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1 Introduction

As noted by Thor Pajhede Nielsen (in correspondence exchanged with the second
author and in Pajhede 2017), who is employed at the University of Copenhagen but
affiliated with the CREATES center at Aarhus University, the score vector and the
conditional Fisher information matrix presented in our article are only correct when
the model contains no moving average component. We note that the results presented
in Section 5 of the paper, which contains an empirical application, are correct since
only βAR models are considered.

In what follows, we shall correct the results in the paper. The expressions that
correspond to

∂ηt

∂α
,

∂ηt

∂βl
,

∂ηt

∂ϕi
, and

∂ηt

∂θ j
. (1)
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are in error. The error propagates throughout the paper and renders the following
expressions incorrect:

– In what concerns the score vector: the vector Uα(γ ), the matrices M , P and R;

– In what concerns Fisher’s information matrix: E

(
∂2	
∂α2

∣∣∣∣Ft−1

)
, E

(
∂2	

∂α∂φ

∣∣∣∣Ft−1

)
,

E

(
∂2	

∂α∂β

∣∣∣∣Ft−1

)
, E

(
∂2	

∂ϕ∂α

∣∣∣∣Ft−1

)
, E

(
∂2	

∂θ∂α

∣∣∣∣Ft−1

)
, and matrices M , P and R;

– Inwhat concerns hypothesis testing inference (Section 4): the score vector, Fisher’s
information matrix K , and matrices X and Zt .

2 Computation of
∂ηt

∂α
,

∂ηt

∂βl
,

∂ηt

∂ϕi
, and

∂ηt

∂θ j

We shall now correct the expressions for the derivatives in (1). At the outset, recall
that our time series model is given by

g(μt ) = ηt = α + x ′
tβ +

p∑
i=1

ϕi
{
g(yt−i ) − x ′

t−iβ
} +

q∑
j=1

θ j rt− j .

We arrive at the following recursions:

∂ηt

∂α
= 1 +

q∑
j=1

θ j
∂rt− j

∂α
,

∂ηt

∂β
= x ′

t −
p∑

i=1

ϕi x
′
t−i +

q∑
j=1

θ j
∂rt− j

∂β
,

∂ηt

∂ϕi
= g(yt−i ) − x ′

t−iβ +
q∑
j=1

θ j
∂rt− j

∂ϕi
, i = 1, . . . , p,

and
∂ηt

∂θl
= rt−l +

q∑
j=1

θ j
∂rt− j

∂θl
, l = 1, . . . , q.

As in Benjamin et al. (1998), recursions only take place when the model includes
moving average components. For autoregressive models, the results in Rocha and
Cribari-Neto (2009) are correct. When the model includes moving average dynamics,
it is necessary to choose initial values for ηt and its derivatives. The initial values for
ηt are taken to be ηt = g(yt ) and the derivatives initial values are set equal to zero,
for t = 1, . . . , q.

In the next subsections, we shall provide explicit expressions for the relevant deriva-
tives considering the two errors (rt ) mentioned in the paper.
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2.1 Error rt = yt − μt

We begin by noting that

rt = yt − μt = yt − g−1(ηt ).

Let λ be a surrogate for α, β, ϕi or θ j . We obtain

∂rt
∂λ

= ∂rt
∂ηt

∂ηt

∂λ
,

which yields

∂rt
∂λ

= − 1

g′(μt )

∂ηt

∂λ
.

Therefore, we obtain the following recursions for the derivatives of ηt :

∂ηt

∂α
= 1 −

q∑
j=1

θ j
1

g′(μt− j )

∂ηt− j

∂α
,

∂ηt

∂β
= x ′

t −
p∑

i=1

ϕi x
′
t−i −

q∑
j=1

θ j
1

g′(μt− j )

∂ηt− j

∂β
,

∂ηt

∂ϕi
= g(yt−i ) − x ′

t−iβ −
q∑
j=1

θ j
1

g′(μt− j )

∂ηt− j

∂ϕi
, i = 1, . . . , p,

and
∂ηt

∂θl
= yt−l − μt−l −

q∑
j=1

θ j
1

g′(μt− j )

∂ηt− j

∂θl
, l = 1, . . . , q.

2.2 Error rt = g( yt) − ηt

Here,

rt = g(yt ) − ηt .

It follows that

∂rt
∂λ

= −∂ηt

∂λ
.
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We thus obtain the following recursions for the derivatives of ηt :

∂ηt

∂α
= 1 −

q∑
j=1

θ j
∂ηt− j

∂α
,

∂ηt

∂β
= x ′

t −
p∑

i=1

ϕi x
′
t−i −

q∑
j=1

θ j
∂ηt− j

∂β
,

∂ηt

∂ϕi
= g(yt−i ) − x ′

t−iβ −
q∑
j=1

θ j
∂ηt− j

∂ϕi
, i = 1, . . . , p,

and
∂ηt

∂θl
= g(yt−l) − ηt−l −

q∑
j=1

θ j
∂ηt− j

∂θl
, l = 1, . . . , q.

3 Remaining expressions

3.1 Score vector

Recall that m = max{p, q}. We have

∂	

∂α
= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

∂ηt

∂α

= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

⎛
⎝1 +

q∑
j=1

θ j
∂rt− j

∂α

⎞
⎠ .

Let s be an (n − m) row vector whose i th element is given by

∂ηi+m

∂α
= 1 +

q∑
j=1

θ j
∂r i+m− j

∂α
.

Thus,
Uα(γ ) = φs′T (y∗ − μ∗).

It then follows that

∂	

∂β
= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

∂ηt

∂β

= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

⎛
⎝x ′

t −
p∑

i=1

ϕi x
′
t−i +

q∑
j=1

θ j
∂rt− j

∂β

⎞
⎠ .

123



Erratum to: Beta autoregressive moving average models 455

Let M be the (n − m) × k matrix whose i th row given is by

∂ηi+m

∂β
= x ′

i+m −
p∑

l=1

ϕl x
′
i+m−l +

q∑
j=1

θ j
∂ri+m− j

∂β
.

We obtain
Uβ(γ ) = φM ′T (y∗ − μ∗).

Differentiation with respect to ϕi , i = 1, . . . , p, yields

∂	

∂ϕi
= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

∂ηt

∂ϕi

= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

⎛
⎝g(yt−i ) − x ′

t−iβ +
q∑
j=1

θ j
∂rt− j

∂ϕi

⎞
⎠ .

Thus, if we let P be the (n − m) × p matrix whose (i, j)th element is given by

∂ηi+m

∂ϕ j
= g(yi+m− j ) − x ′

i+m− jβ +
q∑

l=1

θl
∂ri+m−l

∂ϕ j
,

we obtain
Uϕ(γ ) = φP ′T (y∗ − μ∗).

Finally, differentiation with respect to θ j , j = 1, . . . , q, yields

∂	

∂θ j
= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

∂ηt

∂θ j

= φ

n∑
t=m+1

(y∗
t − μ∗

t )
1

g′(μt )

(
rt− j +

q∑
l=1

θl
∂rt−l

∂θ j

)
.

Let R be the (n − m) × q matrix whose (i, j)th element is

∂ηi+m

∂θ j
= ri+m− j +

q∑
l=1

θl
∂ri+m−l

∂θ j
.

We obtain
Uθ (γ ) = φR′T (y∗ − μ∗).
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3.2 Fisher’s information matrix

At the outset, we note that expressions forM , P and R are as in the previous subsection.
The remaining expressions are

E

(
∂2	

∂α2

∣∣∣∣Ft−1

)
= −φs′Ws, E

(
∂2	

∂α∂φ

∣∣∣∣Ft−1

)
= −s′T c,

E

(
∂2	

∂α∂β

∣∣∣∣Ft−1

)
= −φM ′Ws, E

(
∂2	

∂ϕ∂α

∣∣∣∣Ft−1

)
= −φP ′Ws,

and

E

(
∂2	

∂θ∂α

∣∣∣∣Ft−1

)
= −φR′Ws.

3.3 Hypothesis testing inference

The score vector and Fisher’s information matrix are as in the previous subsections.
The matrix X obtained as

1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ ∂ηt

∂α
htat−1 · · · ∑ ∂ηt

∂α
htat−m

∑ ∂ηt

∂β1
htat−1 · · · ∑ ∂ηt

∂β1
htat−m

...
. . .

...∑ ∂ηt

∂βk
htat−1 · · · ∑ ∂ηt

∂βk
htat−m

∑ ∂ηt

∂ϕ1
htat−1 · · · ∑ ∂ηt

∂ϕ1
htat−m

...
. . .

...∑ ∂ηt

∂ϕp
htat−1 · · · ∑ ∂ηt

∂ϕp
htat−m

∑ ∂ηt

∂θ1
htat−1 · · · ∑ ∂ηt

∂θ1
htat−m

...
. . .

...∑ ∂ηt

∂θq
htat−1 · · · ∑ ∂ηt

∂θq
htat−m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p−→ X,

where
p−→ denotes convergence in probability, and

ht =
(
ψ ′(μtφ) + ψ ′((1 − μt )φ)

)1/2
g′(μt )

.
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We shall now list conditions that guarantee the existence of the above limiting
matrix. We begin by recalling that the standardized score residuals

at = y

t − μ


t√
ψ ′(μtφ) + ψ ′((1 − μt )φ)

satisfy E(at | Ft1) = 0 and Var(at | Ft−1) = 1/φ. Thus, the sequence (at ) is a
martingale difference sequence with constant variance. Our goal is to apply Theorem
2.19 of Hall and Heyde (1980). For the reader’s convenience, we shall state it here:

Theorem Let {Xn, n ≥ 1} be a sequence of random variables and {Gn, n ≥ 1} an
increasing sequence of σ -fields with Xn measurable with respect to Gn for each n. Let
X be a random variable and c a constant such that E | X |< ∞ and Pr(| Xn |> x) ≤
c Pr(| X |> x) for each x ≥ 0 and n ≥ 1. Then,

1

n

n∑
i=1

[Xi − E(Xi | Gi−1)] p−→ 0,

as n → ∞.

The above theorem can be applied if following assumptions to hold:

Assumption (A): supt ht < ∞.

Assumption (B): supt

∣∣∣∣∂ηt

∂λ

∣∣∣∣ < ∞, where λ is a surrogate for α, β or ϕ. Notice that

for such parameters the derivative
∂ηt

∂λ
is deterministic.

Therefore, under Assumptions (A) and (B) the sequences X j
t = ∂ηt

∂λ
htat− j , for

j = 1, . . . ,m, satisfy the assumptions of the above theorem for Gt = Ft− j . Indeed,
we must only show that there exists a positive integrable random variable A such that
Pr(| at |> x) ≤ Pr(A > x) for each x ≥ 0 and each t ≥ 1, as the remaining conditions
are trivially satisfied.Note thatwe have the following unconditionalmoments:E(at ) =
0 and Var(at ) = 1/φ. Thus, applying Chebyshev’s inequality we obtain

Pr(| at |> x) ≤ 1

φx2
.

Let F be a distribution function such that F(x) = 0 if x < 1/
√

φ and F(x) =
1 − 1/(φx2) if x ≥ 1/

√
φ, and let A be a random variable with distribution function

F . It is easy to show that A is integrable. Since A does not depend on t , we have
proved our claim.

Furthermore, for i ≥ j ,

E(X
j
t | Ft− j−1) = ∂ηt

∂λ
htE

(
at− j | Ft− j−1

) = 0.

Thus, it follows from the theorem that
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1

n

∑ ∂ηt

∂λ
htat− j

p−→ 0.

This shows that the elements of the matrix X related to the parameters α, β and ϕ

are all equal to zero. That follows from the fact that the only random element is at ,
which has mean zero, and the law of large numbers holds for such variables.

We shall nowmove to the parameters related to θ .We shall need another assumption:

Assumption (C): For each k = 1, . . . , q, there exists a square integrable random

variable Tk and a constant c > 0 such that Pr

(∣∣∣∣∂ηt

∂θk

∣∣∣∣ > x

)
≤ c Pr(| Tk |> x).

We have that, under Assumptions (A) and (C), the sequences X j,k
t = ∂ηt

∂θk
htat− j ,

for j = 1, . . . ,m, satisfy the assumptions of the theorem for Gt = Ft− j . Indeed, let A
be the random variable used in the previous case and note that A is square integrable.
Since ht is deterministic and bounded by Assumption (A), we may disregard this term
in our computations in order to keep notation simple. Thus, we must find a positive

integrable random variable B and a constant d > 0 such that Pr

(∣∣∣∣∂ηt

∂θk
at− j

∣∣∣∣ > x

)
≤

d Pr(B > x). To that end, note that

Pr

(∣∣∣∣∂ηt

∂θk
at− j

∣∣∣∣ > x

)
≤ Pr

((
∂ηt

∂θk

)2

+ a2t− j > 2x

)

≤ Pr

((
∂ηt

∂θk

)2

> x

)
+ Pr

(
a2t− j > x

)

≤ c Pr(T2
j > x) + Pr(A2 > x)

≤ (1 + c)Pr
(
max{T2

j , A
2} > x

)
.

Thus, it suffices to take B = max{T2
j , A

2} and d = 1+ c. Since both T j and A are
square integrable, it follows that B is an integrable random variable. This shows that
our claim holds.

We may also consider the following alternative assumption (to avoid requiring the
square integrability of T j ):

Assumption (C’): For each k = 1, . . . , q and each j = 1, . . . ,m, there exists an inte-

grable random variable Sk, j and a constant c > 0 such that Pr

(∣∣∣∣∂ηt

∂θk
at− j

∣∣∣∣ > x

)
≤

c Pr(| Sk,m |> x).
Assumption (C’) is a direct assumption on the conditions of the theorem.
Therefore, under Assumptions (A) and (C) or (A) and (C’), we may apply the

theorem and conclude that for each k = 1, . . . , q and each j = 1, . . . ,m, the sequence

1

n

∑ ∂ηt

∂θk
htat− j
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has a (possibly nonzero) limit in probability. Thus, under Assumptions (A), (B) and
(C) or (A), (B) and (C’), the matrix X exists and is given by

1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0∑ ∂ηt

∂θ1
htat−1 · · · ∑ ∂ηt

∂θ1
htat−m

...
. . .

...∑ ∂ηt

∂θq
htat−1 · · · ∑ ∂ηt

∂θq
htat−m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p−→ X.

Finally,

Zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ηt

∂α
∂ηt

∂β1
...

∂ηt

∂βk

∂ηt

∂ϕ1
...

∂ηt

∂ϕp

∂ηt

∂θ1
...

∂ηt

∂θq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ∑q
j=1 θ j

∂rt− j

∂α

xt,1 − ∑p
i=1 ϕi xt−i,1 + ∑q

j=1 θ j
∂rt− j

∂β1
...

xt,k − ∑p
i=1 ϕi xt−i,k + ∑q

j=1 θ j
∂rt− j

∂βk

g(yt−1) − x ′
t−1β + ∑q

j=1 θ j
∂rt− j

∂ϕ1
...

g(yt−p) − x ′
t−pβ + ∑q

j=1 θ j
∂rt− j

∂ϕp

rt−1 + ∑q
j=1 θ j

∂rt− j

∂θ1
...

rt−q + ∑q
j=1 θ j

∂rt− j

∂θq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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