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Abstract
In this paper, we consider general classes of estimators based on higher-order sample
spacings, called the Generalized Spacings Estimators. Such classes of estimators are
obtained by minimizing the Csiszár divergence between the empirical and true distri-
butions for various convex functions, include the “maximum spacing estimators” as
well as themaximum likelihood estimators (MLEs) as special cases, and are especially
useful when the latter do not exist. These results generalize several earlier studies on
spacings-based estimation, by utilizing non-overlapping spacings that are of an order
which increases with the sample size. These estimators are shown to be consistent as
well as asymptotically normal under a fairly general set of regularity conditions.When
the step size and the number of spacings grow with the sample size, an asymptotically
efficient class of estimators, called the “Minimum Power Divergence Estimators,” are
shown to exist. Simulation studies give further support to the performance of these
asymptotically efficient estimators in finite samples and compare well relative to the
MLEs. Unlike the MLEs, some of these estimators are also shown to be quite robust
under heavy contamination.
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618 M. Ekström et al.

1 Introduction

Let {Fθ , θ ∈ Θ} be a family of absolutely continuous distribution functions on the real
line and denote the corresponding densities by { fθ , θ ∈ Θ}. For any convex function
φ on the positive half real line, the quantity

Sφ(θ) =
∫ ∞

−∞
φ

(
fθ (x)

fθ0(x)

)
fθ0(x)dx

is called the φ-divergence between the distributions Fθ and Fθ0 . The φ-divergences,
introduced by Csiszár (1963) as information-type measures, have several statistical
applications including estimation. Although Csiszár (1977) describes how this mea-
sure can also be used for discrete distributions, we are concerned with the case of
absolutely continuous distributions in the present paper.

Let ξ1, . . . , ξn−1 be a sequence of independent and identically distributed (i.i.d.)
randomvariables (r.v.’s) from Fθ0 , θ0 ∈ Θ . The goal is to estimate the unknown param-
eter θ0. If φ(x) = − log x , then Sφ(θ) is known as the Kullback–Leibler divergence
between Fθ and Fθ0 . In this case, a consistent estimator of this Sφ(θ) is given by

1

n − 1

n−1∑
i=1

φ

(
fθ (ξi )

fθ0(ξi )

)
= − 1

n − 1

n−1∑
i=1

log
fθ (ξi )

fθ0(ξi )
. (1)

Minimization of this statistic with respect to θ is equivalent to maximization of the
log-likelihood function,

∑n
i=1 log fθ (ξi ). Thus, by finding a value of θ ∈ Θ that

minimizes (1), we obtain the well-known maximum likelihood estimator (MLE) of
θ0. Note, in order to minimize the right-hand side of (1) with respect to θ , we do
not need to know the value of θ0. On the other hand, for convex functions other than
φ(x) = − log x , a minimization of the left-hand side of (1) with respect to θ would
require the knowledge of θ0, the parameter that is to be estimated. Thus, for general
convex φ functions, it is not obvious how to approximate Sφ(θ) in order to obtain a
statistic that can be used for estimating the parameters.

One solution to this problem was provided by Beran (1977), who proposed that fθ0
could be estimated by a suitable nonparametric estimator f̂ (e.g., a kernel estimator)
in the first stage, and in the second stage, the estimator of θ0 should be chosen as any
parameter value θ ∈ Θ that minimizes the approximation

Ŝφ(θ) =
∫ ∞

−∞
f̂ (x)φ

(
fθ (x)

f̂ (x)

)
dx (2)

of Sφ(θ). In the estimation method suggested by Beran (1977), the function φ(x) =
1
2 |1−√

x |2 was used, and this particular case of φ-divergence is known as the squared
Hellinger distance. Read and Cressie (1988, p. 124) put forward a similar idea based
on power divergences, and it should be noted that the family of power divergences is
a subclass of the family of φ-divergences. The general approach of estimating param-
eters by minimizing a distance (or a divergence) between a nonparametric density
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A class of asymptotically efficient estimators based on… 619

estimate and the model density over the parameter space has been further extended by
subsequent authors, and many of these procedures combine strong robustness features
with asymptotic efficiency. See Basu et al. (2011) and the references therein for details.

Here, we propose an alternate approach obtained by approximating Sφ(θ), using the
sample spacings. Let ξ(1) ≤ · · · ≤ ξ(n−1) denote the ordered sample of ξ1, · · · , ξn−1,
and let ξ(0) = −∞ and ξ(n) = ∞. For an integer m = m(n), sufficiently smaller
than n, we put k = n/m. Without loss of generality, when stating asymptotic results,
we may assume that k = k(n) is an integer and define non-overlapping mth-order
spacings as

D j,m(θ) = Fθ (ξ( jm)) − Fθ (ξ(( j−1)m)), j = 1, . . . , k.

Let

Sφ,n(θ) = 1

k

k∑
j=1

φ(k D j,m(θ)), θ ∈ Θ. (3)

In Eq. (3), the reciprocal of the argument of φ is related to a nonparametric histogram
density estimator considered in Prakasa Rao (1983, Section 2.4). More precisely,
gn(x) = (k D j,m(θ))−1, for Fθ (ξ(( j−1)m)) ≤ x < Fθ (ξ( jm)), is an estimator of the
density of the r.v. Fθ (ξ1), i.e., of g(x) = fθ0(F−1

θ (x))/ fθ (F−1
θ (x)), where F−1

θ (x) =
inf{u : Fθ (u) ≥ x}. When both k and m increase with the sample size, then, for large
n,

k D j,m(θ) ≈ fθ (ξ( j−1)m+�m/2	)
fθ0(ξ( j−1)m+�m/2	)

, j = 1, . . . , k, (4)

where �m/2	 is the largest integer smaller than or equal to m/2. Thus, intuitively, as
k, m → ∞ as n → ∞, Sφ,n(θ) should converge in probability to Sφ(θ). Furthermore,
since φ is a convex function, by Jensen’s inequality, we have Sφ(θ) ≥ Sφ(θ0) =
φ(1). This suggests that if the distribution Fθ is a smooth function in θ , an argument
minimizing Sφ,n(θ), θ ∈ Θ , should be close to the true value of θ0, and hence be a
reasonable estimator.

An argument θ = θ̂φ,n which minimizes Sφ,n(θ), θ ∈ Θ , will be referred to as a
Generalized Spacings Estimator (GSE) of θ0. When convenient, a root of the equation
(d/dθ)Sφ,n(θ) = 0 will also be referred to as a GSE.

By using different functions φ and different values of m, we get various criteria for
statistical estimation. The ideas behind this proposed family of estimation methods
generalize the ideas behind the maximum spacing (MSP) method, as introduced by
Ranneby (1984); the same method was introduced from a different point of view by
Cheng and Amin (1983). Ranneby derived theMSPmethod from an approximation of
the Kullback–Leibler divergence between Fθ and Fθ0 , i.e., Sφ(θ)with φ(x) = − log x
and defined the MSP estimator as any parameter value in Θ that minimizes (3) with
φ(x) = − log x and m = 1. This estimator has been shown, under general conditions,
to be consistent (Ranneby 1984; Ekström 1996, 1998; Shao and Hahn 1999) and
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620 M. Ekström et al.

asymptotically efficient (Shao and Hahn 1994; Ghosh and Jammalamadaka 2001).
Based on the maximum entropy principle, Kapur and Kesavan (1992) proposed to
estimate θ0 by selecting the value of θ ∈ Θ that minimizes (3) with φ(x) = x log x
and m = 1. With this particular choice of φ-function, Sφ(θ) becomes the Kullback–
Leibler divergence between Fθ0 and Fθ (rather than Fθ and Fθ0 ). We refer to Ekström
(2008) for a survey of estimationmethods based on spacings and the Kullback–Leibler
divergence. Ekström (1997, 2001) and Ghosh and Jammalamadaka (2001) considered
a subclass of the estimation methods proposed in the current paper, namely the GSEs
withm = 1.Under general regularity conditions, it turns out that this subclass produces
estimators that are consistent and asymptotically normal and that the MSP estimator,
which corresponds to the special case when φ(x) = − log x , has the smallest asymp-
totic variance in this subclass (Ekström 1997; Ghosh and Jammalamadaka 2001).
Estimators based on overlapping (rather than non-overlapping) mth-order spacings
was considered in Ekström (1997, 2008), where small Monte Carlo studies indicated,
in an asymptotic sense, that larger orders of spacings are always better (when φ(x)

is a convex function other than the negative log function). Menéndez et al. (1997,
2001a, b) and Mayoral et al. (2003) consider minimum divergence estimators based
on spacings that are related to our GSEs. In the asymptotics, they use only a fixed
number of spacings, and their results suggest that GSEs will not be asymptotically
fully efficient when k in (3) is held fixed.

In the present paper, it is shown that GSEs are consistent and asymptotically normal
under general conditions. In contrast to the aforementioned papers, we allow both the
number of spacings, k, and the order of spacings, m, to increase to infinity with the
sample size.We show that if both of them do tend to infinity, then there exists a class of
asymptotically efficient GSEs that we call theMinimumPower Divergence Estimators
(MPDEs). In contrast, if m is held fixed, then the only asymptotically optimal GSE
is the one based on φ(x) = − log x . The main results are stated in the next section,
followed by a simulation study assessing (i) the performance of these estimators for
different m and n and (ii) the robustness of these estimators under contamination. In
the latter case, we also assess a suggested data-driven rule for choosing the order of
spacings, m. Detailed proofs are to be found in “Appendix” and online Supplementary
Material.

2 Main results

In this section, we state the main results and the assumptions that are needed. Unless
otherwise stated, it will henceforth be assumed that ξ1, . . . , ξn−1 are i.i.d. r.v.’s from
Fθ0 , θ0 ∈ Θ .

We will prove the consistency of the GSEs under the following assumptions:

Assumption 1 The family of distributions {Fθ (·), θ ∈ Θ} has common support, with
continuous densities { fθ (·), θ ∈ Θ}, and Fθ (x) �= Fθ0(x) for at least one x when
θ �= θ0.

Assumption 2 The parameter space Θ ⊂ R contains an open interval of which θ0 is
an interior point, and Fθ (·) is differentiable with respect to θ .
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Assumption 3 The function φ(t), t > 0, satisfies the following conditions:

(a) it is strictly convex;
(b) min{0, φ(t)}/t → 0 as t → ∞;
(c) it is bounded from above by ψ(t) = c1(t−c2 + tc3) for all t > 0, where c1, c2,

and c3 are some nonnegative constants;
(d) it is twice differentiable.

Assumption 3 is valid for a wide class of convex functions including the following,

φ(x) = φλ(x) =
⎧⎨
⎩

λ−1(1 + λ)−1(xλ+1 − 1), if λ �= −1, 0,
− log x, if λ = − 1,
x log x, if λ = 0,

(5)

where the cases λ = − 1 and λ = 0 are given by continuity, i.e., by noting that
limλ→0(xλ − 1)/λ = log x .

Theorem 1 Under Assumptions 1–3, when m > c2 is fixed, or m → ∞ such that
m = o(n), the equation (d/dθ)Sφ,n(θ) = 0 has a root θ̂φ,n with a probability tending
to 1 as n → ∞, such that

θ̂φ,n = θ̂φ,n(ξ1, . . . , ξn−1)
p−→ θ0.

For the purpose of the next theorem, we will use the notation f (x, θ) for the density
fθ (x), and we denote its partial derivatives by

fi j (x, θ) = ∂ i+ j

∂xi∂θ j
f (x, θ).

Let W1, W2, . . . be a sequence of independent standard exponentially distributed r.v.’s,
Gm = W1 + · · · + Wm , and Ḡm = m−1Gm .

We then have the following important result:

Theorem 2 Let m = o(n). In addition to Assumptions 1 and 2, assume the following
conditions:

(i) The function φ is a strictly convex function and thrice continuously differentiable.
(ii) The quantities Var(W1φ

′(Ḡm)), E(W 2
1 φ′′(Ḡm)), and E(W 3

1 φ′′′(Ḡm)) exist and
are bounded away from zero.

(iii) The density function f (x, θ), the inverse F−1
θ (x), and the partial derivatives f10

and f11 are continuous in x at θ = θ0, and f01, f02, and f03 are continuous in
x and θ in an open neighborhood of θ0.

(iv) The Fisher information,

I (θ) =
∫ ∞

−∞

[
f01(x, θ)

f (x, θ)

]2
f (x, θ)dx,

takes values in the interval (0,∞) for θ in a neighborhood of θ0.
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Then, for any consistent root θ̂φ,n of (d/dθ)Sφ,n(θ) = 0, we have

lim
n→∞ sup

x

∣∣∣∣∣P
(√

n(θ̂φ,n − θ0) ≤ x
)

− Φ

(
x

√
I (θ0)

em(φ)

)∣∣∣∣∣ = 0,

where Φ is the standard normal cumulative distribution function,

em(φ) = σ 2
φ

(
E
(

Ḡ2
mφ′′(Ḡm)

))−2
,

σ 2
φ = mVar

(
Ḡmφ′(Ḡm)

) + (2m + 1)μ2
m − 2mμm E

(
Ḡ2

mφ′(Ḡm)
)
, (6)

and

μm = E
(
W1φ

′(Ḡm)
) = E

(
Ḡmφ′(Ḡm)

)
.

The theorems will be proved using proof methods related to those of, e.g., Lehmann
and Casella (1998) for the MLE. A generalization to the multiparameter case is possi-
ble, much like in the case of maximum likelihood estimation. However, as in Lehmann
and Casella (1998) for the MLE, this will require somewhat more complex assump-
tions and proofs and we refrain from attempting it here.

For the case m = 1 and by assuming that limx→0 φ′(x)x2e−x = limx→∞ φ′(x)x2

e−x = 0, Ekström (1997) and Ghosh and Jammalamadaka (2001) showed that
em(φ) ≥ 1,with equality if and only ifφ(x) = a log x+bx+c, for some constants a, b,
and c. That this inequality holds true for general m can be seen by integrating by parts,
i.e., assuming that limx→0 φ′(x/m)xm+1e−x = limx→∞ φ′(x/m)xm+1e−x = 0, we
get

(
E(Ḡ2

mφ′′(Ḡm))
)2 =

(
m E(Ḡ2

mφ′(Ḡm)) − (m + 1)μm

)2

= (
m Cov

(
Ḡmφ′(Ḡm), Ḡm

) − μm
)2

= m2 (Cov(Ḡmφ′(Ḡm), Ḡm
))2

+ (2m + 1)μ2
m − 2mμm E(Ḡ2

mφ′(Ḡm)) ≤ σ 2
φ ,

where the inequality on the right-hand side follows by noting that

(
Cov

(
Ḡmφ′(Ḡm), Ḡm

))2 ≤ Var
(
Ḡmφ′(Ḡm)

)
Var(Ḡm)

and Var(Ḡm) = m−1. Hence, em(φ) = σ 2
φ

(
E(Ḡ2

mφ′′(Ḡm))
)−2 ≥ 1, with equality if

and only if xφ′(x) = a + bx or, equivalently, if and only if φ(x) = a log x + bx + c,
where a < 0. It should be observed that the corresponding estimator θ̂φ,n does not
depend on the chosen values of a < 0, b, and c. Thus, without loss of generality, we
may choose a = − 1 and b = c = 0, i.e., for m fixed, the asymptotically optimal
estimator θ̂φ,n is based on the function φ(x) = − log x . If, however, we let m → ∞,

123



A class of asymptotically efficient estimators based on… 623

then the asymptotically optimal estimator is no longer unique. For example, let us
consider the family of power divergences (Read and Cressie 1988; Pardo 2006) given
by

Tλ(θ) = 1

λ(λ + 1)

∫ ∞

−∞

((
fθ (x)

fθ0(x)

)λ+1

− 1

)
fθ0(x)dx,

where the cases λ = − 1 and λ = 0 are given by continuity, i.e.,

T−1(θ) = lim
λ→−1

Tλ(θ) =
∫ ∞

−∞

(
− log

(
fθ (x)

fθ0(x)

))
fθ0(x)dx

and

T0(θ) = lim
λ→0

Tλ(θ) =
∫ ∞

−∞

(
fθ (x)

fθ0(x)
log

(
fθ (x)

fθ0(x)

))
fθ0(x)dx,

where T−1(θ) is the Kullback–Leibler divergence and T0(θ) is the reversed Kullback–
Leibler divergence (cf. Pardo and Pardo 2000).

If we set φ(x) = φλ(x), which is defined in Eq. (5), then note that Tλ(θ) = Sφλ(θ),
i.e., the family of power divergences is a subclass of the family of φ-divergences.
The divergence Tλ(θ) = Sφλ(θ) is estimated by Sφλ,n(θ), and Theorem 1 establishes
the existence of a consistent root of the equation (d/dθ)Sφλ,n(θ) = 0. The next result
asserts that any such sequence is asymptotically normal and efficient when k, m → ∞
as n → ∞.

Corollary 1 Let m → ∞ such that m = o(n). Suppose that Assumptions 1 and 2 and
conditions (iii) and (iv) of Theorem 2 hold true and that the function φλ is defined by
(5) for some λ ∈ (−∞,∞), then for any consistent root θ̂λ,n of (d/dθ)Sφλ,n(θ) = 0,
we have

√
n(θ̂λ,n − θ0)

d−→ N

(
0,

1

I (θ0)

)
as n → ∞.

Such a sequence θ̂λ,n of roots is typically provided by argminθ∈Θ Sφλ,n(θ), and in
this case, the estimator may be referred to as a Minimum Power Divergence Estimator
(MPDE). Another family of divergence measures was provided by Rényi (1961), and
extended in Liese and Vajda (1987). These are given by

Rα(θ) = 1

α(α − 1)
log

∫ ∞

−∞
fθ (x)α fθ0(x)1−αdx,

where the cases α = 0 and α = 1 are given by continuity, i.e., R0(θ) =
limα→0 Rα(θ) = T−1(θ) and R1(θ) = limα→1 Rα(θ) = T0(θ). Thus, R0(θ) and
R1(θ) are Kullback–Leibler divergences and belong to the family of power diver-
gences.When α �= 0, 1, Rα(θ)may be estimated by α−1(α−1)−1 log Sφα,n(θ), where
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φα(x) = xα , and if λ = α−1 then note that argminθ∈Θ α−1(α−1)−1 log Sφα,n(θ) =
argminθ∈Θ Sφλ,n(θ). Thus, each MPDE may also be regarded as a minimum Rényi
divergence estimator.

The Hellinger distance between Fθ and Fθ0 is given by

H(θ) =
(
1

2

∫ ∞

−∞

(
fθ (x)1/2 − fθ0(x)1/2

)2
dx

)1/2

,

andmay be estimated by (1+Sφ,n(θ))1/2, where φ(x) = −x1/2. In this case, we have,
for λ = − 1/2, argminθ∈Θ(1+ Sφ,n(θ))1/2 = argminθ∈Θ Sφλ,n(θ). Thus, the MPDE
with λ = − 1/2 may also be referred to as a minimum Hellinger distance estimator.

It is desired to have statistical estimation procedures that perform well when an
assumed parametric model is correctly specified, thereby attaining high efficiency at
the assumed model. A problem is that assumed parametric assumptions are almost
never literally true. Thus, in addition, it is desired to have estimation procedures that
are relatively insensitive to small departures from the model assumptions and that
somewhat larger deviations from the model assumptions do not cause a “catastrophe”
(Huber and Ronchetti 2009). Procedures satisfying these features are called robust.
Due to its relationship with the estimator suggested by Beran (1977), we conjecture
that our minimum Hellinger distance estimator, i.e., the MPDE with λ = − 1/2, is
robust (in the sense of Beran 1977 and Lindsay 1994). In addition, by arguments put
forward in Lindsay (1994), we conjecture that GSEs based on bounded φ functions
are robust with respect to contaminations of the original data (cf. Mayoral et al. 2003).
In the next section, we consider the MPDE with λ = − 1/2 and apply Monte Carlo
simulations to compare its performance with those of the MLE and the MPDEs with
λ = − 1 and − 0.9.

3 A simulation study

In this section, we explore the finite sample properties of the Minimum Power Diver-
genceEstimators (MPDEs) θ̂λ,n = argminθ∈Θ Sφλ,n(θ), whereφλ is defined inEq. (5).

First, we consider estimating the mean θ of a N (θ, 1) distribution and compare the
root mean square errors (RMSEs) of various MPDEs, with the RMSE of the MLE.
These are shown in Fig. 1. MPDEs are computed for λ = − 1,− 0.9, and − 0.5, and
for all values of m, the order of the spacings, which are divisors of n. We define a
relative RMSE of an MPDE to be its RMSE divided by the RMSE of the MLE. Each
RMSEwas estimated from 1000Monte Carlo samples with n = 840 from the N (θ, 1)
distribution with θ = 0. We present relative RMSEs for m up to 150, because when
m is larger than that the relative RMSEs tend to be quite large in comparison. From
Fig. 1, we see that MPDEs with λ equal to − 1 or − 0.9 are about as good as the MLE
for comparatively small values of m (and less well for larger m). The MPDE with
λ = − 0.5 is not quite as good in terms of RMSE. For example, with an optimally
chosen m, it had an RMSE about 0.5% larger than that of the MLE. The simulation
results indicate that the optimal choice of m is 15, 15, and 14 for λ = − 1,− 0.9,
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Fig. 1 RMSEs for different
MPDEs relative the RMSE of
the MLE when estimating the
mean of a normal distribution.
The relative RMSE of an MPDE
is its RMSE divided by the
RMSE of the MLE (color figure
online)
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Fig. 2 RMSEs for the MLE and
for different MPDEs when
estimating the mean of a normal
distribution under
contamination, where ε denotes
the level of contamination. Note,
black plot symbols are often
(partly) hidden behind green plot
symbols and red plot symbols
behind blue ones (color figure
online)
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and − 0.5, respectively. (Although for λ = − 1 and − 0.9 there are about ten other
candidates, respectively, that perform almost as good.)

Next, we consider the issue of stability/robustness of these estimators. It is known
that the MSP estimator (Cheng and Amin 1983; Ranneby 1984), i.e., the MPDE with
λ = − 1 and m = 1, much like the MLE, suffers from lack of stability under even
small deviations from the underlying model, i.e., the distributions of the MSP andML
estimators can be greatly perturbed if the assigned model is only approximately true.
This is demonstrated in a simulation study by Nordahl (1992) and by Fujisawa and
Eguchi (2008) in a numerical study on theMLE. As in Nordahl (1992), wewill assume
a proportion 1−ε of the data is generated fromanormal distribution,while a proportion
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Fig. 3 RMSEs for the one-step
MHDE and for two MPDEs,
when estimating the mean of a
normal distribution under
contamination and where ε is the
level of contamination. Note, red
and blue plot symbols are
sometimes (partly) hidden
behind black plot symbols (color
figure online)
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ε is generated by some unknown mechanism that produces “outliers.” For example,
measurements are made, which are 95% of the time correct, while 5% of the time
operator reading/writing errors are made or the recording instrument malfunctions.
Therefore, we assume that a random sample ξ1, . . . , ξn−1 is generated from an ε-
contaminated normal distribution G(x − θ0), where

G(x) = (1 − ε)Φ(x) + εH(x),

in which H(x) denotes an arbitrary distribution that models the outliers and ε is the
level of contamination. Of interest is to estimate θ0, the mean of the observations
in the case when no recording errors occur. If nε is rather small, we may have few
observations from H , making it difficult to assess the model for H . In such a case,
instead of modeling the mixture distribution G, one may (wrongly) assume that all
observations come from Φ(x − θ) with θ = θ0, and then use an estimation method
that provides a good estimate of θ0 even in presence of outliers coming from H . That
is, robust estimation aims at finding an estimator θ̂ that efficiently estimates θ0 even
though the data are contaminated by an outlier distribution H (Fujisawa and Eguchi
2008).

In our Monte Carlo simulation, we used H(x) = Φ((x − ρ)/τ), τ > 0, with
ρ = 10 and τ = 1. For each ε = 0.0, 0.1, . . . , 0.4, we generated 1000 Monte Carlo
samples with n = 840 from G(x − θ0) with θ0 = 0, and for every sample, the MLE
of θ0 was computed using the model Fθ (x) = Φ(x − θ). MPDEs for this case were
also computed for λ = − 1,− 0.9, and − 0.5 and for the previously found optimal
values of m for the respective values of λ. For each level of contamination, we used
the 1000 samples for computing estimated RMSEs for the respective estimators of
θ0. The resulting RMSEs are shown in Fig. 2. In case of contamination, we see that
the MPDEs with λ equal to − 0.9 or − 0.5 are superior to the MLE and the MPDE
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with λ = − 1. In other words, the MLE and MPDEs such as the MSP estimator,
which all can be derived from the Kullback–Leibler divergence, perform poorly under
contamination, and other MPDEs are to be preferred.

Looking at Fig. 1, it is clear that the choice of m, the order of spacings, is impor-
tant for the quality of MPDE estimators. We now propose a data-based approach for
choosing m for MPDEs (and more generally for GSEs). No asymptotic optimality
is claimed for the approach. The main purpose is rather to provide sensible answers
for finite sample sizes. For a given λ (or φ-function), let θ̂m denote the MPDE (or
GSE) using the order of spacings m. The suggested approach is given by the following
algorithm:

Step 1 Compute θ̂1.
Step 2 For r in 1, . . . , R: Draw a bootstrap sample x�

r ,1, . . . , x�
r ,n−1 from F

θ̂1
. For

some set of positive integers, M, compute θ̂ �
r ,m for each m ∈ M, where θ̂ �

r ,m

denotes the r th bootstrap replicate of θ̂m .

Step 3 Choose mopt = argminm∈M 1
R

∑R
r=1

(
θ̂ �

r ,m − θ̂1

)2
.

Under the same settings as in Fig. 2 and with m chosen according to the above
algorithm, with M defined as the set of divisors of n, we consider two MPDEs, with
λ = − 0.9 and − 0.5, respectively. We compare these with Karunamuni and Wu’s
(2011) one-step minimum Hellinger distance estimator (MHDE), obtained from a
one-step Newton–Raphson approximation to the solution of the equation Ŝ′

φ(θ) = 0,

where Ŝφ(θ) is defined as in (2), with φ(x) = 1
2 |1 − √

x |2 and f̂ a kernel density
density estimator. Karunamuni andWu (ibid.) show that their one-step MHDE has the
same asymptotic behavior as Beran’s (1977) MHDE, as long as the initial estimator
in the Newton–Raphson algorithm is reasonably good and that it retains excellent
robustness properties of the MHDEs. In our simulations, we used the median as the
initial estimator of θ0, and the kernel estimator was based on the Epanechnikov kernel
with bandwidth chosen to be (15e)1/5(π/32)1/10σ̂n−1/5, where σ̂ = median{|ξi −
median{ξ j }|}/Φ(3/4) (cf. Basu et al. 2011, pp. 108–109). The resulting RMSEs are
shown in Fig. 3. When ε = 0, the MPDE with λ = − 0.9 is the winner in terms of
RMSE (In comparison, the MPDE estimators with λ = − 0.9 and − 0.5, and the one-
step MHDE had RMSEs that were about 0.0, 1.8, and 0.4 percent larger than that of
the MLE, respectively). For ε = 0.1, the one-step MHDE performs somewhat better
than the two MPDEs, but for ε = 0.2, 0.3, and 0.4, the most efficient estimator is the
MPDE with λ = − 0.5. Under heavy contamination, i.e., for levels of contamination
equal to or larger than 0.3, both MPDEs are clearly more robust than the one-step
MHDE.

By Corollary 1, MPDEs are asymptotically normal and efficient under a general set
of regularity conditions. When applying an MPDE, a particular value of λ needs to be
chosen. In our simulations, we considered three choices, λ = − 1,− 0.9, and − 0.5.
Much like the MLE, the MPDE with λ = − 1 can be greatly perturbed if the assigned
model is only approximately true. In the choice between λ = − 0.9 and λ = − 0.5,
the former appears to provide better estimates if there is no contamination, while the
latter seems to give more robust estimators when some contamination is suspected.
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4 Concluding remarks

In this paper, we propose classes of estimators, called Generalized Spacings Estima-
tors or GSEs, based on non-overlapping higher-order spacings and show that under
some regularity conditions, they are consistent and asymptotically normal. Within
these classes, we demonstrate the existence of asymptotically efficient estimators,
called MPDEs. Through simulations, we demonstrate that they perform well also in
moderate sample sizes relative to the MLEs. However, unlike the MLEs, some of
these spacings estimators are quite robust under contamination. In this article, we also
propose a data-driven choice for the order of spacings, m, based on bootstrapping,
and the Monte Carlo studies indicate that this practical way of choosing m leads to
MPDEs which perform comparatively well and even much better at higher levels of
contamination, than the one-step MHDEs proposed in the literature. Moreover, the
GSEs suggested here can be suitably extended and used in more general situations.
For example, by using mth nearest neighbor balls as a multidimensional analogue to
univariate mth-order spacings, our proposed classes of estimators can be extended
to multivariate observations (Kuljus and Ranneby (2015) studied this problem for
m = 1), but specifics need further exploration. Another possibility is to define GSEs
based on overlapping spacings of order m. The derivation of the asymptotic distribu-
tion of such estimators is an open problem.
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Appendix

To simplify the notation in the proofs, we will write S(θ), Sn(θ), and θ̂n rather than
Sφ(θ), Sφ,n(θ), and θ̂φ,n , respectively, and when θ = θ0, we use the simplified nota-
tions Sn = Sn(θ0) and D j,m = D j,m(θ0). It should be noted that D j,m , j = 1, . . . , k,
are distributed as non-overlapping mth-order spacings from a uniform distribution.

Recall that W1, W2, . . . are independent standard exponentially distributed r.v.’s.
Let G j,m = W( j−1)m+1 + · · · + W jm and Ḡ j,m = m−1G j,m , j = 1, . . . , k. Note
that G1,m, . . . , Gk,m are i.i.d. gamma r.v.’s. To keep the notation simple, we denote
Gm = G1,m and Ḡm = m−1Gm .

Lemma 1 (Holst and Rao 1980) Let ϕ(u), defined on (0, 1), be continuous, except
possibly for finitely many u, and bounded in absolute value by an integrable function.
Then,

1

n

n∑
i=1

ϕ

(
i

n + 1

)
→

∫ 1

0
ϕ(u)du, as n → ∞.
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Proposition 1 Assume that m > c2 is fixed or that m → ∞ such that m = o(n). Then,
under Assumptions 1 and 3, for any fixed θ �= θ0,

P(Sφ,n(θ) > Sφ,n(θ0)) → 1 as n → ∞.

Proof See online Supplementary Material. ��
Proof of Theorem 1 The proof is very similar to that of Theorem 3.7 in Lehmann and
Casella (1998, p. 447), and therefore, we omit the details. Note, however, that in
Lehmann and Casella (1998), the log-likelihood needs to be replaced with Sn(θ), and
the reference to Theorem 3.2 needs to be replaced with Proposition 1 of the current
paper. ��
Proof of Theorem 2 To keep notation simple, we write D j (θ) instead of D j,1(θ). Note
that

D j,m(θ) = D( j−1)m+1(θ) + D( j−1)m+2(θ) + · · · + D jm(θ). (7)

Under condition (i), we have

0 = S′
n(θ̂n) = S′

n(θ0) + (θ̂n − θ0)S′′
n (θ0) + 2−1(θ̂n − θ0)

2S′′′
n (θ̃0),

where θ̃0 lies between θ̂n and θ0. Hence,

√
n(θ̂n − θ0) =

√
nS′

n(θ0)

−S′′
n (θ0) − 2−1(θ̂n − θ0)S′′′

n (θ̃0)
(8)

Set gθ (u) = f01(F−1
θ0

(u), θ)/ f
(

F−1
θ0

(u), θ
)
, and let Ũ j denote a value in the interval

I j = (Fθ0(X( j−1)), Fθ0(X( j))). We have,

√
nS′

n(θ0) =
√

m√
k

k∑
j=1

m∑
l=1

k D( j−1)m+lφ
′(k D j,m)

D′
( j−1)m+l(θ0)

D( j−1)m+l

=
√

m√
k

k∑
j=1

m∑
l=1

k D( j−1)m+lφ
′(k D j,m)gθ0(Ũ( j−1)m+l),

where the last equality follows by the mean value theorem. Set u j = ( j − 1/2)/n.
From the existence of the limiting distribution of the Kolmogorov–Smirnov statistic,
we have

|Ũ j − u j | = Op(n
−1/2) as n → ∞, uniformly in j . (9)

Keeping this in the mind and that k = n/m, we write

√
nS′

n(θ0)=√
m

{
1

m
√

k

k∑
j=1

m∑
l=1

[
nD( j−1)m+lφ

′(k D j,m)−μ j,l,m
]
gθ0(u( j−1)m+l)
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+ 1

m
√

k

k∑
j=1

m∑
l=1

μ j,l,m gθ0(Ũ( j−1)m+l)

+ 1

m
√

k

k∑
j=1

m∑
l=1

[
nD( j−1)m+lφ

′(k D j,m) − μ j,l,m
]

×
[
gθ0(Ũ( j−1)m+l) − gθ0(u( j−1)m+l)

]}

= √
m {Ak + Bk + Ck} , (10)

where μ j,l,m = E
(
W( j−1)m+lφ

′(Ḡ j,m)
)= μm . The summands Ak and Ck are sums

of functions of m-step non-overlapping uniform spacings. Such statistics are well
studied in the literature; the results needed are given by Mirakhmedov (2005) and
Mirakhmedov and Rao (2013). We will use these facts below. Note,

∫ 1

0
gθ0(u)du = 0 and

∫ 1

0
g2
θ0

(u)du = I (θ0), (11)

the Fisher information in a single observation. Taking this into account and by using
Corollary 1 and Remark 1 of Mirakhmedov (2005) and Lemma 1, we obtain that the
limiting distribution of Ak is N(0, σ̃ 2

A), which we denote as

Ak
d∼ N(0, σ̃ 2

A), (12)

where

σ̃ 2
A = 1

k

k∑
j=1

Var

(
1

m

m∑
l=1

Wlφ
′(Ḡ j,m)gθ0(u( j−1)m+l)

)

− 1

km

⎧⎨
⎩

1√
k

k∑
j=1

Cov

(
1

m

m∑
l=1

Wlφ
′(Ḡ j,m)gθ0(u( j−1)m+l), G j,m

)⎫⎬
⎭
2

= σ̃ 2
1A − σ̃ 2

2A. (13)

We have

σ̃ 2
1A = 1

k

k∑
j=1

E

(
1

m

m∑
l=1

W( j−1)m+lφ
′(Ḡ j,m)gθ0(u( j−1)m+l)

)2

− 1

k

k∑
j=1

{
E

(
1

m

m∑
l=1

W( j−1)m+lφ
′(Ḡ j,m)gθ0(u( j−1)m+l)

)}2

= σ̃ 2
1,1A − σ̃ 2

2,1A. (14)
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Because m = o(n) and |u( j−1)m+l − j/(k + 1)| = o(1) as n → ∞, uniformly
in j and l, the continuity of gθ0 , the equalities (11) and Lemma 1 imply that both
k−1∑k

j=1 g2
θ0

(u( j−1)m+l) and k−1∑k
j=1 gθ0(u( j−1)m+s)gθ0(u( j−1)m+l) converge to

the same limit I (θ0) for all s, l = 1, . . . , m. Therefore, we obtain

σ̃ 2
1,1A = 1

k

k∑
j=1

1

m2

m∑
l=1

E
(
W( j−1)m+lφ

′(Ḡ j,m)
)2

g2
θ0

(u( j−1)m+l)

+ 1

k

k∑
j=1

1

m2

k∑
s=1

k∑
l=1

s �=l

gθ0(u( j−1)m+s)gθ0(u( j−1)m+l)

× E
(

W( j−1)m+s W( j−1)m+lφ
′2(Ḡ j,m)

)

= 1

m2

m∑
l=1

(
E
(
Wlφ

′(Ḡm)
)2 1

k

k∑
j=1

g2
θ0

(u( j−1)m+l)

)

+ 1

m2

m∑
s=1

m∑
l=1

s �=l

E
(

Wk Wlφ
′2(Ḡm)

) 1

k

k∑
j=1

gθ0(u( j−1)m+k)gθ0(u( j−1)m+l)

= I (θ0)
1

m2

⎧⎪⎪⎨
⎪⎪⎩

m∑
s=1

E
(
Wsφ

′(Ḡm)
)2+

m∑
s=1

m∑
l=1

s �=l

E
(

Ws Wlφ
′2(Ḡm)

)
⎫⎪⎪⎬
⎪⎪⎭

(1+ o(1))

= I (θ0)
1

m2 E

⎧⎪⎪⎨
⎪⎪⎩

φ′2(Ḡm)

( m∑
s=1

W 2
s +

m∑
s=1

m∑
l=1

s �=l

Ws Wl

)
⎫⎪⎪⎬
⎪⎪⎭

(1 + o(1))

= I (θ0)E
(
Ḡmφ′(Ḡm)

)2
(1 + o(1)) . (15)

Similar arguments give

σ 2
2,1,A = I (θ0)

(
1

m

m∑
k=1

E(Wkφ
′(Ḡm))

)2
(1 + o(1))

= I (θ0)
(
E(Ḡmφ′(Ḡm))

)2
(1 + o(1)) . (16)

By substituting (15) and (16) into (14), we get

σ 2
1A = I (θ0)Var

(
Ḡmφ′(Ḡm)

)
(1 + o(1)) . (17)
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Next, we have

σ 2
2A = 1

m

⎧⎨
⎩
1

k

k∑
j=1

Cov

(
1

m

m∑
l=1

Wlφ
′(Ḡm)gθ0(u( j−1)m+k), G j,m

)⎫⎬
⎭
2

= 1

m

(
1

m

m∑
l=1

Cov
(
Wlφ

′(Ḡm), Gm
) 1

k

k∑
j=1

gθ0(u( j−1)m+l)

)2
= o(1),

by Lemma 1 and the first equality in (11). This together with (17) and (13) conclude
that σ̃ 2

A = I (θ0)Var
(
Ḡmφ′(Ḡm)

)
. Thus, by (12),

Ak
d∼ N

(
0, σ 2

A I (θ0)
)

, (18)

where σ 2
A = Var

(
Ḡmφ′(Ḡm)

)
. Let U( j) = Fθ0(ξ( j)) be the order statistics of U j =

Fθ0(ξ j ). As in (9), |U( j) − u j | = Op(n−1/2) as n → ∞, uniformly in j , implying
that |Ũ( j) − U( j)| = Op(n−1/2) as n → ∞, uniformly in j . This, together with the
continuity of gθ0 and the fact that μ j,l,m = μm for all j and l, imply that Bk has the
same asymptotic distribution as

1

m
√

k

k∑
j=1

m∑
l=1

μ j,l,m gθ0(U(( j−1)m+l)) = μm

m
√

k

k∑
j=1

m∑
l=1

gθ0(U( j−1)m+l),

which is a sum of independent r.v.’s. Hence, by (11) and the central limit theorem,

Bk
d∼ N

(
0, m−1 I (θ0)μ

2
m

)
. (19)

By the asymptotic normality of a sum of functions of uniform m-spacings (Corollary
1 in Mirakhmedov (2005)), the continuity of gθ0 , and (9), we obtain

Ck
p−→ 0. (20)

Next, consider Cov (Ak, Bk). We shall use arguments like those on p. 39 in Ghosh
(1997). That is, we use a two-term Taylor expansion for gθ0(Ũ( j−1)m+s) at u( j−1)m+s ,
Theorem 2.2(1) of Mirakhmedov and Rao (2013), and Lemma 1. Also, note that
the r.v.’s Ũ( j−1)m+s and Ũ(i−1)m+s , s = 1, . . . , m, with j �= i , are asymptotically
independent, because the intervals I( j−1)m+s and I(i−1)m+s are mutually exclusive.
Then, by taking (9) and (11) into account and after some long and tedious algebra,

Cov(Ak, Bk)

= 1

m2k

k∑
j=1

k∑
i=1

m∑
l=1

m∑
s=1

Cov
(

nD( j−1)m+lφ
′( n

m
D j,m

)
gθ0(u( j−1)m+l),
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μ j,s,m gθ0(Ũ(i−1)m+s)
)

= μm

m2k

k∑
j=1

m∑
l=1

m∑
s=1

{
Cov

(
nD( j−1)m+lφ

′( n

m
D j,m

)
gθ0(u( j−1)m+l), Ũ( j−1)m+s

)

+ o(1)
}

= −I (θ0)
μm

m2

m∑
l=1

m∑
s=1

Cov(Wlφ
′(Ḡm), Ws) + o(1)

= −I (θ0)μmCov(Ḡmφ′(Ḡm), Ḡm) + o(1)

= −I (θ0)μm E
(

Ḡ2
mφ′(Ḡm)

)
+ I (θ0)μ

2
m + o(1), (21)

since EḠm = 1. Thus, from (10), (13), (18), (19), (20), and (21), we obtain

√
nS′

n(θ0)
d∼ N(0, I (θ0)σ

2
φ ), (22)

where σ 2
φ is defined in (6). Let us consider the denominator of (8). Write

S′′
n (θ0) = 1

k

k∑
j=1

φ′′(k D j,m
) ( m∑

l=1

k D′
( j−1)m+l(θ0)

)2

+ 1

k

k∑
j=1

φ′(k D j,m
) m∑

l=1

k D′′
( j−1)m+l(θ0) = Δk + ∇k . (23)

We have

Δk = 1

k

k∑
j=1

φ′′(k D j,m)

m∑
s=1

(
k D( j−1)m+s

)2
[

D′
( j−1)m+s(θ0)

D( j−1)m+s

]2
+ 1

k

k∑
j=1

φ′′(k D j,m)

×
m∑

s=1

m∑
l=1

s �=l

k D( j−1)m+sk D( j−1)m+l

D′
( j−1)m+s(θ0)

D( j−1)m+s

D′
( j−1)m+l(θ0)

D( j−1)m+l

= Δ1k + Δ2k . (24)

By the mean value theorem,

Δ1k = 1

k

k∑
j=1

φ′′(k D j,m)

m∑
s=1

k2D2
( j−1)m+s g2

θ0
(Ũ( j−1)m+s)

= 1

k

k∑
j=1

φ′′(k D j,m)

m∑
s=1

k2D2
( j−1)m+s g2

θ0
(u( j−1)m+s)
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+ 1

k

k∑
j=1

φ′′(k D j,m)

m∑
s=1

k2D2
( j−1)m+s

(
g2
θ0

(Ũ( j−1)m+s)− g2
θ0

(u( j−1)m+s)
)
.

The second term here tends to zero in probability due to continuity of the function
gθ0 and (9). For the first term, the central limit theorem (Corollary 1 and Remark 1 of
Mirakhmedov (2005)) is valid with asymptotical expectation

1

k

k∑
j=1

E

(
φ′′(Ḡm)

1

m2

m∑
s=1

W 2
s g2

θ0
(u( j−1)m+s)

)

= 1

m2

m∑
k=1

E(W 2
k φ′′(Ḡm))

1

k

k∑
j=1

g2
θ0

(u( j−1)m+k)

= I (θ0)
1

m2

m∑
s=1

E(W 2
s φ′′(Ḡm)) (1 + o(1)) ,

because of Lemma 1 and (11). Hence,

Δ1k
p∼ I (θ0)E

(
φ′′(Ḡm)

1

m2

m∑
k=1

E(W 2
k )

)
.

By using the same arguments, one can show that

Δ2k
p∼ I (θ0)E

(
φ′′(Ḡm)

1

m2

m∑
s=1

m∑
l=1

s �=l

Ws Wl

)
.

Thus, putting last two relations into (24), we obtain

Δk
p∼ I (θ0)E

(
Ḡ2

mφ′′(Ḡm)
)

. (25)

Consider ∇k . By noting that

D′′
( j−1)m+l(θ0) = D( j−1)m+l

⎧⎨
⎩
(

D′
( j−1)m+l(θ0)

D( j−1)m+l

)′
+
(

D′
( j−1)m+l(θ0)

D( j−1)m+l

)2⎫⎬
⎭ ,

and by using Lemma 1, we see that

∇k
p∼ EḠmφ′ (Ḡm

) (∫ 1

0
g′
θ0

(u)du +
∫ 1

0
g2
θ0

(u)du

)
.
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On the other hand, it is easy to see that
∫ 1
0 g′

θ0
(u)du = −I (θ0), and therefore, by (11),

∇k
p→ 0. This fact, together with (23) and (25), implies that

S′′
n (θ0)

p∼ I (θ0)E
(

Ḡ2
mφ′′(Ḡm)

)
. (26)

Similar arguments show that

(θ̂n − θ0)S′′′
n (θ̃0)

p−→ 0. (27)

Theorem 2 follows from (8), (22), (26), and (27). ��
Proof of Corollary 1 By straightforward algebra, we find that

em(φλ) = m

λ2

(
Γ (m)Γ (m + 2(1 + λ))

Γ 2(m + 1 + λ)
− 1 − 1 + 2λ

m

)
.

By Stirling’s approximation formula, Γ (x + 1) = √
2πx(x/e)x (1 + O(x−1)), and

we find for large enough m that

em(φ) = 1 + (1 + λ)2m−1 + cλm−2,

where cλ is a constant depending on λ only. Hence, the corollary follows from Theo-
rem 2. ��
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