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Abstract
Additive manufacturing has experienced a surge in popularity in both commercial and private sectors over the past dec-
ade due to the growing demand for affordable and highly customized products, which are often in direct opposition to the 
requirements of traditional subtractive manufacturing. Fused Filament Fabrication (FFF) has emerged as the most widely-
used additive manufacturing technology, despite challenges associated with achieving contour accuracy. To address this 
issue, the authors have developed a novel camera-based process monitoring method that enables the detection of errors in 
the printing process through a layer-by-layer comparison of the actual contour and the target contour obtained via G-Code 
processing. This method is generalizable and can be applied to different printer models with minimal hardware adjustments 
using off-the-shelf components. The authors have demonstrated the effectiveness of this method in automatically detecting 
both coarse and small contour deviations in 3D-printed parts.
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1  Introduction

Additive manufacturing methods differ from traditional sub-
tractive manufacturing methods such as milling, lathe, and 
drilling, in which a desired part is cut out of a solid block of 
material using expensive machinery, human resources, and 
significant knowledge. Additive manufacturing refers to a 
group of manufacturing methods in which the desired part 
is created through a layer-wise deposition of material [1]. 
In additive manufacturing, three-dimensional structures are 
directly built from a computer-aided de-sign (CAD) model 
[2], which significantly reduces the complexity of manufac-
turing. Additive manufacturing is also known as rapid pro-
totyping [3] or rapid manufacturing [4] and is classified into 
seven main categories [5], including binder jetting, direct 
energy deposition, material jetting, powder bed fusion, sheet 
lamination, vat photopolymerization, and material extrusion. 
The latter includes Fused Filament Fabrication (FFF), in 
which solid material is liquefied inside a printing head and 
extruded through a nozzle while still in a viscous state and 

ultimately bonds with adjacent material [1]. A layer-wise 
deposition of material can be achieved by relative move-
ment between the printing bed and the printing head and 
sufficiently exact positioning in the x–y sphere. After one 
layer is completed, either the part is lowered or the print 
head is lifted to apply the next layer. Despite several issues 
that affect the achievable contour accuracy, FFF is the most 
widespread additive manufacturing technology for a diverse 
group of users due to its comparatively small investment 
costs [6]. The most common quality issue in FFF is warp-
ing [7]. As pointed out by [8], printing errors can be classi-
fied as detachment, missing material flow, deformed object, 
surface errors, and deviation from the model. Causes of 
detachment, such as cracking, warp deformation, and bed 
adhesion issues, have not been entirely solved yet [9]. Miss-
ing material flow can result from running out of filament, a 
snapped or stripped filament mid-print, a clogged nozzle, an 
overheated extruder motor driver, and/or a file or CAD file or 
G-code error [10]. Deformed areas can occur in areas with 
an overhang due to gravity [11]. Surface errors are caused by 
restrictions in layer thickness and the staircase effect studied 
in [12]. Detecting the last error class, deviation from the 
model, is challenging because a direct comparison between 
the model and the actual printed part is needed. Possible 
causes include shrinkage [13] or warping [14]. Additionally, 
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step losses in stepper motors and vibration can influence the 
accuracy of the printing process.

The errors encountered in Fused Filament Fabrica-
tion (FFF) result in workpieces that fail to meet customer 
demands, hindering its widespread adoption across all 
domains. To overcome this challenge, there is a need for 
systems that can detect faulty processes and actively con-
trol printing parameters to achieve a more robust process. 
Previous studies have proposed various methods for error 
detection, such as monitoring the FFF process via acoustic 
emission [15], real-time condition monitoring using ther-
mal sensors and accelerometers [16], designing a filament 
advance detection sensor [17], and closed-loop control in 
combination with a linear encoder to improve accuracy [18].

However, it should be noted that each error category 
potentially has multiple causes, with slight hardwarerelated 
variations in each printer model [8]. Therefore, controlling 
all variables influencing the printing process using sensors 
is a challenging task since multiple parameters need to be 
controlled simultaneously. Furthermore, custom error detec-
tion and control mechanisms cannot be easily transferred to 
a different 3D printer, hindering progress towards becoming 
state-of-the-art solutions for process monitoring.

To overcome these limitations, researchers have focused 
on camera-based process monitoring in the context of 3D 
printing [9]. Previous studies have used attention net-works 
with a control loop for printing parameter correction, a 
real-time monitoring plat-form capable of detecting various 
errors using single and double camera systems [19], a visual 
quality control system comparing the actual geometry of 
the workpiece to the theoretical point cloud reconstructed 
from G-Code [20], and machine learning approaches such 
as Convolutional Neural Networks (CNNs) [21] and Sup-
port Vector Machines (SVMs) [22] to classify images of 
the printing process and detect spaghetti-shape errors [23].

A framework for in-situ monitoring of objects printed 
with FFF by utilizing a thermal camera was presented [24]. 
Then the pixels of the termal image are projected onto vis-
ible points. Although the authors descibe the potential of 
their system for error detection, no such capabilities were 
implemented and thus showing the need for further research 
in defect detection. A dataset for classification of each 
printed layer in under printing, over printing, normal and 
empty regions by processing images taken with a high-speed 
2D Laser profiler was published [25]. However, the authors 

can only detect errors greater than half the layer height. 
When considering the financial expenses this method is not 
cost-efficient and thus cannot be implemented as a stand-
ard in every 3D printer. The introduction of 3D cameras 
raised interest amongst 3D printing researchers. The quality 
assessment of 3D printed parts with a 3D camera was studies 
[26]. The results show that dimensional inaccuracy can be 
detected. However, in addition to a costly 3D camera a turn-
ing build plate is needed to asses the printed parts from all 
sides which currently is not state of the art of commercially 
available 3D printers and thus it can be concluded that the 
method is not generalizable.

Computer vision combined with a ResNet50 convolu-
tional neural network was applied to autonomously control 
the printing settings to correct defects [27]. However, this 
method does not support the analysis of the printing process. 
Although promising results were published downsides still 
exist when it comes to implementing machine learning on 
3D-printers. Besides the need for powerful hardware and 
the acquisition of a database which represents the operating 
conditions, knowledge in the field if machine learning is not 
easy to obtain for hobby users and thus the correct imple-
mentation of algorithms is questionable and therefore limits 
the impact of these methods which results in the demand 
for easily implementable algorithms and low-cost solutions.

Despite significant progress, there is currently no general-
izable and low-cost method to detect contour errors in each 
layer of the printing process. To address this, the authors 
present a new camera-based method that is generalizable 
and transferable to different printer models with minimal 
hardware adjustments, offering the potential to detect errors 
in printing with no regard to the actual 3D printer in use.

2 � Materials and methods

The proposed method is based on a canny edge detector 
which is applied to top view pictures of the workpiece to 
detect the actual contour of the topmost layer. Simultane-
ously the target contour of the workpiece gets extracted from 
the G-Code. This way a comparison of actual and target 
contour can be drawn enabling a novel method for process 
control. The proposed workflow to detect contour deviation 
is summarized in Fig. 1 and is de-scribed in detail in the 
following manner. First the hardware setup is presented. 

Fig. 1   Proposed workflow for 
process monitoring
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Secondly the algorithm for collecting the target and the 
actual contour is described. Finally, the applied metric for 
contour error detection is explained.

2.1 � Hardware setup and camera calibration

The 3D printer utilized in this study is a self-built printer 
operating with RepRap firmware, as illustrated in Fig. 2. The 
machine vision system implemented in this work, designed 
for cost-effectiveness and generalizability in Fused Fila-
ment Fabrication (FFF), consists of a single Raspberry Pi 
4 Model B with 4 GB RAM, equipped with a Raspberry Pi 
High Quality Camera featuring a 6 mm wide angle lens. 
A direct control is established between the Raspberry Pi 
4 and the printer control board Duet2. The G-Code is gen-
erated through employment of the open-source Cura slicer 
software.

Mounting the Raspberry Pi HQ Camera on top of the 
printer enables a bird’s-eye view of the printing bed. How-
ever, without proper calibration, positional information 
derived from the images can be inaccurate due to lens-
induced image distortion. Therefore, this approach is not 
suitable for precise contour detection (< 0.1 mm).

In this study the authors applied the calibration method 
presented by [28] where a planar pattern is used to define 
the intrinsic camera parameters which make up the camera 
intrinsic matrix K where cx and cy describe the coordinates 
of the principal point and fx and fy describe the focal length:

For the calibration a 9 × 6 checkerboard is used. In addi-
tion, the extrinsic camera parameters need to be determined. 
Extrinsic parameters are rotation matrix R�R3x3 and transla-
tion vector t�R3x1 which can be derived from Chasles’s theo-
rem which states that every possible movement of a body 
can be composed of translation and rotation. The general 

K =

⎡⎢⎢⎣

fx 0 cx
0 fy cy
0 0 1

⎤⎥⎥⎦

rotation matrix R with roll, pitch and yaw angles �, �and� 
is written as:

To find the translation vector t and rotation matrix R a 
reference object with known size of 100 mm × 100 mm is 
used. The origin of the world coordinate system is set to 
the lower left corner of the reference object. Each part of 
this study is printed on top of this reference object. To find 
the translation vector ctw and rotation matrix cRW  of the 
reference object from camera to world coordinate system 
which are further abbreviated as c and w respectively, the 
following steps were taken:

1.	 Taking images with the mounted camera in the printer 
and undistorting them.

2.	 Detection of the coordinates of edges of a reference 
object with known size.

3.	 Solving the perspective-n-Points-problem and thus cal-
culating the transformation matrix from world to camera 
coordinates which exploits homogenous coordinates and 
therefore results in a 4 × 4 matrix cTw:

With known values of matrices K for intrinsic camera 
parameters and cTw for extrinsic camera parameters the 
transformation from the target contour of the printed part 
according to the G-code to camera coordinates cp can be 
calculated as:

In this formula the authors made use of the fact that 
due to lowering the printing bed after each layer the dis-
tance from the top of the printed part to the camera stays 
constant. This way no influence of z coordinates occurs. 
To guarantee a correctly executed camera calibration a 
validation is needed which according to Fig. 3 delivered 
good results.
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Fig. 2   3D-printer with camera mounted on top
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2.2 � Proposed algorithm

The proposed algorithm allows a layer-wise comparison of 
the actual contour and the target contour received by G-Code 
processing. To ensure precise contour detection, a final post-
processing step regarding the 3D printer control is required. 
This involves moving the printing head into a pre-defined 
position on the edge of the printing bed after each printed 
layer to avoid obstruction of the printed part during image 
capture. The Raspberry Pi Model 4, responsible for taking 
pictures, communicates with the Duet2 mainboard control-
ling the 3D printer through General-Purpose Input/Output 

(GPIO) pins on the duex5 extension board in combination 
with the M42 P3 S1 command in the G-code. The undis-
torted image is converted from RGB to a greyscale image, 
on which a Gauß-filter in combination with a median filter 
of kernel size H = 5 is applied to reduce noise. A thresholded 
binary image is obtained, which is used to detect the con-
tour by a canny edge detector. To prevent unwanted edges 
from being included in the error detection process, a mask 
is applied. The cv2.findContours() function in OpenCV [29] 
is applied to the image, which saves all coordinates of the 
image that lie on an edge of the workpiece and thus serves as 
a generator for the actual contour. Information in the form of 
G-code needs to be processed to receive the target contour, 
which is split into wall-outer, wall-inner, skin, and fill for 
printing. Since contour errors are best indicated by a devia-
tion in wall-outer, only printing head movements belonging 
to this class are examined, reducing the algorithm’s com-
plexity. Only G1 commands are considered, while G0 com-
mands are ignored, as only the former commands extrude 
material for building the contour. Since the number of 
hardcoded points in G-code is limited, it is insufficient for 
accurate contour error detection. Therefore, additional target 
contour values are generated by a script according to Fig. 4.

The script subdivides the linear interpolation commands 
in sufficiently small intervals which allow further contour 
points to be artificially generated. An arbitrary example of 
this process is presented: Let there be a starting position of 
P0(x0/y0) and the successive line in the G-Code demand a 
linear movement to Position P1(x1/y1). The values of these 

Fig. 3   Validation of the camera calibration and undistortion process

Fig. 4   Target contour values in G-code (left) and additional values (right)
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coordinates is extracted via a text processing program which 
exploits the syntax of the G-Code When defining a set L 
which contains all additional points between P0 and P1 with 
the interval of s in mm the following expression is valid:

In case the distance of the two points divided by the inter-
val s is no odd number, the value of s is decreased to satisfy 
this condition, which therefore guarantees equal spacing 
between P0 and P1. During experiments this study found that 
intervals with a size of 0.5 mm promise good error detec-
tion results. Finally, after receiving the actual and the target 
contour of the workpiece a comparison can be drawn and 
decisions for error detection based on the following pre-
defined metric can be made to classify the printing process 
as faulty or correct.

2.3 � Error detection

The above-mentioned algorithm for comparing the actual 
and the target contour of a 3D-printed part enables a com-
puter vision-based detection of two types of errors namely:

L =

⎧
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•	 Detection of over extrusion or detection of material in an 
unwanted position.

•	 Partial detachment of extruded material or missing mate-
rial.

Both types of errors only focus on the contour of the 
workpiece in each printed layer. The first case is detected 
by a point-wise determination of the distance of each point 
of the actual contour Ci received by camera processing to the 
closest point of the target contour Gm received by G-code 
processing. If this distance d is exceeding a pre-defined 
maximum distance dmax an error is detected. The distance d 
is calculated as:

Wrongly placed material which might happen during 
over-extrusion then gets detected if no point in the target 
contour Gm can be found such that d < dmax. This approach 
is visualized in Fig. 5 (left). The second error type contain-
ing partial detachment is contrary to the first error type. In 
this approach an error is detected if no target contour point 
is within a pre-defined distance of any actual contour point. 
This approach is visualized in Fig. 5 (right).

3 � Results

For validation of the proposed generalizable computer 
vision-based process monitoring method for contour error 
detection two workpieces with artificially generated con-
tour errors are prepared. In a first experiment the authors 

d =

√
(Ci(x) − Gm(x))

2 + (Ci(y) − Gm(y))
2

Fig. 5   Approach for detecting 
wrongly placed material (left) 
and material detachment (right)
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deliberately placed the part to print in such a way that a 
missing support structure would lead to a collapsed part with 
coarse contour errors. The target geometry of this can be 
seen in Fig. 6.

As expected, the missing support structure leads to a large 
deviation of target contour and actual contour. However, the 
proposed algorithm is able to detect the faulty process as it 
is shown in Fig. 7. Contour errors which result from wrong-
fully placed material were marked red and contour errors 
which occurred near the target contour were marked in pink 
indicating material detachment.

After validating the proposed algorithm on substantial 
contour errors, additional experi-ments for validation on 
smaller errors are undertaken. For this a second workpiece 
with dimensions 15 mm × 15 mm is designed as depicted 
in Fig. 8.

The criteria for selecting a second workpiece were set 
to allow the detection of contour errors resulting from nor-
mal 3D printing conditions, which means that the error is 
not introduced by the user like in the first workpiece. Both 
workpieces fully represent the errors detectable with just one 
single camera as a birds-eye view.

In Fig. 8 (left) the printed part is depicted and the contour 
differences compared to Fig. 8 (right) are clearly visible. 
The proposed algorithm is found to be able to reliably detect 
smaller errors in the workpiece contour. The results can 
be seen in Fig. 9 where the two defined error types where 
detected in the corners of the workpiece which is a fitting 
result when considering Fig. 8. Again both error types were 

Fig. 6   Target geometry of the workpiece without support structures

Fig. 7   Detected coarse errors with the proposed algorithm (left) and captured image (right)

Fig. 8   Target contour (left) and actual contour of the workpiece with 
contour errors (right)
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successfully detected which proofs the functionality of the 
proposed method for coarse and small errors.

As a result of the above mentioned experiments it is obvi-
ous that the canny edge detector in combination with budget 
friendly hardware is able to detect two contour error types 
with a resolution of up to 0.1 mm. The limiting factor for a 
further improved error detector is the cameras resolution.

4 � Discussion

Camera based process monitoring in 3D printing has widely 
been studied with a focus on machine learning. However, 
these methods require advanced knowledge of artificial 
intelligence algorithms and a representative dataset. Despite 
promising results, the transferability of these findings to dif-
ferent 3D-printers requires domain knowledge and powerful 
hardware for training and thus is unpractical for the end user.

To close this gap between research and end users a cost-
effective method is presented which only requires a Rasp-
berry Pi and the corresponding Raspberry Pi High Quality 
Camera for a combined €75. The following method was 
found to be a successful process monitoring technique for 
FFF printed parts. A post-processing step is applied to the 

G-Code generated by the slicer to extend the target contour 
coordinates using linear interpolation. Additionally, a com-
munication pipeline is established between the Duet2 main-
board and a Raspberry Pi through GPIO pins controlled by 
G-Code, enabling optimal timing for layer-wise picture-tak-
ing and control without interference from the printing head. 
The layer-wise image of the workpiece is then subjected to 
image processing and contour detection via a canny edge 
detector. The resulting actual contour is compared to the tar-
get contour derived from G-Code processing. A novel metric 
is applied to the resulting point clouds for error detection, 
and the algorithm makes a decision regarding the printing 
process state. The proposed method is capable of detecting 
two types of printing errors: over-extrusion and material 
detachment. The experimental results show that the method 
is capable of detecting coarse as well as small contour errors 
with a resolution of 0.1 mm. Based on a financial point of 
view the proposed method has the potential to amortize the 
required investments since high quality filament is expen-
sive. When considering productivity the contour error detec-
tor has a huge potential to eliminate printing time after an 
error occurred since an unsupervised 3D-printer will con-
tinue printing until the end of the G-Code is reached. The 
issue of wasting time on an already failed print is relevant 

Fig. 9   Detected contour errors 
with the proposed algorithm
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for commercial and hobby users. Thus, the proposed method 
will lead to a decrease in wasted filament which goes hand 
in hand with greener additive manufacturing as well as to 
an increased productivity since an unnecessary completion 
of a failed print will be eliminated.

5 � Conclusion

Fused filament fabrication has a huge potential to further 
revolutionize manufacturing and rapid prototyping. How-
ever, the process is prone to faulty process conditions, which 
are hard to control. Therefore, error detection methods need 
to be developed. Next to sensor networks cameras offer sig-
nificant benefits as they are able to detect known as well 
as unknown errors. Besides many studies which focus on 
machine vision paired with machine learning, an easy to 
implement and budget friendly solution to detect contour 
errors has not been presented. That is why in this study a 
layer-wise process monitoring technique based on a canny 
edge detector is presented to detect contour errors during 
the printing process. Experiments show the effectiveness of 
the method to detect coarse and small contour errors and 
two types of errors namely over-extrusion and material 
detachment can be detected with a resolution of 0.1 mm. 
The method is generalizable and thus can be implemented 
on every FFF 3D-printer with minor adjustments. Thus, this 
method minimizes required engineering knowledge and 
financial resources for implementation and therefore offers 
users the potential to monitor the printing process regardless 
of their background. To further increase the effectiveness of 
the method new metrics can be developed and will be stud-
ied in a next step to identify additional errors. Furthermore, 
more machine vision algorithms can be compared to the 
canny edge detector to determine which one works best in 
detecting contour errors.
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