TEST (2021) 30:462-480
https://doi.org/10.1007/511749-020-00727-x

ORIGINAL PAPER

®

Check for
updates

Dimension reduction for longitudinal multivariate data by
optimizing class separation of projected latent Markov
models

1 3

Alessio Farcomeni'® - Monia Ranalli? - Sara Viviani

Received: 7 February 2020 / Accepted: 11 July 2020 / Published online: 24 July 2020
© The Author(s) 2020

Abstract

We present a method for dimension reduction of multivariate longitudinal data,
where new variables are assumed to follow a latent Markov model. New vari-
ables are obtained as linear combinations of the multivariate outcome as usual.
Weights of each linear combination maximize a measure of separation of the latent
intercepts, subject to orthogonality constraints. We evaluate our proposal in a sim-
ulation study and illustrate it using an EU-level data set on income and living
conditions, where dimension reduction leads to an optimal scoring system for mate-
rial deprivation. An R implementation of our approach can be downloaded from
https://github.com/afarcome/LMdim.

Keywords Dimension reduction - EU-SILC - Material deprivation - Multivariate
longitudinal data - Orthogonality
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1 Introduction

Latent Markov (LM) models (Bartolucci et al. 2013, 2014) permit parsimonious and
flexible modeling of univariate and multivariate longitudinal data. A particularly attrac-
tive feature is that random effects are time-varying, and their discrete distribution,
based on k support points, can usually approximate well almost any true underlying
distribution of random effects. Local and global decoding allow to assign subjects, at
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each measurement occasion, to their most likely hidden state (or sequence of hidden
states). Consequently, the latent classification can then be seen as a model-based time-
varying clustering (Bulla et al. 2012; Dias et al. 2015; Punzo and Maruotti 2016) based
on k groups. A generalization to a different number of groups at each time occasion has
recently been proposed (Anderson et al. 2019a,b). A limitation is that the association
rule between the multivariate outcome and the latent indicators is based on posterior
probabilities and therefore not available in closed form. Assignment of a new mea-
surement to a latent cluster is cumbersome, especially if the outcome configuration
has not been observed in the data. Furthermore, a score that increases (or decreases)
with the likelihood of belonging to a cluster of interest could be in general very useful
to practitioners.

A good example is given by our motivating application on assessment of material
deprivation, a direct measure of poverty (Sen 1981), in Europe. The official household-
level questionnaire is based on nine binary items. Our main issue is how to classify as
poor/not poor a new family, based on its nine-dimensional binary profile, and ranking
families with respect to their propensity to material deprivation. It is underlined in
Atkinson (2003) and Dotto et al. (2019) that a simple counting approach has an unsat-
isfactory classification performance for this task. It also, clearly, leads to several ties
when using it to rank families. The simple counting approach is equivalent to comput-
ing linear combinations, with equal weight assigned to of the items. It has been seen
also more in general to have limitations from the quality of measure point of view. See
for instance Najera Catalan (2017), Cafiero et al. (2018), and De Andrade and Tavares
(2005) specifically for panel data. Counting in fact implicitly assumes that all items
have the same discrimination power (i.e., they are equally related to the latent trait),
unidimensionality (Linacre 2009), and the specific objectivity or measurement invari-
ance of the scale. On the other hand, use of a map of each of the 2° = 512 possible
configurations to the k = 2 latent states (poor/not poor), as provided by a multidi-
mensional latent Markov model for instance, is cambersome and makes it impossible
to rank families. A heuristic two-step strategy for dimension reduction was used in
Dotto et al. (2019) for panel data recorded in Greece, Italy and U.K. At the first step, a
basic latent Markov model with the nine-dimensional binary outcome, no covariates,
and k = 2 latent states is estimated. At the second step, a score, corresponding to
a weighted sum of the active indicators, is targeted. To do so, weights are estimated
by maximization of the Spearman correlation between the unidimensional score and
posterior probabilities of being materially deprivated in a given year. Albeit provingly
better than simple item counting, this heuristic method is clearly informal and not
necessarily optimal. It is also restricted to a one-dimensional projection.

Our main task in this work is that of building optimal scores (obtained as weighted
sums of a multivariate outcome, repeatedly observed over time) able at discriminating
among subjects belonging to classes of a discrete latent trait (e.g., poor/non-poor;
low/medium/high propensity to buy, etc.). Unidimensional scores can be used for
ranking, bidimensional scores for graphical representations, and so on. We also report
on how to choose the score dimensionality, and to assess how well scores reproduce
the variability in the original data. Weights can be used to directly and simply compute
a score for a newly measured subject. We are especially interested in the case in which
no covariates are used and k = 2, since it is by far the most common situation in which
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a score is desired: the use of k = 2 classes leads to binary discrimination, and absence
of covariates indicates that all relevant information is used in the scoring system. All
other cases might be of interest too in applications and are briefly discussed below.
Weighted sums can also be seen as lower-dimensional projections of longitudinal
measurements, which relates our method to the more general literature on dimension
reduction for longitudinal data (e.g., Hall et al. 2006; Jiang and Wang 2010); more
specifically in relation to latent Markov models. For instance, in Vogelsmeier et al.
(2019) a multivariate continuous outcome is assumed to follow a factor model, with
loadings that are state-dependent and follow a latent Markov model. The literature on
dynamic dimensionality reduction methods is actually very rich, see for instance Jung
et al. (2011), Xia et al. (2016), Song et al. (2017), Bai and Wang (2015), Maruotti
et al. (2017), Ando and Bai (2017) and Chen et al. (2020).

Clearly, our method is also an extension of dimension reduction approaches for
cross-sectional categorical data (e.g., Collins et al. 2002; de Leeuw 2006; Lee et al.
2010; Landgraf and Lee 2015), like logistic PCA and logistic SVD. See also Cagnone
and Viroli (2012) and Yamamoto and Hayashi (2015). Logistic PCA extends Pearson’s
initial formulation of principal component analysis by seeking a rank-r projection of
the data which is as close to the original data as possible, therefore being model-
agnostic. Logistic SVD is a similar approach based on exponential families, where
the objective is expressed as a function of PC scores. Many methods mentioned above
are also restricted to either binary multivariate data or continuous multivariate data,
while our approach will be designed for any multivariate outcome, including a mix of
binary, categorical and continuous variables.

Our approach can be summarized as follows: we assume each weighted sum of a
multivariate outcome follows a latent Markov model, where weights are orthonormal.
We then optimize a measure of latent class separation over the weight space, in the
spirit of more classical methods for dimension reduction. Our basic assumption is
that latent scores are Gaussian in general. This is straightforward when working with
continuous multivariate outcomes. We give a technical justification below for more
general cases, but note that this assumption is common in various fields. For instance,
in several psychometric applications multivariate binary data give rise to Gaussian
latent variables. It shall be noted that our model-based approach provides a natural
way of treating (informative or ignorable) missing values, which can be dealt with
as usually done with latent Markov models (Bartolucci et al. 2013; Bartolucci and
Farcomeni 2015, 2019; Maruotti 2015; Marino and Alfé 2015; Marino et al. 2018).
See also Geraci and Farcomeni (2018) for the dimension reduction context in general.
A notable by-product is that missing scores can be imputed by generating predictions.

The rest of the paper is as follows: in the next section we formalize and justify
our model for multivariate binary outcomes and time-fixed weights. We then obtain
optimal weights in Sect. 2.1 and discuss multidimensional projections with orthogonal
weights in Sect. 2.2. In Sect. 3 we provide some extensions: general outcomes, covari-
ates, time-dependent weights. Simulations are reported in Sect. 4, while in Sect. 5 we
describe our motivating application on poverty in Europe. Some concluding remarks
are given in Sect. 6.

The methodology proposed in this paper has been implemented in R functions
which can be downloaded from https://github.com/afarcome/LMdim.
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2 Basic model for binary outcomes

LetYiy;,t =1,...,T;,i = 1,...,n, denote an H-dimensional vector of binary out-
comes measured on the ih subject at time ¢; with 7 = max; 7;. Our problem in this
paper is how to define optimal one-dimensional summaries Sj;(w) = Z;I;I: 1 Yicnwp
through weight vectors w, where for each w S;; (w) follows a first-order latent Markov
model (to be more formally specified below). In what follows we will suppress depen-
dence on w for ease of notation whenever possible. Our main idea is based on directly
modeling S;;(w) and selecting the optimal w as the one that best separates the latent
groups. Constraints are needed for identifiability and to avoid issues with unbound-
edness of the objective function; in this work, we use the classical unit-norm bound

H 2 _
» o Wi = 1. . . .
Let U;; denote an unobserved discrete random variable with support 1, . . ., k, where

k is known. We make the assumption that S;; (w) is conditionally Gaussian and follows
a unidimensional latent Markov model, as follows:

Siew)|w, Uy = j ~ N(&j, %), (1)

where &; is a group-specific latent intercept and o2 is the variance. A justification
of the Gaussian assumption is given at the beginning of Sect. 3. Note that (1) is
identified as long as we constrain §; < &4 for j =1, ..., k — 1; see also Bartolucci
et al. (2013) for a more general discussion. The model is completed by assumptions
of local independence, that is, that conditionally on Uj; the outcome is independent
of the past measures and on the distribution of the latent variable U;;. Commonly
a first-order homogeneous Markov chain is specified, with Pr(U;; = ¢) = n, and
Pr(Ui; = d|U; ;—1 = c¢) = m.q. The transition probabilities are collected in a transition
matrix IT.

More formally, we assume that the multivariate longitudinal outcome is a decon-
volution, with unknown weights, of a univariate score which in turn follows a latent
Markov model.

2.1 Optimal dimension reduction

Each set of weights wy, ..., wy corresponds to a unidimensional projection S;; (w) of
the vector Yj;, associated with parameters & (w), aZ(w), m(w) and IT(w). In parallel
with principal component analysis, we define optimality for a vector of weights as the
maximization of a measure of (group) variability. In our setting, there are different
criteria that can be put forward to measure group variability in latent Markov models.
These clearly must involve the latent intercepts &1 (w), . .., & (w).

Let p;j(w) = Pr(U;; = j), where p1j = mj(w) and p;j = ), pr—1,0 ()7 (w)
for t > 1 denote the prior probability that the ith subject is in latent state j at time ¢.
Let also & (w) = > j b iEi(w)/ Y jpij- At population level, we propose to measure
latent group separation through the weighted deviance
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Dw) =" pij(w)E;w) — & w))>. )
/ t

J

In words, we define the (absolute) maximal separation as the situation in which latent
intercepts &;(w) are maximally far apart and subjects are maximally spread over
groups at each time point. The principle behind this idea is similar to the assessment
of dependence in latent Markov models proposed in Farcomeni (2015). Deviance (2)
is an absolute measure of group separation, where intra-class variability is weighted by
time-specific class proportions. Of course, there are several other objective functions
that can be put forward. A relative measure of separation is presented in Magidson
(1981), while several other can be found in Vermunt and Magidson (2016) and are
implemented in the software Latent GOLD. Another possibility would be to minimize
a measure of cluster overlap, e.g., the one proposed in Steinley and Henson (2005).
In this work, we prefer using (2) since it is a direct and absolute measure of sepa-
ration, and it is directly connected with the ability of the final score to separate the
occasion-specific measurements into clusters that are balanced (since more heteroge-
neous p; clearly decrease D(w) when the & vector is held fixed) and distant (since
when the entries of & are closer to each other, D(w) decreases if p; is held fixed). We
mention here that modification of the objective function is straightforward, and sim-
ulations lead to similar conclusions also if for instance the Magidson (1981) index is
used.

One should in principle maximize D(w) in (2) with respect to w to obtain the opti-
mal set of weights by construction. In practice, population parameters corresponding
to each set of weights are unknown, hence the consistent surrogate objective function

Dw) =YY" prjw)Ejw) — & w))>. 3
/ t

J

must be used, where é j(w), 6%(w), #(w) and ﬁ(w) denote the MLE associated with
weights wy, ..., wy; p1j = A;(W), prj = D Pr—1,n(w)Rj(w) for t > 1, and
Ew) =Y i ﬁtjé iw)/ > j Pij- Optimization of (3) is not straightforward since the
MLE associated to model (1) must be obtained for each candidate set of weights w.

We proceed using an iterative procedure, combining an inner and an outer optimizer.
The outer optimizer maximizes (3) using a numerical method (like the Nelder-Mead
procedure or a genetic algorithm (Scrucca 2013)). In order to proceed without con-
straints the objective function is optimized in w € R, with w = w/ /> y d)?.
Numerical outer maximizers in general proceed iteratively, computing the objective
function at several points. For each, that is, conditionally on the current value for w, the
inner optimizer uses a classical EM-type algorithm for obtaining the MLE of a latent
Markov model with a continuous outcome (Bartolucci et al. 2013). The outcome in
the working latent Markov model is S;; (w), where w is the currently evaluated vector
of weights. By-products of the optimization procedure are, clearly, the MLE at the
optimal projection and the optimal score S;; (W).

@ Springer



Dimension reduction for longitudinal multivariate data... 467

2.2 Optimal multidimensional projections

Suppose now that multidimensional dimension reduction is desired. Call w@ the
zth vector of weights, with z = 1,2,...,r, r < H. Similarly, denote Si,(w(Z)) =
H (
Z/:l ij)Yitj~
In order to estimate w}Z) , we optimize (3). When z > 1, this is done subject to

further constraints on the weights. In this work, we pursue an orthogonality constraint.
Formally, in order to obtain % ®), we optimize (3) subject to

H

(2), () _
Dowiw” =0 )
=1

forall h < z, and additionally, as before, that 3~ ; w'”w? = 1.
The constrained optimization problem can be solved either simultaneously, that is,
by maximizing

,
> Dw) )
rt

subject to orthonormality constraints of w®D, o w®or sequentially, that is, obtain-

ing the zth optimal set of weights only after the first z — 1 have been found. In the
first case, the objective function argument is the vectorization of the H by r uncon-
strained matrix w, where w is the Q matrix in the QR-decomposition of w. Use of the
QR decomposition is particularly convenient since an efficient algorithm can be used
to map an unconstrained vector to an orthonormal matrix. For each w, the objective
function is computed after r EM-type inner optimization procedures for obtaining the
r MLEs corresponding to w", ..., w®). The inner procedures can be easily paral-
lelized for computational convenience.

In the second case, in order to compute W@, the first z — 1 solutions are held fixed.
The objective function argument is a unidimensional vector @, where w(@ is the
zth column of the Q matrix in the QR-decomposition of the matrix whose first z — 1
columns are w'", ..., W@~V and the zth is w®. This is a very convenient way of
mapping an unconstrained vector to a unit-norm vector that is orthogonal with all
previously computed vectors of weights. A single inner optimization procedure now
suffices to obtain the MLE associated with the current value of w®.

Our numerical experiments have indicated that the sequential procedure is less
dependent on initial solutions (that is, less likely to be trapped into local optima) and
slightly quicker than the simultaneous procedure.

The quality of each projection is measured, by definition, by the weighted deviance
(3). This is not a standardized measure. Clearly, due to (4), D(®@) < D(®®) and

Z h
Zﬁ(@(i)) > Z [)(uA)(j))

J=1 J=1
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for all z > h. Consequently, calling Dpax = Zle D) we have that a standard-

ized measure of the quality of the jth score is given by D))/ Dia. The latter is the
proportion of separation that is retained by the jth score. This measure is standardized,
with a minimum of zero for scores in which latent groups are perfectly overlapped,
and a maximum of one when only one score gives non-zero separation.

2.3 Goodness of fit

It should be made clear that separation and goodness of fit are two different matters,
and our approach targets separation of the latent variable. This is only indirectly
pursuing goodness of fit, which therefore should be checked alongside separation.
Even in cases in which the cumulative degree of separation Z§'=1 D@ / Dmax 18
large enough, we recommend selecting a larger number of scores in case goodness of
fit is not acceptable.

Ideally, we would need a measure of how well an optimal score S can approximate
the data Y, which is very cumbersome with binary (or even mixed) outcomes. We
thus propose a measure that is based on the following interpretation of LM models:
in LM models the outcome, be it the multivariate profile ¥ or the score S, can be
assumed to be measuring, with error, a discrete latent variable. All information about
the latent variable is summarized by the posterior probabilities Pr(U;; = j | Y), and
Pr(Uij; = j | §), respectively. We point the reader to Bartolucci et al. (2014) both
for further discussion and computation of these quantities at the MLE. The latter is a
direct by-product of our estimation procedure. We therefore propose that if posterior
probabilities agree, then data Y are well explained by the score S. It shall be pointed out
that, since we are measuring association between vectors of probabilities, we should
use a log-ratio transform Aitchison (2011). When k = 2, for simplicity, we directly
compute the squared Spearman correlation between the estimated Pr(U;; = 1 | Y)
and Pr(U;; = j | §).

3 General model for mixed outcomes and extensions

Letnow Y, t =1,...,T;,i =1, ..., n,denote an H-dimensional vector of contin-
uous, binary and/or ordinal outcomes.

We begin by discussing justification of the assumption that S;; is Gaussian in gen-
eral. When ¥;; € R, the most common parametric assumption is that of a multivariate
Gaussian distribution, possibly after transformation. Since any linear combination of
Gaussian distributions is Gaussian, S;; is exactly Gaussian under this assumption. In
case different distributional assumptions are used for Y;;, the assumption that S;; is
Gaussian is only a working approximation, which is usually guaranteed as H grows
by some form of central limit theorem.

Let us now consider discrete outcomes. Suppose Yi;, € {0, 1, ..., ¢, — 1}, that is,
there are ¢y, categories for the hth variable. These can be ordered or unordered. If all
outcomes are unordered, one can simply define ¢;, — 1 binary dummy variables Z;;; =
I1(Yyp =10, =1,...,cp—1.1tisstraightforward to see that Bernoulli assumptions on
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Zi11, which correspond to general multinomial assumptions on Y, lead to Z, w; Zigl
begin distributed according to a Poisson-Binomial law. The Poisson-Binomial indeed
is the distribution of a weighted sum of independent and non-identically-distributed
random indicators. A detailed description, with a strategy for efficient evaluation of
its probability mass function, can be found in Hong (2013). An ordered outcome Y;;j,
can be treated similarly after letting Z;;; = I (Y, > 1),1 =1, ..., cp—1. Our point
here is that the Poisson-Binomial is well approximated by a Gaussian distribution as
soon as H is large (by Lyapunov central limit theorem), with H > 6 very often being
sufficient. See also Deheuvels et al. (1989).

The reasoning above can be directly extended to mixed-type outcomes. Without
loss of generality assume that Y;;;,, for h = 1, ..., Hj, is continuous for some 1 <
Hy < H;and for h = Hy +1,..., H itis binary. Call S;; = Y, wpYin, Si(tl) =
Zflil wy Y and Si(tz) = Z}I,{:Hlﬂ wp, Y. Clearly the distribution of S;; is the same

as the distribution of Si(tl) + Si([2 ), where Si(tl) and Si(t2 ) are independent conditionally
on U;; as assumed above. Consequently, S;; (conditionally on Uj;) is the sum of two
independent Gaussian (or at least approximately Gaussian) random variables.

We can then use an assumption as (1), even conditionally on a vector of covariates

Xir, associated with coefficients S:
Sitw)|w, Uy; = j.xi ~ NGEj +x[,B. 07, (6)

Use of covariates in (6) has direct consequences on the interpretation of the results.
When no covariates are used, & ; 1s simply the latent group mean of the projected score.
When covariates are included, groups are defined after adjustment, that is, comparing
measurements as if they had the same covariate configuration. Accordingly, since
weights are (still) chosen to maximize (3), and B parameters do not appear in the
formula, the final score maximizes the distance among latent groups after adjusting
for covariates. That is, S;; () maximizes (on average) the distance among subjects
belonging to different latent states when they share the same covariate configuration.

Given our underlying assumptions, algorithms proposed in Sects. 2.1 and 2.2 can
still be used to obtain optimal orthonormal weights under (6) and (3).

3.1 Time-dependent weights

The models considered so far involve time-fixed weights wy, ..., wy. This is appro-
priate when, as in our application, dimension reduction is used to obtain a score which
can be compared across different time points, in order to monitor time trends. On the
other hand, in other cases one might want to target the goodness of fit, capture dynam-
ics in the weights rather than in the scores, or even assess the assumption that weights
are time-fixed. An extension of our approach in this direction is straightforward, where
the new variables are defined as

H
Sio(w;™) = > wﬁ) Yiij,
J=1
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and these are still assumed to follow (6) in general. The constrained optimization
problem, on the other hand, should be specified in slightly different way. While the
objective function is still (5), in order to obtain interpretable and identifiable solutions,
we put forward the following set of constraints:

H (@2 _
Zj:l(wjt) =1Vt,Vz

Y wDuw) =0V vV Vh <2
Namely, weights are normalized to unit norm at each time occasion; and weights of
the zth score are orthogonal to the weights of the Ath score, with & < z, for all time
points.

Unsurprisingly, we can still use the same optimization procedure to solve the prob-
lem, but at the price of a longer computational time since the dimension of the outer
optimization problem is multiplied by T'. It shall be finally made clear that interpre-
tation of scores changes at each time point, making it quite difficult to compare new
variables over time.

4 Simulations

In this section, we illustrate our procedure with a simulation study.

Data were generated by considering H = {5, 10} Binomial outcomes, T = {4, 6}
occasions, n = {500, 1000, 2000} observations and k = 2. The outcomes follow a
multivariate binary latent Markov model where latent states are drawn at random with
uniform initial probabilities. Transition matrices are set so that transitions from the
first to the second and second to first latent states have probability 10%. Subject time-
specific success probabilities follow a logit model with latent intercepts generated
from a standard Gaussian distribution. Note therefore that the data generating process
is not (1), and our model is consequently misspecified.

For each combination of the experimental factors (H, T, n), we generate B = 500
data sets and compare the following approaches: our model with only the first (D1),
the first three (D3) and first five projections (D5); the logistic PCA with only the
first (LogPCA1), the first three (LogPCA3), and the first five projections (LogPCAS);
the logistic SVD with only the first (LogSVD1), the first three (LogSVD?3), and the
first five projections (LogSVDS5); the naive approach based on equal weights (Naive);
the heuristic method (Heur) proposed by Dotto et al. (2019). Note that the last two
methods are restricted, by definition, to a single projection. We recall here also that
Dotto et al. (2019) approach is based on weight calibration after the estimation of the
parameters of a multivariate latent Markov model.

Our proposal has been initialized using the output of logistic SVD as implemented
in the R package 1ogisticPCA (Landgraf and Lee 2015). Logistic PCA and logistic
SVD use an eigen decomposition as starting values (as default in the R package just
mentioned). For the naive and heuristic approaches, we use deterministic starting
points, as implemented in the function est_1m_basic included in the R package
LMest (Bartolucci et al. 2015).
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Figures 1 and 2 display the boxplots of the weighted deviance, at convergence, over
the different scenarios and model specifications.

It can be seen that in almost all scenarios our proposal leads to a larger weighted
deviance, and hence to more separated clusters, than competitors. This difference
cumulates over the number of projections, and it becomes more and more apparent
with increasing number of projections.

The naive approach of giving equal weights to all items, as could be expected,
always yields the worst performance. Surprisingly enough, the heuristic approach of
Dotto et al. (2019), despite being more variable, sometimes outperforms more formal
methods like logistic PCA and logistic SVD.

As regard computational time, Table 1 shows times in minutes needed to obtain the
results in different settings, using our non-optimized R code on a standard laptop. We
believe that these are very reasonable running times.

Finally, to assess the effect of parameter initialization, we focus on the scenarios
where H = 5, n = 500 and T = 4, 6. In Table 2, we report statistics about dif-
ferences in weighted deviance at convergence when comparing different parameter
initializations: random, logistic PCA and logistic SVD. We find no evidence of strong
dependence of the results on the specific initialization strategy, albeit the moderate
standard deviation suggests that it might be wise to compare different starting solu-
tions in general.

5 An optimal scoring system for material deprivation in three
European countries

Data come from the longitudinal component of the EU-statistics on income and living
conditions, the EU-Silc survey. We have data on households interviewed each year
in U.K., Italy and Greece over the period 2010-2013. We use the balanced panel,
therefore ending up with a total of n = 1199 Greek, n = 2836 Italian and n = 1298
U.K. households; each interviewed T = 4 times. Microdata as shared by EUROSTAT
include less than 0.5% missing values. For simplicity, we work with the listwise
complete cases.

The severe material deprivation indicator, defined by Eurostat (2012), corresponds
to a lack of least four of the following H = 9 items:

1. the ability to keep the house adequately warm;

2. to have one-week annual holiday away from home;

capacity to afford a meal with meat, chicken, fish or equivalent protein every second
day;

capacity to face unexpected expenses;

whether the household has a telephone;

whether the household has a color TV;

whether the household has a washing machine;

whether the household has a car;

whether the household is free of arrears on mortgage, rent, utility bills or loans.

(O8]

R

The 9-item list is fixed for all EU countries.
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Table 1 Median computation time (IQR in parenthesis), in minutes, when k = 2 and H = 5 for our model
based on the first (D1), first three (D3) and all projections (D5)

Scenario D1 D2 D5
n=500,T =4 0.47 (0.48) 1.35(1.23) 1.78 (1.42)
n=500,T =6 1.41 (2.94) 5.31(5.88) 7.05(7.19)
n=1000,T =4 2.60 (3.25) 7.43 (9.75) 10.16 (11.46)
n=1000,T =6 4.21(7.37) 12.50 (16.67) 16.16 (17.21)
n=2000,T =4 5.07 (6.23) 14.65 (10.15) 19.59 (14.19)
n=2000,T7 =6 8.90 (30.76) 30.17 (45.53) 41.01 (47.2)

Results are based on B = 500 replicates

Table2 Mean, median and standard deviation (SD) of differences in optimal weighted deviance of the first
projection when H =5,n =500, T =4,6

Random-LogPCA Random-LogSVD LogSVD-LogPCA

n=>500,T =4

Mean 0.014 —0.012 0.026
Median 0.000 0.000 0.000
SD 0.186 0.160 0.190
n=>500,T =6

Mean 0.017 —0.012 0.029
Median 0.000 0.000 —0.000
SD 0.277 0.241 0.254

Projections are obtained through different parameter initializations: random, logistic PCA (LogPCA) and
logistic SVD (LogSVD). Results are based on B = 500 replicates

To explore the impact of the assumptions behind the counting approach adopted by
Eurostat, first of all we compare the weighted deviance of unidimensional projections
of different approaches, for four panel data sets: the households of each of three
countries, and the entire data based on n = 5333 households pooled together. Results
are reported in the upper panel of Table 3.

Itis clear from Table 3 that our proposed approach (D 1) outperforms all competitors.
The heuristic method proposed in Dotto et al. (2019) does not compare well for this
data set, as it outperforms only the naive approach based on equal weighting (as
formally shown in Dotto et al. (2019)). Good results are provided by logistic PCA and
logistic SVD in terms of group separation, but D1 improves the objective function by
a minimum of 2.3% (for U.K.) to a maximum of 17% (for Greece). An advantage of
D1 it that is also more interpretable, since a latent Markov model (whose parameters
and interpretation are reported below) is estimated for the projected score.

We also evaluated our approach with time-dependent weights. This generalization
does not seem to be useful for the data at hand, though. For instance, for D1, we obtain
weighted deviances of 1.524, 1.388, 1.162 and 1.432 for Greece, Italy, U.K. and the
pooled data, respectively. Since a fourfold increase in the number of weights leads to
an increase in weighted deviance of only about 2% for Greece, and less than 1% in
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Table 3 Weighted deviance of

.. . D1 LogSVD1 LogPCA1l Naive Heur
projections for data on material
deprivation in Europe, as Greece 1493 1323 1.261 0777 0.785
obtained with different methods
Ttaly 1.378 1.300 1.232 0.606 0.615
UK. 1.161 1.138 1.083 0.519 0.562
Pooled 1.429 1.355 1.309 0.685 0.779
D2 LogSVD2 LogPCA2
Greece 2.120 1.957 1.595
Italy 1.757 1.522 1.623
U.K. 1.358 1.333 1.278
Pooled 1.744 1.609 1.551

For the first projection (upper panel), we compare our model (D1),
with logistic SVD (LogSVD1), logistic PCA (LogPCA1), the naive
approach based on equal weights (Naive) and the heuristic method of
Dotto et al. (2019) (Heur). For the second projection (lower panel), we
compare our model (D2) with logistic SVD (LogSVD2) and logistic
PCA (LogPCA2)

the other cases, we have decided not to pursue this route further. We therefore report
only results involving time-fixed weights.

Further evidence of the good ranking and classification performance of our approach
can be provided by externally validating the resulting scores. We do so through an
assessment of their association with the equivalised disposable income, and with an
indicator of the employment status (which was zero if no member of the household
was working full time). In each of the four data sets, the scores obtained with our
method were more strongly associated with these two variables than all other meth-
ods. Associations were measured through the Spearman correlation for equivalised
disposable income, and the point bi-serial correlation for employment status.

Finally, as an assessment of goodness of fit, we report squared Spearman correlation
between posterior probabilities for the material deprivation class obtained using D1
vs using the entire data. For Greece, this correlation is 0.947, for Italy 0.940, for
U.K. 0.892, for the entire data set 0.939. We can thus conclude that, after projection,
variability in the data at hand is well explained.

Optimal weights for method D1 are reported in the left panel of Table 4, as w".
In all cases, these scores can be seen as an overall measure of material deprivation,
as weights have concordant signs (with the exception of item 5 in Greece and U.K.,
whose weight is anyway close enough to zero to be deemed negligible). It can be
seen that the first four items and the last in general receive a strong weight. The fifth
to eighth item are on the other hand probably not as important for discrimination.
These items all regard possession of a good (namely: a telephone, a TV, a washing
machine and a car). The first three goods are top priority in these countries regardless
of poverty status: in the pooled data set only two households do not have at least one
telephone (for a prevalence of 0.04%), three do not have a TV (0.06%), and sixteen
(0.3%) do not have a washing machine. On the other hand, it is not surprising that
owning a car is (jointly) not discriminating poor and not poor households as in several
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Table 4 Optimal weights for the first ™M) and second (@) projection obtained with our approach in
Greece (GR), Italy (IT), U.K. and for the pooled data (Pool)

Item w® »®@
GR IT U.K. Pool GR IT UK. Pool

1 —0.294 —0.326 —0.163 —0.320 —0.024 0.616 —0.073 0.693
2 —0.397 —0.530 —0.713 —0.578 —0.024 —0.735 —0.607 —0.678
3 —0.211 —0.205 —0.176 —0.218 —0.001 0.200 —0.070 0.153
4 —0.797 —0.729 — 0.609 — 0.668 —0.296 0.179 0.784 0.170
5 0.008 — 0.006 0.010 —0.010 0.017 0.004 — 0.006 0.022
6 —0.003 — 0.008 0.001 —0.011 —0.011 —0.001 —0.001 0.019
7 —0.001 —0.024 —0.017 —0.015 0.011 0.019 0.000 0.008
8 —0.080 —0.039 —0.133 —0.063 0.028 0.017 —0.053 0.013
9 —0.263 —0.189 —0.212 —0.257 0.954 0.086 —0.063 0.082

areas a car is not needed (e.g., the metropolitan area of London) and in other (e.g.,
more rural) areas it is almost essential. Our weighting system indicates that these four
items might be eliminated from the questionnaire, at least when restricting the survey
to these countries.

Some weights are also slightly different over countries. Ability to keep the house
warm (item 1) seems important in Greece and Italy but less in U.K., where probably
heathing is a priority. On the other hand, ability to have a holiday away from home (item
2) is crucial in U.K. but less important in Italy and Greece, where holiday spots (e.g.,
the seashore in the Summer) might be close to home. Less marked, and probably less
relevant to classification, differences are seen for the other items. This suggests that,
as also noted by Dotto et al. (2019), there might be some differential item functioning
within and between countries. This needs to be tackled in order to produce meaningful
and comparable classifications.

Since the scores are used directly, estimates for & and o might not be of primary
interest. On the other hand, initial and transition probabilities provide useful informa-
tion. In Table 5, we report estimates for each country and the pooled data set. It can be
seen that risk of deprivation in a given (e.g., the initial) year is quite large, especially
in Greece, but persistent deprivation (as defined by persistence in the latent status
of deprivation for the entire observation period) is not. See Dotto et al. (2019) for a
more detailed discussion on this point. More importantly, all (homogeneous) transi-
tion matrices have slightly large values on the off-diagonal elements, with 16-24%
probability each year to move from the deprived (D) to the non-deprived (ND) status,
and 5-15% probability to move from the non-deprived to the deprived status. Over-
all, given that ip Np > erD)D in all cases, we can claim that propensity to material
deprivation has declined in each country over the observation period, from 2010 to
2013.

We conclude this section producing bi-dimensional projections, whose overall per-
centage of explained deviance is reported in the lower panel of Table 3. Once again, our
proposal outperforms the competitors. Weights for the second projection are reported
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Tablg 5 Initial (upper panel) and GR IT UK. Pool
transition (lower panel)

probabilities for the optimal D ND D ND D ND D ND
scores estimated for Greece

(GR), Ttaly (IT), U.K. and for 052 048 027 073 021 079 032 0.68
the pooled data (Pool) D 081 0.19 076 024 0.84 0.16 0.81 0.19

ND 013 087 015 085 005 095 0.11 0.89

Latent states are marked as deprived (D) and not deprived (ND) accord-
ing to propensity estimated by & (not reported)

in the right panel of Table 4. Results indicate the while the first projection is, as noted
above, a measure of overall material deprivation; the second projection has a different
slightly interpretation over the four data sets. For Greece, the second projection is
clearly just an indicator of arrears; for Italy, the second projection is contrasting item
1 with item 2, revealing preferences for poor households: the second score will have
large values for households unable to keep the house warm but going away from home
on holiday at least 1 week per year; and small values for households whose house is
warm but unable to take holidays away from home. A similar interpretation can be
given to the second score for the pooled data. Finally, for U.K. the second score is
contrasting item 4 with item 2, which has a similar interpretation to the Italian second
score after item 1 (which is top priority in U.K.) is replaced with item 4.

6 Conclusions

It is intuitive and clearly demonstrated in this work and in Dotto et al. (2019) that
oftentimes obtaining linear combinations through equal weighting might be inefficient.

We have proposed a method to perform dimension reduction and clustering of
continuous, discrete, nominal and binary multivariate outcomes repeatedly observed
over time. Our proposal can also very naturally work with multivariate outcomes of
mixed nature (e.g., continuous and binary). The method is based on optimization
of a measure of separation of the latent clusters. A by-product of our approach is a
vector of parameter estimates for a latent Markov model, which the linear projection is
assumed to follow. The projected scores can be simply used as new variables, as usual.
Clustering is also a natural by-product, given that subjects can be assigned to a latent
state using estimated posterior probabilities for the underlying latent Markov model. A
simple alternative is to directly threshold the scores. This might be convenient in order
to efficiently assign new observations to clusters. We have not discussed for brevity
how to do so and point the reader to references like Zheng and Heagerty (2004) and
Barbati and Farcomeni (2018). Clearly, score thresholding is useful only when at least
some labels are observed.

In our implementation, we have used a specific measure of group separation, given
in (3). Expression (3) gives an absolute measure of variability, while a relative measure
is obtained by expressing the model as a function of class-specific variances and taking
those into account. Use of other group variation functions is straightforward given our
numerical outer optimization strategy. In our example and a subset of simulations, we
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have seen that use of other measures, anyway, does not modify the comparative merits
of our proposal with respect to other methods like logistic PCA and logistic SVD.

In summary, we have presented a method for dimension reduction in longitudinal
data of mixed type that leads to new variables as linear combinations of the multi-
variate outcome. Unlike similar approaches, the method can deal quite simply with
repeated measures, use of weights allows us to compute projected measurements on
new subjects directly, and the underlying latent Markov model is interpretable and
naturally leads to cluster labels (e.g., poor/not poor). Optimization of an objective
function leads to optimal separation by construction.

Further improvements in our approach can be made by tackling the following
assumptions. First of all, our approach is parametric in nature, being based on the
assumption that linear combinations are Gaussian and follow a latent Markov model.
Secondly, being based on nested optimizations (an inner optimization for estimating
the parameters of each latent Markov model, and an outer optimization for the weights),
it is computationally intense. In our implementation, we have used Fortran routines
of the R package LMest (Bartolucci et al. 2015), and computational times are more
than reasonable for the real and simulated examples shown; but we do not expect this
approach to scale well to much larger data sets. Finally, the assumption that weights
are orthogonal is useful for interpretation and for having the possibility of plotting
scores. On the other hand, interpretation might be difficult in certain applications. One
possibility is to put forward a pseudo-rotation, by relaxing orthogonality constraints.
This can be done for instance by penalizing the objective function for the degree of
non-orthogonality of the weights (e.g., Farcomeni 2017).

Acknowledgements Open access funding provided by Universita degli Studi di Roma La Sapienza within
the CRUI-CARE Agreement. The authors are grateful to two referees for constructive comments.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aitchison J (2011) The statistical analysis of compositional data. Monographs on statistics and applied
probability. Springer, New York

Anderson G, Farcomeni A, Pittau MG, Zelli R (2019a) Multidimensional nation wellbeing, more equal yet
more polarized: an analysis of the progress of human development since 1990. J Econ Dev 44:00-11

Anderson G, Farcomeni A, Pittau MG, Zelli R (2019b) Rectangular latent Markov models for time-specific
clustering, with an analysis of the well being of nations. J R Stat Soc (Ser C) 68:603-621

Ando T, Bai J (2017) Clustering huge number of financial time series: a panel data approach with high-
dimensional predictors and factor structures. J Am Stat Assoc 112:1182-1198

Atkinson AB (2003) Multidimensional deprivation: contrasting social welfare and counting approaches. J
Econ Inequal 1:51-65

@ Springer


http://creativecommons.org/licenses/by/4.0/

Dimension reduction for longitudinal multivariate data... 479

Bai J, Wang P (2015) Identification and Bayesian estimation of dynamic factor models. J Bus Econ Stat
33:221-240

Barbati G, Farcomeni A (2018) Prognostic assessment of repeatedly measured time-dependent biomarkers,
with application to dilated cardiomyopathy. Stat Methods Appl 27:545-557

Bartolucci F, Farcomeni A (2015) A discrete time event-history approach to informative drop-out in mixed
latent Markov models with covariates. Biometrics 71:80-89

Bartolucci F, Farcomeni A (2019) A shared-parameter continuous-time hidden Markov and survival model
for longitudinal data with informative drop-out. Stat Med 38:1056-1073

Bartolucci F, Farcomeni A, Pandolfi S, Pennoni F (2015) LMest: an R package for latent Markov models
for categorical longitudinal data. arXiv:1501.04448

Bartolucci F, Farcomeni A, Pennoni F (2013) Latent Markov models for longitudinal data. CRC Press, Boca
Raton

Bartolucci F, Farcomeni A, Pennoni F (2014) Latent Markov models: a review of a general framework for
the analysis of longitudinal data with covariates (with discussion). TEST 23:433-486

Bulla J, Lagona F, Maruotti A, Picone M (2012) A multivariate hidden Markov model for the identification
of sea regimes from incomplete skewed and circular time series. J Agric Biol Environ Stat 17:544-567

Cafiero C, Viviani S, Nord M (2018) Food security measurement in a global context: the food insecurity
experience scale. Meas J 116:146-152

Cagnone S, Viroli C (2012) A factor mixture analysis model for multivariate binary data. Stat Model
12:257-277

Chen L, Wang W, Wu WB (2020) Dynamic semiparametric factor model with structural breaks. J Bus Econ
Stat. https://doi.org/10.1080/07350015.2020.1730857

Collins M, Dasgupta S, Shapire RE (2002) A generalization of principal component analysis to the expo-
nential family. In: Proceedings of the 14th international conference on neural information processing
systems: natural and synthetic, pp 617-624

De Andrade DF, Tavares HR (2005) Item response theory for longitudinal data: population parameter
estimation. J Multivar Anal 10:157-69

de Leeuw J (2006) Principal component analysis of binary data by iterated singular value decomposition.
Comput Stat Data Anal 50:21-39

Deheuvels P, Puri ML, Ralescu SS (1989) Asymptotic expansions for sums of nonidentically distributed
Bernoulli random variables. ] Multivar Anal 28:282-303

Dias JG, Vermunt JK, Ramos S (2015) Clustering financial time series: new insights from an extended
hidden Markov model. Eur J Oper Res 243:852-864

Dotto F, Farcomeni A, Pittau MG, Zelli R (2019) A dynamic inhomogeneous latent state model for measuring
material deprivation. J R Stat Soc (Ser A) 182:495-516

Eurostat (2012). Measuring material deprivation in the EU: indicators for the whole population and child-
specific indicators. Technical reports, Methodologies and working papers. Publications Office of the
European Union, Luxembourg

Farcomeni A (2015) Generalized linear mixed models based on latent Markov heterogeneity structures.
Scand J Stat 42:1127-1135

Farcomeni A (2017) Penalized estimation in latent Markov models, with application to monitoring serum
Calcium levels in end-stage kidney insufficiency. Biom J 59:1035-1046

Geraci M, Farcomeni A (2018) Principal component analysis in the presence of missing data. In: Naik G
(ed) Advances in principal component analysis. Springer, Singapore, pp 47-70

Hall P, Muller H-G, Wang J-L (2006) Properties of principal component methods for functional and longi-
tudinal data analysis. Ann Stat 34:1483-1517

Hong Y (2013) On computing the distribution function for the Poisson-binomial distribution. Comput Stat
Data Anal 59:41-51

Jiang C-R, Wang J-L (2010) Covariate adjusted functional principal components analysis for longitudinal
data. Ann Stat 38:1194-1226

Jung RC, Liesenfeld R, Richard J (2011) Dynamic factor models for multivariate count data: an application
to stock-Market trading activity. J Bus Econ Stat 29:73-85

Landgraf AJ, Lee Y (2015) Dimensionality reduction for binary data through the projection of natural
parameters. arXiv:1510.06112

Lee S, Huang JZ, Hu J (2010) Sparse logistic principal components analysis for binary data. Ann Appl Stat
4:1579-1601

@ Springer


http://arxiv.org/abs/1501.04448
https://doi.org/10.1080/07350015.2020.1730857
http://arxiv.org/abs/1510.06112

480 A. Farcomeni et al.

Linacre JM (2009) Local independence and residual covariance: a study of olympic figure skating ratings.
J Appl Meas 10:157-69

Magidson J (1981) Qualitative variance, entropy, and correlation ratios for nominal dependent variables.
Soc Sci Res 10:177-194

Marino MF, Alf6 M (2015) Latent drop-out based transitions in linear quantile hidden Markov models for
longitudinal responses with attrition. Adv Data Anal Classif 9:483-502

Marino MF, Tzavidis N, Alfé M (2018) Mixed hidden Markov quantile regression models for longitudinal
data with possibly incomplete sequences. Stat Methods Med Res 27:2231-2246

Maruotti A (2015) Handling non-ignorable dropouts in longitudinal data: a conditional model based on a
latent Markov heterogeneity structure. TEST 24:84-109

Maruotti A, Bulla J, Lagona F, Picone M, Martella F (2017) Dynamic mixtures of factor analyzers to
characterize multivariate air pollutant exposures. Ann Appl Stat 11:1617-1648

Najera Catalan HE (2017) Multiple deprivation, severity and latent sub-groups: advantages of factor mixture
modelling for analysing material deprivation. Soc Indic Res 131:681-700

Punzo A, Maruotti A (2016) Clustering multivariate longitudinal observations: the contaminated Gaussian
hidden Markov model. J] Comput Graph Stat 25:1097-1098

Scrucca L (2013) GA: a package for genetic algorithms in R. J Stat Softw 53:1-37

Sen AK (1981) Poverty and famines: essay on entitlement and deprivation. Clarendon Press, Oxford

Song X, Xia Y, Zhu H (2017) Hidden Markov latent variable models with multivariate longitudinal data.
Biometrics 73:313-323

Steinley D, Henson R (2005) OCLUS: an analytic method for generating clusters with known overlap. J
Classif 22:221-250

Vermunt JK, Magidson J (2016) Technical guide for latent GOLD 5.1: basic, advanced, and syntax. Statistical
Innovations Inc., Belmont

Vogelsmeier LVDE, Vermunt JK, van Roekel E, De Roover K (2019) Latent Markov factor analysis for
exploring measurement model changes in time-intensive longitudinal studies. Struct Equ Model Mul-
tidiscip J 26:557-575

Xia Y, Tang N-S, Gou J-W (2016) Generalized linear latent models for multivariate longitudinal measure-
ments mixed with hidden Markov models. J Multivar Anal 152:259-275

Yamamoto M, Hayashi K (2015) Clustering of multivariate binary data with dimension reduction via L{-
regularized likelihood maximization. Pattern Recogn 48:3959-3968

Zheng Y, Heagerty P (2004) Semiparametric estimation of time-dependent ROC curves for longitudinal
marker data. Biostatistics 5:615-632

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models
	Abstract
	1 Introduction
	2 Basic model for binary outcomes
	2.1 Optimal dimension reduction
	2.2 Optimal multidimensional projections
	2.3 Goodness of fit

	3 General model for mixed outcomes and extensions
	3.1 Time-dependent weights

	4 Simulations
	5 An optimal scoring system for material deprivation in three European countries
	6 Conclusions
	Acknowledgements
	References




