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Abstract
Ecological Risk Assessment faces the challenge of determining the impact of invasive
species on biodiversity conservation. Althoughmany statisticalmethods have emerged
in recent years in order to model the evolution of the spatio-temporal distribution of
invasive species, the notion of extent of occurrence, formally defined by the Interna-
tional Union for the Conservation of Nature, has not been properly handled. In this
work, a novel and flexible reconstruction of the extent of occurrence from occurrence
data will be established from nonparametric support estimation theory. Mathemati-
cally, given a random sample of points from some unknown distribution, we establish
a new data-driven method for estimating its probability support S in general dimen-
sion. Under the mild geometric assumption that S is r−convex, the smallest r−convex
set which contains the sample points is the natural estimator. A stochastic algorithm
is proposed for determining an optimal estimate of r from the data under regularity
conditions on the density function. The performance of this estimator is studied by
reconstructing the extent of occurrence of an assemblage of invasive plant species in
the Azores archipelago.
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1 Introduction

Ecological Risk Assessments (ERA) are performed to evaluate the likelihood of neg-
ative ecological effects as a result of exposure to a biological, physical or chemical
factor that provokes adverse responses in the environment. Then, a remarkable chal-
lenge of ERA is to analyze the impact of invasive species on biodiversity conservation
or habitat protection. According to Martínez-Minaya et al. (2018), statistical (and
specially Bayesian) modeling of the distribution of (invasive) species has increased
substantially in the last years in order to understand their spatio-temporal dynamics. A
key issue to determine the species evolution is to characterize its extent of occurrence
(EOO). Although EOO is one of the most widely handled concepts in natural reserve
network designs involving occurrence data, it has not been considered in the literature
under this perspective yet. The International Union for the Conservation of Nature1

(IUCN) establishes the EOO as a key measure of extinction risk. Roughly speaking,
the IUCN defines the EOO as the area contained within the shortest continuous imag-
inary boundary which can be drawn to encompass all the known, inferred or projected
sites of present occurrence of a taxon, excluding cases of vagrancy. For a complete
review on this subject, see IUCN (2012) and Rondinini et al. (2006).

The problem of EOO reconstruction will be illustrated via the analysis of a real
dataset containing 740 geographical coordinates (or occurrences) for 28 species of
terrestrial invasive plants distributed in two of the Azorean islands (Terceira and São
Miguel) from 2010 until 2018. In Fig. 1, a satellite image of major Azorean islands
(top, left) and five of the invasive species are shown (bottom). The 740 geographical
locations (slightly jittered) are represented on the map of Terceira and São Miguel
islands in Fig. 1 (top, right). This dataset is available from the Global Biodiversity
Information Facility (GBIF) website (see GBIF.org 2019).

An initial estimation of the EOO for this assemblage of invasive plants was obtained
fromGeoCAT.2 It is an open source, browser-based tool endorsed by IUCN that allows
us to reconstruct the EOO from the geographical locations of species or taxon. Users
can quickly combine data frommultiple sources includingGBIF datasets which can be
easily imported. The GeoCAT reconstruction of the EOO for the assemblage of plant
species is given by the convex hull of the sample of the 740 coordinates, H(X740).
Mathematically, H(X740) is the smallest convex set that contains the original random
sample X740. In fact, it is computed as the intersection of all half spaces containing
X740. For more details, compare Fig. 5 (first row, left) and Fig. 5 (second row, left).
Note that this EOO estimation presents some practical limitations because a marine
area is inside the H(X740). Obviously, none of the plant species considered here can
occur in open sea which should remain outside the EOO. Therefore, convexity can
be a too restrictive shape condition to be assumed in some situations. Of course, an
expert can disconnect the original dataset in different spatially homogeneous groups
and work separately. But, sometimes, it is not obvious how to split the data and/or
finding groups in the dataset is one of the objectives of the study.

1 IUCN website: www.iucn.org
2 GeoCAT website: http://geocat.kew.org/
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Spatial distribution of invasive species

Fig. 1 Location of Terceira and São Miguel islands in the Azores Archipelago, NASA satellite image (top,
left). The enlarged area (top, right) shows the 740 geographical locations used to reconstruct the EOO of an
assemblage of 28 invasive plant species including: Erigeron karvinskianus, Pittosporum undulatum, Agave
americana, Acacia melanoxylon, Hedychium gardnerianum (bottom, from left to right)

Our goal is to propose a novelty, more realistic, flexible and automatic EOO recon-
struction using occurrence data from nonparametric support estimation perspective.
This methodological approach has proved to be useful in different disciplines such as
image analysis (see Rodríguez-Casal and Saavedra-Nieves 2016), quality control (see
Devroye and Wise 1980 or Chevalier 1976) or animals home range estimation (see
De Haan and Resnick 1994 or Baíllo and Chacón 2018). However, the problem of
studying the spatio-temporal distribution of invasive species from the EOO estimation
has not been proposed yet.

In general, support estimation deals with the problem of reconstructing the compact
and nonempty support S ⊂ R

d of an absolutely continuous random vector X from
a random sample Xn = {X1, ..., Xn} (see Cuevas and Fraiman 2010 for a complete
survey on the subject). Of course, when the support S is assumed to be convex, then
the convex hull of the sample points, H(Xn), provides a natural support estimator.
See Schneider (1988, 2014), Dümbgen and Walther (1996) or Reitzner (2003), for
thorough analysis of this estimator. This estimator is indeed simple and fully data
driven, but it may not be suitable for some practical situations, failing to provide a
satisfactory support estimator when S has holes or it is disconnected as in the example
of invasive plants in Azores archipelago where the occurrences are distributed within
two different islands.

In thiswork,wewill propose a newdata-driven support estimator for general dimen-
sion and, as a consequence, an original, realistic and easy to use EOO reconstruction
that will overcome the limitations derived from convexity restriction. Concretely, we
assume that the support S satisfies the r−convexity shape condition for r > 0, a
much more flexible geometrical property than convexity as it will be shown. Our pro-
posal considers the smallest r -convex set containingXn (r−convex hull ofXn , namely
Cr (Xn)) as the natural estimator for the unknown support. This estimator iswell known
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in the computational geometry literature for providing reasonable global reconstruc-
tions if the sample points are (approximately) uniformly distributed on the set S (see
Edelsbrunner 2014). In fact, despite being r−convexity a more general condition than
convexity, Cr (Xn) can achieve the same convergence rates than H(Xn) as proved by
Rodríguez-Casal (2007). However, this estimator presents an important disadvantage
in practice: it depends on the commonly unknown parameter r . Although the influence
of r can be considerable, it must be specified by the practitioner (see Joppa et al. 2016)
or selected through practical procedures without theoretical guarantees (see Burgman
and Fox 2003). For the example of invasive species in Azorean islands, Fig. 5 shows
Cr (X740) for different values of r . Small values of r provide fragmented estimators
(many isolated points and connected components) leading to an EOO reconstruction
which resembles Xn (Fig. 5: second row, right). For an intermediate value of r , a real-
istic reconstruction of the EOO is obtained since sea areas are not inside the estimator
(Fig. 5: third row, left). However, if large values of r are considered, then Cr (Xn)

basically coincides with H(Xn) (Fig. 5: third row, right). Therefore, arbitrary choices
of r may provide incongruous EOO estimations.

Most of the available results in the literature about support estimation make special
emphasis on asymptotic properties, especially consistency and convergence rates, but
they do not usually give any criterion for selecting the unknown parameter r inCr (Xn)

from the sample. The aim of this paper is to overcome this drawback and present a
method for selecting the parameter r for the r−convex hull estimator from the available
data. This problem has scarcely been studied in the statistical literature with just a
couple of references available on the topic. First, Mandal andMurthy (1997) proposed
a selector for r based on the concept of minimum spanning tree, but only consistency
of the method was provided without considering optimality issues. Later, Rodríguez-
Casal and Saavedra-Nieves (2016) proposed an automatic selection criterion based on
a very intuitive idea for the selection of r but under the important restriction that the
sample distribution is uniform. The idea for selecting r is as follows. According to
Fig. 5 (bottom, right), sea areas are contained in Cr (Xn) if the selected r is too large.
So, the estimator contains a large ball empty of sample points, see gray balls in Fig. 5
(top, left) and (bottom, right). Janson (1987) calibrated the size of this maximal ball
(or spacing) when the sample distribution is uniform on S. Berrendero et al. (2012)
used this result to test uniformity when the support is unknown. However, Rodríguez-
Casal and Saavedra-Nieves (2016) followed an opposite approach. They assume that
Xn comes from a uniform distribution on S and if a big enough spacing is found
in Cr (Xn), then it is incompatible with the assumption that data are uniform. As a
consequence, it is concluded that r is too large. Therefore, it seems natural to select
the largest value of r compatible with the uniformity assumption on Cr (Xn).

Recently,Aaron et al. (2017) extended the results by Janson (1987) to the casewhere
the data are generated from a density f that is bounded from below and Lipschitz
continuous restricted to its bounded support. Here, we will use this extension in order
to derive a test to decide, given a fixed r > 0, whether the unknown support S is
r−convex with no more information apart from Xn . In this case, if a large enough
spacing is found in Cr (Xn), then the null hypothesis of r−convexity will be rejected.
A new data-driven selector for the shape index r will be established from this test.
Following the scheme in Rodríguez-Casal and Saavedra-Nieves (2016), it is proposed
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Spatial distribution of invasive species

to choose the largest value of r compatible with the r−convexity assumption. Once
the parameter r is estimated fromXn , a new data-driven support reconstruction, based
on the estimator of r , will be proposed. As a consequence, a flexible reconstruction for
the EOO, based on available data, will be obtained. Furthermore, when the support is
convex, our EOO estimator will be similar to H(Xn). Therefore, the EOO definition
given by IUCN is generalized.

This paper is organized as follows. Mathematical tools are introduced in Sect. 2.
First, the geometric assumptions on S and the optimal value of the parameter r to be
estimated are introduced. Then, the maximal spacing and its estimator are formally
defined. Some regularity assumptions on f are also established. In Sect. 3, we propose
a procedure for testing the null hypothesis that S is r−convex for a given r > 0. This
test will play a key role in the definition of the consistent estimator of r . Then, a
new data-driven estimator for the support S is proposed in Sect. 4 and it will be seen
that it achieves the same convergence rates as the convex hull for estimating convex
sets. The main numerical features involving the practical application of the algorithm
are exposed in Sect. 5. Section 6 contains a simulation study in order to analyze the
performances of the r−convexity test and the proposed estimator of the parameter r . In
Sect. 7, the behavior of the new support reconstruction will be analyzed estimating the
EOO of an assemblage of terrestrial plant species in two Azorean islands. Conclusions
are exposed in Sect. 8. Finally, proofs of theoretical results are deferred to Sect. 9.

2 Mathemathical tools

Regularity conditions, namely shape assumptions on S, will be introduced next. In
addition,wewill discusswhich is the optimal value of the shape index r to be estimated.
Next, required conditions on the density function f will be also presented. Finally,
basic notions on maximal spacings are established.

2.1 About geometric assumptions on S and the optimal r

In this work, S is assumed to be r−convex for some r > 0. Definition 1 establishes
the formal definition of this geometric property.

Definition 1 A closed set A ⊂ R
d is said to be r−convex, for some r > 0, if A =

Cr (A), where

Cr (A) =
⋂

{Br (x):Br (x)∩A=∅}
(Br (x))

c

denotes the r−convex hull of A and Br (x), the open ball with center x and radius r ,
whereas Dc denotes the complementary of D .

In practice, Cr (Xn) can be computed as the intersection of the complements of all
open balls of radius larger than or equal to r that do not intersect Xn . To illustrate
the importance of a good choice of r , Fig. 2 shows the computation of Cr (X740) for
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Fig. 2 Cr (X740) (red color) and Br∗ (x) for r∗ ≥ r (gray color) such that Br∗ (x) ∩ X740 = ∅ taking
r = 0.3 (left) and r = 5 (right)

r = 0.3 (left) and r = 5 (right) for the example in Azorean islands. Computations
have been done using the alphahull package in R, see Pateiro-López and Rodríguez-
Casal (2010). Note that C0.3(X740) is an acceptable EOO reconstruction equal to the
intersection of the complements of all gray open balls represented. However, if we
select r = 5, marine areas are clearly inside the C5(X740).

It is well-known that the concept of r−convex hull is closely related to the closing
of A by Br (0) from the mathematical morphology, see Serra (1983). It can be shown
that

Cr (A) = (A ⊕ r B) � r B,

where B = B1(0), λC = {λc : c ∈ C}, C ⊕ D = {c + d : c ∈ C, d ∈ D} and
C � D = {x ∈ R

d : {x} ⊕ D ⊂ C}, for λ ∈ R and sets C and D.
The problem of reconstructing a r−convex support S using a data-driven procedure

could be easily solved if the parameter r is selected from the data set. The first step
is to determine precisely the optimal value of r to be estimated, which is established
in Definition 2: we propose to estimate the largest value of r which verifies that S is
r−convex.

Definition 2 Let S ⊂ R
d a compact, nonconvex and r−convex set for some r > 0. It

is defined
r0 = sup{γ > 0 : Cγ (S) = S}. (1)

Remark 1 For simplicity in the exposition, it is assumed that S is not convex; otherwise,
r0 would be infinity, and the convex hull of the sample provides a good reconstruction.

Remark 2 If the supreme in (1) is a maximum, then S is r convex for r ≤ r0. In this
case, if r < r0, Cr (Xn) is a non-admissible estimator since it is always outperformed
by Cr0(Xn). This happens because, with probability one, Cr (Xn) ⊂ Cr0(Xn) ⊂ S.
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Fig. 3 A1 ∪ A2 fulfills the r−rolling condition � A1 ∪ A2 is r−convex (left). (R) is a more general
condition (center). Circular ring with inner circle of radius r0 (right)

Proposition 2.4 in Rodríguez-Casal and Saavedra-Nieves (2016) ensures that under
the shape restriction detailed below, the supreme in (1) is a maximum. The mild
regularity condition we need is the following:

(R) S an Sc satisfy the rolling property with rolling positive constants r and λ,
respectively.

FollowingCuevas et al. (2012), it is said A satisfies the (outside) r−rolling condition
if each boundary point a ∈ ∂A is contained in a closed ball with radius r whose
interior does not meet A. There exist interesting relationships between this property
and r−convexity. In particular, Cuevas et al. (2012) proved that if A is compact and
r−convex, then A fulfills the r−rolling condition. According to Fig. 3 (left), the
reciprocal is not always true. Proposition 2.2 in Rodríguez-Casal and Saavedra-Nieves
(2016) shows that (R) is a (mild) sufficient condition to ensure the r−rolling condition
implies r−convexity. Condition (R) was essentially analyzed byWalther (1997, 1999)
but just the case r = λwas taken into account. In this work, the radiusλ can be different
from r, see Fig. 3 (center).

2.2 About maximal spacings

The optimal value of the shape index r to be estimated is just established in Definition
2. Some concepts onmaximal spacings theorymust be handled to propose a consistent
estimate of r0.

The notion of maximal-spacing in several dimensions was introduced and studied
by Deheuvels (1983) for uniformly distributed data on the unit cube. Later on, Janson
(1987) extended these results to uniformly distributed data on any bounded set and
derived the asymptotic distribution of different maximal-spacings notions without
conditions on the shape of the support S. Aaron et al. (2017) generalized the results
by Janson (1987) to the non-uniform case.

The shape of the considered spacings will be defined by a given set A ⊂ R
d . For

the validity of the theoretical results, it is sufficient to assume that A is a compact and
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convex set. For practical purposes, the usual choices are A = [0, 1]d or A = B1[0],
being Br [x] the closed ball with center x and radius r . For a general dimension d, the
first definition of maximal spacing is that used by Janson (1987) under the restriction
of data are uniformly distributed:

Δ∗
n(Xn) = sup{γ : ∃x such that {x} ⊕ γ A ⊂ S\Xn}.

If the Lebesguemeasure of the set A is one,Δ∗
n(Xn)

d represents the Lebesguemeasure
of the largest set {x} ⊕ γ A ⊂ S\Xn . The concept of maximal spacing can be related
easily to the maximal inner radius when A = B1[0]. If Int(S) = ∅, the maximal inner
radius of S is defined as

R(S) = sup{γ > 0 : ∃x ∈ S such that Bγ [x] ⊂ S}.

Note that the value of the maximal spacing depends on S and also on Xn . However,
the definition of the maximal inner radius relies only on S.

Aaron et al. (2017) extended the definition of maximal-spacing assuming that Xn

is drawn according to a density f with bounded support S, the Lebesgue measure of
the set A is one and its barycenter is the origin of R

d . In this more general setting, the
maximal spacing is defined as

Δn(Xn) = sup

{
γ : ∃x such that {x} ⊕ γ

f (x)1/d
A ⊂ S\Xn

}

and

Vn(Xn) = Δn(Xn)
d .

The previous definition of maximal spacing relies also on density f . In this way,
it distinguishes between low and high density regions. Throughout this paper, A =
w

−1/d
d B1[0] where wd denotes the Lebesgue measure of B1[0].
Janson (1987) calibrated the volume of the maximal spacing under uniformity

assumptions without conditions on the shape of the support S. The corresponding
extension established in Theorem 2 in Aaron et al. (2017) is shown in Theorem 1
modifying slightly the original hypotheses on f and on the shape of S. The result
remains true if it is assumed that S is under (R) and the density function f satisfies
( f L0,1):

( f L0,1) The restriction of the density f to S is Lipschitz continuous (there exists k f

such that ∀x, y ∈ S, | f (x) − f (y)| ≤ k f ‖x − y‖), and there exists f0 > 0
such that f (x) ≥ f0 for all x ∈ S. Furthermore, denote f1 = maxx∈S f (x).

All through this paper, we assume that the random sample of points, Xn , is generated
from a density f that satisfies the regularity condition ( f L0,1). Note that it includes
the uniform distribution and also, more realistic scenarios with non-uniform sampling
allowing to deal with observer biased data.
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Theorem 1 (Aaron et al. (2017))LetXn be a randomand i.i.d sample drawn according
to a density f that satisfies ( f L0,1) with compact and nonempty support S under (R).

Let U be a random variable with distribution

P(U ≤ u) = exp(− exp(−u)) for u ∈ R

and let β be a constant specified in Janson (1987). Then, we have that

U (Xn)
d→ U when n → ∞,

lim inf
n→∞

nVn(Xn) − log(n)

log(log(n))
≥ d − 1 a.s., lim sup

n→∞
nVn(Xn) − log(n)

log(log(n))
≤ d + 1 a.s.

where

U (Xn) = nVn(Xn) − log(n) − (d − 1)log(log(n)) − log(β).

Remark 3 The value of constant β does not depend on S. It is explicitly given in Janson
(1987). Specifically,

β = 1

d!

(√
πΓ

( d
2 + 1

)

Γ
( d+1

2

)
)d−1

.

In particular, for the bidimensional case, β = 1.

2.2.1 About nonparametric estimation of maximal spacings

A plug-in estimator of the maximal spacingΔn(Xn)will be introduced next. Note that
the definition of Δn(Xn) relies on the support S and also on the density function f
(both are usually unknown). Under the assumption of r−convexity, Swill be estimated
as Cr (Xn). As for the density function f , following the ideas in Aaron et al. (2017),
a non-conventional density estimator will be introduced in Definition 3.

Definition 3 Let r > 0 and let Vor(Xi ) be the Voronoi cell of the point Xi (i.e.,
Vor(Xi ) = {x : ‖x − Xi‖ = miny∈Xn ‖x − y‖}). If K is a kernel function (i.e.,
K ≥ 0,

∫
K = 1 and

∫
uK (u)du = 0) and fn(x) = 1

nhdn

∑
K ((x − Xi )/hn) denotes

the usual kernel density estimator, we define

f̂n(x) = max
i :x∈Vor(Xi )

fn(Xi ).

This nonparametric estimator only takes n different values: the evaluation of the
usual kernel estimator on the sample points. In fact, for each point x ∈ S, f̂n(x) is
equal to fn(Xi ) where Xi is the closest sample point to x . It can be checked that,
with probability one and for n large enough, there exists a point in Xn as close to x
as desired. Therefore, this density estimator is only a simplification of the usual one
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with clear computational advantages for estimating Δn and Vn . This estimator is just
a slight modification of the one proposed in Aaron et al. (2017), avoiding zero values.

Finally, some technical hypotheses on the kernel function must be established.
Observe that this condition is satisfied, for instance, by the Gaussian kernel.

(Kp
φ ) The kernel function K belongs to the set of kernelsK such that K (u) = φ(p(u))

where p is a polynomial and φ is a bounded real function of bounded variation,
verifying that cK = ∫ ‖u‖K (u)du < ∞, K ≥ 0 and there exists rK and
c

′
K > 0 such that K (x) ≥ c

′
K for all x ∈ BrK [0].

Then, we define the following plug-in estimator of Δn(Xn)

δ̂(Cr (Xn)\Xn) = sup

{
γ : ∃x such that {x} ⊕ γ

f̂n(x)1/d
A ⊂ Cr (Xn)\Xn

}
(2)

and V̂n,r = δ̂(Cr (Xn)\Xn)
d . Given the definition of f̂n and the assumption ( f L0,1), it

is expected that f̂n does not go to zero on Cr (Xn), see Lemma 1. This is important in
formulae (2). For instance, if S is r−convex, δ̂(Cr (Xn)\Xn) should converge to zero
as the sample size increases. However, if S � Cr (S), the plug-in estimator of Δn(Xn)

is expected to converge to a positive constant.

3 A new test for r−convexity

We will introduce a consistent hypothesis test based on Xn drawn according to an
unknown density f on the unknown support S, to assess r−convexity for a certain
r > 0. This test is crucial for defining an estimator of r0 that would allow the data-
driven estimation of the support S.

Given r > 0, the null hypothesis that S is r−convex will be tested taking V̂n,r as
statistic. The idea that supports this procedure is simple: Under ( f L0,1) and (R), Theo-
rem 1 allows us to detect which values of Vn(Xn) are large enough to be incompatible
with these two assumptions. A similar reasoning can be also applied if we consider
V̂n,r , the test is based on the opposite approach: Under ( f L0,1) and (R), if the test statis-
tic takes large enough values, it will mean that the selected r is not appropriate and a
smaller value of r should be considered.

Theorem 2 Let r > 0 and let Xn be a random and i.i.d sample drawn according to a
density f that satisfies ( f L0,1) with compact and nonempty support S under (R). Let
fn be the modified density estimator introduced in Definition 3 whose kernel function
is supposed to satisfy condition (Kp

φ ) and the sequence hn of smoothing parameters

fulfills hn = O(n−ζ ) for some 0 < ζ < 1/d. Let δ̂(Cr (Xn)\Xn) be the maximal
spacing estimator established in equation (2). Given the statistical testing problem,

H0 : S is r − convex versus H1 : S is not r − convex.
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(a) The test based on the statistic V̂n,r = δ̂(Cr (Xn)\Xn)
d with critical region RC =

{V̂n,r > cn,α}, where

cn,α = 1

n
(−log(−log(1 − α)) + log(n) + (d − 1)log(log(n)) + log(β))

has an asymptotic level not larger than α.
(b) Moreover, if S is not r−convex, it is verified that P(V̂n,r > cn,α, eventually) = 1.

Remark 4 Note that the optimal kernel sequence size for estimating f , hn =
h0n−1/(d+4), satisfies the hypotheses under which Theorem 2 holds. Therefore, any
reasonable bandwidth selector should be suitable for testing r−convexity.

Remark 5 Under (R) r0 is the maximum of the set {γ > 0 : Cγ (S) = S}. Hence, the
hypotheses of the test introduced in Theorem 2 can be rewritten as follows:

H0 : r ≤ r0 versus H1 : r > r0.

Observe that, under H1, S = Cr0(S) � Cr (S).

The performance of this test can be illustrated using the real database of invasive
plants in Azorean islands. Given the sample X740, the practitioner could be interested
in testing the null hypothesis that the EOO is r−convex, for instance, for r = 5.
According to Fig. 5 (third row, right), it is clear that large Atlantic Ocean areas are
inside C5(X740) and the EOO is overestimated. Moreover, V̂740,5 will be too large. In
fact, although larger samples sizes were considered, its volume would take a constant
value (see gray ball inside the EOO reconstruction). Therefore, the null hypothesis
of 5−convexity should be rejected. Note that the situation is the opposite if testing
r−convexity for r = 0.3 is the goal. In this case, V̂740,0.3 should be clearly smaller.
Furthermore, when the sample size increases, this volume tends to zero.

3.1 Selection and consistency results of the optimal smoothing parameter

The optimal estimation of the smoothing parameter r0 from Xn is based on the test
previously proposed. Specifically, according to Definition 2, r0 will be estimated by

r̂0 = sup{r > 0 : The null hypothesis H0 that S is r − convex is accepted}. (3)

That is, it is proposed to select the largest value of r compatible with the r−convexity
assumption. Note that this choice depends on the significance level of the test, but its
dependence is not explicitly given in the notation for the sake of clarity. The theoretical
properties for the estimator of r0 are considered next. First, the existence of the supreme
defined in (3) must be guaranteed, a result which is proved in Theorem 3. In addition,
it is also proved that r̂0 consistently estimates r0.

Theorem 3 Let f be a density function that satisfies ( f L0,1) with compact, nonconvex

and nonempty support S under (R). Let f̂n be the density estimator introduced in
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Definition 3 whose kernel function is supposed to satisfy condition (Kp
φ ) and the

sequence hn of smoothing parameters fulfills hn = O(n−ζ ) for some 0 < ζ < 1/d.
Let r0 be the parameter defined in (1) and r̂0 defined in (3). Let {αn} ⊂ (0, 1) be a
sequence of significance levels converging to zero such that log(αn)/n → 0. Then, r̂0
converges to r0 in probability.

Remark 6 For the sake of clarity, S is assumed non-convex throughout the paper.
However, if S is convex, it can be shown that r̂0 goes to infinity (which is the value of
r0 in this case) because, with high probability, the test is not rejected for all values of
r .

We use again the example of invasive plants in Azorean islands in order to illustrate
the behavior of this estimator. Under ( f L0,1) and (R), if V̂n,r is large enough, then
the null hypothesis of r−convexity will be rejected. Therefore, a smaller value of r
should be selected. This case corresponds to Fig. 5 (third row, right) taking r = 5.
Observe that the null hypothesis of r

′−convexity would be also rejected for all r
′ ≥ r

becauseCr (Xn) ⊂ Cr ′ (Xn) and, consequently, V̂n,r ′ ≥ V̂n,r . However, the situation is
completely opposite in Fig. 5 (second row, right) when r = 0.03. Here, the size of the
maximal spacing found in C0.03(X740)\X740 does not allow to reject that the support
is 0.03−convex. As a consequence, a bigger r than 0.03 should be considered.

4 Consistency and convergence rates of resulting support estimator

The behavior of the random set Cr̂0(Xn) as an estimator of S can be studied once the
consistency of r̂0 has been proved. Two metrics between sets are usually considered
in order to assess the performance of a support estimator. Specifically, let A and C
be two closed, bounded, nonempty subsets of R

d . The Hausdorff distance between A
and C is defined by

dH (A,C) = max

{
sup
a∈A

d(a,C), sup
c∈C

d(c, A)

}
,

where d(a,C) = inf{‖a − c‖ : c ∈ C}. Besides, if A and C are two bounded and
Borel sets, then the distance in measure between A and C is defined by dμ(A,C) =
μ(A�C), where μ denotes the Lebesgue measure and �, the symmetric difference,
that is, A�C = (A\C)∪(C\A).Hausdorff distance quantifies the physical proximity
between two sets, whereas the distance in measure is useful to quantify their similarity
in content. However, neither of these distances are completely useful for measuring the
similarity between the shape of two sets. The Hausdorff distance between boundaries,
dH (∂A, ∂C), can be also used to evaluate the performance of the estimators (see
Baíllo and Cuevas 2001; Cuevas and Rodríguez-Casal 2004; Rodríguez-Casal 2007
or Genovese et al. 2012).

In particular, if limr→r+
0
dH (S,Cr (S)) = 0, then the consistency of Cr̂0(Xn) can

be proved easily from Theorem 3. However, the consistency cannot be guaranteed if
dH (S,Cr (S)) does not go to zero as r goes to r0 from above (as r̂0 does, see Proposition
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1 below). This problem can be solved by considering the estimator Crn (Xn) where
rn = νr̂0 with ν ∈ (0, 1) fixed. This ensures that, for n large enough, with high
probability, Crn (Xn) ⊂ S. From the practical point of view, the selection of ν is not
a major issue because r̂0 is numerically approximated and the computed estimator
always satisfies this property without multiplying by ν.

Theorem 4 Let Xn be a random and i.i.d sample drawn according to a density f that
satisfies ( f L0,1) with compact, nonconvex and nonempty support S under (R). Let r0
be the parameter defined in (1) and r̂0 defined in (3). Let {αn} ⊂ (0, 1) be a sequence
converging to zero such that log(αn)/n → 0. Let be ν ∈ (0, 1) and rn = νr̂0. Then,
eventually almost sure,

dH (S,Crn (Xn)) ≤ D

(
log n

n

) 2
d+1

for some positive constant D.
The same convergence rate holds for dH (∂S, ∂Crn (Xn)) and dμ(S�Crn (Xn)).

5 Numerical implementation

Themain numerical aspects of the estimation algorithm of r0 in (1) are detailed in what
follows. Although the method proposed in this work is fully data-driven, its practical
implementation depends on the specification of the significance level of the test α.
Choosing this value is clearly a much simpler problem than the specification of the
shape index r0.

From Theorem 3, with probability one, for a large enough n, the existence of the
estimator r̂0 defined in (3) is guaranteed. However, in practice, this estimator might not
exist for a specific sample Xn and a given value of the significance level α. Therefore,
the influence of α must be taken into account from the practical point of view. The
null hypothesis of r−convexity will be (incorrectly) rejected for 0 < r ≤ r0 with
probability at most α. This is not important from the theoretical point of view. Since
we are assuming that α = αn goes to zero as the sample size increases this has not
theoretical relevance. But, what should be done, for a given sample, if H0 is rejected
for all r (or at least all reasonable values of r )? In order to fix a minimum acceptable
value of r , it is assumed that S (and, hence, its estimator) will have no connected
components with probability content lesser than a value p ∈ (0, 1). From an empirical
approach, the connected components of the estimator will contain at least a proportion
p of sample points. If p is sufficiently close to zero, too fragmented estimators (for
instance, with isolated points or insignificant clusters) will not be considered even
in the case that we reject H0 for all r . In this latter case, the minimum value that
ensures that all connected components of the estimator contain at least a proportion
p of sample points will be taken. Therefore, this parameter p can be interpreted as
a geometric stopping criterion that does not appear in theoretical results because the
sequenceαn is assumed to tend to zero. Note that this shape assumption is very flexible.
It does not limit too much the number of connected components. In fact, the estimator
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could present, as maximum number of clusters, the largest integer less than or equal to
1/p. In particular, if p is close enough to zero, the number of connected components
can reach very high values. In fact, it is expected that, when the sample size increases,
p = pn tending to zero. An alternative procedure, very similar and computationally
simpler, is to establish a maximum number of connected components instead of p.

Although the definition of r̂0 depends on a test that must be applied several times in
practice, remark that multiple testing does not play any role. It is possible to write r̂0 =
sup{r > 0 : V̂n,r ≤ cn,α}. Since V̂n,r ≤ V̂n,r ′ , for r ≤ r ′, dichotomy algorithms can
be used to compute r̂0. The practitioner must select a maximum number of iterations
I and two initial points rm and rM with rm < rM such that the null hypothesis
of rM−convexity is rejected and the null hypothesis of rm−convexity is accepted.
According to the previous comments, it is assumed that the proportion of sample points
in each connected component of Crm (Xn) must be at least p. Choosing a value close
enough to zero is usually sufficient to select rm . According to Fig. 5 (second row, right),
the maximal spacing in C0.03(Xn) will be small enough to accept 0.03−convexity.
Therefore, taking rm ≤ 0.03 will be a good choice. However, if selecting this rm
is not possible because, for very low values of r , the hypothesis of r−convexity is
still rejected, then r0 is estimated as the positive closest value to zero r such that all
connected components of Cr (Xn) contain at least a proportion p of sample points.
On the other hand, if a large enough spacing for having a statistically significant test
cannot be found in H(Xn), then we propose H(Xn) as the estimator for the support.

To sum up, the following inputs should be given: the significance level α ∈ (0, 1),
a maximum number of iterations I , a proportion p and two initial values rm and rM .
Given these parameters r̂0 will be computed as follows:

1. In each iteration and while the number of them is smaller than I :

(a) r = (rm + rM )/2.
(b) If the null hypothesis of r−convexity is not rejected, then rm = r .
(c) Otherwise, rM = r .

2. Then, r̂0 = rm .

Some technical aspects related to the computation of the maximal spacings must
be also mentioned. In the proposed procedure, the null hypothesis needs to be tested
I times. Since it involves the calculation of the maximal spacing, one may be aware
of computational cost of the method. Nevertheless, as noted by Rodríguez-Casal and
Saavedra-Nieves (2016), this maximal spacing does not need to be specifically deter-
mined and it is enough to check if there exists a point x such that

{x} ⊕ c1/dn,α

f̂ 1/dn (x)
A ⊂ Cr (Xn)\Xn .

In this case, V̂n,r ≥ cn,α and, therefore, the null hypothesis of r−convexity will
be rejected. Furthermore, note that if this disc exists, then x /∈ Bcx,wn,α

(Xk) where

cx,wn,α = c1/dn,αw
−1/d
d f̂ −1/d

n (x) and Xk denotes the sample point such that x ∈ Vor(Xk).

Therefore, f̂n(x) = fn(Xk).
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Then, the centers of the possible maximal balls that belong to the Voronoi tile with
nucleus Xi (1, . . . , n) necessarily lie in B

c
Xi ,w
n,α

(Xi )
c ∩ Vor(Xi ). We will follow the

next steps:

1. Determine the set of candidates for ball centers

D(r) = Cr (Xn) ∩
⋃

Xi∈E(m)

(∂B
c
Xi ,w
n,α

(Xi ) ∩ Vor(Xi ))

where E(m) ⊂ Xn denotes the extremes of the m−shape of Xn when m =
min

{
c
X j ,w
n,α : X j ∈ Xn

}
, see Edelsbrunner (2014). If x ∈ D(r), then we can guar-

antee that B
c
Xi ,w
n,α

(x) ∩ Xn = ∅. Equivalently,

{x} ⊕ c1/dn,α

f̂ 1/dn (x)
A ⊂ Cr (Xn)\Xn .

2. Calculate M(r) = max{d(x, ∂Cr (Xn) : x ∈ D(r)}.
3. If M(r) ≤ ĉn,α , then the null hypothesis of r−convexity is not rejected.

It should be noted that if, for all Xi ∈ E(m), x /∈ ∂B
c
Xi ,w
n,α

(Xi ) ∩ Vor(Xi ) then

B
c
Xi ,w
n,α

(x) ∩ Xn = ∅. Therefore, these points can be discarded in order to determine

D(r). Furthermore, E(m), ∂Cr (Xn) and ∂Bĉ∗
n,α,r

(Xn) can be easily computed (at least
for the bidimensional case). See Pateiro-López andRodríguez-Casal (2010) for further
details.

6 Simulation results

The behavior of the test of r−convexity is established in Sect. 3, and the performance
of the estimator of r0 described in Sect. 5 will be analyzed through a simulation study.

Three different supports S are considered in this section: B1[(0, 0)]\B0.25(0, 0),
B2[(0, 0)]\B0.25(0, 0) and B0.4[(−0.5, 0.5)] ∪ B0.4[(0.5,−0.5)]. All of them are r−
convex for several r > 0. According to Fig. 4, r0 is equal to 0.25 in the first two
models and it takes the value 0.307 in the third model. Random samples have been
generated by acceptance-rejection method on the three described supports. A standard
multivariate normal distribution was considered for replicates generation in Models 1
and 2 and amixture of two normal densities, forModel 3. The vector of weights of each
normal component in the mixture is (1/2, 1/2). The vectors of means are (−0.5, 0.5)
and (0.5,−0.5), respectively, and the covariancematrices areΣ = (σi j )2×2, verifying
that σi j = 1/9 if i = j and σi j = 1/15 if i = j .

Regarding the performance of the r−convexity test, a total of 250 replicates of
sample sizes 100, 500, 1000, and 2000 were generated for each of the simulation
models. Tables 1, 2, and 3 contain the mean number of rejections when α = 0.1
for Models 1, 2, and 3, respectively. It should be noted that different values of the
parameter r have been considered. The exact value of r0 was represented using bold
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Fig. 4 Model 1: S = B1[(0, 0)]\B0.25[(0, 0)] where r0 = 0.25 (left). Model 2: S =
B2[(0, 0)]\B0.25[(0, 0)] where r0 = 0.25 (center). Model 3: S = B0.4[(−0.5, 0.5)] ∪ B0.4[(0.5, −0.5)]
where r0 = 0.307 (left). The radius of the balls represented in gray color corresponds to the value of the
shape index r0

Table 1 Mean number of
rejections for the r−convexity
test over 250 replicates of Model
1 for different values of r and n
when α = 0.1. The value of r0 is
equal to 0.25

n/r 0.1 0.25 0.5 1

100 0.000 0.000 0.612 0.612

500 0.000 0.016 1.000 1.000

1000 0.000 0.012 1.000 1.000

2000 0.040 0.040 1.000 1.000

Table 2 Mean number of
rejections for the r−convexity
test over 250 replicates of Model
2 for different values of r and n
when α = 0.1.The value of r0 is
equal to 0.25

n/r 0.1 0.25 0.5 1

100 0.000 0.000 0.052 0.140

500 0.000 0.012 1.000 1.000

1000 0.000 0.092 1.000 1.000

2000 0.000 0.128 1.000 1.000

numbers for Models 1 and 2. For Model 3, the closest value to r0 was also using bold
numbers. Simulation results indicate that the test of r -convexity is well calibrated, as it
is established in Theorem 2. Under the null hypothesis, the mean number of rejections
tends, as the sample size increases, to the nominal level α. However, the r−convexity
test exhibits better consistency behavior for Models 2 and 3 than for Model 1 although
the shape of the supports in scenarios 1 and 2 is quite similar. The result in Aaron et al.
(2017) onwhich test rests deals with convergence in distribution of extrema. Following
Hall (1991), this convergence in distribution can be extremely slow. Therefore, bigger
sample sizes should be considered for Model 1. Bootstrap calibration could be also
investigated.

Regarding the estimation of r0, the behavior of the algorithm proposed in Sect. 5
was analyzed when α = 0.01, for the 250 replicates of the three models previously
introduced. Amaximum number of four connected components were allowed. Table 4
contains the empiricalmeans (M) and the standard deviations (SD) of these estimations

123

431



Spatial distribution of invasive species

Table 3 Mean number of
rejections for the r−convexity
test over 250 replicates of Model
3 for different values of r and n
when α = 0.1. The value of r0 is
equal to 0.307

n/r 0.1 0.3 0.5 0.75

100 0.000 0.000 0.000 0.020

500 0.040 0.048 0.128 0.98

1000 0.040 0.060 0.372 1.00

2000 0.088 0.092 0.932 1.00

Table 4 Means of 250 estimations for the parameter r0 when α = 0.01

n 100 500 1000 2000

M SD M SD M SD M SD

Model 1 0.459 0.625 0.257 0.005 0.253 0.002 0.249 0.015

Model 2 2.700 0.773 0.292 0.249 0.258 0.006 0.253 0.008

Model 3 1.597 0.476 0.660 0.089 0.545 0.065 0.473 0.073

for Models 1, 2, and 3, respectively. A total of 214 estimations of r0 were equal to ∞
for Model 1 when n = 100. This situation is repeated for Model 2 when n = 100 (for
223 samples) and n = 500 (11 replicates). These estimations have not been taken into
account for computing the averages shown in Table 4. Finally, it is worth to mention
that the asymptotic calibration of the test does not preclude observing the consistency
of the estimator for the parameter r0 whose estimation is the main goal of this work.

7 Extent of occurrence estimation

As an illustrative example, the new support estimator introduced in this work will be
used for reconstructing the EOO of an assemblage of terrestrial invasive plants in two
islands of the Azores Archipelago, Terceira and São Miguel. For this real dataset, we
have shown that convexity assumption is very restrictive. According to Fig. 5 (first and
second rows, left), sea areas are inside the classical estimator of the EOO. Obviously,
it is overestimated given that terrestrial invasive plants do not occupy the Atlantic
Ocean. The goal here is to reconstruct the EOO in this application overcoming the
described limitation.

First, it is necessary to estimate the optimal value r0 from the sample of 740 geo-
graphical locations. If we select the significance level α equal to 0.01 and p = 0.05,
the resulting estimator is r̂0 = 0.057. In Fig. 6, Cr̂0(X740) is shown. According to
the results obtained, the EOO reconstruction has two different connected components
corresponding to the two Azorean islands. In this case, r̂0 corresponds to the minimum
value that guarantees that all connected components contain at least 37 sample points
to avoid insignificant clusters of invasive plants. For smaller values of p (for instance,
0.02 that corresponds to a minimum number of geographical locations equal to 15 in
each cluster), the number of connected components does not change. Unlike classical
EOO estimator, sea areas are not inside the reconstruction. Therefore, a more realistic
estimator of the EOO can be determined. It should be noted that the dataset may not
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Fig. 5 In the first row, GeoCAT reconstruction of the EOO determined from the sample of 740 geographical
locations in twoAzorean islands (left). In the second row (red color), H(X740) (left) andC0.03(X740) (right).
In the third row (red color), C0.3(X740) (left) and C5(X740) (right)

be independent. Several sample points are collected at the same day, and they are very
close to each other. This does not happen all days, but some data are clearly clustered.
This may cause that r̂0 underestimate r0. The condition on the size of the connected
components prevents the estimator to take too small values in these situations, at it
may happen in this illustrative example.

The newmethod, although designed for handlingmore complex situations, provides
similar reconstructions to those corresponding to the convex hull in those cases where
the classical reconstructionworks appropriately. For showing this, wewill focus on the
geographical locations from SãoMiguel island. Separately, the EOOwill be estimated
from data corresponding to years 2015 and 2016. A total of 33 and 48 geographical
locations are available in 2015 and 2016, respectively.

Figure 7 contains the EOO estimator in 2015 (left) and 2016 (center). In 2015, the
resulting reconstruction of the EOO is equal to H(X33). In 2016, r̂0 = 1.404; however,
the estimation of the EOO obtained, C1.404(X48), is not so different from the convex
hull. This last illustration suggests that, if more amount of data are available by year,
this kind of analysis could be useful for studying the temporal changes in the spatial
pattern of organisms, including invasive plants, on an area of interest.
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Fig. 6 EOO estimator, Cr̂0 (X740) where r̂0 = 0.057

Fig. 7 EOOestimator in 2015, H(X33) (left); EOOestimator in 2016,Cr̂0 (X48)where r̂0 = 1.404 (center);
EOO estimators in 2015 (blue) and 2016 (gray) (right)

8 Conclusions and open problems

The main goal of this work is to propose a new data-driven method for reconstructing
a r−convex support in a consistent way. The route designed to reach this goal can
be summarized as follows: (1) Defining the optimal value of r , r0, to be estimated,
(2) establishing a nonparametric test to assess the null hypothesis that S is r−convex
for a given r > 0, (3) defining the estimator of r0 that strongly relies on the previous
test (4) checking that the estimator of r0 and the resulting support reconstruction are
consistent and (5) studying the performance of the r−convexity test and the estimation
algorithm of r0 through simulations.

The definition of the estimator r̂0 depends on the r−convexity test established that,
of course, could be used in an independent way. In many practical situations where
the support is completely unknown and only a sample of points is available, it can be
interesting to test if the corresponding support distribution is r−convex.

Furthermore, the behavior of the proposed support estimator was illustrated through
the estimation of the EOO of an assemblage of terrestrial invasive plants in two
Azorean islands, providing a novel tool for ERA. In this particular case, where convex-
ity assumption on the EOO is too restrictive, our support estimator provides a more
realistic and sophisticated reconstruction. Besides, we have also shown that when
the classical convex reconstruction works appropriately, our estimator offers similar
reconstructions. Furthermore, we have shown that estimating the EOO from annual
(or any other time period) occurrences could be useful for detecting temporal changes
in the spatial pattern of organisms.

Note that the resulting support estimator is spatially flexible. In other words, it is
able to distinguish the different disconnected components of the support. Therefore, it
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could be used for estimating the number of support connected components. Another
relevant application deals with the integrated nested Laplace approximation (INLA)
methodology introduced in Rue et al. (2009) and extended by Lindgren et al. (2011),
establishing the stochastic partial differential equation (SPDE) approach. As noted
by these authors, the application of a SPDE model requires the determination of a
physical domain for the process where a discretization mesh is constructed. Different
domains yield to different results, and our proposal can be viewed as a data-driven
alternative to obtain a reasonable domain of interest.

Finally, another interesting problem and intimately related to the EOO reconstruc-
tion is to estimate the area of occupancy (AOO). The IUCN defined the AOO as the
area within its extent of occurrence. Under r−convexity, we could estimate the AOO
as the area of the r−convex hull of the sample points. However, this estimator suffers
from the drawback of not being rate-optimal. Arias-Castro et al. (2019) proposed,
under uniform distribution assumptions, an optimal volume estimator based on the
sample r−convex hull using a sample splitting strategy that attains the minimax lower
bound. Therefore, the problem of estimating theAOOcould be studied from a different
perspective in future.

9 Proofs

In this section, the proofs of the stated theorems are presented.

Proof of Theorem 1 Theorem 2 in Aaron et al. (2017) considers that f is Hölder con-
tinuouswith respect to Lebesguemeasure. Under ( f L0,1), this condition is also satisfied.

Furthermore, Aaron et al. (2017) also assumed that there exists k < d and C∂S > 0
such that N (∂S, ε) ≤ C∂Sε

−k where N (∂S, ε) denotes the inner covering num-
ber of ∂S. Under (R), Theorem 1 in Walther (1997) guaranteed that ∂S is a C1
(d − 1)−dimensional submanifold. In this case, it is well known that the previous
assumption is fulfilled for k = d−1. More details can be found in Aaron et al. (2017).

��
Proof of Theorem 2 First, we will prove (a) and then, (b).

(a) Under H0 (Cr (S) = S), with probability one, Cr (Xn) ⊂ S. Then,

δ̂(Cr (Xn)\Xn) ≤ sup

{
γ : ∃x ∈ Cr (Xn) such that {x} ⊕ γ

f̂n(x)1/d
A ⊂ S\Xn

}
.

Let Gn =
{
inf x∈Cr (Xn)

(
f (x)
f̂n(x)

)1/d ≥ 1 − ε+
n

}
for some ε+

n , see Lemma 1. If Gn

holds, we can ensure that

δ̂(Cr (Xn)\Xn) ≤ sup

{
γ : ∃x ∈ Cr (Xn) such that {x} ⊕ (1 − ε+

n )γ

f (x)1/d
A ⊂ S\Xn

}
.

Therefore, under Gn , it is verified that Δn(Xn) ≥ (1 − ε+
n )δ̂(Cr (Xn)\Xn). Con-

sequently, Vn(Xn) ≥ (1 − ε+
n )d V̂n,r . Hence, if V̂n,r > cn,α , it is satisfied that
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Vn(Xn)(1 − ε+
n )1/d ≥ Vn,r > cn,α . So, Vn(Xn) > cn,α(1 − ε+

n )d . Then, we can
write

{
V̂n,r > cn,α

}
∩ Gn ⊂

{
Vn(Xn) > cn,α(1 − ε+

n )d
}

∩ Gn .

Therefore,

P(V̂n,r > cn,α) ≤ P

(
Vn(Xn) > cn,α(1 − ε+

n )d
)

+ P(Gc
n). (4)

Next lemma, from Lemma 5 in Aaron et al. (2017), guarantees that P(Gc
n, i. o.) =

0. ��
Lemma 1 (Aaron et al. (2017)) Let r > 0 and let f be a density function that satisfies
( f L0,1) with compact and nonempty support S under (R). Let f̂n be the corresponding
density estimator introduced in Definition 2.6 whose kernel function is supposed to
satisfy condition (Kp

φ ) and the sequence hn of smoothing parameters fulfills hn =
O(n−ζ ) for some 0 < ζ < 1/d. Then,

(i) there exists a positive constant λ1 > 0, which do not depend on r, such that for
all x ∈ Cr (Xn), ( f̂n(x))1/d ≥ λ1, e.a.s.

(ii) there exists a sequence ε+
n such that, log(n)ε+

n tends to zero, for all r ≤ r0 and
for x ∈ Cr (Xn),

(
f (x)

f̂n(x)

)1/d

≥ 1 − ε+
n , e.a.s.

Proof The proof is an straightforward consequence of Lemma 5 in Aaron et al. (2017).
Under (R), if f is bounded from below on S, it is easy to show that set S is standard.
Regarding conclusion (i) notice that for all r , Cr (Xn) ⊂ H(Xn). ��

Then, the second term in (4) is negligible and P(V̂n,r > cn,α) can be bounded by

P(U (Xn) > −(1 − ε+
n )d log(− log(1 − α)) + ((1 − ε+

n )d − 1)(log(n)

+(d − 1) log(log(n)) + log(β))).

According to Theorem 1,U (Xn)
d→ U when n → ∞. Furthermore, notice thatU has

a continuous distribution, so convergence in distribution implies that

sup
u

|P (U (Xn) ≤ u) − P(U ≤ u)| → 0.

Therefore, using that log(n)ε+
n tends to zero, we get that

P(U (Xn) > − log(− log(1 − α)) + o(1)) → α.
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As a consequence,

P(V̂n,r > cn,α) ≤ P(U (Xn) > − log(− log(1 − α)) + o(1)) → α.

(b) An auxiliary result must be taken into account for completing the proof of (b).

Lemma 2 Let Xn be a random and i.i.d sample drawn according to a density f that
satisfies ( f L0,1) with compact, nonconvex and nonempty support S under (R). Let r0
be the parameter defined in (1). Then, for all r > r0, there exists an open ball Bρ(x)
such that Bρ(x) ∩ S = ∅ and

P
(
Bρ(x) ⊂ Cr (Xn), eventually

) = 1.

Proof Proof of Lemma 8.4 in Rodríguez-Casal and Saavedra-Nieves (2016) remains
true if sample distribution is not uniform. Therefore, in this more general setting, it
allows to guarantee that there exists a closed ball of radius ρ > 0 that, with probability
one and for n large enough, is inside Cr (Xn)\S. ��
From Lemma 1 (i),

δ̂(Cr (Xn)\Xn) ≥ λ1R(Cr (Xn)\Xn), e.a.s

where λ1 is a positive constant. Under H1 (S is not r−convex, S � Cr (S)), we will
prove that,

R(Cr (Xn)\Xn) ≥ ρ > 0, e.a.s.

Lemma 2 allows to guarantee that there exists a closed ball of radius ρ > 0 that, with
probability one and for n large enough, is inside Cr (Xn)\Xn . Consequently,

δ̂(Cr (Xn)\Xn) ≥ λ1R(Cr (Xn)\Xn) ≥ λ1ρw
1/d
d .

Then,

δ̂(Cr (Xn)\Xn) >
ρ

2
λ1w

1/d
d , e.a.s.

The proof is finished taking into account that cn,α tends to zero.

Proof of Theorem 3 Some auxiliary results are necessary. First we will prove that, with
probability tending to one, r̂0 is at least as big as r0.

Proposition 1 Let f be a density function that fulfills condition ( f L0,1) with compact,

nonconvex and nonempty support S under (R). Let f̂n be the corresponding density
estimator introduced in Definition 3 whose kernel function is supposed to satisfy con-
dition (Kp

φ ) and the sequence hn of smoothing parameters fulfills hn = O(n−ζ ) for
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some 0 < ζ < 1/d. Let r0 be the parameter defined in (1) and r̂0 defined in (3). Let
{αn} ⊂ (0, 1) be a sequence converging to zero. Then,

lim
n→∞ P(r̂0 ≥ r0) = 1.

Proof Equivalently, we will prove that

lim
n→∞ P(r̂0 < r0) = 0.

From the definition of r̂0, see (3), it is clear that

P(r̂0 < r0) ≤ P(V̂n,r0 > cn,αn )

where remember V̂n,r0 = δ̂(Cr0(Xn)\Xn)
d and cn,αn = n−1(− log(− log(1 − αn)) +

log(n) + (d − 1) log log(n) + logβ).

Since, with probability one, Cr0(Xn)⊂ S, if Gn =
{
infx∈Cr0 (Xn)

(
f (x)
f̂n(x)

)1/d ≥1−ε+
n

}

remains true, we can ensure that, Δn(Xn)≥(1 − ε+
n )δ̂(Cr0(Xn)\Xn). Therefore,

{V̂n,r0 > cn,αn } ∩ Gn ⊂ {Vn(Xn) > cn,αn (1 − ε+
n )d} ∩ Gn .

Then,

P(V̂n,r0 > cn,αn ) = P

(
{V̂n,r0 > cn,αn } ∩ Gn

)
+ P

(
{V̂n,r0 > cn,αn } ∩ Gc

n

)

≤ P

(
Vn(Xn) > cn,αn (1 − ε+

n )d
)

+ P(Gc
n).

Lemma 1 (ii) guarantees that P(Gc
n, i. o.) = 0. Therefore, the second term of the

inequality is negligible and its is verified that

lim supP(V̂n,r0 > cn,αn ) ≤ P(Vn(Xn) > (1 − ε+
n )dcn,αn ).

Consequently, P(V̂n,r0 > cn,αn ) can be majorized by,

P(U (Xn) > −(1 − ε+
n )d log(− log(1 − αn)) + ((1 − ε+

n )d − 1)(log(n)

+(d − 1) log(log(n)) + log(β))).

According to Theorem 1,U (Xn)
d→ U when n → ∞. Furthermore, notice thatU has

a continuous distribution, so convergence in distribution implies that

sup
u

|P (U (Xn) ≤ u) − P(U ≤ u)| → 0.
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Since αn → 0 and log(n)ε+
n → 0, we can prove

P(U > −(1 − ε+
n )d log(− log(1 − αn)) + ((1 − ε+

n )d − 1)(log(n)

+(d − 1) log(log(n)) + log(β))) → 0.

This ensures that

P(U (Xn) > −(1 − ε+
n )d log(− log(1 − αn)) + ((1 − ε+

n )d − 1)(log(n)

+(d − 1) log(log(n)) + log(β))) → 0.

Therefore, P(r̂0 ≥ r0) → 1. ��

It remains to prove that r̂0 cannot be arbitrarily larger that r0. An auxiliary result
must be proved.

Proposition 2 Let Xn be a random and i.i.d sample drawn according to a density f
that satisfies ( f L0,1) with compact, nonconvex and nonempty support S under (R). Let
r0 be the parameter defined in (1) and {αn} ⊂ (0, 1) a sequence converging to zero
such that log(αn)/n → 0. Then, for any ε > 0,

P
(
r̂0 ≤ r0 + ε, eventually

) = 1.

Proof Given ε > 0 let be r = r0 + ε. According to Lemma 2, there exists x0 ∈ R
d

and ρ > 0 such that Bρ(x0) ∩ S = ∅ and

P
(
Bρ(x0) ⊂ Cr (Xn), eventually

) = 1.

Since, with probability one, Xn ⊂ S we have Bρ(x0) ∩ Xn = ∅. Then, {x0} ⊕
ρB1[0] ⊂ Cr (Xn)\Xn . According to Lemma 1 (i), with probability one and for n
large enough, there exists a constant λ1 > 0 such that for all x ∈ Cr (Xn), it is verified
that f̂ 1/dn (x) ≥ λ1. Then, let γ be the positive constant λ1ρw

1/d
d . Then, it is trivial to

check that, with probability one and for n large enough,

{x} ⊕ γ

f̂ 1/dn (x)
A ⊂ Cr (Xn)\Xn .

Therefore, δ̂(Cr (Xn)\Xn) ≥ γ > 0 and, consequently, V̂n,r = cγ > 0. Furthermore,
since Cr (Xn) ⊂ Cr ′ (Xn) for all r

′ ≥ r , it is satisfied that V̂n,r ′ ≥ V̂n,r = cγ > 0.
On the other hand, since−uαn/ log(αn) = log(− log(1−αn))/ log(αn) → 1, we have
cn,αn → 0. Then, with probability one and for n large enough, we have cn,αn < cγ .
Therefore, according the definition established in (3), r̂0 ≤ r . ��

Theorem 3 is a straightforward consequence of Propositions 1 and 2.
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Proof of Theorem 4 Theorem 3 of Rodríguez-Casal (2007) ensures that, under (R)
when r = λ = r̃ ), then P(En, eventually) = 1, where

En =
{
dH (S,Cr̃ (Xn)) ≤ D

(
log n

n

)2/(d+1)
}

,

and D is some constant. Under the hypothesis of Theorem 4, this holds for any r̃ ≤
min{r, λ}. Fix one r̃ ≤ min{r, λ} such that r̃ < νr0 and define Rn = {̃r ≤ rn ≤ r0}.
Since, by Theorem 3, rn = νr̂0 converges in probability to νr0 and r̃ < νr0 < r0, we
have that P(Rn) → 1. If the events En and Rn hold (notice that P(En ∩ Rn) → 1),
we have Cr̃ (Xn) ⊂ Crn (Xn) ⊂ S and, therefore,

dH (S,Crn (Xn)) ≤ dH (S,Cr̃ (Xn)) ≤ D

(
log n

n

)2/(d+1)

.

This completes the proof of the first statement of Theorem 4. Similarly, it is possible
to prove the result for the other error criteria considered in Theorem 4. ��
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