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Abstract
We characterize D-optimal designs in the two-dimensional Poisson regression model
with synergetic interaction and provide an explicit proof. The proof is based on the
idea of reparameterization of the design region in terms of contours of constant inten-
sity. This approach leads to a substantial reduction in complexity as properties of the
sensitivity can be treated along and across the contours separately. Furthermore, some
extensions of this result to higher dimensions are presented.
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1 Introduction

Count data plays an important role in medical and pharmaceutical development, mar-
keting, or psychological research. For example, Vives et al. (2006) performed a review
on articles published in psychological journals in the period from 2002 to 2006. There
they found out that a substantial part of these articles dealt with count data forwhich the
mean was quite low [for details we refer to the discussion in Graßhoff et al. (2020)]. In
these situations, standard linear models are not applicable because they cannot account
for the inherent heteroscedasticity. Instead, Poisson regression models are often more
appropriate to describe such data. As an early source in psychological research, we
may refer to the Rasch Poisson counts model introduced by Rasch (1960) in 1960 to
predict person ability in an item response setup.

The Poisson regression model can be considered as a particular generalized linear
model [see McCullagh and Nelder (1989)]. For the analysis of count data in the
Poisson regression model, there is a variety of literature (see e.g. Cameron and Trivedi
(2013)) and the statistical analysis is implemented inmain standard statistical software
packages (cf. “glm” in R,“GENLIN” in SPSS, “proc genmod” in SAS), But only few
work has been done to design such experiments. Ford, Torsney andWuderived optimal
designs for the one-dimensional Poisson regressionmodel in their pioneering paper on
canonical transformations (Ford et al. 1992). Wang et al. (2006) obtained numerical
solutions for optimal designs in two-dimensional Poisson regression models both
for the main effects only (additive) model as well as for the model with interaction
term. For the main effects only model, the optimality of their design was proven
analytically byRussell et al. (2009) even for larger dimensions.Rodríguez-Torreblanca
and Rodríguez-Díaz (2007) extended the result by Ford et al. for one-dimensional
Poisson regression to overdispersed data specified by a negative binomial regression
model, and Schmidt and Schwabe (2017) generalized the result by Russell et al. for
higher-dimensional Poisson regression to a much broader class of additive regression
models. Graßhoff et al. (2020) gave a complete characterization of optimal designs in
an ANOVA-type setting for Poisson regression with binary predictors and Kahle et al.
(2016) indicate, how interactions could be incorporated in this particular situation.

In the present paper, we find D-optimal designs for the two-dimensional Pois-
son regression model with synergetic interaction as considered before numerically by
Wang et al. (2006). We show the D-optimality by reparameterizing the design space
via hyperbolic coordinates, such that the inequalities in the Kiefer–Wolfowitz equiva-
lence theorem only need to be checked on the boundary and the diagonal of the design
region. This allows us to find an analytical proof for the D-optimality of the proposed
design. Furthermore, we extend this result in various ways to higher-dimensional
Poisson regression. First, we find D-optimal designs for first-order and second-order
interactions, given that the prespecified interaction parameters are zero. Second, we
present a D-optimal design for Poisson regression with first-order synergetic interac-
tion where the design space is restricted to the union of the two-dimensional faces of
the positive orthant.

The paper is organized as follows. In the next section, we introduce the basic
notations for Poisson regression models and specify the corresponding concepts of
information and design in Sect. 3. Results for two-dimensional Poisson regressionwith
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interaction are established in Sect. 4. In Sect. 5, we present some extensions to higher-
dimensional Poisson regression models. Efficiencies of the found designs and further
extensions are discussed in Sect. 6. Proofs have been deferred to an “Appendix”. We
note that most of the inequalities there have first been detected by using the computer
algebra system Mathematica (Wolfram Research, Inc 2020), but analytical proofs
are provided in the “Appendix” for the readers’ convenience.

2 Model specification

We consider the Poisson regression model where observations Y are Poisson dis-
tributed with intensity E(Y ) = λ(x) which depends on one or more explanatory
variables x = (x1, . . . , xk) in terms of a generalized linear model. In particular, we
assume a log-link which relates the mean λ(x) to a linear component f(x)�β by
λ(x) = exp(f(x)�β), where f(x) = ( f1(x), . . . , f p(x))� is a vector of p known
regression functions and β is a p-dimensional vector of unknown parameters. For
example, if x = x is one-dimensional (k = 1), then simple Poisson regression is given
by f(x) = (1, x)� with p = 2, β = (β0, β1)

� and intensity λ(x) = exp(β0 + β1x).
For two explanatory variables x = (x1, x2) (k = 2), multiple Poisson regression with-
out interaction is given by f(x) = (1, x1, x2)� with p = 3, β = (β0, β1, β2)

� and
intensity λ(x) = exp(β0 + β1x1 + β2x2).

In what follows, we will focus on the two-dimensional multiple regression (x =
(x1, x2), k = 2) with interaction term, where p = 4, f(x) = (1, x1, x2, x1x2)�,
β = (β0, β1, β2, β12)

� and intensity

λ(x) = exp(β0 + β1x1 + β2x2 + β12x1x2). (2.1)

Here, β0 is an intercept term such that the mean is exp(β0) when the explanatory
variables are equal to 0. The quantities β1 and β2 denote the direct effects of each
single explanatory variable, and β12 describes the amount of the interaction effect
when both explanatory variables are active (nonzero).

Typically the explanatory variables describe nonnegative quantities (x1, x2 ≥ 0)
like doses of some chemical or pharmaceutical agents—or difficulties of tasks in
item response experiments in psychology. In particular, in the latter case the expected
number of counts (correct answers) decreases with increasing difficulty. Then, it is
reasonable to assume that the direct effects are negative (β1, β2 < 0), and that the
interaction effect tends into the same direction if present (β12 ≤ 0). In the case that
β12 < 0, this will be called a synergy effect because it describes a strengthening of
the effect if both components are used simultaneously.

3 Information and design

In experimental situations the setting x of the explanatory variables may be chosen
by the experimenter from some experimental region X . As the explanatory variables
describe nonnegative quantities, and if there are no further restrictions on these quanti-
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ties, it is natural to assume that the design regionX is the nonnegative half-axis [0,∞)

or the closure of quadrant I in the Cartesian plane, [0,∞)2, in one- or two-dimensional
Poisson regression, respectively.

To measure the contribution of an observation Y at setting x the corresponding
information can be used; With the log-link, the Poisson regression model constitutes
a generalized linear model with canonical link (McCullagh and Nelder 1989). Fur-
thermore for Poisson distributed observations Y , the variance and the mean coincide,
Var(Y ) = E(Y ) = λ(x). Hence, according to Atkinson et al. (2014), the elemental
(Fisher) information for an observation Y at a setting x is a p × p matrix given by

Mβ(x) = λ(x)f(x)f(x)�.

Note that on the right-hand side, the intensity λ(x) = exp(f(x)�β) depends on the
linear component f(x)�β and, hence, on the parameter vector β. Consequently, also
the information depends on β as indicated by the notation Mβ .

For N independent observations Y1, . . . ,YN at settings x1, . . . , xN , the joint Fisher
information matrix is obtained as the sum of the elemental information matrices,

Mβ(x1, . . . , xN ) =
N∑

i=1

λ(xi )f(xi )f(xi )�.

The collection x1, . . . , xN of settings is called an exact design, and the aim of design
optimization is to choose these settings such that the statistical analysis is improved.
The quality of a design can be measured in terms of the information matrix because its
inverse is proportional to the asymptotic covariancematrix of themaximum-likelihood
estimator of β, see Fahrmeir and Kaufmann (1985). Hence, larger information means
higher precision. However, matrices are not comparable in general. Therefore, one has
to confine oneself to some real valued criterion function applied to the information
matrix. In accordance with the literature, we will use the most popular D-criterion
which aims at maximizing the determinant of the information matrix. This criterion
has nice analytical properties and can be interpreted in terms of minimization of the
volume of the asymptotic confidence ellipsoid forβ based on themaximum-likelihood
estimator.

The optimal design will depend on the parameter vector β and is, hence, locally
optimal in the spirit of Chernoff (1953). This means that the resulting design has
an optimal performance when the true parameter is equal to the prespecified value
used in design optimization. These locally optimal designs serve well when strong
initial knowledge is available for the parameter, e. g. in the form of a null hypothesis.
They also provide benchmarks for the best possible values for the criterion and in
conjunction with the calculation of efficiencies, as involved in standardized criteria
(see Dette 1997). Moreover, locally optimal designs can be used as bricks in adaptive
learning procedures, when the design is adjusted during the experiments by locally
optimal designs based on the current parameter estimates.

Finding an optimal exact design is a discrete optimization problem which is often
too hard for analytical solutions. Therefore, we adopt the concept of approximate
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designs in the spirit ofKiefer (1974).An approximate design ξ is defined as a collection
x0, . . . , xn−1 of nmutually distinct settings in the design regionX with corresponding
weights w0, . . . , wn−1 ≥ 0 satisfying

∑n−1
i=0 wi = 1. Then, an exact design can

be written as an approximate design, where x0, . . . , xn−1 are the mutually distinct
settings in the exact designwith corresponding numbers N0, . . . , Nn−1 of replications,∑n−1

i=0 Ni = N , and frequencies wi = Ni/N , i = 0, . . . , n − 1. However, in an
approximate design the weights are relaxed frommultiples of 1/N to nonnegative real
numbers which allow for continuous optimization.

For an approximate design ξ the information matrix is defined as

Mβ(ξ) =
n−1∑

i=0

wiλ(xi )f(xi )f(xi )�,

which therefore coincides with the standardized (per observation) information matrix
1
NMβ(x1, . . . , xN ). An approximate design ξ∗ will be called locally D-optimal at β

if it maximizes the determinant of the information matrixMβ(ξ).

4 Optimal designs

We start with quoting results from the literature for one-dimensional and two-
dimensional regression without interaction: In the case of one-dimensional Poisson
regression, the design ξ∗

β1
which assigns equal weights w∗

0 = w∗
1 = 1/2 to the two

settings x∗
0 = 0 and x∗

1 = 2/|β1| is locally D-optimal at β onX = [0,∞) for β1 < 0,
see Rodríguez-Torreblanca and Rodríguez-Díaz (2007).

In the case of two-dimensional Poisson regression without interaction the design
ξ∗
β1,β2

which assigns equal weights w∗
0 = w∗

1 = w∗
2 = 1/3 to the three settings

x∗
0 = (0, 0), x∗

1 = (2/|β1|, 0), and x∗
2 = (0, 2/|β2|) is locally D-optimal at β on X =

[0,∞)2 for β1, β2 < 0, see Russell et al. (2009). Note that the optimal coordinates on
the axes coincide with the optimal values in the one-dimensional case, see Schmidt
and Schwabe (2017).

In both cases the optimal design isminimally supported, i.e., the numbern of support
points of the design is equal to the number p of parameters. It is well-known that for
D-optimal minimally supported designs the optimal weights are all equal, w∗

i = 1/p,
see Silvey (1980). Such optimal designs are attractive as they can be realized as exact
designs when the sample size N is a multiple of the number of parameters p.

Further note that these optimal designs always include the setting x0 = 0 or x0 =
(0, 0), respectively, where the intensity λ attains its largest value.

The above findings coincide with the numerical results obtained by Wang et al.
(2006) who also numerically found minimally supported D-optimal designs for the
case of two-dimensional Poisson regression with interaction. In what follows, we will
give explicit formulae for these designs and establish rigorous analytical proofs of
their optimality.

123



D-optimal designs for Poisson regression with synergetic… 1009

We start with the special situation of vanishing interaction (β12 = 0). In this case
standard methods of factorization can be applied to establish the optimal design, see
Schwabe (1996, section 4).

Theorem 4.1 If β1, β2 < 0 and β12 = 0, then the design ξ∗
β1

⊗ ξ∗
β2

which assigns
equal weights w∗

0 = w∗
1 = w∗

2 = w∗
3 = 1/4 to the four settings x∗

0 = (0, 0),
x∗
1 = (2/|β1|, 0), x∗

2 = (0, 2/|β2|), and x∗
3 = (2/|β1|, 2/|β2|) is locally D-optimal at

β on X = [0,∞)2.

In contrast to the result of Theorem 4.1 the intensity fails to factorize in the case of
a non-vanishing interaction (β12 �= 0). Thus, a different approach has to be chosen. As
a prerequisite, we mention that in the above cases the optimal designs can be derived
from those for standard parameter values β0 = 0 and β1 = −1 in one dimension or
β1 = β2 = −1 in two dimensions by canonical transformations, see Ford et al. (1992),
or, more generally, by equivariance considerations, see Radloff and Schwabe (2016).
We will adopt this approach also to the two-dimensional Poisson regression model
with interaction and consider the case β0 = 0 and β1 = β2 = −1 first. There the
interaction effect remains a free parameter, and we denote the strength of the synergy
effect by ρ = −β12 ≥ 0.

4.1 Standardized case

Throughout this subsection, we assume the standardized situation with β =
(0,−1,−1,−ρ)� for some ρ ≥ 0. Motivated by Theorem 4.1 and the numerical
results in Wang et al. (2006) we consider a class �0 of minimally supported designs
as potential candidates for being optimal. In the class �0, the designs have one setting
at the origin x0 = (0, 0), where the intensity is highest, one setting x1 = (x1, 0) and
x2 = (0, x2) on each of the bounding axes of the design region as for the optimal
design in the model without interaction, and an additional setting x3 = (t, t) on the
diagonal of the design region, where the effects of the two components are equal. The
following result is due to Könner (2011).

Lemma 4.2 Let t = (
√
1 + 8ρ − 1)/(2ρ) for ρ > 0 and t = 2 for ρ = 0. Then, the

design ξt which assigns equal weights 1/4 to x0 = (0, 0), x1 = (2, 0), x2 = (0, 2),
and x3 = (t, t) is locally D-optimal within the class �0.

Note that t = 2 for ρ = 0 is in accordance with the optimal product-type design in
Theorem 4.1, t is continuously decreasing in ρ, and t tends to 0 when the strength of
synergy ρ gets arbitrarily large. Figure 1 shows the value of t in dependence on ρ.

To establish that ξt is locally D-optimal within the class of all designs on X we
will make use of the Kiefer–Wolfowitz equivalence theorem Kiefer and Wolfowitz
(1960) in its extended version incorporating intensities, see Fedorov (1972). For this,
we introduce the sensitivity function ψ(x; ξ) = λ(x)f(x)�M(ξ)−1f(x), where we
suppress the dependence on β in the notation. Then by the equivalence theorem, a
design ξ∗ is (locally) D-optimal if (and only if) the sensitivity function ψ(x; ξ∗) does
not exceed the number p of parameters uniformly on the design regionX . Equivalently,
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Fig. 1 Value of optimal t in Lemma 4.2 for −1/8 ≤ ρ ≤ 3. Negative values of ρ refer to Lemma 6.2

Fig. 2 Deduced sensitivity function for t = 2 (ρ = 0)

we may consider the deduced sensitivity function

d(x; ξ) = f(x)�M(ξ)−1f(x)/p − 1/λ(x)

as λ(x) > 0. Then ξt is D-optimal if d(x; ξt ) ≤ 0 for all x ∈ X . To establish this
condition we need some preparatory results on the shape of the (deduced) sensitivity
function. Figure 2 shows d(x; ξt ) for t = 2 for ρ = 0, i.e. for the standardized setting
in Theorem 4.1.
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Lemma 4.3 If ξ is invariant under permutation of x1 and x2, then d(x; ξ) attains its
maximum on the boundary or on the diagonal of X .

Lemma 4.4 d((x, 0); ξt ) = d((0, x); ξt ) ≤ 0 for all x ≥ 0.

Lemma 4.5 d((x, x); ξt ) ≤ 0 for all x ≥ 0.

Note that ξt is invariant with respect to the permutation of x1 and x2. Then, com-
bining Lemmas 4.3 to 4.5, we obtain d(x; ξt ) ≤ 0 for all x ∈ X which establishes the
D-optimality of ξt in view of the equivalence theorem.

Theorem 4.6 In the two-dimensional Poisson regression model with interaction, the
design ξt is locally D-optimal at β = (0,−1,−1,−ρ)� on X = [0,∞)2 which
assigns equal weights 1/4 to the 4 settings x0 = (0, 0), x1 = (2, 0), x2 = (0, 2), and
x3 = (t, t), where t = (

√
1 + 8ρ − 1)/(2ρ) for ρ > 0 and t = 2 for ρ = 0.

4.2 General case

For the general situation of decreasing intensities (β1, β2 < 0) and a synergy
effect (β12 < 0), the optimal design can be obtained by simultaneous scaling
of the settings x = (x1, x2) → x̃ = (x1/|β1|, x2/|β2|) and of the parameters
β = (0,−1,−1,−ρ)� → β̃ = (0, β1, β2,−ρβ1β2)

� by equivariance, see Radloff
and Schwabe (2016). This simultaneous scaling leaves the linear component and,
hence, the intensity unchanged, f(x̃)�β̃ = f(x)�β. If the scaling of x is applied to
the settings in ξt of Theorem 4.6, then the resulting rescaled design will be locally
D-optimal at β̃ on X as the design region is invariant with respect to scaling. Fur-
thermore, the design optimization is not affected by the value β0 of the intercept term
because this term contributes to the intensity and, hence, to the information matrix
only by a multiplicative factor, λ(x) = exp(β0) exp(β1x1 +β2x2 +β12x1x2). We thus
obtain the following result from Theorem 4.6.

Corollary 4.7 Assume the two-dimensional Poisson regression model with interaction
and β = (β0, β1, β2, β12)

� with β1, β2 < 0 and β12 ≤ 0. Let ρ = −β12/(β1β2),
t = (

√
1 + 8ρ − 1)/(2ρ) for β12 < 0 and t = 2 for β12 = 0. Then, the design

which assigns equal weights 1/4 to the 4 settings x0 = (0, 0), x1 = (2/|β1|, 0),
x2 = (0, 2/|β2|), and x3 = (t/|β1|, t/|β2|) is locally D-optimal atβ onX = [0,∞)2.

Note that the settings x0, x1, and x2 of the locally D-optimal design ξt in the model
with interaction coincide with those of the optimal design for the model without
interaction. Only a fourth setting x3 = (t/|β1|, t/|β2|) has been added in the interior
of the design region.

5 Higher-dimensional models

In the present section on k-dimensional Poisson regressionwith k explanatory variables
(x = (x1, x2, . . . , xk), k ≥ 3), we restrict to the standardized case with zero intercept
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(β0 = 0) and all main effects β1 = · · · = βk equal to −1 for simplicity of notation.
Extensions to the case of general β0 and β1, . . . , βk < 0 can be obtained by the scaling
method used for Corollary 4.7.

We first note that for the k-dimensional Poisson regression without interactions

f(x)�β = β0 +
k∑

j=1

β j x j

Russell et al. (2009) showed that the minimally supported design which assigns
equal weights 1/(k + 1) to the origin x0 = (0, . . . , 0) and the k axial settings
x1 = (2, 0, . . . , 0), x2 = (0, 2, . . . , 0), . . ., xk = (0, . . . , 0, 2) is locally D-optimal at
β = (0,−1, . . . ,−1)�. Schmidt and Schwabe (2017) more generally proved that in
models without interactions the locally D-optimal design points coincide with their
counterparts in the marginal one-dimensional models. This approach will be extended
in Theorems 5.2 and 5.4 to two- and three-dimensional marginals with interactions.

In what follows, we mainly consider the particular situation that all interactions
occurring in the models have values equal to 0 and that the design region is the full
orthant X = [0,∞)k . Setting the interactions to zero does not mean that we presume
to know that there are no interactions in the model. Instead, we are going to determine
locally optimal designs in models with interactions which are locally optimal at such
β for which all interaction terms attain the value 0.

We start with a generalization of Theorem4.1 to a k-dimensional Poisson regression
model with complete interactions

f(x)�β = β0 +
k∑

j=1

β j x j +
∑

i< j

βi j xi x j + · · · + β12...k x1x2 . . . xk,

where the number of parameters is p = 2k .

Theorem 5.1 In the k-dimensional Poisson regression model with complete interac-
tions the minimally supported design ξ∗−1 ⊗ · · · ⊗ ξ∗−1 which assigns equal weights
1/p to the p = 2k settings of the full factorial on {0, 2}k is locally D-optimal at β

on X = [0,∞)k , when β1 = · · · = βk = −1 and all interactions βi j , . . . , β12...k are
equal to 0.

The proof of Theorem 5.1 follows the lines of the proof of Theorem 4.1 as all of
the design region X , the vector of regression functions f , and the intensity function λ

factorize to their one-dimensional counterparts. Hence, details will be omitted.
Now, we come back to the Poisson regression model with first-order interactions

f(x)�β = β0 +
k∑

j=1

β j x j +
∑

i< j

βi j xi x j ,

where the number of parameters is p = 1 + k + k(k − 1)/2.
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Fig. 3 Design points in
Example 5.3

Theorem 5.2 In the k-dimensional Poisson regression model with first-order interac-
tions, the minimally supported design which assigns equal weights 1/p to the p =
1+k+k(k−1)/2 settings x0 = (0, 0, . . . , 0), x1 = (2, 0, . . . , 0), x2 = (0, 2, . . . , 0),
. . ., xk = (0, . . . , 0, 2), and xi j = xi + x j , 1 ≤ i < j ≤ k, is locally D-optimal at β
on X = [0,∞)k , when β1 = · · · = βk = −1 and βi j = 0, 1 ≤ i < j ≤ k.

For illustrative purposes, we specify this result for k = 3 components.

Corollary 5.3 In the three-dimensional Poisson regressionmodel with first-order inter-
actions

f(x)�β = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3

the minimally supported design which assigns equal weights 1/7 to the 7 settings x0 =
(0, 0, 0), x1 = (2, 0, 0), x2 = (0, 2, 0), x3 = (0, 0, 2), x4 = (2, 2, 0), x5 = (2, 0, 2),
and x6 = (0, 2, 2) is locally D-optimal at β on X = [0,∞)3, when β1 = β2 = β3 =
−1 and β12 = β13 = β23 = 0.

The optimal design points of Corollary 5.3 are visualized in Fig. 3. Note that in in
the Poisson regressionmodel with first-order interactions the locally D-optimal design
has only support points on the axes and on the diagonals of the faces, but none in the
interior of the design region, and that the support points on each face coincide with the
optimal settings for the corresponding two-dimensional marginal model. Thus, only
those settings are included from the full factorial {0, 2}k of the complete interaction
case (Theorem 5.1) which have, at most, two nonzero components, and the locally
D-optimal design concentrates on settings with higher intensity. This is in accordance
with the findings for the Poisson regression model without interactions, where only
those settings will be used which have, at most, one nonzero component, and carries
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over to higher-order interactions. In particular, for the Poisson regression model with
second-order interactions

f(x)�β = β0 +
k∑

j=1

β j x j +
∑

i< j

βi j xi x j +
∑

i< j<�

βi j�xi x j x�,

where the number of parameters is p = 1+ k + k(k − 1)/2+ k(k − 1)(k − 2)/6, we
obtain a similar result.

Theorem 5.4 In the k-dimensional Poisson regression model with second-order inter-
actions the minimally supported design which assigns equal weights 1/p to the
p = 1 + k + k(k − 1)/2 + k(k − 1)(k − 2)/6 settings x0 = (0, 0, . . . , 0),
x1 = (2, 0, . . . , 0), x2 = (0, 2, . . . , 0), . . ., xk = (0, . . . , 0, 2), xi j = xi + x j ,
1 ≤ i < j ≤ k, and xi j� = xi + x j + x�, 1 ≤ i < j < � ≤ k, is locally D-optimal
at β on X = [0,∞)k , when β1 = · · · = βk = −1, βi j = 0, 1 ≤ i < j ≤ k, and
βi j� = 0, 1 ≤ i < j < � ≤ k.

The proofs of Theorems 5.2 and 5.4 are based on symmetry propertieswhich get lost
if one or more of the interaction terms are nonzero. However, if only few components
of x may be active (nonzero), then locally D-optimal designs may be obtained in the
spirit of the proof of Lemma 4.4 for synergetic interaction effects. We demonstrate
this in the setting of first-order interactions ρi j = −βi j ≥ 0, when the design region
X consists of the union of the two-dimensional faces of the orthant, i. e. when, at most,
two components of x can be active.

Theorem 5.5 Consider the k-dimensional Poisson regression model with first-order
interactions on X = ⋃

i< j Xi j , where Xi j = {(x1, . . . , xk); xi , x j ≥ 0, x� =
0 for � �= i, j} is the two-dimensional face related to the i th and jth component. Let
β1 = · · · = βk = −1, ρi j = −βi j ≥ 0, ti j = (

√
1 + 8ρi j − 1)/(2ρi j ) for ρi j > 0,

ti j = 2 for ρi j = 0, and xi j ∈ Xi j with xi = x j = ti j , 1 ≤ i < j ≤ k. Then, the
minimally supported design which assigns equal weights 1/(1+k+k(k−1)/2) to the
1+k+k(k−1)/2 settings x0 = (0, 0, . . . , 0), x1 = (2, 0, . . . , 0), x2 = (0, 2, . . . , 0),
. . ., xk = (0, . . . , 0, 2), and xi j , 1 ≤ i < j ≤ k, is locally D-optimal at β on X .

This result follows as in the proof of Lemma 4.4. We believe that the D-optimality
of the design in Theorem 5.5 could also hold on the whole positive orthant if we
assume that the prespecified interaction parameters are identical and non-positive. A
proof of this statement should follow in the spirit of Farrell et al. (1967), similar to the
constructions in the Lemmas 4.3 and 4.5 and the proof of Theorem 5.2.

However, in the situation of general synergy effects, an analogon to Lemma 4.3
cannot be established because of the lacking symmetry.Hence, it remains openwhether
the design of Theorem 5.5 retains its optimality in the general setting, as conjectured
by Wang et al. (2006).
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Fig. 4 Efficiency of ξx for x = 2 (solid line), x = 1 (dashed), x = 1/2 (dotted) and efficiency of the
derived design in Example 6.1 (dot-dashed)

6 Efficiency and extensions

In this section, we compute the efficiency of the locally optimal designs in case that
the intersection parameter ρ is misspecified and compare their performance with a
competitor design inspired from applications which is supported on a wider range of
settings. We further indicate an extension of the present results to bounded design
regions and to the situation of antagonistic interaction effects (ρ < 0) and its lim-
itations. Although the locally D-optimal designs only differ in the location of the
support point on the diagonal, if the main effects are kept fixed, they are quite sen-
sitive with respect to the strength ρ of the synergy parameter in their performance.
The quality of their performance can be measured in terms of the local D-efficiency

which is defined as effD(ξ,β) =
(
det(Mβ(ξ))/ det(Mβ(ξ∗

β ))
)1/p

for a design ξ ,

where ξ∗
β denotes the locally D-optimal design at β. This efficiency can be interpreted

as the asymptotic proportion of observations required for the locally D-optimal ξ∗
β

to obtain the same precision as for the competing design ξ of interest. For exam-
ple, in the standardized case of Sect. 4.1 the design ξx would be locally D-optimal
when the strength of synergy would be (2 − x)/x2. Its local D-efficiency can be
calculated as effD(ξ,β) = (x/t) exp((2t + ρt2 − 2x − ρx2)/4) when ρ is the true
strength of synergy and t is the corresponding optimal coordinate on the diagonal
(t = (

√
1 + 8ρ − 1)/(2ρ) for ρ > 0 and t = 2 for ρ = 0). For selected values of x

the local D-efficiencies are depicted in Fig. 4 over the range 0 ≤ ρ ≤ 10 for the true
interaction effect ρ.

The appealing product-type design ξ2 of Theorem 4.1 rapidly loses efficiency if
the strength ρ of synergy substantially increase. The triangular design ξ1 seems to be
rather robust over a wide range of strength parameters, while for smaller x the design
ξx loses efficiency when there is no synergy effect (ρ = 0).
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Example 6.1 To compare the optimal designs with a design from applications, we
compute the efficiency of a design inspired by an example in Tallarida (2000, p.63),
where the synergism between two pharmaceutical agents, Morphine and Clonidine, is
investigated. As in the above design ξ1 the dose levels for the combination drug should
have the same effect as the dose levels of the single drugs when there is no interaction
effect present. For the single drugs, three dose levels are chosen equidistantly with
the middle level equal to the optimal setting x = 2. The derived standardized design
distributes a quarter of the observations to a control point (x1, x2) = (0, 0) and 1/12 to
the points (0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0), (1/2, 1/2), (1, 1) and (3/2, 3/2).
For ρ = 0, the efficiency of this design is about 0.784, while the maximum efficiency
of 0.853 is achieved for ρ ≈ 0.514. Figure 4 shows the robustness of this design, such
that its efficiency is above 0.7 for a wide interval of parameter values.

In order to obtain designs which are less sensitive against misspecification of the
interaction parameter robust design criteriamay be employed likemaximin D-efficient
or weighted (“Bayesian”) optimal designs [see e.g., Atkinson et al. (2007)], but this
would go beyond the scope of the present paper.

If in contrast to the situation of Theorem 4.6 and Corollary 4.7, there is an antag-
onistic interaction effect which means that β12 is positive (ρ < 0), no optimal design
will exist on quadrant I because the determinant of the information matrix becomes
unbounded.However, if we restrict the design region to a rectangle onemay be tempted
to extend the above results. For example, in the standardized case (β1 = β2 = −1) on
a square design region Lemma 4.2 may be extended as follows

Lemma 6.2 Let b ≥ 2, ρ < 0, and t = (
√
1 + 8ρ − 1)/(2ρ) for ρ > −1/8.

(a) If ρ > −1/8, t ≤ b and t4 exp(−2t −ρt2) ≥ b4 exp(−2b−ρb2), then the design
ξt is locally D-optimal within the class �0 on X = [0, b]2.

(b) If ρ ≤ −1/8 or b < t or t4 exp(−2t−ρt2) < b4 exp(−2b−ρb2), then the design
ξb is locally D-optimal within the class �0 on X = [0, b]2.
Moreover, Lemma 4.4 does not depend on ρ and, if, additionally, b ≤ 1/|ρ|, then

the argumentation in the proof of Lemma4.3 can be adopted,where now the hyperbolic
coordinate system is centered at (1/|ρ|, 1/|ρ|) and v is negative (cf. the proof below).
However, the inequalities of Lemma 4.5 are no longer valid, in general. In particular,
for ρ less than, but close to −1/8 the (deduced) sensitivity function of the design ξt
shows a local minimum at t rather than a maximum which disproves the optimality
of ξt within the class of all designs on X = [0, b]2. In that case an additional fifth
support point is required on the diagonal, and also the weights have to be optimized.
So, in the case of an antagonistic interaction effect no general analytic solution can
be expected and the numerically obtained optimal designs may become difficult to be
realized as exact designs.

For even smaller design regions (b < 2) design points on the adverse boundaries
(x1 = b or x2 = b) may occur in the optimal designs, but not in the interior besides
the diagonal, both in the synergetic as well as in the antagonistic case.

In the multi-factor case (k > 2) of Sect. 5, the locally optimal design ξ of Theo-
rem5.2 (first-order interactions) has efficiency effD(ξ, β) = (

∏
i< j effD(ξ2, ρi j )

4)1/p,
where effD(ξ2, ρ) is the efficiency of the product type design ξ2 in the two-factor
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case as exhibited in Fig. 4 when ρ is the true value of the interaction parameter and
p = 1 + k + k(k − 1)/2. This amounts to effD(ξ, β) = effD(ξ2, ρ)2k(k−1)/p if all
interactions ρi j are equal to ρ, and to effD(ξ, β) = effD(ξ2, ρ)4/p if only one inter-
action, ρ12 say, is equal to ρ and all other interactions are equal to zero. This means
that in the first case, the efficiency decreases to effD(ξ2)

4, when k gets larger, while
in the second case the efficiency tends to 1.

7 Discussion

The main purpose of the present paper is to characterize locally D-optimal designs
explicitly for the two-dimensional Poisson regression model with interaction on the
unbounded design region of quadrant I when bothmain effects aswell as the interaction
effect are negative, and to present a rigorous proof for their optimality. Obviously, the
designs specified in Corollary 4.7 remain optimal on design regions which are subsets
of quadrant I and cover the support points of the respective design. For example, if the
design region is a rectangle, X = [0, b1] × [0, b2], then the design of Corollary 4.7 is
optimal as long as b1 ≥ 2/|β1| and b2 ≥ 2/|β2| for the two components. Furthermore,
if the design region is shifted,X = [a1,∞)×[a2,∞) or a sufficiently large subregion
of that, then also the locally D-optimal design is shifted accordingly and assigns equal
weights 1/4 to x0 = (a1, a2), x1 = (a1 + 2/|β1|, a2), x2 = (a1, a2 + 2/|β2|), and
x3 = (a1 + t/|β1|, a2 + t/|β2|) where t is defined as in Corollary 4.7.

Various extensions of our work have been discussed in the previous section.
Furthermore, it seems promising to extend the present results to negative binomial
(Poisson-Gamma) regression which is a popular generalization of Poisson regression
which can cope with overdispersion as in Rodríguez-Torreblanca and Rodríguez-Díaz
(2007) for one-dimensional regression or in Schmidt and Schwabe (2017) for multidi-
mensional regression without interaction. This will be object of further investigation.
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Appendix A Proofs

Proof of Theorem 4.1 The regression function f(x) = (1, x1, x2, x1x2)� is the Kro-
necker product of the regression functions f1(x1) = (1, x1)� and f1(x2) = (1, x2)�
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in the corresponding marginal one-dimensional Poisson regression models, and the
design region X is the Cartesian product of the marginal design regions X1 = X2 =
[0,∞). Also the intensity λ(x) = exp(β0 +β1x1 +β2x2) factorizes into the marginal
intensities λ1(x1) = exp(β0+β1x1) and λ2(x2) = exp(β2x2) for the marginal param-
eters β1 = (β0, β1)

� and β2 = (0, β2)
�, respectively. As mentioned before the

designs ξ∗
β j

which assign equal weights 1/2 to the settings x j0 = 0 and x j1 = 2/|β j |
are locally D-optimal at β j on X j , j = 1, 2. Then the product type design ξ∗

β1
⊗ ξ∗

β2
which is defined as themeasure theoretic product of themarginals is locally D-optimal
at β by an application of Theorem 4.2 in Schwabe (1996). 
�
Proof of Lemma 4.2 For a design ξ with settings xi and corresponding weights wi ,
i = 0, . . . , n − 1, denote by F = (f(x0), . . . , f(xn−1))

� the (n × p)-dimensional
essential design matrix and by the (n × n)-dimensional diagonal matrices 3 =
diag(λ(x0), . . . , λ(xn−1)) andW = diag(w0, . . . , wn−1) the intensity and the weight
matrix, respectively. Then, the information matrix can be written as

M(ξ) = F�W3F.

For minimally supported designs the matrices F, W and 3 are quadratic (p × p)
and the determinant of the information matrix factorizes,

det(M(ξ)) = det(W) det(3) det(F)2.

AsW and 3 are diagonal and

F =

⎛

⎜⎜⎝

1 0 0 0
1 x1 0 0
1 0 x2 0
1 t t t2

⎞

⎟⎟⎠

is a triangular matrix for ξ ∈ �0, the determinants of these matrices are the products
of their entries on the diagonal. Hence,

det(M(ξ)) = w0w1w2w3x
2
1 exp(−x1)x

2
2 exp(−x2)t

4 exp(−2t − ρt2)

and the weights as well as the single settings can be optimized separately. As for all
minimally supported designs the optimal weights are all equal to 1/p which is here
1/4. The contribution x2j exp(−x j ) of the axial points is the same as in the corre-

sponding marginal one-dimensional Poisson regression model with β j = (0,−1)�
and is optimized by x j = 2, j = 1, 2. Finally, t4 exp(−2t − ρt2) is maximized by
t = (

√
1 + 8ρ − 1)/(2ρ) for ρ > 0 and t = 2 for ρ = 0. 
�

Proof of Lemma 4.3 The main idea behind this proof is to consider the deduced sensi-
tivity function on contours of equal intensities. For this we reparametrize the design
region and use shifted and rescaled hyperbolic coordinates,

x1 = (v exp(u) − 1)/ρ and x2 = (v exp(−u) − 1)/ρ,
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where v = √
(1 + ρx1)(1 + ρx2) is the (shifted and scaled) hyperbolic distance and

u = log(
√

(1 + ρx1)/(1 + ρx2)) is the (shifted and scaled) hyperbolic angle in the
case ρ > 0. The design region X = [0,∞)2 is covered by v ≥ 1 and |u| ≤ log(v).

With these coordinates, fixing v > 1 returns a path parameterized in u which
intersects the diagonal at u = 0. On each of these paths the intensity function λ(x) is
constant. For an illustration of such paths, see Fig. 5.

Because ξt is invariant under permutation of x1 and x2, i.e., sign change of u, the
deduced sensitivity function d(x; ξt ) is symmetric in u, and we only have to consider
the nonnegative branch, 0 ≤ u ≤ log(v). Using cosh(2u) = 2 cosh2(u) − 1, we
observe that d(x; ξt ) is a quadratic polynomial in cosh(u) = (exp(u) + exp(−u))/2
on each path. Further, by the invariance of ξt , the information matrix and, hence, its
inverse is invariant with respect to simultaneous exchange of the second and third
columns and rows, respectively. The leading coefficient of the quadratic polynomial
can be written as c(v)a�M(ξ)−1a, where a = (0,−ρ, 0, 1)� and c(v) is a positive
constant depending on v. SinceM(ξ)−1 is positive-definite, the leading coefficient is
positive. Now, any quadratic polynomial with positive leading coefficient attains its
maximum over an interval on the boundary. This continues to hold if we compose
the polynomial with a strictly monotonic function like cosh(u) on [0, log(v)]. Hence,
on each path the maximum occurs at the diagonal (u = 0, i. e. x1 = x2) or on the
boundary (|u| = log(v), i. e. x1 = 0 or x2 = 0). As the paths cover the whole design
region, the statement of the Lemma follows for ρ > 0.

In the caseρ = 0 the contours of equal intensities degenerate to straight lines, where
x1+ x2 is constant. Then, the design region can be reparameterized by x1 = v +u and
x2 = v − u, where v = (x1 + x2)/2 ≥ 0 is the (scaled directional �1) distance from
the origin and u = (x1 − x2)/2 is the (scaled �1) distance from the diagonal, |u| ≤ v.
Using similar arguments as for the case ρ > 0we can show that the sensitivity function
restricted to each of these line segments for v fixed is a symmetric polynomial in u of
degree 4 with positive leading term. Hence, also in the case ρ = 0 the maximum of the
sensitivity function can only be attained on the diagonal (u = 0) or on the boundary
(|u| = v) which completes the proof. 
�

Proof of Lemma 4.4 With the notation in the Proof of Lemma 4.2 the deduced sensi-
tivity function can be written as

d(x; ξt ) = f(x)�F−13−1(F−1)�f(x)/p − 1/λ(x), (A.1)

where

F−1 =

⎛

⎜⎜⎝

1 0 0 0
−1/2 1/2 0 0
−1/2 0 1/2 0

(t − 1)/t2 −1/(2t) −1/(2t) 1/t2

⎞

⎟⎟⎠ ,

and similarly for the deduced sensitivity function d1(x; ξ∗−1) of the locally D-optimal
design ξ∗−1 in the one-dimensional marginal model when β1 = (0,−1)�. For settings
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Fig. 5 Lines of constant intensity for ρ = 1/2 and ρ = 2 with optimal design points

x = (x1, 0), we then obtain d(x; ξt ) = d1(x1; ξ∗−1) by the relation between the quan-
tities and matrices in both models and their special structure. As ξ∗−1 is D-optimal in
the marginal model, its deduced sensitivity d1 is bounded by zero by the equivalence
theorem. Hence, we obtain d((x1, 0); ξt ) ≤ 0 for all x1 ≥ 0.

For reasons of symmetry, we also get d((0, x2); ξt ) ≤ 0 for all x2 ≥ 0 which
completes the proof. 
�
Proof of Lemma 4.5 First note that the relation between ρ and t = (

√
1 + 8ρ−1)/(2ρ)

is one-to-one such that conversely ρ = (2 − t)/t2. Then, with the transformation
q = x/t , the inequality to show in Lemma 4.5 can be equivalently reformulated to

d(x; ξt ) =
(q − 1)2(q(t − 1) − 1)2 + 1

2
exp(2)t2(q − 1)2q2 + exp(t + 2)q4

− exp(2tq + (2 − t)q2) ≤ 0 (A.2)

by using (A.1). To prove the Lemma it is then sufficient to show that the inequality
(A.2) holds for all 0 ≤ t ≤ 2 and all q ≥ 0.

The idea behind the proof is to split the above function into a polynomial

h0(q, t) = 1

2
exp(2)t2(q − 1)2q2 + (q − 1)2(q(t − 1) − 1)2

in t and q and a function

h1(q, t) = exp(2qt + (2 − t)q2) − exp(t + 2)q4

involving the exponential terms such that d(x; ξt ) = h0(q, t) − h1(q, t) and to find a
suitable separating function h2(q, t) such that the inequalities h0(q, t) ≤ h2(q, t) and
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h2(q, t) ≤ h1(q, t) are easier to handle, where essentially methods for polynomials
can be used for the former inequality while in the latter properties of exponential
functions can be employed.

This function h2(q, t) will be defined piecewise in q by

h2(q, t) =
{
1 for q ≤ q0
exp(t + 2)(q − 1)2q2 for q > q0

,

where q0 = 3/5, and the proof will be performed case-by-case. Figure 6 visualizes
this approach for selected values of t .

We start with the case q ≤ q0: The function h0(q, t) is a quadratic polynomial in t
with positive leading term. Therefore, its maximum over 0 ≤ t ≤ 2 is attained at the
end-points t = 0 or t = 2 of the interval. Now, for t = 0, we obtain

h0(q, 0) = (1 − q2)2 ≤ 1

for all q ≤ q0.
For t = 2

h0(q, 2) = (1 − q)2(2 exp(2)q2 + (1 − q)2)

is a polynomial of degree 4 inq with positive leading term, h0(0, 2) = 1 and h0(1, 2) =
0. The polynomial has a local maximum

h0(q1, 2) = exp(4)(3 exp(1) − √
exp(2) − 4)2(exp(2) + 2 + √

exp(4) − 4 exp(2))

8(2 exp(2) + 1)3

≈ 0.997

at q1 = (exp(2) + 2 + √
exp(4) − 4 exp(2))/(4 exp(2) + 2) ≈ 0.456. This implies

that h0(q, t) ≤ 1 for all q ≤ q0 and all t ∈ [0, 2].
Next we consider h1(q, t) as a function of t . Its partial derivative with respect to t

is given by

∂

∂t
h1(q, t) = (2 − q)q exp(q(2t + (2 − t)q)) − q4 exp(t + 2). (A.3)

If we compare the exponential terms, we see that

q(2t + (2 − t)q) − (t + 2) = −t(q − 1)2 + 2(q2 − 1) ≥ 4(q − 1) (A.4)

for all 0 ≤ t ≤ 2 uniformly in q. Hence, the partial derivative (A.3) is nonnegative if

q−3(2 − q) exp(4(q − 1)) ≥ 1. (A.5)
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To see this we notice

∂

∂q
q−3(2 − q) exp(4(q − 1)) = −2q−4(2q2 − 5q + 3) exp(4(q − 1)) ≤ 0

for q ≤ 1 such that the expression on the left-hand side of (A.5) attains its minimum
at q = 1, where it is equal to 1. Combining the above results, we obtain that h1(q, t)
attains its minimum at t = 0 for all q ≤ 1. It remains to show that h1(q, 0) =
exp(2q2) − exp(2)q4 ≥ 1 for all q ≤ q0. For this, we check the derivative

∂

∂q
h1(q, 0) = 4q(exp(2q2) − exp(2)q2)

with respect to q which is positive for 0 < q < q2 and negative for q2 < q ≤ q0.
where q2 ≈ 0.451. Hence, evaluating h1(q, 0) a the end-points of the relevant interval,
h1(0, 0) = 1 and h1(q0, 0) ≈ 1.097, we get h1(q, 0) ≥ 1 which finally implies
h0(q, t) ≤ 1 ≤ h1(q, t) for all q ≤ q0 and all 0 ≤ t ≤ 2.

For the case q > q0, the condition h0(q, t) ≤ h2(q, t) is equivalent to

(q(t − 1) − 1)2 ≤ q2 exp(2)(exp(t) − t2/2). (A.6)

By the exponential series expansion, exp(t) ≥ 1 + t + t2/2 for t ≥ 0, the right-hand
side is bounded from below by (t + 1)q2 exp(2), and for (A.6) to hold it is sufficient
to show

(exp(2)(t + 1) − (t − 1)2)q2 + 2(t − 1)q − 1 ≥ 0. (A.7)

The derivative of this expression with respect to q equals

2(exp(2)(t + 1) − (t − 1)2)q + 2(t − 1) ≥ exp(2)(t + 1) − t2 + 4t − 3 ≥ 0

for q ≥ 1/2 and all 0 ≤ t ≤ 2. Hence, the expression in (A.7) itself is bounded from
below by its value at q0 = 3/5, which is approximately 0.1001.

This establishes h0(q, t) ≤ h2(q, t) for all q > q0 and all 0 ≤ t ≤ 2.
Finally, the condition h2(q, t) ≤ h1(q, t) is equivalent to

(1 − q)2q2 + q4 ≤ exp(q(2t + (2 − t)q) − (t + 2)).

Again, by q(2t + (2 − t)q) − (t + 2) ≥ 4(q − 1) for all 0 < t < 2, see (A.4), it is
sufficient to show

((1 − q)2q2 + q4) exp(4(1 − q)) ≤ 1 (A.8)

for all q ≥ 0. The derivative of this expression equals

2(1 − 2q)2(1 − q)q exp(4(1 − q)).
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Fig. 6 The functions h0(q, t) (solid line), h1(q, t) (dashed) and h2(q, t) (dotted) for t = 0, 1/2, 1 and 2

Hence, for q ≥ 0 the expression in (A.8) attains its maximum at q = 1, where it is
equal to 1. This implies h2(q, t) ≤ h1(q, t) for all q > q0 and all 0 ≤ t ≤ 2 which
completes the proof. 
�

Proof of Theorem 5.2 Here we only give a sketch of the proof. As in the proof of
Lemma4.3,we see that the paths of equal intensity constitute hyper-planes intersecting
the design region at equilateral simplices. On each straight line within these simplices
the sensitivity function is a polynomial of degree four with positive leading term.
Hence, following the idea of the proofs in Farrell et al. (1967), we can conclude by
symmetry considerations with respect to permutation of the entries in x and we can
conclude that the sensitivity functionmay attain amaximum in the interior of the design
region only at the diagonal, where all entries in x are equal (x1 = x2 = · · · = xk = x)
and in the relative interior of each j-dimensional face of the design region on the
respective diagonal,where all the j nonzero entries ofx are equal to some x , 2 ≤ j ≤ k.

Similar to the proof of Lemma 4.4 on each face the deduced sensitivity function
is equal to its counterpart for the D-optimal design in the two-dimensional marginal
model on that face and is, thus, bounded by 0.

Finally, to derive the deduced sensitivity function on the diagonals we specify the
essential design matrix F and its inverse

F =
⎛

⎝
1 0 0
1k Ik 0

1C(k,2) S2 IC(k,2)

⎞

⎠A and F−1 = A−1

⎛

⎝
1 0 0

−1k Ik 0
1C(k,2) −S2 IC(k,2)

⎞

⎠ ,
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where A = (1, 2 Ik, 4 IC(k,2)) is a block diagonal matrix related to the product of the
nonzero coordinates of the design points, 1m is am-dimensional vector with all entries
equal to 1, Im is the m ×m identity matrix, C(m, n) denotes binomial coefficient

(m
n

)
,

and S2 is the incidence matrix of a balanced incomplete block design (BIBD) for
k varieties and all C(k, 2) blocks of size 2. Then by (A.1), the deduced sensitivity
function equals

(C( j, 2)q2 − jq + 1)2 + j exp(2)(( j − 1)q2 − q)2 + C( j, 2) exp(4)q4 − exp(2 jq)

on the diagonals of all j-dimensional faces, j < k, and the interior diagonal for j = k,
where q = x/2 as in the proof of Lemma 4.5. By using Mathematica and a power
series expansion of order 5 for the term exp(2kq), the above expression can be seen
not to exceed 0 for all q ≥ 0 which establishes the local D-optimality in view of the
equivalence theorem. 
�
Proof of Theorem 5.4 The proof goes along the lines of the Proof of Theorem 5.2. The
essential design matrix F and its inverse are specified as

F =

⎛

⎜⎜⎝

1 0 0 0
1k Ik 0 0

1C(k,2) S2 IC(k,2) 0
1C(k,3) S3 S23 IC(k,3)

⎞

⎟⎟⎠A,

F−1 = A−1

⎛

⎜⎜⎝

1 0 0 0
−1k Ik 0 0
1C(k,2) −S2 IC(k,2) 0

−1C(k,3) S3 −S23 IC(k,3)

⎞

⎟⎟⎠ ,

where nowA = (1, 2 Ik, 4 IC(k,2), 8 IC(k,3)), S3 is the incidencematrix of a BIBD for k
varieties and allC(k, 3) blocks of size 3, and S23 is the (generalized)C(k, 3)×C(k, 2)
incidence matrix which relates all blocks of size 2 to those blocks of size 3 ln which
their components are included. Then, the deduced sensitivity function equals

(C( j, 3)q3 − C( j, 2)q2 + jq − 1)2 + j exp(2)((C( j, 2) − j + 1)q3 − ( j − 1)q2 + q)2

+C( j, 2) exp(4)(( j − 2)q3 − q2)2 + C( j, 3) exp(6)q6 − exp(2 jq)

on the diagonals, where q = x/2. By usingMathematica and a power series expan-
sion of order 9 for the term exp(2kq) the above expression can be seen not to exceed
0 for all q ≥ 0 which establishes the local D-optimality. 
�
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