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Abstract
The paper discusses the specification of finite mixture models based on the Discretized
Beta distribution for the analysis of ordered discrete responses, as ratings and count
data. The ultimate goal of the paper is to parameterize clusters of opposite and inter-
mediate response outcomes. After a thorough discussion on model interpretation,
identifiability and estimation, the proposal is illustrated on the wake of a case study on
the probability to vote for German Political Parties and with a comparative discussion
with the state of the art.
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1 Motivation

With the upcoming of any electoral competition, parties’ share of the electoral consen-
sus can be measured by pollsters if voting intentions on nominal scales are surveyed.
A more innovative approach consists in gauging probability to vote for each candi-
date as ratings on ordered scales in order to assess the extent by which respondents’
opinions hold. Similarly, marketing stakeholders prefer to survey intention to take a
certain decision in the future, rather than asking questions with yes/no answers about
respondents’ likings and habits. Thus, suitable statistical modelling of ordered evalu-
ations is advocated to characterize clusters of both extreme and intermediate response
choices.

Polarization is hereafter meant as the process by which evaluations about an item
converge towards one of two opposing poles of the response spectrum, in the spirit of
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(Apouey 2007)1. Possibly, a further cluster may be expected as a result of un-polarized
respondents, corresponding to a concentration of responses away from the extremes:
the term floatation is hereafter used to indicate this circumstance as complementary
to polarization.

A candidate model allowing to directly parameterize polarization towards the
extremes is the two-component mixture of Inverse Hypergeometric distributions
(mihg, (Simone and Iannario 2018)), whereas a mixture of Binomial and Discretized
Betamodels can be considered to analyse overall response feeling and certain symmet-
ric response styles (caub, (Simone and Tutz 2018)). For count data, bimodality (not
necessarily at the extremes of the response support) can be tackled via suitable adap-
tation of the (shifted) Poisson distribution (Gómez-Déniz et al. 2020) or by resorting
to a two-component mixture of Conway–Maxwell–Poisson models (Sur et al. 2015).

With respect to the state of the art, the paper discusses the specification of mixture
models based on the Discretized Beta distribution (Ursino 2014; Ursino and Gasparini
2018) as a flexible class of statisticalmodels to parameterize polarization andfloatation
of ordered evaluations. The proposal is designed to attain broad and straightforward
interpretation for marketing, psychology and socio-economic studies, as it allows to
characterize opposite and intermediate response clusters. Further relevant applica-
tions include self-reported wealth or health, or Net Promoter Score type evaluations
(NPS, (Reichheld 2003)) to assess the extent by which attractors outclass detractors
(Capecchi and Piccolo 2017).

The paper is organized as follows: Sect. 2 recalls the baseline framework of the
Discretized Beta model. The core of the paper is Sect. 3, with a detailed discussion
on mixtures based on the Discretized Beta distribution to jointly model polarization
and floatation of ordered evaluations; goodness-of-fit criteria and inferential aspects
are described in Sects. 3.2–3.5, whereas a comparative discussion of the state of the
art is delivered in Sect. 3.6. A case study is pursued in Sect. 4 to support the proposal
with empirical evidence. Concluding remarks are addressed in Sect. 5. A devoted
appendix supplements the presentation with a discussion on the optimal number of
components for Discretized Beta mixtures and of the parameter constraints needed to
prevent identifiability issues.

2 Discretized Betamixtures for polarization and floatation of ordered
data

Let R be a rating variable collected on a response scale withm ordered categories, say
c1 ≺ c2 ≺ · · · ≺ cm : the numeric scoring cr = r will be made merely for notational
convenience.Without loss of generality, assume that the scale has a positive orientation
with the trait being examined.

Definition 1 For α, β ∈ R
+, let X ∼ Beta(α, β) be a Beta distributed random vari-

able over the real interval [0, 1]. For a given m > 3, a discrete variable R, with

1 It is worth to emphasize that the term polarization for ordinal data analysis is not new: in general,
it is meant as the extent by which the response distributions of a-priori groups (typically, identified by
covariates) are concentrated around certain locations of the response support. A nonparametric approach
to assess polarization in this sense is presented in (Mussini 2018), where a detailed summary of different
concepts and measures of polarization for ordinal evaluations is provided.
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support {1, 2, . . . ,m}, is said to be distributed according to a Discretized Beta model
of parameters α, β (R ∼ DB(α, β), for short) if:

Pr(R = r |α, β) = Pr

(
r − 1

m
≤ X ≤ r

m

∣∣α, β

)
, r = 1, . . . ,m. (1)

For notational convenience, set db(r;α, β) := Pr(R = r |α, β). This model has
been already acknowledged in the literature on ordinal data analysis in view of the
flexibility inherited from the underlying Beta distribution, which does not impose a
predetermined shape for the latent continuous trait (Ursino 2014; Fasola and Sciandra
2015; Ursino and Gasparini 2018; Simone and Tutz 2018). Similar arguments can
be advanced for the Beta-Binomial model (Morrison 1979), yet the Discretized Beta
is more versatile as it can be either overdispersed or underdispersed (Ursino 2014).
The uniform distribution arises as a limit case when α = β = 1. Location and shape
properties of the latent Beta model imply the following features of the DB distribution
(Abramowitz and Stegun 1972; Forbes et al. 2011). Given that the discretization of
the latent Beta model occurs at equi-spaced intervals for a fixed m, the modal value
Mo(R) of R ∼ DB(α, β) satisfies:

– Mo(R) = 1 if α < 1 and β ≥ 1 or, in case min(α, β) > 1, if α−1
α+β−2 < 1

m ;

– Mo(R) = m if α ≥ 1 and β < 1 or, in case min(α, β) > 1, if α−1
α+β−2 > 1 − 1

m ;

– Mo(R) = r ∈ {2, . . . ,m−1} if and only ifmin(α, β) > 1 and α−1
α+β−2 ∈ ( r−1

m , r
m ].

Thus, the following condition implies an inner mode:

1

m
<

α − 1

α + β − 2
< 1 − 1

m
; (2)

– The distribution is U -shaped with two modal values at the first and at the last
categories ifmax(α, β) < 1and if, for the givenm, parameters satisfy the following
system of inequalities2 based on the incomplete Beta function Ix (α, β):

{
1 + I m−2

m
(α, β) > 2 I m−1

m
(α, β);

2 I 1
m
(α, β) > I 2

m
(α, β).

(3)

As a consequence, a necessary condition for a Discretized Beta model to be
applied for polarization of either favourable or unfavourable responses is the con-
straint min(α, β) < 1. Under this circumstance, parameter α governs the polarization
of the unfavourable responses: hereafter, this cluster will be referred to as opponents’
pole. If β = max(α, β) ≥ 1, the closer α is to 0, the stronger is the polarization
of the opponents, with positive asymmetry increasing with growing β. Conversely,
β governs the polarization of the favourable responses (say, the supporters’ pole).
If α = max(α, β) ≥ 1, the closer β is to 0, the higher is the probability assigned
to the last category and thus the stronger is the polarization of the supporters, with

2 Notice that these conditions, depending on m, are eventually needed only for values of max(α, β) very
close to 1 from below.
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negative asymmetry strengthening with growing α. A Discretized Beta model with
max(α, β) < 1, instead, can be specified to account for polarization towards both
the extremes (provided that (3) holds), whereas floatation between the two response
endpoints can be modelled by assuming a DB(α, β) distribution with min(α, β) > 1,
such that (2) holds true, given the number of categories3. Asymmetry and intensity of
floatation can be measured in terms of skewness γ1(α, β) and excess kurtosis γ2(α, β)

of the underlying Beta distribution4:

γ1(α, β) = 2
β − α

α + β + 2

√
α + β + 1

α β
; (4)

γ2(α, β) = 6
(
α3 + α2(1 − 2β) + β2(1 + β) − 2αβ(2 + β)

)
αβ

(
α + β + 2

)(
α + β + 3

) ; (5)

such that γ1(α, β) = −γ1(β, α) and γ2(α, β) = γ2(β, α). However, interpretation
of excess kurtosis is not straightforward for asymmetric distributions: the measure
of kurtosis adjusted for skewness introduced in (Blest 2003) can be considered to
overcome this issue (see (15) in Appendix 1 for details).

3 Finite mixtures of Discretized Betamodel

Given the flexibility in both shape and interpretation of the DBmodel, polarization and
floatation in ordered data can be jointly parameterized by specifying suitable mixture
distributions.

By virtue of the comments delivered in Sect. 2, if floatation can be shaped via a DB
model with parameters α2, β2 > 1 satisfying (2) for givenm, alternative specifications
are possible for the polarization effect:

1. a unique component DB(α1, β1) with min(α1, β1) < 1, and with max(α1, β1) < 1
satisfying (3) if two opposing clusters at the extremes are present, or with
max(α1, β1) ≥ 1 if only one pole of supporters or opponents is found, yielding the
two-component mixture:

Pr
(
R = r | θ

) = (1 − δ) db(r;α1, β1) + δ db(r;α2, β2) , r = 1, . . . ,m ; (6)

2. a mixture of two J-shaped DB models, DB(α1, β1) and DB(α3, β3), yielding the
3-component mixture specification:

Pr
(
R = r | θ

) = δ1 db(r;α1, β1) + δ2 db(r;α2, β2)

+ δ3 db(r;α3, β3), (7)

3 The conditions α−1
α+β−2 < 1

m and α−1
α+β−2 > 1 − 1

m needed to achieve Mo(R) = 1 or Mo(R) = m,
respectively, if min(α, β) > 1, will not be considered for the sake of simplicity.
4 For a symmetric distribution (α = β), the excess kurtosis γ2(α, β) = − 6

2α+3 tends to 0 as α grows
to infinity, and the distribution becomes degenerate with mass concentrated at the middle of the support.
Notice that a symmetric DB distribution has two modal values at the central categories if m is even.
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so that δ1 + δ2 + δ3 = 1, and:

– α1 ∈ (0, 1) and β1 ≥ 1 to shape the opponents’ pole;
– α2, β2 > 1 satisfy (2) to shape floatation;
– α3 ≥ 1, β3 ∈ (0, 1) to shape the supporters’ pole.

Some identifiability issues may arise for the polarization components in both (6) and
(7), due to a Beta approximation of the latent Beta models. Appendix 2 collects all
the relevant discussion and results pertaining to these topics: the present section will
focus on the proposed class of mixtures, stemming from (7) under suitable parameter
constraints.

3.1 The OFSmixture for polarization and floatation of ordered evaluations

In order to overcome possible identifiability issues for mixtures of DB models, the
proposed strategy is to constrain β1 = 1 and α3 = 1 for the mixture specification (7).

Hereafter, the acronym OFS will stand for Opponent-Floatation-Supporter, and
three 0-1 subscriptswill indicate if each component is specified in themixture (1) or not
(0). Thus,modelsDB(α1, 1), withα1 ∈ (0, 1), andDB(1, β3), withβ3 ∈ (0, 1), will be
referred to as OFS100 and OFS001 to indicate a DB distribution to model polarization
towards the opponents’ and the supporters’ pole, respectively. Consequently, as a
benchmark for bi-polarization towards the end-points, the proposal is to assume the
following mixture specification.

Definition 2 If α1, β3, δ ∈ (0, 1), the OFS101 model is defined by the mixture:

Pr(R = r |θ) = δ db(r;α1, 1) + (1 − δ) db(r; 1, β3), r = 1, . . . ,m. (8)

The mixture of OFS101 for polarization with an OFS010 distribution for floatation
(so that (2) holds) can be safely considered to jointly model polarization towards either
one or both the extremes and possible floatation in between.

Definition 3 If the above notation prevails, the OFS111 model is defined by:

Pr(R = r |θ) = δ1 db(r;α1, 1) + δ2 db(r;α2, β2) + δ3 db(r; 1, β3). (9)

Remark 1 With reference to the procedures outlined in Appendix 2 and unlike for (6)
and (7), the Beta approximation of the latent polarization components in (9), and its
combination with the latent floatation, does not correspond to an OFS111 specification.
The same arguments apply if either OFS100 or OFS001 are assumed for polarization.
Thus, identifiability of parameters can be assumed for OFS mixture models.

Both asymmetric and symmetric floatation are encompassed by the OFS111 model
(under the constraint α2 = β2). In case the floatation component is symmetric, the
superscript (s)will be used. Ifm is odd, a degenerate floatation component corresponds
to neutrality (in case α2 = β2 tends to infinity), resulting in inflation in the middle of
the response scale: in this case, the superscript (i) will replace (s), and the resulting
OFS(i)

111 modelwill denote amixture of anOFS101 modelwith a degenerate distribution
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1c=r with mass concentrated at c = m+1
2 (so that 1c=r = 0 if r �= c, and 1c=r = 1 if

r = c).

Remark 2 OFS models encompass also inflated responses at the extremes of the
response support. Consider, for instance, the OFS110 model: the DB(α1, 1) component
identifies the opponents’ cluster, which is characterized by a mode at the first category
and decreasing probabilities as scores increase, thus allowing to account also for scale
usage diversity among opponents and for different strengths of opposition. As a limit
case, the OFS110 tends to an inflated DB model with inflation at the first category if
α1 → 0. The dual remark applies for the OFS011 model5. Thus, the smoothed switch
between extreme modal values and inner categories implied by the OFS approach is
more general than DB models with inflation at either one of the end-points (see the
example discussed in Sect. 3.6).

Remark 3 Covariate effects on model parameters can be investigated via suitable link
functions. If xi , yi , ui , zi , t i are selected subjects’ characteristics, a logarithmic link
can be set for individual floatation parameters α2i , β2i > 1:

log(α2i ) = zi γ 2 ; log(β2i ) = ui η2 ,

provided that the constraint (2) is taken into account also conditional to covariates,
whereas a logit link can be set for polarization parameters α1, β3, δ1, δ3 ∈ (0, 1):

logit(α1i ) = yi γ 1 ; logit(β3i ) = wi η3 ; logit(δ1i ) = xi ω1; logit(δ3i ) = t i ω3 .

3.2 Fitting performances andmodel selection

Model selection within the OFS class can be performed in terms of likelihood ratio test
for pairs of nested models (to compare the symmetric and asymmetric specification
for floatation, for instance). More generally, fitting performance of an OFS model
against competing alternatives can be assessed by resorting to information criteria: in
the following, the BIC index will be considered to account also for model complexity.
Standard goodness-of-fit tests relying on Pearson X2 statistics could be performed
provided thatm−1− k > 0, if k is the number of estimable parameters. For instance,
m > 7 is needed to apply this test for OFS111 models.

The normalized Leti’s dissimilarity index (Leti 1983):

Diss( f , p) = 1

2

m∑
r=1

| fr − pr |, Diss( f , p) ∈ [0, 1], (10)

will be considered to measure the goodness of fit of an estimated model p = p(θ)

= (p1, . . . , pm) to the observed relative frequency distribution f = ( f1, . . . , fm).

5 It is worth to remark that the OFS model is reversible with respect to the scale, in the sense that if
R ∼ OFS111(δ1, δ3, α1, α2, β2, β3), then m − R + 1 ∼ OFS111(δ3, δ1, β3, β2, α2, α1).
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With respect to more traditional indicators, as the Hellinger distance H( p, q) (Gibbs
and Su 2002), so that:

H2( p, q) ≤ Diss( p, q) ≤ √
2 H( p, q), H2( p, q) = 1

2

m∑
r=1

(√
pr − √

qr
)2

,

(11)

the Dissimilarity value is interpretable as the percentage of responses that are missed
by the model6. For this reason, it can be also exploited to check the ability of a
model p, estimated on a training set, to predict the test set distribution f . With the
same goal and for comparative purposes, the Kullback–Leibler Divergence K L( f || p)
=

m∑
r=1

fr log(
fr
pr

) will be also computed.

3.3 Inferential issues for the OFSmodel

Hereafter, the main steps of the expectation–maximization algorithm for mixtures
(EM, (McLachlan and Krishnan 1997)) to perform maximum likelihood estimation
of parameters are outlined for the general OFS111 specification.

For a sample of ratings r = (r1, . . . , rn), the complete log-likelihood of the OFS111
model, with parameter vector θ = (δ1, δ3, α1, α2, β2, β3), is given by:

lc(θ; r) = log(δ1)
n∑

i=1

Z1i + log(δ3)
n∑

i=1

Z3i + log(1 − δ1 − δ3)

n∑
i=1

Z2i (12)

+
n∑

i=1

Z1i log
(
db(ri ;α1, 1)

) +
n∑

i=1

Z2i log
(
db(ri ;α2, β2)

)

+
n∑

i=1

Z3i log
(
db(ri ; 1, β3)

)
(13)

where Z ji is a random variable with Z ji = 1 if the i-th rating is drawn from the j-th
component in the mixture, and Z ji = 0 otherwise (so Z2i = 1− Z1i − Z3i ). Thus, if
θ (k) is the current estimate at the k-th iteration, the posterior probabilities of the i-th
rating being drawn from the opponents’ component DB(α1, 1) and the supporters’
component DB(1, β3) are computed within the E-step as:

E[Z1i |θ (k)] = τ
(k)
1i = δ

(k)
1 db(ri ;α

(k)
1 , 1)

Pr(Ri = ri |θ (k))
;

E[Z3i |θ (k)] = τ
(k)
3i = δ

(k)
3 db(ri ; 1, β(k)

3 )

Pr(Ri = ri |θ (k))
,

6 Indeed, from the identity min(a, b) = 1

2

(
(a + b) − |a − b|) holding for a, b ∈ R

+, one can write

Diss( f , p) = 1 − ∑m
r=1 min( fr , pr ).
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so that τ (k)
2i = 1− τ

(k)
1i − τ

(k)
3i . In case covariates effects are not specified in the model,

then one can write τ
(k)
j i = τ

(k)
jr if ri = r , r = 1, . . . ,m, j = 1, 2, 3, and the expected

complete log-likelihood to be maximized at the M-step can be rewritten as:

E[lc(θ)|θ (k)] = Q(k)
1 (δ1, δ3) + Q(k)

2 (α1) + Q(k)
3 (α2, β2) + Q(k)

4 (β3),

where (n1, n2, . . . , nm) denotes the frequency distribution of the sample, and one sets:

– Q(k)
1 (δ1, δ3) = log(δ1)

m∑
r=1

nrτ
(k)
1r + log(δ3)

m∑
r=1

nrτ
(k)
3r

+ log(1 − δ1 − δ3)
m∑

r=1
nrτ

(k)
2r ,

yielding, after differentiation, the updated estimates:

δ
(k+1)
1 = 1

n

m∑
r=1

nr τ
(k)
1r ; δ

(k+1)
3 = 1

n

m∑
r=1

nrτ
(k)
3r ; δ

(k+1)
2 = 1 − δ

(k+1)
1 − δ

(k+1)
3 ;

– Q(k)
2 (α1) =

m∑
r=1

nr τ
(k)
1r log(db(r;α1, 1));

Q(k)
4 (β3) =

m∑
r=1

nr τ
(k)
3r log(db(r; 1, β3));

– Q(k)
3 (α2, β2) =

m∑
r=1

nr τ
(k)
2r log(db(r;α2, β2)).

At each step, the updated estimates of α1, α2, β2, β3 have to be obtained from numeri-
cal optimization of the corresponding functions, under the required bound constraints7.

3.4 Small simulation experiment

In order to show the performance of the estimation procedure, a small simulation
experiment has been carried out: for each scenario, B = 200 samples of size n were
generated. Table 1 reports the mean squared error (MSE) of the sampling distribution
of parameter estimators obtained over the simulation runs. The average dissimilarity
between generating model p and estimated distribution p̂ (D̂iss( p, p̂)) and between
frequency distribution of the sample f and estimated distribution (D̂iss( f , p̂)) is
reported. Analogous simulation experiments are pursued also for OFS101 and OFS110
for the sake of completeness (see Tables 2 and 3). Results are satisfactory and indicate
that the model is correctly specified and estimated, with efficiency improving with
sample size.

7 The optimization of Q(k)
3 (α2, β2) under the inequality constraints (2) can be implemented via the R

package nloptr (Ypma 2018). The optimization procedure requires to set a finite upper bound for the
floatation parameters α2, β2, estimated on logarithmic scale.
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Table 2 MSE of the sampling estimators of OFS101 parameters

δ α1 β3 D̂iss( p, p̂) D̂iss( f , p̂)
OFS101: m = 7, δ1 = 0.6;α1 = 0.4;β3 = 0.7

n = 500 0.0327 0.016 0.0529 0.0287 0.0242

n = 2500 0.0089 0.0037 0.0093 0.0134 0.0105

n = 10000 0.0023 9 ∗ 10−4 0.0021 0.0066 0.0054

Table 3 MSE of the sampling estimators of OFS110 parameters

δ α1 log(α2) log(β2) D̂iss( p, p̂) D̂iss( f , p̂)
OFS110: m = 9, δ1 = 0.6;α1 = 0.2; α2 = 3;β2 = 2

n = 500 0.0076 0.0044 0.0930 0.0436 0.0311 0.0266

n = 2500 0.0015 0.0008 0.0218 0.0101 0.0149 0.0124

n = 10000 0.0006 0.0003 0.0080 0.0034 0.0076 0.0060

3.5 Standard errors for OFS parameters

Uncertainty evaluation of parameters estimates could be performed by resorting to
asymptotic information theory on the basis of the observed information matrix (see
Appendix 1 for details). Potential drawbacks of this proceduremayarise due to possible
occurrence of numerical overflow in the approximation of the involved integrals. In
this respect, numerical derivatives of the log-likelihood can be computed directly with
Richardson’s extrapolation method, as suggested in (Ursino and Gasparini 2018)8. By
considering that information theory results apply only asymptotically under regularity
conditions, re-sampling methods as the bootstrap (Efron 1981) can be assumed as a
general practice for OFS models, allowing to obtain stable accuracy evaluations on
parameter estimates even for small sample sizes.

A small Monte-Carlo experiment has been pursued to compare the asymptotic
performance of the different methods: for selected OFS models, n observations
were sampled. For the general OFS111 model, Table 4 reports standard errors’ esti-
mates obtained on the basis of the observed information matrix (Inf.), numerical
approximation of the derivatives of the log-likelihood function with the Richardson’s
extrapolation method (Num.), and nonparametric bootstrap with B = 500 replicates
(Boot.). The three methods are asymptotically equivalent, but for small and moder-
ate sample sizes, the data-driven procedure Boot entails more accurate results9. For
instance, numerical divergence for some of the integrals involved in the computation
of the observed information matrix occurred for n = 500.

The same check limited to numerical and bootstrapmethods is pursued for instances
of OFS110 and OFS101 models (see Tables 5 and 6).

8 The R package numDeriv has been considered for this task (Gilbert and Varadhan 2019).
9 The circumstance that standard errors obtained from bootstrap methods outperform the ones obtained
from observed information matrix occurred also in (Basford et al. 1997).
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Table 4 Comparison of standard errors: OFS111 model with m = 11, δ1 = 0.25; δ3
= 0.4;α1 = 0.2;β3 = 0.6;α2 = 3; β2 = 4

δ1 δ3 α1

Inf. Num. Boot. Inf. Num. Boot. Inf. Num. Boot.

n = 500 NA 0.106 0.073 NA 0.117 0.107 NA 0.257 0.118

n = 5000 0.081 0.081 0.058 0.053 0.053 0.057 0.131 0.131 0.086

n = 50000 0.022 0.022 0.020 0.016 0.016 0.017 0.030 0.030 0.028

n = 100000 0.016 0.016 0.015 0.012 0.012 0.012 0.024 0.024 0.023

log(α2) log(β2) β3

Inf. Num. Boot. Inf. Num. Boot. Inf. Num Boot.

n = 500 NA 0.472 0.296 NA 0.454 0.336 NA 0.114 0.114

n = 5000 0.223 0.223 0.160 0.197 0.197 0.160 0.061 0.061 0.065

n = 50000 0.066 0.066 0.060 0.061 0.061 0.057 0.017 0.017 0.018

n = 100000 0.050 0.050 0.047 0.045 0.045 0.043 0.012 0.012 0.013

Table 5 Comparison of standard
errors obtained by numerical
differentiation of log-likelihood
to obtain the Hessian matrix
(Num.) and nonparametric
bootstrap: OFS101 model with
m = 7, δ1 = 0.6;α1 =
0.4;β3 = 0.7

δ α1 β3

Num. Boot. Num. Boot. Num. Boot.

n = 500 0.188 0.154 0.123 0.111 0.174 0.181

n = 5000 0.075 0.069 0.043 0.041 0.073 0.068

n = 50000 0.023 0.022 0.013 0.013 0.022 0.022

n = 100000 0.016 0.016 0.010 0.010 0.014 0.014

Table 6 Comparison of standard errors obtained by numerical differentiation of log-likelihood to obtain
the Hessian matrix (Num.) and nonparametric bootstrap: OFS110 model with m = 9, δ1 = 0.6;α1
= 0.3;α2 = 4;β2 = 1.5

δ1 α1 log(α2) log(β2)

Num. Boot. Num. Boot. Num. Boot. Num. Boot.

n = 500 0.049 0.054 0.044 0.053 0.268 0.276 0.187 0.179

n = 5000 0.018 0.017 0.016 0.015 0.084 0.079 0.054 0.051

n = 50000 0.006 0.006 0.005 0.005 0.027 0.029 0.018 0.018

n = 100000 0.004 0.004 0.003 0.004 0.020 0.021 0.013 0.013

3.6 A comparative discussion with the state of the art

Like the OFS family, mihg (Simone and Iannario 2018) and caub (Simone and Tutz
2018) mixture models pursue a direct parameterization of the features of interest of
the distribution, with easy interpretation and explicit location of modal values (yet
the mihg does not consider floatation). In this context, a 3-component mixture of
Binomial distributions could be also considered if suitable constraints are put on
Binomial parameters to model polarization and floatation: its specification will not be
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discussed hereafter, since the Binomial model can be approximated by the DB model
(Ursino 2014): see (Grilli et al. 2015) for further applications of Binomial mixtures to
discrete data.

The proposal of the bimodal discrete shifted Poisson model (Bi-Poiss) advanced in
(Gómez-Déniz et al. 2020), instead, deals with a construction to encompass bimodal
count data starting from the Poissonmodel, with addition of an extra dispersion param-
eter θ responsible for bimodality (not necessarily at the extremes of support)10. After
truncation atm, the main drawback of the Bi-Poiss model is the lack of an explicit link
between parameter values and polarization and floatation of the response: for instance,
theoretical values for the modes can be obtained in terms of parameters by solving
numerically nonlinear equations. In addition, the Bi-Poiss does not encompass the sce-
nario of three response clusters as the OFS111 model. Conversely, the Bi-Poiss model
is directly applicable in case of bimodality at inner categories, whereas specification
of mixtures of DB models in this case should be designed carefully for identifiability
issues (see Appendix 2).

For bimodal discrete data, a two-component mixture of (truncated) Conway–
Maxwell–Poisson models can be considered as well (Mix-CMP, (Sur et al. 2015))11.
With respect to computational aspects, the M-step within the EM algorithm needs to
be performed with a computationally demanding grid search since the ML solution
for Mix-CMP is highly dependent of initial values. With respect to the problem under
examine, the main drawback about Mix-CMP concerns identifiability, which causes
several limitations on interpretation of the response location and dispersion. Specifi-
cally, parameters are not straightforwardly interpretable in terms of polarization and
floatation, as for the OFS family. As to fitting performances, a tentative approach to
pursue a comparative analysis with the OFS family requires to set suitable parame-
ter constraints to mitigate identifiability issues for the Mix-CMP, at the cost of lack
of flexibility. For instance, the supporters’ pole can be shaped by restricting to a
CMP(λS, νS) with λS ∈ (m − 2,m), νS ∈ (0, 1), whereas a CMP(λO , νO) model
with λO , νO ∈ (0, 1) can be considered for the opponents’ pole. Floatation could be
possibly considered explicitly if a component CMP(λF , νF ), λF , νF > 1, is speci-
fied in the mixture. For count data, each component should be truncated from below
at the minimum observed count, and from above at the largest observed count or at
the censoring threshold, whereas it should be truncated from above at m − 1 and then
shifted upward by 1 in case of ratings on Likert-type scales, as argued for the Binomial
component in cub mixtures (Piccolo and Simone 2019).

10 If g(x; λ) denotes the (shifted) Poisson probability function, x ∈ N, the bimodal discrete shifted Poisson
model is defined by the probability mass function:

f (x; λ, θ) = w(x; λ, θ) g(x; λ), x ≥ 1

where w(x; λ, θ) = 2λ + θ(1 + λ − x)(2
√

λ + θ(1 + λ − t))

λ(2 + θ2)
. In particular, θ > 0 or θ < 0 for overdis-

persed or underdispersed distribution with respect to the Poisson.
11 A discrete random variable X ∼ CMP(λ, ν) has the Conway–Maxwell–Poisson distribution of param-

eters λ, ν > 0 if Pr(X = x) = λx

(x !)ν
1∑∞

j=0
λ j

( j !)λ
, x ≥ 0. If ν = 1, the Poisson model is recovered, whereas

ν < 1 or ν > 1 implies overdispersion or underdispersion, respectively.
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Table 7 Models comparison for the Number of Days in Hospital dataset discussed in (Sur et al. 2015)
(the two-component Mix-CMP has been fitted with the discussed constraints: p̂ = 0.95, λ̂1 = 0.64; ν̂1
= 0.05; λ̂2 = 13; ν̂2 = 0.88)

Log-lik BIC Diss Mean p value X2

Mix-CMP (constrained) −41521.19 83052.38 0.061 0.007

Bi-Poiss −47691.41 95402.85 0.247 0

mihg −41448.58 82915.22 0.056 0.0257

caub −42964.14 85958.34 0.157 0

DB −43051.03 86122.10 0.128 0

OFS100 −44147.53 88305.09 0.194 0

OFS110 −41472.07 82984.22 0.023 0.016

OFS101 −44147.53 88325.13 0.194 0

OFS111 −41235.64 82531.40 0.019 0.098

cub −42964.47 85948.43 0.157 0

cub+ she(15) −42941.99 85914.05 0.155 0

It is worth to remark that for data exhibiting bi-polarization and floatation, a 3-
component mixture of CMP would have a higher model complexity than the OFS111
model; similarly, theMix-CMPwould be less parsimonious thanmihg and OFS101 for
U -shaped distributions and than OFS110 or OFS011 for bimodal data with one mode
at one of the extremes.

In order to show that the OFS family is successfully applicable also in case of
(truncated) distributions of count data, Table 7 reports some performance indicators
of alternative models for the Health Heritage Competition data discussed in (Sur et al.
2015)12. Fitting results of a uniqueDB(α, β)model with no parameter constraints, and
of the cub mixture (Piccolo and Simone 2019), possibly allowing for inflation at the
last category (cub with shelter), are also reported. The last column reports the average
of the p values for the Pearson X2 goodness-of-fit statistics, applied on each test set
of a K = 30-fold cross-validation13 based on the model estimated on the remaining
K − 1 folds14: it follows that the OFS111 entails very satisfactory performance.

Thus, OFS mixtures could be successfully applied to assess the efficiency of health
care structures, for instance, as well as for other count data, thanks to good flexibil-
ity in both fitting and interpretation. For instance, in this case floatation covers the
intermediate stays, whereas polarization should be interpreted as the predominance of
short and long hospitalizations, with parameters α1, β3 describing the concentration of
brief and lengthy stays towards the lowest and largest count, respectively. Finally, OFS
mixing weights quantify how frequent short, intermediate and long hospitalizations
are overall. For the example, results indicate that intermediate hospitalizations tend to

12 After omitting zero counts, the observed distribution has been censored at 15, so that the
observed scores {1, . . . , 15+} have frequencies (9299, 4548, 2882, 1819, 1093, 660, 474, 316, 263, 209,
145, 135, 111, 65, 479), with saturated log-likelihood lsat = ∑15

r=1 nr log(
nr
n ) = −41180.28.

13 The R package caret has been exploited to split the data (Khun 2020).
14 The choice of setting K = 30 allows that that each fold has a moderate sample size of 750 observations.
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be as shorter as possible since the floatation component is right-skewed with modal
value at the second category15.

For the subsequent case studies, fitting results of both the Bi-Poiss and the (con-
strained) Mix-CMP models will be reported for the sake of comparisons.

Remark 4 Noticeably, the latent Beta polarization components f (x;α1, 1) and
f (x; 1, β3) of the OFS family are particular cases of the Kumaraswami distribu-
tion (Jones 2009), with density g(x;α, β) = α β xα−1(1 − xα)β−1 for x ∈ [0, 1]
that is similar to the Beta distribution for several aspects, yet more tractable from the
mathematical point of view. Preliminary investigations seem to indicate that mixture
specification within this family would not imply identifiability issues as for the Beta
mixtures discussed in Appendix 2. Thus, a mixture of two discretized Kumaraswami
distributions, one with parameters (α1, β1) such that min(α1, β1) < 1 for polariza-
tion, and one component with parameters (α2, β2)withmin(α2, β2) > 1 for floatation,
could be an alternative model for the problem under examine, yet with lack of straight-
forward and symmetrical interpretation of parameters with respect to polarization and
floatation; further, non-uniform symmetric shapes would not be encompassed.

4 A case study on the probability to vote for German Political Parties

The data analysed in the present section are taken from the GESIS ALLBUS German
Social Survey (Gesis 2016). On a rating scale ranging from 1 = “very unlikely”,
10 = “very likely”, respondents were asked to rate: “How likely it is that you would
ever vote for this German party?”. Hereafter, ratings for the four main parties (CDU,
SPD, FDP, The Greens) collected in 2002 and 2008 will be considered. The last two
categories have been collapsed to yield rating measurements on a scale with m = 9
categories. After list-wise omission of missing values, samples of n = 2738 and
n = 3056 observations are analysed for 2002 and 2008 data, respectively. Within the
OFS framework, polarization is meant as resoluteness of the opinion of opponents and
supporters, whereas floatation can be also interpreted as indecision.

Table 8 reports the best model for each rating variable, selected on the basis of
a joint analysis of multiple criteria, including X2 Statistics, likelihood ratio tests for
nested models and BIC values. As a general rule, the most parsimonious specification
has been preferred in case of weakly significant evidence for a more complex model, if
comparable satisfactory results hold for the other criteria (see Appendix 3 for details).

It follows that:

– For the CDU, the structural components of the probability to vote have not changed
neither in size nor in intensity from 2002 to 2008;

– For the SPD, the neutrality component in 2002 has transformed to a more general
yet symmetric indecision component;

15 For the OFS111, δ̂1 = 0.452
(0.023)

, δ̂3 = 0.0162
(0.0032)

, α̂1 = 0.175
(0.007)

, ̂log(α2) = 0.478
(0.071)

, ̂log(β2) = 2.258
(0.060)

, β̂3

= 0.010
(0.077)

, so that OFS111 is substantially an OFS110 with inflation at m = 15 (the supporters’ pole is

degenerate: see Remark 2).
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Table 8 Best OFS mixture (see
Table 12 in Appendix 3 for
details)

CDU SPD FDP The Greens

2002 OFS(i)
111 OFS(i)

111 OFS110 OFS110

2008 OFS(i)
111 OFS(s)

111 OFS(s)
111 OFS(s)

111

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Best model: 2002

CDU
SPD
FDP
Greens

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Best model: 2008

�1 �3 �1 �3

CDU
SPD
FDP
Greens

�1 �3 �1 �3

Fig. 1 Polarization parameters for the best OFS mixture (see Table 8)

– For the Greens and the FDP, instead, evidence for the supporter pole was found
only in 2008: given the positive asymmetry of the floatation component in 2002
(see Table 9) and its symmetry in 2008, it can be concluded that there has been a
movement of the undecided opinions towards the supporter pole from 2002 and
2008.

The parameterization of polarization and indecision accomplished via OFS mixtures
allows to identify if and to what extent changes have occurred in the probability to vote
for German Parties. Figure 1 shows estimated polarization parameters δ̂1, δ̂3, α̂1, β̂3 ∈
(0, 1) for all parties in 2002 (left panel) and in 2008 (right panel). Lower and upper
bounds of 95%-bootstrap confidence intervals are displayed with star symbols at the
edge of the whiskers departing from the point estimates. It follows that:

– Polarization and floatation components of the voting probabilities for the CDU are
overall stable from 2002 to 2008, in both intensity and size;

– For the SPD, a significant decrease is observed for both δ3 and β3: thus, given
that no relevant variation is observed for δ1, it can be inferred that indecision has
increased, but positive evaluations have further polarized.

– For the Green and the FDP parties, a significant decrease is observed in both δ1
and α1, indicating that the opposition pole grew in intensity but decreased in size.
As a result, it can be inferred that some negative yet un-polarized evaluations have
floated towards a symmetric indecision (see also Table 9).

Figure 2 provides a joint representation of estimation results for the sizes of polar-
ization and floatation with a ternary plot of mixing weights (left), whereas a scatter
plot of polarization parameters α1, β3 in the unit square is displayed to compare the
strengths of unfavourable and favourable opinions over time (right).
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Table 9 Asymmetry and Adjusted kurtosis of the floatation component for the best OFS mixture (see
Table 8)

γ1 γ 

2

CDU SPD FDP The Greens CDU SPD FDP The Greens

2002 0 0 0.0756 0.324 – – 2.513 2.649

2008 0 0 0 0 – 2.679 2.656 2.671

Mixing weights (2002)
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Fig. 2 Visualization of estimation results for polarization parameters: Probability to vote for German parties

Finally, Table 9 reports the chosen asymmetry measure γ1 defined in (4) and the
adjusted kurtosis value γ 


2 (15) for the estimated indecision component for those
parties and time points where it is not degenerate. The extent of floatation of negative
opinions towards neutrality is then quantified, as is the extent by which un-polarized
opinions became more homogeneous from 2002 to 2008 for both the FPD and the
Greens (more for the FDP than for the Greens). The reverse circumstance is observed
for SPD, for which the neutrality component in 2002 left the place to a general yet
symmetric indecision. The analysis and the proposed visualization tools for the results
could be replicated conditional to covariates values (as gender, geographical residence,
etc) to give local assessments of the polarization and floatation dimensions.

Finally, a 10-fold cross-validation is performed to check the ability of the selected
bestmodel (Table 8) to predict the rating distribution. Table 10 reports some summariz-
ing indicators: average and 9th decile over folds of the dissimilarity index between the
best model p


train, estimated on the training set, and the response distribution on the test
set ( f test ), are proposed as a proxy of prediction errors for the test set distribution.With
the same goal and strategy, the average over folds of the Kullback–Leibler divergence
is reported for candidate OFS models. Results indicate that, beyond fitting ability, the
flexibility of OFS models allows to attain satisfactory predictive performance.
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5 Final considerations

The paper has discussed mixture specification of Discretized Beta models to explicitly
parameterize polarization and floatation of discrete ordered evaluations, as ratings and
(truncated) count data. The proposal is more flexible than other alternative models in
both fitting performance and interpretation: for instance, the method presented in
(Gómez-Déniz et al. 2020) to induce bimodality in a distribution could be applied also
to theDBmodel, at the cost of losing the direct a-priori parameterization of polarization
features afforded by the OFS models. A devoted R package for OFS implementation
is under development.

Further research will be tailored to the analysis of tail dependencies of polariza-
tion and floatation of different survey items with suitable copula modelling, as well
as to the implementation of model-based trees to derive response profiles in terms of
covariates entailing a significant effect in at least one model’s features (see (Cappelli
et al. 2019; Simone et al. 2019) for the case of cubmodels for rating data). A compar-
ative analysis with mixtures of discretized Kumaraswami distributions also deserve
in-depth investigation in future research.
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Appendix 1: Miscellanea about the Discretized Betamodel

For a generic random variable X , let μ and σ be the mean value and the standard
deviation, respectively. Ifm3 andm4 denote the standardized central moments around
the mean of order three and four, respectively, then the meson f is the location index
proposed in (Blest 2003), defined by:

f =
(√

1

4
m2

3 + 1 + 1

2
m3

) 1
3 −

(√
1

4
m2

3 + 1 − 1

2
m3

) 1
3

(14)

and verifying E[(X − ξ)3] = 0, if ξ = μ + f σ , so that ξ minimizes the fourth
moment of X around the meanμ. Then, the measure of kurtosis adjusted for skewness
proposed in (Blest 2003) allows to compare distributions with the same degree of
flatness, regardless of the location of their tails. It is defined as the standardized fourth
moment around the meson f , namely:

γ 

2 = m4 − 3

(
(1 + f 2)2 − 1

)
. (15)
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Kurtosis adjusted for skewness
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Fig. 3 Left: contour lines for the adjusted measure of kurtosis for a DB model with min(α, β) > 1. Right:
Continuous lines matching probability masses for selected DB models (skewness, kurtosis and adjusted
kurtosis are reported in legend)

For the DB model, Fig. 3 displays contour lines for the adjusted kurtosis index (left)
and selected DB distributions with corresponding values of γ1(α, β), γ 


2 (α, β) (right).
As a benchmark, notice that γ 


2 = 1.8 for the uniform distribution, whereas γ 

2 → 3

if α = β → ∞.
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Appendix 1.2: On the observed informationmatrix for DB and OFSmodels

If (x) denotes the Euler Gamma function, let ψ(x) = d
dx log((x)) be the digamma

function, and ψ1(x) = d
dx ψ(x) be the trigamma function. To shorten the notation,

for k = 1, . . . ,m, let dbk = Pr(R = k|a, b) = 1

B(a, b)
Ik(a, b), where Ik(a, b)

=
k
m∫

k−1
m

xa−1(1− x)b−1dx , and consider the identity
∂B(x, y)

∂x
= B(x, y)

(
ψ(x)−ψ(x

+ y)
)
. By virtue of the symmetry of the Beta function (B(x, y) = B(y, x)), the first-

and second-order derivatives of the logarithm of DB probabilities-according to the
chosen parameterization-are:

– ∂ log(dbk)
∂a = ψ(a + b) − ψ(a) + 1

Ik (a,b)
∂ Ik (a,b)

∂a ;

– ∂ log(dbk)
∂b = ψ(a + b) − ψ(b) + 1

Ik (a,b)
∂ Ik (a,b)

∂b ;

– ∂2 log(dbk)
∂2a

= ψ1(a + b) − ψ1(a) − 1
Ik (a,b)2

(
∂ Ik (a,b)

∂a

)2

+ 1
Ik (a,b)

∂2 Ik (a,b)
∂2a

;

– ∂2 log(dbk)
∂2b

= ψ1(a + b) − ψ1(b) − 1
Ik (a,b)2

(
∂ Ik (a,b)

∂b

)2

+ 1
Ik (a,b)

∂2 Ik (a,b)
∂2b

;

– ∂2 log(dbk)
∂a ∂b = ψ1(a + b) − 1

Ik (a,b)2

(
∂ Ik (a,b)

∂a

)(
∂ Ik (a,b)

∂b

)
+ 1

Ik (a,b)
∂2 Ik (a,b)

∂a∂b ;

where:

– ∂ Ik (a,b)
∂a = ∫ k

m
k−1
m

xa−1(1 − x)b−1(log(x))dx ;

∂2 Ik (a,b)
∂2a

= ∫ k
m
k−1
m

xa−1(1 − x)b−1(log(x))2dx ;

– ∂ Ik (a,b)
∂b = ∫ k

m
k−1
m

xa−1(1 − x)b−1(log(1 − x))dx ;

∂2 Ik (a,b)
∂2b

= ∫ k
m
k−1
m

xa−1(1 − x)b−1(log(1 − x))2dx ;

– ∂2 Ik (a,b)
∂a∂b = ∫ k

m
k−1
m

xa−1(1 − x)b−1(log(1 − x) log(x))dx .

Then, from the results above, the observed information matrix for OFS models can
be promptly derived (the chain rule has to be suitably applied if the log transform is
considered for the parameters of a given DB component). Similar steps are needed to
compute first- and second-order derivatives of the complete log-likelihood function in
order to obtain the observed information matrix within the EM algorithm with Louis’
identity and to speed up convergence, as proposed in (Simone 2021) for cub models.

Appendix 2: On identifiability of Discretized Betamixturemodels

On the basis of a characterization proven in (Yakowitz and Spragins 1968), mixtures
of Beta distributions are not identifiable, in general (Ahmad and Al-Hussaini 1982).
Thus, suitable constraints should be put on parameters of mixture components when
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combining DB models for polarization with a DB model for floatation. The core of
the discussion is the following theorem, whose proof follows straightforwardly.

Theorem 1 Let f (x;α, β) be the Beta probability density function over [0, 1], with
α, β > 0. Then:

f (x;α, β) = c1 f (x;α, β + 1) + (1 − c1) f (x;α + 1, β) (16)

where c1 = β

α + β
. In particular, if max(α, β) < 1, the U-shaped Beta density

function f (x;α, β) can be written as a mixture of a J-shaped Beta f (x;α +1, β) and
a reverse J-shaped Beta f (x;α, β + 1).

Mixture specification within the DB family should consider also the following
arguments leading to a Beta approximation of Beta mixtures16.

For a fixed k ≥ 2, consider amixture g(x) = ∑k
i=1 di f (x;αi , βi ) ofBeta densities.

If μi1 and μi2 denote the first and second moments of the i-th mixture component, let
μ1 = ∑k

i=1 diμi1, μ2 = ∑k
i=1 diμi2 be the first and second moment of the mixture,

respectively. If s = μ2−μ2
1 is the variance of themixture, and h = μ1

1−μ1
, the following

approximation can be derived:

g(x) ≈ f (x;α, β), withβ = h

s(1 + h)3
− 1

1 + h
, α = hβ. (17)

For instance, assume that k = 2 and that X1 ∼ f (α1, β1) is J -shaped, whereas
X2 ∼ f (α2, β2) is reversed J -shaped. Their mixture g(x) (with weights d1 and 1−d1)
can be approximated by a U -shaped Beta density f (x;α, β) with parameters (α, β)

obtained as in (17). Table 11 reports some instances. The last 4 columns report the
Dissimilarity index between the discretized versions of g(x) and its approximation
f (x;α, β) given in (17), for varying number of categories m. Results indicate that
this approximation is satisfactory: thus, an OFS101 model could be approximated by a
DB(α, β) model, which in turn can be written as a further mixture of two DB models
after discretization of the representation in (16). Then, specifying DB mixtures is a
challenging task, especially for small m.

Remark 5 As to explicative performances, it is worth to notice that the OFS101 model
allows to assess the prevalence of opponentswith respect to supporters directly in terms
of δ1, whereas this can be assessed only indirectly from the mixture decomposition
established in Theorem 1 for a DB(α1, β3) model.

Appendix 2.1: Two-component mixture of DBmodels for polarization and
floatation

With reference to model specification (6), assume that max(α1, β1) > 1: without loss
of generality, assume that α1 = min(α1, β1) < 1 and that β1 = max(α1, β1) > 1. By

16 The approximation (17) stems from a straightforward adaptation to mixtures of the method of moments
applied in (Jóhannesson andGiri 1995) to derive aBeta approximation to linear combinations of independent
Beta random variables.
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Table 11 Instances of Beta approximation of 2-component mixtures of Beta distributions according to (17)

d1 α1 β1 α2 β2 α β Diss
(m = 5)

Diss
(m = 7)

Diss
(m = 9)

Diss
(m
= 11)

Case 1 0.4 0.2 1 1 0.1 0.190 0.120 0.004 0.006 0.008 0.010

Case 2 0.8 0.7 1 1 0.3 0.638 0.682 0.014 0.020 0.026 0.030

Case 3 0.5 0.3 1 1 0.4 0.371 0.415 0.006 0.007 0.010 0.012

Case 4 0.2 0.3 0.6 0.5 0.2 0.395 0.224 0.002 0.003 0.003 0.003

applying Theorem 1 on the latent polarization component with parameters (α1, β1),
it follows that:

Pr(R = r |θ) = (1 − δ)β1

α1 + β1
db(r;α1, β1 + 1)

+
(

(1 − δ)α1

α1 + β1
db(r;α1 + 1, β1) + δ db(r;α2, β2)

)
(18)

≈ (1 − δ
)db(r;α

1, β



1) + δ
db(r;α


2, β


2) = Pr(R = r |θ
), (19)

where:

– α

1 = α1 ∈ (0, 1), β


1 = β1 + 1 > 1 (so that DB(α

1, β



1) is reverse J -shaped as

DB(α1, β1));
– δ
 = δ + (1−δ)α1

α1+β1
;

– α

2, β



2 are obtained numerically following (17) and thus satisfy:

δ
db(r;α

2, β



2) ≈ (1 − δ)α1

α1 + β1
db(r;α1 + 1, β1) + δ db(r;α2, β2).

If the constraints min(α

2, β



2) > 1 and (2) are satisfied, identifiability concerns may

arise depending on the goodness of the approximation Pr( ·; θ) ≈ Pr( ·; θ
) and on
the distance between parameter vectors.

Similar issues may arise if max(α1, β1) ≤ 1. Applying Theorem 1 iteratively to the
underlying Beta mixture, it follows that:

Pr(R = r |θ) = (1 − δ)

(
β1

α1 + β1
db(r; α1, β1 + 1) + α1

α1 + β1
db(r; α1 + 1, β1)

)
+ δdb(r; α2, β2)

≈ (1 − δ
)db(r; α

1, β



1) + δ
db(r; α


2, β


2) = Pr(R = r |θ
),

where (17) implies that:

–

f (x;α

1, β



1) ≈ d1

d1 + d2
f (x;α1, β1 + 2) + d2

d1 + d2
f (x;α1 + 2, β1); (20)

– d1 = (1 − δ)
β1

α1+β1

β1+1
α1+β1+1 and d2 = (1 − δ) α1

α1+β1

α1+1
α1+β1+1 ;
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–

δ
 f (x;α

2, β



2)

≈
(

2(1 − δ)α1 β1

(α1 + β1)(α1 + β1 + 1)
f (x;α1 + 1, β1 + 1) + δ f (x;α2, β2)

)
.

(21)

Thus, despite immediate interpretation of parameters, the mixture specification in (6)
does not ensure identifiability.

Appendix 2.2: Three-component mixture of DBmodels for polarization and
floatation

From the specification point of view, model (7) has a higher model complexity than
model (6), yet the two mixture specifications have the same explicative power. Theo-
rem 1 implies that, if max(α1, β1) < 1, one can write:

R ∼ (1 − δ)DB(α1, β1) + δDB(α2, β2)

∼ δ1DB(α

1, β



1) + δ2DB(α


2, β


2) + δ3DB(α


3, β


3)

with δ1 = (1 − δ)
β1

α1+β1
, α


1 = α1, β

1 = 1 + β1 > 1; δ2 = δ, α


2 = α2, β

2 = β2;

δ3 = (1 − δ) α1
α1+β1

, α

3 = α3 + 1, β


3 = β3.
Vice versa, the convex combination of the two polarization components within

the mixture (7) can be approximated by a unique U -shaped polarization component.
Indeed, if a continuous random variable X has density:

gX (x) = 1

δ1 + δ3

(
δ1 f (x;α1, β1) + δ3 f (x;α3, β3)

)
,

then gX (x) will be U -shaped and can be numerically approximated by a Beta model
according to (17). Thus, for the underlying Beta specification of the 3-component
mixture (7), it follows that:

δ1 f (x;α1, β1) + δ3 f (x;α3, β3) ≈ (δ1 + δ3) f (x;α, β). (22)

If parameters (α, β) are obtained numerically as in (17), then the 3-component mixture
(7) can be approximated by a 2-component mixture as in (6):

Pr(R = r |θ) ≈ (δ1 + δ3) db(r;α, β) + δ2 db(r;α2, β2).

Then, identifiability issues may arise for the 3-component mixture (7) if θ
 and θ

are not close enough while the approximation is good: indeed, by applying Theorem 1
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to the approximating Beta(α, β) in (22), since α, β ∈ (0, 1), one could write:

Pr(R = r |θ) ≈ (δ1 + δ3)

(
β

α + β
db(r;α, β + 1) + α

α + β
db(r;α + 1, β)

)

+ δ2db(r;α2, β2)

= δ

1db(r;α


1, β


1) + δ


2db(r;α

2, β



2) + δ


3db(r;α

3, β



3)

with δ

1 = (δ1 + δ3)

β
α+β

, α

1 = α ∈ (0, 1), β


1 = β + 1 > 1, δ

2 = δ2, α



2 = α2, β



2

= β2, δ

3 = (δ1 + δ3)

α
α+β

, α

3 = α + 1 > 1, β


3 = β3 ∈ (0, 1).

Appendix 3: Fitting results for the case study

Table 12 reports the main fitting indicators for the competing models estimated on the
data used in Sect. 4: for each criterion, the best performance are highlighted in bold
font.
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