sigma-field, it follows by Kolmogorov’s 0–1 Law that every event
A ∈ T has probability 0 or 1. It follows that the process is ergodic (see Shiryaev
(2019), Definition 2, pg. 43). �

Proposition 7 The joint pgf of the discrete random vector (Xt , Xt−1) is given by

�Xt ,Xt−1(s1, s2) = �ε(s1)

1 − α(s1 − 1)

[

�X (s2) − α(s1 − 1)�X

(
s1s2α

1 + α

)]

, (9)

with �X (·) being the pgf of X and �ε(·) as in (11), where s1 and s2 belong to some
intervals containing the value 1.
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Proof We have that

�Xt ,Xt−1(s1, s2) = E
(

s Xt
1 s Xt−1

2

)
= E

(
sα�Xt−1+εt
1 s Xt−1

2

)

= �εt (s1)E
(

s Xt−1
2 E

(
sα�Xt−1
1 | Xt−1

))
,

where

E
(

sα�X
1 | X = x

)
=

x−1∑

k=0

sk
1 P (Z = k) + sx

1 P (Z ≥ x) = 1 − α(s1 − 1) [s1α/(1 + α)]x

1 − α(s1 − 1)
.

(10)

Therefore,

�Xt ,Xt−1(s1, s2) = �εt (s1)E

(
s X
2

1 − α(s1 − 1)
− α(s1 − 1)

1 − α(s1 − 1)

(
s1s2α

1 + α

)X
)

= �εt (s1)

1 − α(s1 − 1)

[

�X (s2) − α(s1 − 1)�X

(
s1s2α

1 + α

)]

.

�
Proposition 8 The 1-step ahead conditional mean and conditional variance are given
by

E (Xt | Xt−1) = α

[

1 −
(

α

1 + α

)Xt−1
]

+ με,

Var (Xt | Xt−1) = α

[

1 −
(

α

1 + α

)Xt−1
][

1 + α

(

1 +
(

α

1 + α

)Xt−1
)]

− 2αXt−1

(
α

1 + α

)Xt−1

+ σ 2
ε ,

respectively.

Proof From the definition of the NonLINAR(1) processes, we obtain that

E (Xt | Xt−1 = x) = E (α�Xt−1 + εt | Xt−1 = x) = E (α�Xt−1 | Xt−1 = x) + με,

for all x = 0, 1, . . . . The conditional expectation above can be obtained from Propo-
sition 2 with X being a degenerate random variable at x (i.e. P(X = x) = 1). Then,
it follows that

E (Xt | Xt−1 = x) = α

[

1 −
(

α

1 + α

)x]

+ με.

The conditional variance can be derived analogously, so details are omitted. �
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Remark 3 Note that the conditional expectation and variance given in Proposition 8
are non-linear on Xt−1 in contrast with the classic INAR processes where they are
linear.

From now on, we focus our attention on a special case from our class of non-linear
INAR processes when themarginals are geometrically distributed. From (7), it follows
that a NonLINAR(1) process with geometric marginals is well-defined if the function

�ε1(s) ≡ �X (s)

�α�X (s)
is a proper pgf, with s belonging to some interval containing

the value 1, where �X (s) and �α�X (s) are the pgf’s of geometric distributions with

means μ and
αμ

1 + α + μ
, respectively. More specifically, we have

�ε1(s) = 1 + α
1+μ+α

μ(1 − s)

1 + μ(1 − s)
, |s| < 1 + μ−1, (11)

which corresponds to the pgf of a zero-modifiedgeometric distributionwith parameters
μ and α/(1+μ+α); see (6). This shows that a NonLINAR(1) process with geometric
marginals is well-defined.

Definition 3 The stationary geometric non-linear INAR (Geo-NonLINAR) process

{Xt }t∈N is defined by assuming that (7) holds with {εt }t∈N
i id∼ ZMG

(
α

1 + μ + α
,μ

)

and X0 ∼ Geo(μ).

Remark 4 Note that imposing a geometric distribution for the marginals of the NonLI-
NAR process implies that the innovations are ZMG distributed. Conversely, assuming
a ZMG distribution as above for the innovations implies that the marginals are geo-
metrically distributed. Therefore, Definition 3 ensures that the process has geometric
marginals.

From (11), we have that the mean and variance of the innovations {εt }t≥1 are given
by

με := E (εt ) = μ(1 + μ)

1 + μ + α
and σ 2

ε := Var (εt ) = μ(1 + μ)

1 + μ + α

[

1 + μ(1 + μ + 2α)

1 + μ + α

]

,

respectively. Additionally, the third and forth moments of the innovations are

E(ε3t ) = μ(1 + μ)

1 + μ + α
(6μ2 + 4μ + 1) and

E(ε4t ) = μ(1 + μ)

1 + μ + α
(24μ3 + 36μ2 + 12μ + 5).

Proposition 9 The autocovariance and autocorrelation functions at lag 1 of the Geo-
NonLINAR process are respectively given by

γ (1) ≡ Cov(Xt , Xt−1) = μα(1 + μ)(1 + α)

(1 + μ + α)2
and
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ρ(1) ≡ Corr (Xt , Xt−1) = α(1 + α)

(1 + μ + α)2
. (12)

Proof We have that Cov(Xt , Xt−1) = E (Xt Xt−1) − E (Xt )E (Xt−1), with

E (Xt Xt−1) = E
[
E (Xt Xt−1 | Xt−1)

] = E
[
Xt−1 E (Xt | Xt−1)

]

= α E (Xt−1) − α E

[

Xt−1

(
α

1 + α

)Xt−1
]

+ με E (Xt−1)

= μα − μα2(1 + α)

(1 + μ + α)2
+ μ2(1 + μ)

1 + μ + α
.

After some algebra, the result follows. �
In the following proposition,we obtain an expression for the conditional expectation

E(Xt |Xt−k = 
). This function will be important to find the autocovariance function
at lag k ∈ N and to perform prediction and/or forecasting.

Proposition 10 For α > 0, define h j = (1+α) j−1

(1+α) j −α j and g j = α(1+α) j−1−α j

(1+α) j −α j , and the
real functions

f j (x) = �ε1(α∗ j−1)
(
h j + g j x

)
,

j = 2, 3, . . . , where α∗ ≡ α
1+α

and x ∈ R, and �ε1 is given in (11). Finally, let
Hk(x) = f2(. . . ( fk−1( fk(x)))). Then, for all 
 ∈ N∗ ≡ N ∪ {0},

E(Xt |Xt−k = 
) = α
(
1 − Hk

(
α∗k


))
+ με, (13)

for all integer k ≥ 2.

Proof Let Ft = σ(X1, . . . , Xt ) denote the sigma-field generated by the random vari-
ables X1, . . . , Xt . By the Markov property it is clear that

E(Xt |Xt−k) = E(Xt |Ft−k) = E[E(Xt |Ft−k+1)|Ft−k], (14)

for all k ≥ 1. The proof proceeds by induction on k. Equation (14) and Proposition 8
give us that

E(Xt |Xt−2) = E[E(Xt |Xt−1)|Xt−2] = E
[
α(1 − α∗Xt−1) + με |Xt−2

]

= α[1 − E(α
α�Xt−2+εt−1∗ |Xt−2)] + με

= α[1 − �ε1(α∗)E(α∗α�Xt−2 |Xt−2)] + με,

with α∗ = α
1+α

. Using (10), we obtain that

E(Xt |Xt−2 = 
) = α[1 − �ε1(α∗)E(α∗α�Xt−2 |Xt−2 = 
)] + με
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= α

[

1 − �ε1(α∗)
1 − α(α∗ − 1)[α∗α/(1 + α)]


1 − α(α∗ − 1)

]

+ με

= α

[

1 − �ε1(α∗)
(

1 + α

(1 + α)2 − α2 + α(1 + α) − α2

(1 + α)2 − α2 α∗2

)]

+ με

= α
(
1 − H2

(
α∗2


))
+ με.

Assume that (13) is true for k = n − 1. Using (14), we have

E(Xt |Xt−n) = E(Xt |Ft−n) = E[E(Xt |Ft−(n−1))|Ft−n]
= α

(
1 − E

(
Hn−1

(
α∗(n−1)Xt−(n−1)

) ∣
∣
∣Xt−n

))
+ με.

From the definition of Hn , we obtain

E
(

Hn−1

(
α∗(n−1)Xt−(n−1)

) ∣
∣
∣Xt−n = 


)

= f2
(
. . .

(
fn−2

(
E
(

fn−1

(
α∗(n−1)Xt−(n−1)

) ∣
∣
∣Xt−n = 


))))
.

Note that

E
(

fn−1

(
α∗(n−1)Xt−(n−1)

)
|Xt−n = 


)
= hn−1 + gn−1E

[
α∗(n−1)Xt−(n−1) |Xt−n = 


]

= hn−1 + gn−1E
[
α∗(n−1)(α�Xt−n)|Xt−n = 


]

= hn−1 + gn−1

[

�ε1(α∗n−1)
1 − α(α∗n−1 − 1)[α∗n−1α/(1 + α)]


1 − α(α∗n−1 − 1)

]

= hn−1 + gn−1

[

�ε1(α∗n−1)

(
(1 + α)n−1

(1 + α)n − αn
+ α(1 + α)n−1 − αn

(1 + α)n − αn
α∗n


)]

= fn−1( fn(α∗n
)).

Therefore, E
(

Hn−1
(
α∗(n−1)Xt−(n−1)

) ∣∣
∣Xt−n = 


)
= f2(. . . ( fn−1( fn(α∗nl)))) =

Hn(α∗n
), and hence we get the desired expression E(Xt |Xt−n = 
) = α
(
1 − Hn(

α∗n

))+ με , which completes the proof. �

Proposition 11 Let h j , g j be as in Proposition 10 and write h̃ j = μh j , for j ∈ N. It
holds that

γ (k) := Cov(Xt , Xt−k) = αμ [1 − Hk(G(α, μ, k))] + μ (με − μ) ,

where G(α, μ, k) = α∗
k(1+μ(1−α∗k ))2

, and Hk(·) as defined in Proposition 13, for k ∈ N.

Proof Note that

γ (k) = E(E(Xt Xt−k |Xt−k)) − μ2 = E(Xt−k E(Xt |Xt−k)) − μ2
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= α
(
μ − E

(
Xt−k Hk

(
α∗k Xt−k

)))
+ μ(με − μ), (15)

where the third equality follows by (13). A thorough inspection of the definition of
Hk gives

E
(

Xt−k Hk

(
α∗k Xt−k

))
= f̃2

(
. . .

(
f̃k

(
E
(

Xt−kα∗k Xt−k
))))

, (16)

where we have defined f̃ j (x) = �ε1(α∗ j−1)
(

h̃ j + g j x
)
, for j ∈ N.

Note that the argument of the function in (16) is just a constant times the derivative
of �X1(s) with respect to s and evaluated at α∗. More specifically,

E
(

Xt−kα∗k Xt−k
)

= α∗
k

� ′
X1

(α∗k) = μ
α∗

k(1 + μ(1 − α∗k))2
= μG(α, μ, k). (17)

The second equality follows from (3). Plugging (17) in (16), we obtain

E
(

Xt−k Hk

(
α∗k Xt−k

))
= f̃2(. . . ( f̃k(μG(α, μ, k)))) = μ f2 (. . . ( fk (G (α, μ, k))))

= μHk(G(α, μ, k)). (18)

The result follows by plugging (18) in (15). �

4 Parameter estimation

In this section,we discuss estimation procedures for the geometricNonLINARprocess
through conditional least squares (CLS) andmaximum likelihoodmethods.Weassume
that X1, . . . , Xn is a trajectory from the Geo-NonLINAR model with observed values
x1, . . . , xn , where n stands for the sample size. We denote the parameter vector by
θ ≡ (μ, α)�.

For the CLS method, we define the function Qn(θ) as

Qn(θ) ≡
n∑

t=2

{xt − E (Xt | Xt−1 = xt−1)}2 =
n∑

t=2

{

xt − α

[

1 −
(

α

1 + α

)xt−1
]

− μ(1 + μ)

1 + μ + α

}2
. (19)

The CLS estimators are obtained as the argument that minimizes Qn(θ), i.e.

θ̂cls = argmin
θ

Qn(θ). (20)

Since we do not have an explicit expression for θ̂cls , numerical optimization methods
are required to solve (20). This can be done through optimizer packages implemented
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in softwares such as R (R Core Team 2021) and MATLAB. The gradient function
associated with Qn(·) can be provided for these numerical optimizers and is given by

∂ Qn(θ)

∂μ
= − 2

[

1 − α (1 + α)

(1 + μ + α)2

] n∑

t=2

[

xt − α

(

1 −
(

α

1 + α

)xt−1
)

− μ(1 + μ)

1 + μ + α

]

and

∂ Qn(θ)

∂α
= − 2

n∑

t=2

[

xt − α

(

1 −
(

α

1 + α

)xt−1
)

− μ(1 + μ)

1 + μ + α

]

[

1 −
(

α

1 + α

)xt−1
(

1 + xt−1

1 + α

)

− μ(1 + μ)

(1 + μ + α)2

]

.

A strategy to get the standard errors of the CLS estimates based on bootstrap is
proposed and illustrated in our empirical illustrations; please see Sect. 6.

We now discuss the maximum likelihood estimation (MLE) method. Note that our
proposed Geo-NonLINAR process is a Markov chain (by definition) and therefore
the likelihood function can be expressed in terms of the 1-step transition probabili-
ties derived in Proposition 5. The MLE estimators are obtained as the argument that
maximizes the log-likelihood function, that is, θ̂mle = argmaxθ 
n(θ), with


n(θ) =
n∑

t=2

log P (Xt = xt | Xt−1 = xt−1) + log P (X1 = x1), (21)

where the conditional probabilities in (21) are given by (8) and P (X1 = x1) is the
probability function of a geometric distribution with mean μ. There is no closed-form
expression available for θ̂mle. The maximization of (21) can be accomplished through
numerical methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
implemented in the R package optim. The standard errors of themaximum likelihood
estimates can be obtained by using the Hessian matrix associated with (21), which can
be evaluated numerically.

In the remaining of this section,we examine and compare the finite-sample behavior
of theCLS andMLEmethods viaMonteCarlo (MC) simulationwith 1000 replications
per set of parameter configurations, with the parameter estimates computed under both
approaches. All the numerical experiments presented in this paper were carried out
using the R programming language.

We consider four simulation scenarios with different values for θ = (μ, α)�,
namely: (I) θ = (2.0, 1.0)�, (II) θ = (1.2, 0.5)�, (III) θ = (0.5, 1.5)�, and (IV)
θ = (0.3, 0.5)�. To illustrate these configurations, we display in Fig. 1 simulated
trajectories from the Geo-NonLINAR process and their associated autocorrelation
function (ACF) and partial autocorrelation function (PACF) under Scenarios I and IV.
In Table 1, we report the empirical mean and root mean squared error (RMSE) of the
parameter estimates obtained from the MC simulation based on the MLE and CLS
methods. We can observe that both approaches produce satisfactory results and also a
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Fig. 1 Sample paths for the Geo-NonLINAR process and their respective ACF and PACF under Scenarios
I (top row) and IV (bottom row) with n = 100

slight advantage of theMLE estimators over the CLS for estimating α, mainly in terms
of RMSE, which is already expected. This advantage can also be seen from Fig. 2,
which presents boxplots of the parameter estimates for μ and α under the Scenarios I
and IV with sample sizes n = 100 and n = 500. In general, the estimation procedures
considered here produce estimates with bias and RMSE decreasing towards zero as
the sample size increases, therefore giving evidence of consistency. We also present in
Fig. 3 the histograms of the standardizedMonte Carlo estimates ofμ and α underMLE
and CLS approaches along with standard normal density curves. From this figure, we
can observe a good normal approximation of the proposed estimators.

5 Dealing with non-stationarity

In many practical situations, stationarity can be a non-realistic assumption; for
instance, see Brännäs (1995), Enciso-Mora et al. (2009), and Wang (2020) for works
that investigate non-stationary Poisson INAR process. Motivated by that, in this sec-
tion, we propose a non-stationary version of the Geo-NonLINAR process allowing
for time-varying parameters. Consider

μt = exp(w�
t β) and αt = exp(v�

t γ ),

where wt and vt are p × 1 and q × 1 covariate vectors for t ≥ 1, and β and γ are
p × 1 and q × 1 vectors of associated regression coefficients.
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Table 1 Empirical mean and RMSE (within parentheses) of the parameter estimates based on the MLE and
CLS methods for the Geo-NonLINAR process under the Scenarios I, II, III, and IV, and for sample sizes
n = 100, 200, 500, 1000

Scenario I: μ = 2.0, α = 1.0

n μ̂mle α̂mle μ̂cls α̂cls

100 1.996 (0.281) 0.957 (0.425) 1.999 (0.282) 0.962 (0.698)

200 1.995 (0.197) 1.021 (0.290) 1.998 (0.197) 1.059 (0.536)

500 2.013 (0.124) 0.987 (0.177) 2.014 (0.125) 0.991 (0.339)

1000 1.998 (0.088) 0.998 (0.128) 1.998 (0.088) 0.988 (0.238)

Scenario II: μ = 1.2, α = 0.5

n μ̂mle α̂mle μ̂cls α̂cls

100 1.206 (0.181) 0.486 (0.289) 1.208 (0.182) 0.556 (0.482)

200 1.197 (0.128) 0.491 (0.205) 1.198 (0.129) 0.495 (0.327)

500 1.196 (0.082) 0.498 (0.119) 1.196 (0.082) 0.490 (0.197)

1000 1.200 (0.058) 0.506 (0.090) 1.200 (0.058) 0.494 (0.143)

Scenario III: μ = 0.5, α = 1.5

n μ̂mle α̂mle μ̂cls α̂cls

100 0.499 (0.130) 1.515 (0.523) 0.498 (0.132) 1.487 (0.831)

200 0.499 (0.091) 1.514 (0.387) 0.498 (0.093) 1.495 (0.595)

500 0.496 (0.058) 1.490 (0.236) 0.496 (0.059) 1.472 (0.356)

1000 0.500 (0.042) 1.502 (0.174) 0.500 (0.044) 1.524 (0.299)

Scenario IV: μ = 0.3, α = 0.5

n μ̂mle α̂mle μ̂cls α̂cls

100 0.298 (0.078) 0.506 (0.271) 0.298 (0.078) 0.504 (0.340)

200 0.296 (0.057) 0.491 (0.186) 0.297 (0.057) 0.492 (0.244)

500 0.299 (0.037) 0.496 (0.120) 0.300 (0.037) 0.504 (0.157)

1000 0.299 (0.026) 0.499 (0.087) 0.299 (0.026) 0.500 (0.110)

We define a time-varying or non-stationary Geo-NonLINAR process by

Xt = αt�Xt−1 + εt , t = 2, 3, . . . , (22)

and X1 ∼ Geo(μ1), where αt�Xt−1 = min(Xt−1, Zt ), {Zt }t∈N is an independent
sequence with Zt ∼ Geo(αt ), {εt }t≥1 are independent random variables with εt ∼
ZMG

(
αt

1 + αt + μt
, μt

)

, for t ≥ 2. It is also assumed that εt is independent of Xt−l

and Zt−l+1, for all l ≥ 1. Under these assumptions, the marginals of the process (22)
are Geo(μt ) distributed, for t ∈ N. This claim can be proved by following the same
steps as for the stationary case.

123



Non-linear INAR(1) processes under an alternative geometric thinning… 711

mle cls

1.
0

1.
5

2.
0

2.
5

3.
0

μ (n=100)

mle cls

1.
0

1.
5

2.
0

2.
5

3.
0

μ (n=500)

mle cls

-1
0

1
2

3
4

5

α (n=100)

mle cls

-1
0

1
2

3
4

5

α (n=500)

mle cls

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

μ (n=100)

mle cls

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

μ (n=500)

mle cls

0.
0

0.
5

1.
0

1.
5

2.
0

α (n=100)

mle cls

0.
0

0.
5

1.
0

1.
5

2.
0

α (n=500)

Fig. 2 Boxplots of the MLE and CLS estimates for the Geo-NonLINAR process under Scenarios I (top
row) and IV (bottom row), for sample sizes n = 100,500

Remark 5 The transition probabilities and conditional mean and variance for the non-
stationary Geo-NonLINAR(1) process are given by expressions in Propositions 5 and
8, respectively, just by replacing μ and α by μt and αt .

We consider two estimation methods for the parameter vector θ = (β, γ )�. The
first one is based on the conditional least squares. The CLS estimator of θ is obtained
by minimizing (19) with μt and αt instead of μ and α, respectively. According to
Wang (2020), this procedure might not be accurate in the sense that non-significant
covariates can be included in themodel. In that paper, a penalized CLS (PCLS)method
is considered. Hence, a more accurate estimator is obtained by minimizing Q̃n(θ) =
Qn(θ)+n

∑p+q
j=1 Pδ(|θi |), where Pδ(·) is a penalty function and δ is a tuning parameter.

See Wang (2020) for possible choices of penalty function. This can be used as a
selection criterion and we hope to explore it in a future paper. A second method
for estimating the parameters is the maximum likelihood method. The log-likelihood
function assumes the form (21) with μ and α replaced by μt and αt , respectively.

For the non-stationary case, we carry out a second set of Monte Carlo simulations
by considering trend and seasonal covariates in the model as follows:

μt = exp(β0 + β1t/n + β2 cos(2π t/12)) and αt = exp(γ0 + γ1t/n),

for t = 1, . . . , n. The above structure aims to mimic realistic situations when dealing
with epidemic diseases.We here set the following scenarios: (V) (β0, β1, β2, γ0, γ1) =
(2.0, 1.0, 0.7, 2.0, 1.0) and (VI) (β0, β1, β2, γ0, γ1) = (3.0, 1.0, 0.5, 3.0, 2.0). We
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Fig. 3 Histograms of the standardized MLE and CLS estimates for the Geo-NonLINAR process under
Scenarios I (top row) and IV (bottom row). The sample size is n = 500

consider 500 Monte Carlo replications and the sample sizes n = 100, 200, 500, 1000.
Table 2 reports the empirical mean and the RMSE (within parentheses) of the param-
eter estimates based on the MLE and CLS methods. We can observed that the MLE
method outperforms the CLS method for all configurations considered, as expected
since we are generating time series data from the “true" model. This can be also seen
from Fig. 4, which presents the boxplots of MLE and CLS estimates under the Sce-
narios V with sample sizes n = 200, 500. Regardless, note that the bias and RMSE of
the CLS estimates decrease as the sample size increases. Figure5 displays the stan-
dardized Monte Carlo estimates under the MLE and CLS methods along with the
standard normal density curve. As in the stationary case, we can observe a good nor-
mal approximation, which is more satisfactory under the MLE method since it uses
the full distributional assumption and we are generating data from the correct model.

6 Real data applications

In this section, we discuss the usefulness of our methodology under stationary and
non-stationary conditions. In the first empirical example, we consider the monthly
number of polio cases reported to the U.S. Centers for Disease Control and Prevention
from January 1970 to December 1983, with 168 observations. The data were obtained
through the gamlss package in R. Polio (or poliomyelitis) is a disease caused by
poliovirus. Symptoms associated with polio can vary from mild flu-like symptoms
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Fig. 4 Boxplots of MLE and CLS estimates for the non-stationaryGeo-NonLINAR process under Scenario
V with sample sizes n = 200 (top row) and n = 1000 (bottom row)
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Fig. 5 Histograms of the standardizedMLE (top row) andCLS (bottom row) estimates for the non-stationary
Geo-NonLINAR under Scenario V. The sample size is n = 500

to paralysis and possibly death, mainly affecting children under 5 years of age. The
second example concerns the monthly number of Hansen’s disease cases in the state
of Paraíba, Brazil, reported by DATASUS - Information Technology Department of
the Brazilian Public Health Care System (SUS), from January 2001 to December
2020, totalizing 240 observations. Hansen’s disease (or leprosy) is a curable infectious
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Table 3 The monthly cases of Hansen’s disease in the state of Paraíba, Brazil

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001 60 58 91 72 94 52 54 78 64 111 81 70

2002 55 72 71 70 61 51 80 82 97 107 142 81

2003 92 106 126 78 86 69 91 91 64 83 83 55

2004 67 82 121 84 102 77 83 102 77 59 86 67

2005 59 86 84 102 75 57 82 126 107 123 138 94

2006 88 78 105 91 106 68 85 106 95 80 101 67

2007 78 81 96 68 94 67 66 88 71 84 74 64

2008 79 75 66 81 74 45 82 91 85 74 77 61

2009 53 79 105 81 68 67 64 73 75 76 85 48

2010 51 74 94 64 60 51 54 70 69 68 64 43

2011 66 67 83 77 71 67 58 90 73 59 78 72

2012 71 82 80 64 82 60 83 77 76 60 49 52

2013 54 53 80 83 52 52 79 61 71 61 78 47

2014 61 79 51 63 51 45 61 63 83 63 60 40

2015 64 53 79 43 55 47 48 66 48 48 46 48

2016 39 43 54 34 50 38 38 67 35 44 48 41

2017 40 46 54 43 43 53 45 68 65 44 58 47

2018 64 42 72 62 51 42 43 64 47 48 76 40

2019 63 70 56 54 59 51 60 65 80 85 65 49

2020 57 62 61 16 21 19 35 25 60 63 51 30

2021 35 53 56 41 44 41 32 33 17 5 5 5

disease that is caused by M. leprae. It mainly affects the skin, the peripheral nerves
mucosa of the upper respiratory tract, and the eyes. According to the World Health
Organization, about 208,000 people worldwide are infected with Hansen’s disease.
The data are displayed in Table 3.

6.1 Polio data analysis

We begin the analysis of the polio data by providing plots of the observed time series
and the corresponding sample ACF and PACF plots in Fig. 6. These plots give us
evidence that the count time series is stationary. Table 4 provides a summary of the
polio data with descriptive statistics, including mean, median, variance, skewness, and
kurtosis. From the results in Table 4, we can observe that counts vary between 0 and
14, with the sample mean and variance equal to 1.333 and 3.505, respectively, which
suggests overdispersion of the data.

For comparison purposes, we consider the classic first-order INAR process with
E(Xt |Xt−1) = κ Xt−1 + μ(1 − κ), where μ = E(Xt ) and κ = corr(Xt , Xt−1) ∈
(0, 1). This linear conditional expectation on Xt−1 holds for the classic stationary
INAR processes such as the binomial thinning-based ones, in particular, the Poisson
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Fig. 6 Polio data (top panel) and corresponding autocorrelation function (bottom left panel) and partial
autocorrelation function (bottom right panel)

Table 4 Descriptive statistics of the polio data

Minimum Maximum Mean Median Variance Skewness Kurtosis

0 14 1.333 1.000 3.505 3.052 16.818

INAR(1) model by Alzaid and Al-Osh (1987). The aim is to evaluate the effect of the
nonlinearity of our proposed models on the prediction in comparison to the classic
INAR(1) processes.

We consider the CLS estimation procedure, where just the conditional expectation
is considered. This allows for a more flexible approach since no further assumptions
are required. To obtain the standard errors of the CLS estimates, we consider a para-
metric bootstrap where some model satisfying the specific form for the conditional
expectation holds. In this first application, for our NonLINAR process, we consider
the geometric model derived in Sect. 3. For the classic INAR, the Poisson model by
Alzaid and Al-Osh (1987) is considered in the bootstrap approach. This strategy to get
standard errors has been considered, for example, by Maia et al. (2021) for a class of
semiparametric time series models driven by a latent factor. In order to compare the
predictive performance of the competing models, we compute the sum of squared pre-
diction errors (SSPE) defined by SSPE = ∑n

t=2(xt −μ̂t )
2, where μ̂t = Ê(Xt |Xt−1) is

the predicted mean at time t (see Proposition 8), for t = 2, . . . , n. Table 5 summarizes
the fitted models by providing CLS estimates and their respective standard errors, and
the SSPE values. The SSPE results in Table 5 show the superior performance of the
NonLINAR process over the classic INAR process in terms of prediction. This can
also be observed from Fig. 7, where the NonLINAR process shows a better agreement
between the observed and predicted values.
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Table 5 CLS estimates, standard errors, and SSPE values of the fitted NonLINAR and classic INARmodel
for the monthly cases of polio

Models Parameters Estimates Stand. Errors SSPE

NonLINAR μ 1.3585 0.2047 522.8987

α 2.6514 1.2230

INAR μ 1.3572 0.1627 530.6749

κ 0.3063 0.0772
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Fig. 7 Plots of polio data (solid lines) and fitted conditional means (dots) based on the NonLINAR process
(to the left) and classic INAR process (to the right)

To evaluate the adequacy of our proposed NonLINAR process, we consider the
Pearson residuals defined by Rt ≡ (Xt − μ̂t )/σ̂t , with σ̂t =

√
V̂ar(Xt |Xt−1), for

t = 2, . . . , n, where we assume that the conditional variance takes the form given in
Proposition 8. Figure8 presents the Pearson residuals against the time, its ACF, and
the qq-plot against the normal quantiles. These plots show that the data correlation
was well-captured. On the other hand, the qq-plot suggests that the Pearson residuals
are not normally distributed. Actually, this discrepancy is not unusual especially when
dealing with low counts; for instance, see Zhu (2011) and Silva and Barreto-Souza
(2019). As an alternative way to check the adequacy, we use the normal pseudo-
residuals introduced by Dunn and Smyth (1996), which is defined by R∗

t = �−1(Ut ),
where�(·) is the standard normal distribution function andUt is uniformly distributed
on the interval (F

θ̂
(xt − 1), F

θ̂
(xt )), where F

θ̂
(·) is the fitted predictive cumulative

distribution function of the NonLINAR process. Figure9 shows the pseudo residuals
against the time, its ACF, and qq-plot. We can observe that the pseudo-residuals are
not correlated and are approximately normally distributed. Therefore, we conclude
that the NonLINAR process provides an adequate fit to the polio count time series
data.

We now analyze the predictive performance of the proposed model by con-
ducting an out-of-sample forecasting exercise through a rolling estimation window
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Fig. 8 Pearson residuals for the NonLINAR process fitted to the polio data: residuals against time (top
panel), ACF (bottom left panel) and qq-plot (bottom right panel)

approach.More specifically, we split the data X1, . . . , Xn into the first n0 observations
X1, . . . , Xn0 and the remaining time series Xn0+1, . . . , Xn , where n0 < n. Hence, we
estimate the model parameters using the trajectory X1, . . . , Xn0 and forecast Xn0+1
by using the conditional expectation given in Proposition 8. Thereafter, we update the
training dataset including the observation Xn0+1 and reestimate the model parameters
using X1, . . . , Xn0 , Xn0+1. Based on this fitted model, we forecast Xn0+2 using the
conditional 1-step ahead expectation as before. This procedure is repeated until we
reach the last observation.

For the polio data, we consider n0 = 84, which corresponds to December 1976.
Figure10 displays the polio time series and the 1-step ahead predicted values. This fig-
ure reveals a satisfactory out-of-sample forecasting performance of the NonLINAR(1)
process since there is a good agreement between the observed and predicted values.

6.2 Hansen’s disease data analysis

We now analyze Hansen’s disease data. A descriptive data analysis is provided in
Table 6. Figure11 presents the Hansen’s count data and its corresponding sample
ACF and PACF plots. This figure provides evidence that the count time series is
non-stationary. In particular, we can observe a negative trend. This motivates us to
use non-stationarity approaches to handle this data. We consider our non-stationary
NonLINAR process with conditional mean

E(Xt |Xt−1) = αt

[

1 −
(

αt

1 + αt

)Xt−1
]

+ μt (1 + μt )

1 + μt + αt
, (23)
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Fig. 9 Pseudo-residuals for the NonLINAR process fitted to the polio data: residuals against time (top
panel), ACF (bottom left panel) and qq-plot (bottom right panel)
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Fig. 10 Plot of the polio data (solid lines) and predicted values (dots) based on the NonLINAR process

where the following regression structure is assumed:

μt = exp (β0 + β1t/252) and αt = exp (γ0 + γ1t/252) , for t = 1, . . . , 252,

with the term t/252 being a linear trend. For comparison purposes, we also consider
the Poisson INAR(1) process allowing for covariates (Brännäs 1995) with conditional
expectation E(Xt |Xt−1) = κt Xt−1 + μt (1 − κt ), where

μt = exp (β0 + β1t/252) and κt = exp (ξ0 + ξ1t/252)

1 + exp (ξ0 + ξ1t/252)
, for t = 1, . . . , 252.
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Table 6 Descriptive statistics of the Hansen’s disease data

Minimum Maximum Mean Median Variance Skewness Kurtosis

5 142 66.63 66 481.103 0.250 3.937
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Fig. 11 Hansen’s disease data (top panel) and corresponding autocorrelation function (bottom left panel)
and partial autocorrelation function (bottom right panel)

We consider the CLS estimation procedure for both approaches considered here.
Table 7 gives us the parameter estimates under the NonLINAR and PINAR(1) pro-
cesses, standard errors obtained via bootstrap, and the SSPE values (we use Eq. (23)
and E(Xt |Xt−1) = κt Xt−1 + μt (1 − κt ) to obtain the predicted values according
the non-stationary Geo-NonLINAR and Poisson INAR models, respectively). To get
the standard errors for the parameter estimates, we proceed similarly as done in the
first application with a slight difference. Since here the counts are high, the geomet-
ric assumption cannot be valid. Therefore, we consider a non-stationary NonLINAR

process with innovations following a Poisson distribution with mean
μt (1 + μt )

1 + μt + αt
in

our bootstrap scheme. This ensures that the conditional mean is the same as in (23).
From Table 7, we have that the trend is significant (using, for example, a significance
level at 5%) to explain the marginal mean μt , but not for the parameter αt , under the
NonLINARmodel. Furthermore, we note that the sign of the estimate of β is negative,
which is in agreement with the observed negative trend. We highlight that the param-
eter μt also appears in the autocorrelation structure under our approach, therefore the
trend is also significant to explain the autocorrelation of the NonLINAR process. By
looking at the results from the PINAR fitting, we see that the trend is significant to
explain αt (parameter related to the autocorrelation) but not the marginal mean μt .
Once again, we have that the model producing the smallest SSPE is the NonLINAR
process. So, our proposed methodology is performing better than the classic PINAR
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Table 7 CLS estimates, standard errors, and SSPE values of the fitted non-stationary NonLINAR and
classic PINAR processes for the Hansen’s disease data

Models Parameters Estimates Stand. Errors SSPE

NonLINAR β0 4.3538 0.0671 58742.31

β1 −0.7243 0.1178

γ0 4.5297 0.6303

γ1 −0.5613 0.9399

PINAR β0 −0.7668 0.5332 59919.40

β1 0.7997 0.8876

ξ0 4.5290 0.0212

ξ1 −0.6883 0.0433
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Fig. 12 Plots of Hansen’s disease data (solid line) and fitted conditional means (dots) based on the non-
stationary NonLINAR process (to the left) and PINAR process (to the right)

model in terms of prediction. The predictive values according to both models along
with the observed counts are exhibited in Fig. 12.

We now check if the non-stationary NonLINAR process fits well the data. Figure13
provides the Pearson residuals against time, its ACF plot, and the qq-plot of the resid-
uals. By looking at this figure, we have evidence of the adequacy of the NonLINAR
process to fit Hansen’s disease data.

We conclude this data analysis exploring the predictive power of the NonLINAR(1)
process by performing the out-of-sample forecasting exercise through a rolling esti-
mation window as described at the end of Sect. 6.1. Here, we consider n0 = 168
(December 2014). Figure14 provides the plot of Hansen’s data and the 1-step ahead
predictions. Once again, we notice a good agreement between the observed time series
and the predictions.
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Fig. 13 Pearson residuals for the NonLINAR process fitted to the Hansen’s disease data: residuals against
time (top panel), ACF (bottom left panel) and qq-plot(bottom right panel)
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Fig. 14 Plot of Hansen’s disease data (solid lines) and predictive values (dots) based on the non-stationary
NonLINAR process

7 Generalization

In this section, we provide an extension of the geometric thinning operator and propose
a non-linear INAR process based on such generalization. As we will see, alterna-
tive distributions rather than geometric for the operation in (4) can provide flexible
approaches for dealing with different features on count time series. We also discuss
how to handle zero-inflation or zero-deflation with respect to the geometric model.

Definition 4 (Zero-modified geometric (ZMG) thinning operator) Assume that X is
a non-negative integer-valued random variable, independent of Z (η,α) ∼ ZMG(1 −
η, α), with α > 0 and 1 − η ∈ (−1/α, 1). We define the zero-modified geometric
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thinning operator (η, α)� by

(η, α)�X
d= min

(
X , Z (η,α)

)
. (24)

Remark 6 Note that the ZMG operator given in (24) has the geometric thinning oper-
ator as a special case when η = 1 since Z (1,α) ∼ Geo(α). Further, we stress that the
parameterization of the ZMG distribution in terms of 1 − η instead of η will be con-
venient in what follows. Also, we will omit the dependence of Z on (η, α) to simplify
the notation.

Based on the ZMG operator, we can define a non-linear INAR process {Xt }t∈N
(similarly as done in Sect. 3) by

Xt = (η, α)�Xt−1 + εt , t ∈ N, (25)

where (η, α)�Xt−1 = min (Xt−1, Zt ), with {Zt }t∈N
i id∼ ZMG(1 − η, α), {εt }t≥1 is

a sequence of iid non-negative integer-valued random variables, called innovations,
with εt independent of Xt−l and Zt−l+1, for all l ≥ 1, with X0 being some starting
value/random variable. This is basically the same idea as before; we are just replac-
ing the geometric assumption by the zero-modified geometric law in the thinning
operation.

We now show that it is possible to construct a stationary Markov chain satisfying
(25) and havingmarginals ZMG-distributed; this could be seen as an alternative model
to the zero-modified geometric INAR(1) process proposed by Barreto-Souza (2015).
Furthermore, we argue that such construction is not possible under the geometric
thinning operator defined in Sect. 2 (see Remark 7 below), which motivates the ZMG
thinning introduced here.

Let X∼ZMG(1 − π,μ) with μ > 0 and 1 − π ∈ (−1/μ, 1). For z = 0, 1, . . . , it
holds that

P ((η, α)�X > z) = P (X > z)P (Z (η,α) > z) = πη

[(
μ

1 + μ

)(
α

1 + α

)]z+1

.

In otherwords, (η, α)�X ∼ ZMG
(
1 − ηπ,

μα
1+μ+α

)
.Writing�ε(s) ≡ �X (s)

�(η,α)�X (s)
,

we obtain

�ε(s) =
{
1 + (1 − π)μ(1 − s)

1 + μ(1 − s)

}/{
1 + (1 − πη)

μα
1+μ+α

(1 − s)

1 + μα
1+μ+α

(1 − s)

}

=
{

1 + (1 − π)μ(1 − s)

1 + (1 − πη)
μα

1+μ+α
(1 − s)

}{
1 + μα

1+μ+α
(1 − s)

1 + μ(1 − s)

}

≡ ϕ1(s)ϕ2(s),

(26)
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for all s such that |s| < 1 + min(μ−1, α−1), where ϕ2(·) denotes the pgf of a

ZMG
(

α
1+μ+α

, μ
)
distribution. In addition to the restrictions onπ andη above, assume

thatπη < 1, η �= 1, and 1−π
1−πη

(
1 + 1+μ

α

)
< 1.Under these conditions,ϕ1(·) is the pgf

of a ZMG
(

1−π
1−πη

(
1 + 1+μ

α

)
, (1 − πη)

μα
1+μ+α

)
distribution. This implies that �ε(·)

is a proper pgf associated to a convolution between two independent ZMG random
variables. Hence, we are able to introduce a NonLINAR process with ZMGmarginals
as follows.

Definition 5 A stationaryNonLINARprocess {Xt }t∈N with ZMG(1−π,μ)marginals
(ZMG-NonLINAR) is defined by assuming that (25) holds with {εt }t≥1 being an iid
sequence of random variables with pgf given by (26), and X0∼ZMG(1− π,μ), with
μ > 0 and 1 − π ∈ (−1/μ, 1).

Remark 7 Note that we are excluding the case η = 1 (which corresponds to the

geometric thinning operator) since the required inequality 1−π
1−πη

(
1 + 1+μ

α

)
< 1 does

not hold in this case (1+ 1+μ
α

> 1). This shows that a NonLINAR process with ZMG
marginals cannot be constructed based on the geometric thinning operator defined
previously and therefore motivates the ZMG operator. We would like to highlight
the importance of the ZMG thinning operator (which is an extension of the geometric
thinning operator) since it permits us to construct a Non-LINAR(1) process with ZMG
marginals. As a consequence, this model can handle inflation or deflation of zeros that
cannot be accounted by the geometric Non-LINAR(1) model introduced in Sect. 3.
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