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Abstract
Point prediction of future upper record values is considered. For an underlying abso-
lutely continuous distributionwith strictly increasing cumulative distribution function,
the general form of the predictor obtained by maximizing the observed predictive
likelihood function is established. The results are illustrated for the exponential,
extreme-value and power-function distributions, and the performance of the obtained
predictors is compared to that of maximum likelihood predictors on the basis of the
mean squared error and the Pitman’s measure of closeness criteria. For exponential
and extreme-value distributions, it is shown that under slight restrictions, the maxi-
mum observed likelihood predictor outperforms the maximum likelihood predictor in
terms of both performance criteria.

Keywords Maximum likelihood prediction · Maximum observed likelihood
prediction · Upper record values · Exponential distribution · Extreme-value
distribution · Power-function distribution

Mathematics Subject Classification 62F99 · 62M20

1 Introduction

Let X1, X2, . . . be an infinite sequence of independent and identically distributed
(i.i.d.) random variables with continuous cumulative distribution function (cdf) F .
An observation X j is called an (upper) record value, provided it is greater than all
previously observed values. More specifically, defining the record times as
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L(1) = 1, L(n + 1) = min{ j > L(n) | X j > XL(n)}, n ∈ N,

the sequence (Rn)n∈N = (XL(n))n∈N is referred to as the sequence of (upper) record
values based on (Xn)n∈N (see Arnold et al. 1998; Nevzorov 2001).

Record values, first studied by Chandler (1952), provide a natural model for the
sequence of successive extremes in an i.i.d. sequence of random variables. In mathe-
matical reliability theory, record values appear in the context ofminimal repair systems
(see Gupta and Kirmani 1988). There is also a close connection between the occur-
rence times of a nonhomogeneous Poisson process (NHPP) and record values. Indeed,
by the results in Gupta and Kirmani (1988), under very mild conditions, the epoch
times of a NHPP and record values are equal in distribution.

The problem of predicting a future record value Rs based on the observed record
values R1, . . . , Rr , r < s has been studied by several authors. As far as non-Bayesian
prediction is concerned,most of the proposed predictors have been derived by applying
well-known prediction procedures that have previously been applied in the context of
other models of ordered data. Specifically for one-sample prediction of record values,
we refer to Raqab (2007), where the best linear unbiased predictor, the best linear
equivariant predictor, the maximum likelihood predictor (MLP) as well as the condi-
tional median predictor of the sth record value Rs based on a Type II left-censored
sample from the two-parameter exponential distribution are derived. His results sup-
plement and generalize the results of Ahsanullah (1980), Basak and Balakrishnan
(2003) and Nagaraja (1986, Section 4). A comparative study of several predictors
of the sth record value Rs based on the first r observed record values from the one-
parameter exponential distribution can be found inAwad andRaqab (2000).Maximum
likelihood prediction of future Pareto record values is studied in Raqab et al. (2007).
Moreover, since the record value model is contained in the generalized order statistics
model (see Kamps 1995), all results pertaining to prediction of future generalized
order statistics can be specialized to solve the prediction problem for record values
(see, e.g., Burkschat 2009). Bayesian predictionmethods for future record values were
first discussed byDunsmore (1983) and have subsequently been applied to various dis-
tribution families. For these results, we refer to, e.g., Madi and Raqab (2004), Ahmadi
and Doostparast (2006) and Nadar and Kızılaslan (2015).

As specifically for likelihood-based prediction methods, the maximum likelihood
prediction procedure (see Kaminsky and Rhodin 1985) has received a great deal of
attention in the literature.Applying a likelihood-based predictionmethod in the context
of an ordered data model has so far been synonymous with applying the maximum
likelihood prediction procedure. In this paper, an alternative maximum likelihood
predictor, the maximum observed likelihood predictor (MOLP), is proposed and sub-
sequently applied to predict future record values. Contrary to the maximum likelihood
prediction procedure, the newmethod allows to derive the general formof the predictor
as a function of the estimator of the underlying distributional parameters. Moreover,
the obtained predictors outperform the MLP, which is illustrated by means of com-
paring MOLPs and MLPs of future exponential and extreme-value record values in
terms of mean squared error and Pitman’s measure of closeness. For properties of the
MOLP, when the underlying distribution is assumed to be a Pareto, Lomax or Weibull
distribution, we refer to Volovskiy (2018).
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1074 G. Volovskiy, U. Kamps

2 Maximum observed likelihood prediction procedure

Let X,Y be absolutely continuous random variables with values inRp andR, respec-
tively, and joint probability density function f X,Y

θ known up to a parameter vector
θ ∈ � ⊆ R

d . Random variable X models observed data, while Y stands for a yet-not-
observed value to be predicted using a predictor π(X). In non-Bayesian prediction
setups, a natural approach to finding a predictor for Y based on X has been to define a
generalized (parametric) likelihood function that can be used to solve statistical prob-
lems involving both fixed unknown parameters and unobserved random variables. In
Bayarri et al. (1987), the authors consider the functions

L rv(y, θ |x) = f X,Y
θ (x, y) and Lobs(y, θ |x) = f X|Y

θ (x|y),

in what follows to be called predictive likelihood function (PLF) and observed predic-
tive likelihood function (OPLF), respectively, as possible extensions of the classical
parametric likelihood function and implement the maximum likelihood principle to
obtain an estimate for θ and a prediction value for Y . They compare the proposed
likelihood functions by comparing the estimates and prediction values obtained from
them. By way of a slightly contrived example (see Bayarri et al. 1987, Section 2),
the authors demonstrate that the maximum likelihood method applied to either L rv or
Lobs does not yield reasonable results in general, which led them to conclude that no
general definition of a likelihood function can be given, only to argue in Bayarri and
DeGroot (1988) in favor of Lobs.

There has also been an attempt to justify the use of either L rv or Lobs for deriving
predictive inferences by using arguments from the theoretical foundations of statis-
tical inference. In parametric inference, Fisher’s likelihood function is pivotal to the
formulation of the likelihood principle, and it is Birnbaum’s theorem (see Birnbaum
1962), which establishes the equivalence of the likelihood principle and the sufficiency
and conditionality principles, that can be seen as providing the theoretical justifica-
tion for the choice of Fisher’s likelihood function as a basis for parametric statistical
analysis. For an in-depth discussion of the likelihood principle and Birnbaum’s the-
orem, we refer the reader to the monograph by Berger and Wolpert (1988). It has
been recognized that Birnbaum’s result can serve as a guidance in generalizing the
parametric likelihood beyond the case of parametric inference by requiring that the
likelihood function be specified in such a way that the equivalence of the likelihood
principle and the suitably modified sufficiency and conditionality principles continues
to hold. This programwas realized by Bjørnstad (1996) and Nayak and Kundu (2002).
However, while the analysis in Bjørnstad (1996) provides a justification for L rv as a
general specification of the likelihood function, the discussion in Nayak and Kundu
(2002) favors Lobs. Evidently, the generalizations of the sufficiency and conditionality
principles proposed by Bjørnstad (1996) and Nayak and Kundu (2002) do not accord.

Certainly, the example in Bayarri et al. (1987, Section 2) can be understood to
advise caution against careless application of classical likelihood methods when the
likelihood function is extended to include random variables. However, one may also
take the view that likelihood functions L rv and Lobs are tools, albeit not of universal
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applicability, that can serve to derive predictors. This intention was behind the intro-
duction of the maximum likelihood prediction procedure by Kaminsky and Rhodin
(1985), which we briefly recall in the following definition.

Definition 2.1 Suppose πMLP : (Rp,B p) → (R,B) and θ̂ML : (Rp,B p) →
(�,Bd|�) are functions such that for any x ∈ R

p

L rv(πMLP(x), θ̂ML(x)|x) = max
(y,θ)∈R×�

L rv(y, θ |x).

Then, we call πMLP(X) and θ̂ML(X) maximum likelihood predictor (MLP) of Y and
predictive maximum likelihood estimator (PMLE) of θ , respectively.

Since its introduction, the maximum likelihood prediction procedure has become a
standard method in models of ordered data. It was applied to the prediction of record
values (see, e.g., Basak andBalakrishnan 2003), prediction of failure times of censored
units in a progressive censoring procedure (see, e.g., Balakrishnan and Cramer 2014,
Chapter 16) and generalized order statistics (see, e.g., Raqab 2001). Further references
will be provided in Sect. 3. Apart from prediction based on ordered data, the method
was applied to solve prediction problems in actuarial mathematics (see Kaminsky
1987). Contrary to prediction based on L rv, to the best of our knowledge, prediction
based onmaximization of Lobs has received no attention apart from the articles focused
on the foundations of statistics cited above. We propose to reconsider the approach by
introducing the following Lobs-based prediction procedure:

Definition 2.2 Suppose πMOLP : (Rp,B p) → (R,B) and θ̂MOL : (Rp,B p) →
(�,Bd|�) are functions such that for any x ∈ R

p,

Lobs(πMOLP(x), θ̂MOL(x)|x) = max
(y,θ)∈R×�:
f Y
θ

(y)>0

Lobs(y, θ |x).

Then, πMOLP(X) and θ̂MOL(X) are termed maximum observed likelihood predictor
(MOLP) of Y and predictive maximum observed likelihood estimator (PMOLE) of θ ,
respectively.

The parameter θ may (partly) disappear from the function Lobs (see an example in
Bayarri et al. 1987, Section 2), in which case Lobs does not provide guidance as to
the (complete) choice of an estimator for θ , i.e., θ̂MOL may, except for the restriction
that it takes values in �, be (in part) arbitrary. Thus, apart from the situation when the
set of parameters present in Lobs coincides with the subset of parameters that are of
inferential interest, in general, the predictive maximum observed likelihood estimator
of θ aims at ensuring the predictor of Y exists uniquely. A similar conclusion is also
valid with respect to the predictive maximum likelihood estimator, which stems from
the fact that, in general, θ̂ML is determined by Y and thus hardly can be considered a
“sound” estimator of θ . The maximum observed likelihood prediction procedure will
be applied to the prediction problem of future record values in the following section.
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1076 G. Volovskiy, U. Kamps

3 Prediction of future record values

Let (Rn)
∞
n=1 be the sequence of record values in a sequence of i.i.d. random variables

with absolutely continuous cdf Fθ and density function fθ , θ ∈ � ⊆ R
d , d ∈ N. In

the present section, we aim to provide sufficient conditions for the existence of the
MOLP of Rs based on R� = (R1, . . . , Rr ), r , s ∈ N, r < s.

It turns out that due to the structure of the observed predictive likelihood function,
the problem of finding theMOLP and the PMOLE can be reduced to that of finding the
PMOLE. In order to derive the observed predictive likelihood function, we will need
explicit expressions for the density functions of the distributions of R� and Rs as well
as of the conditional distribution of Rs given Rr = x . These are summarized in the
following lemma (see, e.g., Arnold et al. 1998). In what follows, we use the notational
convention that for an interval I ⊆ R and n ∈ N, I n< = {(x1, . . . , xn) ∈ I n | x1 <

· · · < xn}. Moreover, the left and right endpoints of the support of a distribution with
cdf F are denoted, respectively, byα(F) andω(F). Throughout, for cdf F with density
function f , h denotes the hazard rate function defined by h(x) = f (x)/(1 − F(x)),
for x < ω(F).

Lemma 3.1 Let (Rn)
∞
n=1 be the sequence of record values in a sequence of i.i.d. random

variables with absolutely continuous cdf F and density function f . Then, for r , s ∈ N,
r < s, the density functions of the distributions of R� = (R1, . . . , Rr ), Rs as well as
the conditional distribution of Rs given Rr = x, x ∈ (−∞, ω(F)), are given by

f R� (x) =
(
r−1∏
i=1

h(xi )

)
f (xr )1[α(F),ω(F))r (x), x = (x1, . . . , xr ) ∈ R

r
<,

f Rs (y) = 1

(s − 1)! f (y)(− ln(1 − F(y)))s−11[α(F),ω(F))(y), y ∈ R,

f Rs |Rr (y|x) = f (y)/(s − r − 1)!
1 − F(x)

(
ln

(
1 − F(x)

1 − F(y)

))s−r−1

1(x,ω(F))(y), y ∈ R.

Since, by assumption, for all θ ∈ �, the underlying cdf Fθ is continuous, the
sequence (Rn)

∞
n=1 possesses the Markov property. Hence, by adopting the convention

that 0/0 := 0, the observed predictive likelihood function of Rs and θ given R� = x�,
x� = (x1, . . . , xr ) ∈ R

r
<, can be expressed as

Lobs(xs, θ |x�) = f R�

θ (x�) f
Rs |Rr
θ (xs |xr )/ f Rs

θ (xs), xs ∈ R, θ ∈ �.

From this expression along with Lemma 3.1, we obtain that for a given x� ∈ R
r
<, and

xs ∈ R, θ ∈ �, the observed predictive likelihood function satisfies

Lobs(xs, θ |x�) ∝
(

r∏
i=1

hθ (xi )

(− ln(1 − Fθ (xr )))

) (
1 − Gθ ,xs (xr )

)s−r−1 (
Gθ ,xs (xr )

)r
× 1[α(Fθ ),ω(Fθ ))r×(xr ,ω(Fθ ))(x�, xs), (1)

where for x ≤ y < ω(Fθ ), Gθ ,y(x) = ln(1 − Fθ (x))/ ln(1 − Fθ (y)).
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Remark 3.1 (i) The OPLF can be rewritten as

Lobs(xs, θ |x�) ∝
r∏

i=1

G ′
θ ,xs (x)|x=xi

(
1 − Gθ ,xs (xr )

)s−r−1

× 1[α(Fθ ),ω(Fθ ))r×(xr ,ω(Fθ ))(x�, xs), xs ∈ R, θ ∈ �. (2)

This representation is related to the fact that the conditional distribution of R� =
(R1, . . . , Rr ) given Rs = y, y ∈ (α(Fθ ), ω(Fθ )), coincides with the distribution
of the first r ordinary order statistics from a sample of s−1 i.i.d. random variables
with cdfGθ ,y (see alsoKeseling 1999,Remark 1.17). From representation (2),we
see that a sub-parameter θi of the parameter vector θ = (θ1, . . . , θd) ∈ R

d is not
estimable by themethod of observed predictive likelihoodmaximization if it does
not appear in any of the functions (x, y) 	→ Gθ ,y(x), (x, y) ∈ (α(Fθ ), ω(Fθ ))

2
<

parameterized by θ ∈ �. As an example, consider the two-parameter exponen-
tial distribution. Then, θ = (μ, σ ) ∈ R × R+ and, for y > μ, Gθ ,y(x) = x−μ

y−μ
,

for x ≤ y, and Gθ ,y(x) = 1 otherwise. Consequently, the method of observed
predictive likelihood maximization cannot produce a meaningful estimator for
the sub-parameter σ . However, this parameter dropout does not affect the useful-
ness of the method as a vehicle for deriving predictors for future record values
as evidenced by Theorem 3.1.

(ii) For k ∈ N, the observed predictive likelihood function (1) coincides with the
observed predictive likelihood function of R(k)

s and θ given (R(k)
1 , . . . , R(k)

r ) =
(x1, . . . , xr ), where (R(k)

n )n∈N denotes the sequence of kth record values in a
sequence of i.i.d. random variables with cdf Fθ (see Dziubdziela and Kopociński
1976). This follows from the fact that kth record values in a sequence of i.i.d. ran-
dom variables with cdf F are equal in distribution to record values in a sequence
of i.i.d. random variables with cdf F1:k = 1 − (1 − F)k (see Arnold et al. 1998,
p. 43).

In the following, for x� ∈ R
r
<, Ψ (·|x�) denotes the function given by

Ψ (θ |x�) =
(

r∏
i=1

hθ (xi )

(− ln(1 − Fθ (xr )))

)
1[α(Fθ ),ω(Fθ ))r (x�), θ ∈ �. (3)

In Theorem 3.1, the assumption r + 1 < s is made. This is due to the fact that, for
s = r +1, if a MOLP exists, it is necessarily given by π

(s)
MOLP = Rr . Thus, in this case,

the maximum observed likelihood prediction method does not produce a reasonable
predictor. We refer to Remark 3.2 (iii) for more details.

Theorem 3.1 For s ≥ 3, let R1, . . . , Rs be the first s record values in a sequence of
i.i.d. random variables with cdf Fθ , which, for all θ ∈ �, is assumed to be absolutely
continuous and strictly increasing on its support. Moreover, for r ∈ N, r < s − 1, let
R� = (R1, . . . , Rr ) and let θ̂ : (Rr ,Br ) → (�,Bd|�) be a function with the property

Ψ (θ̂(x�)|x�) = max
θ∈�

Ψ (θ |x�), x� ∈ R
r
<, (4)
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1078 G. Volovskiy, U. Kamps

where Ψ is given in (3). Then, a MOLP π
(s)
MOLP of Rs and a PMOLE θ̂MOL of θ based

on R� are given by

π
(s)
MOLP = F−1

θ̂MOL

(
1 − (1 − F

θ̂MOL
(Rr ))

s−1
r

)
and θ̂MOL = θ̂(R�). (5)

Proof The aim is to maximize the observed predictive likelihood function of Rs and
θ given R� = x�, x� ∈ R

r
<. Fix some x� ∈ R

r
<. Then, by the assumed property (4)

of θ̂ , we have that, for θ ∈ � and xs ∈ (xr , ω(Fθ )),

Lobs(xs, θ |x�) ∝ Ψ (θ |x�)
(
1 − Gθ ,xs (xr )

)s−r−1 (
Gθ ,xs (xr )

)r
≤ Ψ (θ̂(x�)|x�)

(
1 − Gθ ,xs (xr )

)s−r−1 (
Gθ ,xs (xr )

)r
.

Now, using the well-known expression for the mode of the probability density of a
beta distribution with parameters s−r and r +1, which by assumption are larger than
1, as well as the assumed strict monotonicity of Fθ for all θ ∈ �, we obtain that, for
any θ ∈ �, the function

lθ (xs) = (
1 − Gθ ,xs (xr )

)s−r−1 (
Gθ ,xs (xr )

)r
,

xs ∈ (xr , ω(Fθ )), possesses a unique maximum point, which is obtained as a unique
solution of the equation Gθ ,xs (xr ) = r

s−1 with respect to xs ∈ (xr , ω(Fθ )). The

solution of this equation is given by xs(θ , x�) = F−1
θ (1−(1−Fθ (xr ))

s−1
r ). Moreover,

we have that

lθ (xs(θ, x�)) = ((s − r − 1)/(s − 1))s−r−1(r/(s − 1))r

independently of θ . Combining the preceding results yields that Lobs(xs, θ |x�) ≤
Lobs(xs(θ̂(x�), x�), θ̂(x�)|x�), for all xs ∈ (xr , ω(Fθ )), θ ∈ �. Since x� was arbi-
trary, this shows that the predictor of Rs and the estimator of θ as defined in (5) are
indeed the MOLP of Rs and the PMOLE of θ . Thus, the proof is complete. ��
Remark 3.2 (i) Since the quantity lθ (xs(θ , x�)) in the proof of Theorem 3.1 does not

depend on θ , the existence of a function θ̂ satisfying (4) is also necessary for the
existence of a MOLP.

(ii) On inspecting the proof ofTheorem3.1,wefind that under the stated assumptions,
if any two measurable functions θ̂ i : (Rr ,Br ) → (�,Bd|�), i = 1, 2, satisfying

(4)with θ̂ replaced by θ̂ i , i = 1, 2, coincide P R�

θ -almost surely, then theMOLPof

Rs based on R� = (R1, . . . , Rr ) is also P
R�

θ −almost surely uniquely determined.
(iii) It is possible to obtain a predictor by themethod of observed predictive likelihood

maximization also in the case that s = r+1 by replacing the factor1(xr ,ω(Fθ ))(xs)

in (1) by1[xr ,ω(Fθ ))(xs). However, this modification leads to theMOLPπ
(s)
MOLP =

Rr , i.e., the last observed records value, which is certainly not a useful predictor.
Aiming at comparing the MOLP with the MLP, we point out that, in all the
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examples we will consider in the following subsections, the predictor produced
by the method of predictive likelihood maximization is also given by the last
observed record value. This problem can be overcome by using another method
of prediction or by applying appropriate prediction intervals (cf., e.g., Awad and
Raqab 2000).

(iv) Since function Ψ in (3) does not depend on s, the PMOLE of θ does not depend
on s, either. Hence, θ̂MOL does not depend on which future record value one aims
at predicting. We point out that the PMLE is not guaranteed to be free of the
deficiency of depending on which future record is to be predicted. The occur-
rence of this shortcoming with estimators produced by the method of predictive
likelihood maximization was observed by Bayarri et al. (1987, p. 8).

In the following subsections, we derive the MOLP and the MLP for future record
values from different underlying distributions and compare their performance in terms
of themean squared error aswell as Pitman’smeasure of closeness. As far as prediction
in models of ordered data is concerned, Nagaraja (1986, Sections 3 and 4) was one of
the first to use Pitman’s measure of closeness as an alternative criterion to the mean
squared error in a comparative study of predictors of future order statistics and record
values.

3.1 Exponential distribution

Here, we assume that (Rn)n∈N is the sequence of record values in a sequence
of i.i.d. two-parameter exponential random variables. The density, cumulative dis-
tribution and quantile functions of the exponential distribution Exp(μ, σ ) with
location parameter μ ∈ R and scale parameter σ ∈ R+ are given by fθ (x) =
exp {−(x − μ)/σ } /σ, Fθ (x) = 1− exp {−(x − μ)/σ } , x ∈ [μ,∞) and F−1

θ (x) =
μ−σ ln(1−x), x ∈ [0, 1),where θ = (μ, σ ) ∈ R×R+. Next, for r , s ∈ N, r < s−1,
we derive the MOLP and present the MLP of Rs based on R� = (R1, . . . , Rr ).

The results concerning the form of the MOLP of Rs are contained in the following
proposition.

Proposition 3.1 For s ∈ N, let R1, . . . , Rs be the first s record values in a sequence
of i.i.d. two-parameter exponential random variables.

(i) If μ is known, for r , s ∈ N, 1 ≤ r < s − 1, the unique MOLP of Rs based on R�

is given by

π
(s)
MOLP = Rr + (Rr − μ)

s − r − 1

r
.

(ii) If μ is unknown, for r , s ∈ N, 2 ≤ r < s − 1, the unique MOLP of Rs based on
R� is given by

π
(s)
MOLP = Rr + (Rr − R1)

s − r − 1

r
.

The PMOLE of μ has the form μ̂MOL = R1.
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Proof Assume that μ is unknown. With the above choice of fθ and Fθ , the function
Ψ (·|x�), x� ∈ R

r
<, in (3) becomes

Ψ (θ |x�) = 1

(xr − μ)r
1(−∞,x1](μ), μ ∈ R, σ ∈ R+. (6)

As the scale parameterσ is not present inΨ ,weonly need tofind amaximizing function
with respect to μ. Let θ̂(x�) = (σ̂ (x�), x1), where σ̂ is an arbitrary measurable
function on R

r
< with values in R+. Then, assuming that r ≥ 2, θ̂ satisfies (4) with

Ψ (·|x�) given by (6). Combining this with the fact that

F−1
θ

(
1 − (1 − Fθ (Rr ))

s−1
r

)
= μ + (Rr − μ)

s − 1

r

yields that

π
(s)
MOLP = R1 + (Rr − R1)

s − 1

r
= Rr + (Rr − R1)

s − r − 1

r

is the unique maximum observed likelihood predictor of Rs based on R�. Finally, we
note that for known μ, the derivation of the predictor proceeds along the same lines.
The details are omitted. ��

From the results of Basak and Balakrishnan (2003), it follows that the MLP of Rs

based on R� has the slightly different form

π
(s)
MLP = Rr + (Rr − μ)

s − r − 1

r + 1
,

if μ is known, and

π
(s)
MLP = Rr + (Rr − R1)

s − r − 1

r + 1
,

if μ is unknown.

3.1.1 Comparison based on the MSE

The mean squared errors of the MOLPs are given in the following lemma, where
MSE(π

(s)
MOLP) = E((π

(s)
MOLP − Rs)

2).

Lemma 3.2 For s ∈ N, let R1, . . . , Rs be the first s record values in a sequence of
i.i.d. two-parameter exponential random variables.

(i) If μ is known, for r , s ∈ N, 1 ≤ r < s − 1, the MSE of the MOLP of Rs based on
R� is given by

MSE(π
(s)
MOLP) = σ 2 (s − 1)(s − r − 1) + 2r

r
.
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(ii) If μ is unknown, for r , s ∈ N, 2 ≤ r < s − 1, the MSE of the MOLP of Rs based
on R� is given by

MSE(π
(s)
MOLP) = σ 2 (s − r + 1)(s − 1)

r
.

Proof We present the derivation of the MSE in the case of unknown μ only. The proof
of the other case proceeds along the same lines. We have

MSE(π
(s)
MOLP)/σ

2 = 1

σ 2 E((Rs − Rr )
2) − 2

s − r − 1

σ 2r
E(Rs − Rr )E(Rr − R1)

+ 1

σ 2

(
s − r − 1

r

)2

E((Rr − R1)
2)

= (s − r + 1)(s − 1)

r
.

��
By the results in Basak and Balakrishnan (2003), the MSE of the MLP is given by

MSE(π
(s)
MLP) = σ 2 s(s − r + 1)

r + 1
,

if μ is known, and by

MSE(π
(s)
MLP) = σ 2 s(3(s − r) + (s − r + 1)r − 1)

(r + 1)2
,

if μ is unknown. As for the relative performance of the predictors in terms of mean
squared error, we have the following result. For an unknown location parameter, the
MOLP turns out to have smaller MSE than the MLP, throughout.

Proposition 3.2 For s ∈ N, let R1, . . . , Rs be the first s record values in a sequence
of i.i.d. two-parameter exponential random variables. Moreover, let π(s)

MOLP and π
(s)
MLP

be the MOLP and the MLP of Rs based on R�, respectively.

(i) If μ is known, for r , s ∈ N, 1 ≤ r < s − 1,

MSE(π
(s)
MOLP) < MSE(π

(s)
MLP) if and only if s < 3r + 1.

(ii) If μ is unknown, for r , s ∈ N, 2 ≤ r < s − 1,

MSE(π
(s)
MOLP) < MSE(π

(s)
MLP).

Proof Again, we present only the proof of the case of unknown μ. Simple algebra
yields

MSE(π
(s)
MLP) − MSE(π

(s)
MOLP)

σ 2 = (r − 1)(s + r + 1)(s − r − 1)

r(r + 1)2
> 0.
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(b) µ unknown

Fig. 1 Contour plot of the relative efficiency RE(MOLP,MLP) = MSE(π
(s)
MLP)/MSE(π

(s)
MOLP) of the

MLP of Rs relative to the MOLP of Rs based on two-parameter exponential record values R� for all valid
combinations of r and s in the range 1–200 with s = r + 1 omitted

Hence, the MOLP has a smaller MSE than the MLP with no restrictions on r and s.
Thus, the assertion is proved. ��

As it can directly be seen in the above proof, the difference in Theorem 3.2(ii)
increases in s. Figure 1 contains the contour plots of the relative efficiency

RE(MOLP,MLP) = MSE(π
(s)
MLP)

MSE(π
(s)
MOLP)

of π
(s)
MLP relative to π

(s)
MOLP based on R� for all valid combinations of r and s in the

range of 1–200. Table 1 contains relative efficiencies of the predictors for selected
values of r and s. It can be seen from the contour plots as well as the table that the
relative efficiency of the MLP relative to the MOLP is the highest for small values
of r and decreases as r increases. The gains in efficiency are in the high single-digit
and low double-digit percentage range. From the perspective of practical applications,
where rather small numbers of observed record values are common, this fact makes
the MOLP an attractive alternative to the MLP.

3.1.2 Comparison based on Pitman’s measure of closeness

In preparation for the comparison of the predictors in terms of Pitman’s measure of
closeness, we first compute the Pitman efficiency

PE(MOLP,MLP) = P
(
|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|

)
.
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Table 1 Relative efficiencies RE(MOLP,MLP) = MSE(π
(s)
MLP)/MSE(π

(s)
MOLP) of the MLP of Rs relative

to the MOLP of Rs based on two-parameter exponential record values R� for selected r and s

r s

r + 2 r + 3 r + 4 r + 5 r + 10 r + 15 r + 20

(a) μ known

2 1.143 1.111 1.053 1.000 0.854 0.795 0.764

5 1.094 1.111 1.103 1.087 1.011 0.966 0.939

10 1.056 1.074 1.079 1.077 1.047 1.021 1.003

15 1.039 1.055 1.060 1.061 1.048 1.032 1.019

20 1.030 1.043 1.048 1.050 1.044 1.034 1.024

25 1.025 1.036 1.040 1.043 1.040 1.033 1.026

50 1.013 1.019 1.022 1.024 1.025 1.024 1.021

80 1.008 1.012 1.014 1.016 1.017 1.017 1.016

(b) μ unknown

2 1.086 1.111 1.120 1.123 1.124 1.122 1.120

5 1.080 1.111 1.125 1.132 1.136 1.133 1.130

10 1.052 1.074 1.086 1.092 1.099 1.098 1.095

15 1.038 1.055 1.064 1.069 1.076 1.076 1.074

20 1.029 1.043 1.051 1.055 1.062 1.062 1.061

25 1.024 1.036 1.042 1.046 1.052 1.053 1.052

50 1.013 1.019 1.022 1.025 1.029 1.030 1.030

80 1.008 1.012 1.014 1.016 1.019 1.020 1.020

The proof of the result is along the lines of that of the corresponding result in the
comparison of the BLUP (best linear unbiased predictor) and the BLEP (best linear
equivariant predictor) of order statistics from two-parameter exponential distribu-
tions presented in Nagaraja (1986, p. 14). In the following, F(m, n) denotes the
F-distribution with parameters m, n ∈ N. The corresponding cdf will be denoted
by F(·|m, n). We also set q = 2(r+1)(s−r)

(2r+1)(s−r−1) .

Lemma 3.3 Let R1, . . . , Rs be the first s record values in a sequence of i.i.d. two-
parameter exponential randomvariables.Moreover, letπ(s)

MOLP andπ
(s)
MLP be theMOLP

and the MLP of Rs based on R�, respectively.

(i) If μ is known, for r , s ∈ N, 1 ≤ r < s − 1, we have that

P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) = F

(
q
∣∣∣2r , 2(s − r)

)
.

(ii) If μ is unknown, for r , s ∈ N, 2 ≤ r < s − 1, we have that

P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) = F

(
q

r

r − 1

∣∣∣2(r − 1), 2(s − r)

)
.
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The following result characterizes the performance of theMLP relative to theMOLP
based on Pitman’s measure of closeness:

Proposition 3.3 For s ∈ N, let R1, . . . , Rs be the first s record values in a sequence
of i.i.d. two-parameter exponential random variables. The MOLP of Rs based on R�

outperforms the MLP of Rs based on R� in terms of Pitman’s measure of closeness
irrespectively of whether μ is known or not, i.e., for any r , s, satisfying 1 ≤ r ≤ s−2
(μ known) or 2 ≤ r ≤ s − 2 (μ unknown), we have that

P
(
|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|

)
> P

(
|Rs − π

(s)
MOLP| > |Rs − π

(s)
MLP|

)
.

Proof First, assume that μ is unknown. Let X ∼ F(2(r − 1), 2(s − r)), r ≥ 2,
r ≤ s − 2. Assume first that r > 2. Since for this choice of r and s the F -distribution
satisfies the mode–median–mean inequality (see Groeneveld and Meeden 1977), it
suffices to show that

E(X) <
2r(r + 1)(s − r)

(2r + 1)(r − 1)(s − r − 1)
. (7)

Since s − r ≥ 2, the expectation of X is finite, and we have that

E(X) = s − r

s − r − 1
<

2r(r + 1)(s − r)

(2r + 1)(r − 1)(s − r − 1)
if and only if 0 < 3r + 1.

This establishes inequality (7). If r = 2, there is a closed-form expression for the

median of X , which is given by med(X) = (s−2)(2
1

s−2 −1). Since med(X) ≤ E(X)

if and only if 2 ≤ (1 + 1/(s − 3))s−2, and the second inequality is satisfied for
all s ≥ 4, the validity of (7) yields the assertion. Next, assume that μ is known
and let X ∼ F(2r , 2(s − r)). Again, reasoning as above, the aim is to show that
E(X) <

2r(r+1)(s−r)
(2r+1)r(s−r−1) . Now,

E(X) = s − r

s − r − 1
<

2r(r + 1)(s − r)

(2r + 1)r(s − r − 1)
if and only if r > 0.

This yields the assertion for the case that r > 1. If r = 1, an analogous argument as
in the first part of the proof yields the desired conclusion. ��

Figure 2 contains the contour plots of the Pitman efficiency of π
(s)
MLP relative to

π
(s)
MOLP based on R� for all valid combinations of r and s in the range of 1–200. Table

2 contains the Pitman efficiencies of the predictors for selected values of r and s. In the
parameter range examined, the Pitman efficiencies do not fall below 0.6 for values of
r smaller than 15 and achieve maximum values of approximately 0.8 (known μ) and
0.9 (unknown μ). Again, from the perspective of practical applications, where rather
small numbers of observed record values are common, this fact makes the MOLP an
attractive alternative to the MLP.
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Fig. 2 Contour plot of the Pitman efficiency PE(MOLP,MLP) = P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) of

the MLP of Rs relative to the MOLP of Rs based on two-parameter exponential record values R� for all
valid combinations of r and s in the range of 1–200 with s = r + 1 omitted

Table 2 Pitman efficiencies PE(MOLP,MLP) = P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) of the MLP of Rs

relative to the MOLP of Rs based on two-parameter exponential record values R1, . . . , Rr for selected r
and s

r s

r + 2 r + 3 r + 4 r + 5 r + 10 r + 15 r + 20

(a) μ known

2 0.791 0.752 0.735 0.726 0.708 0.702 0.700

5 0.765 0.718 0.696 0.683 0.659 0.651 0.647

10 0.752 0.700 0.675 0.661 0.631 0.621 0.616

15 0.747 0.693 0.667 0.651 0.619 0.608 0.602

20 0.744 0.689 0.663 0.646 0.612 0.600 0.594

25 0.743 0.687 0.660 0.643 0.608 0.595 0.588

50 0.739 0.682 0.654 0.636 0.598 0.584 0.576

80 0.738 0.680 0.651 0.634 0.594 0.579 0.571

(b) μ unknown

2 0.913 0.906 0.905 0.905 0.906 0.907 0.907

5 0.826 0.801 0.792 0.789 0.786 0.787 0.788

10 0.785 0.747 0.731 0.723 0.713 0.712 0.712

15 0.770 0.726 0.707 0.696 0.679 0.676 0.676

20 0.762 0.714 0.693 0.681 0.660 0.655 0.654

25 0.757 0.707 0.685 0.672 0.648 0.642 0.639

50 0.747 0.692 0.667 0.651 0.620 0.610 0.605

80 0.743 0.687 0.660 0.643 0.608 0.596 0.590

123



1086 G. Volovskiy, U. Kamps

3.2 Extreme-value distribution

Next, we assume that (Rn)n∈N is the sequence of record values in a sequence of
i.i.d. extreme-value random variables. The density, cumulative distribution and quan-
tile functions of the extreme-value or reversed Gumbel distribution EV (μ, σ ) with
location parameter μ ∈ R and scale parameter σ ∈ R+ are given by fθ (x) =
exp {(x − μ)/σ − exp {(x − μ)/σ }} /σ, Fθ (x) = 1−exp {− exp {(x − μ)/σ }} , x ∈
R, and F−1

θ (x) = μ + σ ln(− ln(1 − x)), x ∈ (0, 1), where θ = (μ, σ ) ∈ R × R+.
Next, for r , s ∈ N, r < s − 1, we derive the MOLP and the MLP of Rs based on
R� = (R1, . . . , Rr ). As for the form of the MOLP of Rs based on R�, we have the
following result.

Proposition 3.4 Let R1, . . . , Rs be the first s, s ≥ 3, record values in a sequence of
i.i.d. extreme-value random variables. For r ∈ N, 2 ≤ r < s − 1, the unique MOLP
of Rs and the PMOLE of σ based on R� are given by

π
(s)
MOLP = Rr + σ̂MOL ln

(
s − 1

r

)
and σ̂MOL = 1

r

r−1∑
i=1

(Rr − Ri ).

Proof With the above choice of fθ and Fθ , the function Ψ (·|x�), x� ∈ R
r
<, in (3)

becomes

Ψ (θ |x�) = 1

σ r
exp

{
− 1

σ

r−1∑
i=1

(xr − xi )

}
, μ ∈ R, σ ∈ R+. (8)

Since the location parameter μ is not present in Ψ , we only need to find a maxi-
mizing function with respect to σ . Let θ̂(x�) = (μ̂(x�),

1
r

∑r−1
i=1 (xr − xi )), where

μ̂ is an arbitrary measurable function on R
r
< with values in R. Then, assuming

that r ≥ 2, θ̂ satisfies (4) with Ψ (·|x�) given by (8). Combining this with the

fact that F−1
θ

(
1 − (1 − Fθ (Rr ))

s−1
r

)
= Rr + σ ln

( s−1
r

)
yields that π

(s)
MOLP =

Rr + σ̂MOL ln ((s − 1)/r) is the unique maximum observed likelihood predictor of
Rs based on R�, where the PMOLE of σ takes the form σ̂MOL = 1

r

∑r−1
i=1 (Rr − Ri ).

��
Remark 3.3 The PMOLE and the MLE of σ coincide. For the MLE of σ , we refer to
Arnold et al. (1998, p. 127) (see also Remark 3.4).

Since extreme-value record values are generated from a location-scale family, it
does not come as a surprise that linear prediction of extreme-value record values
has already been treated (cf. Arnold et al. 1998, Example 5.6.3, p. 152, and section
5.6.2). However, it appears that maximum likelihood prediction of extreme-value
record values has not been considered in the literature so far. The following result
contains the expression of the MLP of Rs based on R�.
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Proposition 3.5 Let R1, . . . , Rs be the first s, s ≥ 3, record values in a sequence of
i.i.d. extreme-value random variables. For r ∈ N, 2 ≤ r < s, the unique MLP of Rs

and the unique PMLEs of μ and σ based on R� are given by

π
(s)
MLP = Rr + σ̂ML ln

(
s − 1

r

)
,

σ̂ML = 1

r + 1

r−1∑
i=1

(Rr − Ri ) and μ̂ML = Rr + σ̂ML ln

(
s − 1

sr

)
,

respectively. If s = r + 1, the MLP takes the form π
(s)
MOLP = Rr .

Proof The predictive likelihood function of Rs and (μ, σ ) given R� = x�, x� =
(x1, . . . , xr ) ∈ R<, satisfies

L rv(xs, μ, σ |x�) ∝ 1

σ r+1 exp

{
1

σ

r∑
i=1

(xi − μ) + xs − μ

σ
− exp

{
xs − μ

σ

}}

×
(
exp

{
xs − μ

σ

}
− exp

{
xr − μ

σ

})s−r−1

,

xs ≥ xr , (μ, σ ) ∈ R × R+. Observe that PL(xs, μ, σ |x�) ∝ G(xs, μ, σ )H(xs, σ ),
where G(xs, μ, σ ) = exp {−sμ/σ − exp {(xs − μ)/σ }} and H(xs, σ ) = 1

σ r+1 ·
exp

{ 1
σ

∑r
i=1 xi + xs/σ

}
(exp {xs/σ } − exp {xr/σ })s−r−1. Note that for any fixed

xs ∈ [xr ,∞) and σ ∈ R+, we have that limμ→±∞ G(xs, μ, σ ) = 0. As μ 	→
G(xs, μ, σ ) is a continuous function, it possesses a global maximum in R. Moreover,
we have that ∂G(xs, μ, σ )/∂μ = 0 if and only if μ = xs − σ ln (s).

Hence, the function μ 	→ G(xs, μ, σ ), μ ∈ R, attains its global maximum value
at a unique point and the global maximum value equals

G(xs, xs − σ ln(s), σ ) = exp
{
− s

σ
xs + s ln(s) − s

}
.

Observe that the function G(xs, xs − σ ln(s), σ ) ∝ e− s
σ
xs . Consequently, it suffices

to show that

J (xs, σ ) = H(xs, σ ) exp
{
− s

σ
xs

}
= 1

σ r+1 exp

{
− 1

σ

r−1∑
i=1

(xr − xi )

}

×
(
exp

{
− xs − xr

σ

})r (
1 − exp

{
− xs − xr

σ

})s−r−1

attains its maximum uniquely in [xr ,∞) × R+. For fixed σ ∈ R+, the function

xs 	→
(
e− xs−xr

σ

)r (
1 − e− xs−xr

σ

)s−r−1
, xs ∈ [xr ,∞), attains its global max-

imum value at the unique point xs = xr + σ ln( s−1
r ). Moreover, we have
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that J (xr + σ ln( s−1
r ), σ ) ∝ 1

σ r+1 e
− 1

σ

∑r−1
i=1 (xr−xi ). Finally, the function σ 	→

1
σ r+1 e

− 1
σ

∑r−1
i=1 (xr−xi ), σ ∈ R+, attains its global maximum value at a unique point,

which is given by σ = 1
r+1

∑r−1
i=1 (xr − xi ). Combing all these results completes the

proof. ��
Remark 3.4 Observe that neither the PMLE of μ nor the PMLE of σ coincides with
the MLE of the corresponding parameter. The MLEs of μ and σ are given by μ̂ =
Rr + σ̂ ln(r) and σ̂ = 1

r

∑r−1
i=1 (Rr −Ri ). Their derivation can be found, e.g., in Arnold

et al. (1998, p. 127). Moreover, the PMLE of μ depends on which future record value
is to be predicted, as the appearance of the index of the future record value in the
expression for μ̂ML reveals.

3.2.1 Comparison based on the MSE

In preparation for the comparison of the MOLP to the MLP, we derive their MSEs. In
what follows, for r , s ∈ N, r < s, the following notation will be used:

αr ,s(1) =
s−1∑
i=r

1

i
, αr ,s(2) =

s−1∑
i=r

1

i2
.

Lemma 3.4 For s ≥ 3, let R1, . . . , Rs be the first s record values in a sequence of i.i.d.
extreme-value random variables. The MSEs of the MOLP and the MLP of Rs based
on R� are given by

MSE(π
(s)
MOLP)

σ 2 = αr ,s(2) + αr ,s(1)2

r
+ r − 1

r

(
αr ,s(1) − ln

(
s − 1

r

))2

and

MSE(π
(s)
MLP)

σ 2 = αr ,s(2) +
(

αr ,s(1) − ln

(
s − 1

r + 1

)
r − 1

r + 1

)2

+ ln2
(
s − 1

r

)
r − 1

r + 1
,

respectively.

Proof Since Ri − Ri−1 ∼ Exp(σ/(i − 1)), i ≥ 2,

E(σ̂MOL) = E

(
1

r

r−1∑
i=1

(Rr − Ri )

)
= E

⎛
⎝1

r

r−1∑
i=1

r−1∑
j=i

(R j+1 − R j )

⎞
⎠

= E

⎛
⎝1

r

r−1∑
j=1

j(R j+1 − R j )

⎞
⎠ = σ

r − 1

r
.

Combining this with the expression for the expected value of an extreme-value record
value (see Arnold et al. 1998, p. 32), the claimed expression for the bias of the MOLP
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readily follows. As for the MSE of the MOLP, observe first that by the fact that

Ri − Ri−1
i.i.d.∼ Exp(σ/(i − 1)), i ≥ 2, we have r σ̂MOL ∼ Gamma(r − 1, σ ), where

Gamma(a, b) denotes the gamma distribution with shape parameter a ∈ R+ and scale
parameter b ∈ R+. Consequently, E((σ̂MOL)2) = σ 2(r − 1)/r . Hence, using again
the independence of spacings, we obtain

MSE(π
(s)
MOLP)

σ 2 = 1

σ 2 E((Rs − Rr )
2) − 2

σ 2 ln

(
s − 1

r

)
E((Rs − Rr )σ̂MOL)

+ 1

σ 2 ln
2
(
s − 1

r

)
E((σ̂MOL)2)

= αr ,s(2) + αr ,s(1)2

r
+ r − 1

r

(
αr ,s(1) − ln

(
s − 1

r

))2

.

Given that σ̂ML = (r/(r + 1))σ̂MOL, the derivation of MSE(π
(s)
MLP) proceeds along

the same lines. ��
Proposition 3.6 For s ≥ 3, let R1, . . . , Rs be the first s record values in a sequence
of i.i.d. extreme-value random variables. For r ∈ N, 2 ≤ r ≤ s − 2, let π

(s)
MOLP and

π
(s)
MLP be, respectively, the MOLP and the MLP of Rs based on R�. Then,

MSE(π
(s)
MOLP) < MSE(π

(s)
MLP).

Proof We have

MSE(π
(s)
MLP) − MSE(π

(s)
MOLP)

σ 2

= ln

(
s − 1

r

)
r − 1

r(r + 1)

{
2

(
αr ,s(1) − ln

(
s − 1

r

))
+ 1

r + 1
ln

(
s − 1

r

)}
.

(9)

The function x 	→ x−1 is decreasing on R+, and ln((s − 1)/r) = ∫ s−1
r x−1dx . Thus,

we have that αr ,s(1) − ln((s − 1)/r) > 0. Hence, since the factor in front of the curly
brackets and the second summand between the curly brackets are obviously positive,
the assertion follows. ��

Figure 3a contains the contour plot of the relative efficiency of π
(s)
MLP relative to

π
(s)
MOLP of Rs based on R� for all valid combinations of r and s in the range of 2–

200. Table 3 contains relative efficiencies of the predictors for selected r and s. The
numerical results confirm the superiority of the MOLP over the MLP in terms of
mean squared error. Though, the gains in efficiency are smaller than in the case of
exponential record values. The highest efficiencies are achieved for small values of
r , and the efficiency gains quickly become negligible as r increases. Still, from the
perspective of practical applications, where rather small numbers of observed record
values are common, this fact makes the MOLP an attractive alternative to the MLP.
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Fig. 3 Contour plots of the relative efficiency RE(MOLP,MLP) = MSE(π
(s)
MLP)/MSE(π

(s)
MOLP) and the

Pitman efficiency PE(MOLP,MLP) = P(|Rs −π
(s)
MOLP| < |Rs −π

(s)
MLP|) of the MLP of Rs relative to the

MOLP of Rs based on extreme-value record values R� for all valid combinations of r and s in the range
2–200 with s = r + 1 omitted

Table 3 Relative efficiencies RE(MOLP,MLP) = MSE(π
(s)
MLP)/MSE(π

(s)
MOLP) of the MLP of Rs relative

to the MOLP of Rs based on extreme-value record values R� for selected r and s

r s

r + 2 r + 3 r + 4 r + 5 r + 10 r + 15 r + 20

2 1.053 1.067 1.073 1.076 1.083 1.085 1.087

5 1.023 1.031 1.035 1.037 1.042 1.045 1.047

10 1.008 1.010 1.012 1.012 1.014 1.015 1.016

15 1.004 1.005 1.006 1.006 1.007 1.007 1.008

20 1.002 1.003 1.003 1.004 1.004 1.004 1.004

25 1.001 1.002 1.002 1.002 1.003 1.003 1.003

50 1.000 1.001 1.001 1.001 1.001 1.001 1.001

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.2.2 Comparison based on Pitman’s measure of closeness

We compare the predictors based on Pitman’s measure of closeness. Similarly to
Lemma 3.3, we use the same arguments as in Nagaraja (1986, p. 14) to compute the
Pitman efficiency. The corresponding result is contained in the following Lemma.
Below, HExp(α1, . . . , αn) denotes the hypoexponential distribution with pairwise
different rate parameters α1, . . . , αn ∈ R+ (see Ross 2014).

Lemma 3.5 Let R1, . . . , Rs be the first s, s ≥ 3, record values in a sequence of i.i.d.
extreme-value random variables. Let π

(s)
MOLP and π

(s)
MLP be, respectively, the MOLP
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and the MLP of Rs based on R�, 2 ≤ r ≤ s − 2. Then,

P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) = P

(
U

T
>

2r + 1

2r(r + 1)
ln

(
s − 1

r

))
.

Here, U and T are independent, U ∼ HExp(r , . . . , (s−1)), T ∼ Gamma(r −1, 1).

Remark 3.5 Observe that U/T from Proposition 3.5 is distributed as the ratio of two
hypoexponential random variables. Hence, using Kadri and Smaili (2014, Theorem
1), we obtain a representation of the cdf of U/T . For x ∈ R+,

FU/T (x) = (s − 1)

(
s − 2

r − 1

) s−1∑
i=r

(−1)i−r
(
s − r − 1

i − r

)
i−1 I x

i−1+x
(1, r − 1), (10)

where I·(a, b) is the regularized incomplete beta function with parameters a, b > 0.
A more compact representation of FU/T can be achieved if one observes that the sum
in (10) is an alternating binomial sum. More specifically, we have that for x ∈ R+,

s−1∑
i=r

(−1)i−r
(
s − r − 1

i − r

)
i−1 I x

i−1+x
(1, r − 1)

= (−1)s−r−1
s−r−1∑
i=0

(−1)s−r−1−i
(
s − r − 1

i

)
fr ,x (i),

where for i ∈ N ∪ {0}, fr ,x (i) = 1
i+r I x

(i+r)−1+x
(1, r − 1). Using the fact that iter-

ated forward differences can be expressed by alternating binomial sums, we obtain a
compact representation of FU/T as

FU/T (x) = (−1)s−r−1(s − 1)

(
s − 2

r − 1

)
�s−r−1 fr ,x , x ∈ R+,

where the (s − r − 1)th fold difference is to be computed for i = 0. Thus, the Pitman
efficiency P(|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|) of the MLP relative to the MOLP can be

expressed as

P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|)

= 1 − (−1)s−r−1(s − 1)

(
s − 2

r − 1

)
�s−r−1 fr ,x |x= 2r+1

2r(r+1) ln(
s−1
r ),

with the (s − r − 1)th forward difference computed for i = 0. Since alternating sums
can be numerically problematic, for an efficient and accurate procedure to compute
P(|Rs −π

(s)
MOLP| < |Rs −π

(s)
MLP|), it is advisable to use high-precision arithmetic. See

sumBinomMpfr() in R package Rmpfr and its documentation.
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Table 4 Pitman efficiencies PE(MOLP,MLP) = P(|Rs − π
(s)
MOLP| < |Rs − π

(s)
MLP|) of the MLP of Rs

relative to the MOLP of Rs based on extreme-value record values R� for selected r and s

r s

r + 2 r + 3 r + 4 r + 5 r + 10 r + 15 r + 20

2 0.915 0.909 0.908 0.909 0.910 0.912 0.914

5 0.827 0.802 0.794 0.791 0.791 0.792 0.794

10 0.786 0.748 0.732 0.725 0.715 0.715 0.716

15 0.770 0.726 0.707 0.697 0.681 0.679 0.678

20 0.762 0.715 0.693 0.682 0.661 0.657 0.656

25 0.757 0.707 0.685 0.672 0.649 0.643 0.641

50 0.747 0.692 0.667 0.651 0.620 0.610 0.606

80 0.743 0.687 0.660 0.643 0.609 0.596 0.590

Figure 3b contains the contour plot of the Pitman efficiency of π
(s)
MLP relative to

π
(s)
MOLP for all valid combinations of r and s in the range 2–100. Table 4 contains Pitman

efficiencies of the predictors, which were computed using the expression derived in
Remark 3.5, for selected r and s. Remarkably, the Pitman efficiencies are almost
identical to those of the MLP relative to the MOLP for exponential record values
presented in Table 2 (unknown μ).

3.3 Power-function distribution

In the previous two subsections, we have demonstrated by the examples of the expo-
nential and extreme-value distributions the simplicity of deriving theMOLP as well as
its superior performance over the MLP. With the power-function distribution, the situ-
ation is different. The MOLP can be shown to uniquely exist, though its computation
is rather laborious. Moreover, it turns out that the MLP does not exist.

In what follows, we assume that (Rn)n∈N is the sequence of record values in a
sequence of i.i.d. power-function random variables. The density, cumulative distribu-
tion and quantile functions of the power-function distributionPow(θ) (or Beta(θ, 1))
with shape parameter θ ∈ R+ are given by fθ (x) = θxθ−1, Fθ (x) = xθ , x ∈ (0, 1)
and F−1

θ (x) = x1/θ , x ∈ [0, 1). Next, for r , s ∈ N, r < s − 1, we derive the MOLP
of Rs based on R� = (R1, . . . , Rr ). We also show that the MLP does not exist in the
present situation.

Proposition 3.7 For s ≥ 3, let R1, . . . , Rs be the first s record values in a sequence of
i.i.d. power-function random variables. For r ∈ N, 1 ≤ r < s − 1, the unique MOLP
of Rs based on R� is given by

π
(s)
MOLP =

(
1 −

(
1 − Rθ̂MOL

r

) s−1
r

)1/θ̂MOL

,

where θ̂MOL is the unique PMOLE of θ and is obtained as the unique positive solution
of the equation
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ln

(
r∏

i=1

Ri

)
+ r

θ
+

r∑
i=1

Rθ
i ln(Ri )

1 − Rθ
i

+ r

ln(1 − Rθ
r )

Rθ
r ln(Rr )

1 − Rθ
r

= 0

with respect to θ .

Proof We present a sketch of the proof. The details can be found in Volovskiy (2018,
Section5.3.6).With the above choice for fθ and Fθ , the functionΨ (·|x�), x� ∈ (0, 1)r<,
in (3) becomes

Ψ (θ |x�) = θr

(
r∏

i=1

xi

)θ−1 (
− 1

ln(1 − xθ
r )

)r

/

r∏
i=1

(1 − xθ
i ), θ ∈ R+.

Fix some x� = (x1, . . . , xr ) ∈ (0, 1)r< and let f be the function Ψ (·|x�). Using
L’Hospital’s rule, one shows that limθ→0 f (θ) = limθ→∞ f (θ) = 0. Since f is
continuous, the preceding results imply that f possesses a global maximum. Next, we
set g(θ) = ln( f (θ)), θ ∈ R+. The second derivative of g takes the form

g′′(θ) = − r

θ2
+

r∑
i=1

xθ
i ln

2(xi )

(1 − xθ
i )2

+ r

ln2(1 − xθ
r )

x2θr ln2(xr )

(1 − xθ
r )2

+ r

ln(1 − xθ
r )

xθ
r ln

2(xr )

(1 − xθ
r )2

.

(11)

We show that g′ is a strictly decreasing function, i.e., g′′(θ) < 0, θ ∈ R+. Let h1(θ)

and h2(θ) be equal, respectively, to the sum of the first two and the last two terms
in (11). Using the inequality x < − ln(1 − x), x ∈ (0, 1), we infer that h2(θ) <

0, θ ∈ R+. Next, note that h1(θ) = (
∑r

i=1 fxi (θ) − 1)/θ2, where we have set
fxi (θ) = xθ

i ln
2(xθ

i )/(1 − xθ
i )2, θ ∈ R+. Applying L’Hospital’s rule twice, we infer

that lim
θ→0

fxi (θ) = 1, i = 1, . . . , r .We shall prove that each fxi , i = 1, . . . , r , is strictly

decreasing. Indeed, taking the logarithmic derivative of fxi , we obtain
d
dθ

ln( fxi (θ)) =
1
θ

(
2 + (1 + xθ

i ) ln(xθ
i )/(1 − xθ

i )
)
. Thus, it suffices to show that −21−x

1+x > ln(x),

x ∈ (0, 1), or, equivalently, − 2x
2−x > ln(1 − x), x ∈ (0, 1). The Taylor series for

x 	→ ln(1 − x), x ∈ (−1, 1), and x 	→ − 2x
2−x , x ∈ (−1, 1), at x = 0 are given by

ln(1 − x) = −
∞∑
n=1

xn

n
, x ∈ (−1, 1) and − 2x

2 − x
= −

∞∑
n=1

xn

2n−1 , x ∈ (−1, 1).

Obviously, the difference of the first and the second power series has nonnegative
coefficients. This implies the desired inequality. Consequently, h1(θ) < 0, θ ∈ R+.
This completes the proof of the assertion. ��

Proposition 3.8 The predictive likelihood function does not possess a global maxi-
mum. Hence, the MLP of Rs based on R� does not exist.
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Fig. 4 Line plots of the bias and the MSE of MLP and MOLP of Rs based on two-parameter exponential
record values R� for r ∈ {4, . . . , 12} and s = r + 2, r + 3, r + 4

Proof For x� ∈ (0, 1)r<, the PLF satisfies

L rv(xs, θ |x�) ∝ θr+1

(
r∏

i=1

xθ−1
i

1 − xθ
i

) (
− ln

(
1 − xθ

s

1 − xθ
r

))s−r−1

xθ−1
s ,

xs ∈ (xr , 1), θ ∈ R+. For any fixed θ ∈ R+, limxs→1 L rv(xs, θ |x�) = ∞. Hence, no
global maximum exists. ��
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4 Illustration

The prediction of future record values is illustrated for exponential distributions as in
Sect. 3.1. In the literature, there are several real datasets of record values; an underlying
exponential distribution is assumed by Dunsmore (1983) for data from a rock crushing
machine (see also Awad and Raqab 2000) and by Razmkhah and Ahmadi (2013) for
annual flood loss data. In the particular situation of an exponential distribution with
unknown location parameter μ and scale parameter σ > 0, bias and mean squared
prediction error of both, MLP and MOLP, can be stated explicitly. By noting that
E(Rr ) = μ + σr , r ∈ N (see Arnold et al. 1998), we find for s > r + 1:

E(Rs − π
(s)
MOLP) = σ

s − 1

r
,

E(Rs − π
(s)
MLP) = σ

(
2s

r + 1
− 1

)
,

such that both predictors are downward-biased. It is directly seen that theMOLPalways
has a smaller bias than the MLP. The mean squared prediction errors MSE(π

(s)
MOLP)

and MSE(π
(s)
MLP) are stated in Sect. 3.1.1. Figure 4a, b shows the bias (in units of σ )

and the MSE (in units of σ 2) of both predictors for several values of the number r of
observations and s = r + 2, r + 3, r + 4.

5 Conclusion

Based on the observed predictive likelihood function first studied as a tool for deriv-
ing predictive inferences by Bayarri et al. (1987), a novel likelihood-based prediction
procedure is proposed. The prediction method is successfully applied to the prob-
lem of future (upper) record value prediction, and for underlying exponential and
extreme-value distributions, it is demonstrated that the resulting predictors exhibit
superior performance relative to predictors produced by the widely applied maximum
likelihood prediction procedure. The obtained predictors will be useful in reliabil-
ity applications involving modeling repairable systems and, more generally, in areas
where the underlying stochastic dynamics are adequately described by nonhomoge-
neous Poisson processes.
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