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Abstract
Industrial machine tool feed drives are predominantly controlled by cascade control due to their low tuning complexity and 
inherent robustness. However, the cascaded structure requires the inner cascades to have higher dynamics than the outer 
cascades, which limits the achievable dynamic accuracy. Direct control approaches, which substitute the position and velocity 
cascade, offer the potential to utilize the unused potential. A promising approach is model predictive control (MPC), which 
optimizes the manipulated variable with a plant model along a prediction horizon. However, model uncertainties between 
the nominal model and the real plant lead to tracking errors. Therefore, this paper presents, a linear MPC (LMPC) and an 
adaptive MPC (AMPC) with an additional integral action to robustly compensate for model mismatches. Both controllers 
use a compliant model, are real-time capable with a sample rate of 2 kHz and consider state and input space constraints. 
The AMPC accounts for position-varying stiffness and friction. The controllers are experimentally compared with classical 
P-PI cascaded control on a ball screw drive. They show a tracking error reduction of 37% (LMPC) and 44% (AMPC) during 
a high speed motion profile and an increase in bandwidth of 180% (LMPC) and 184% (AMPC), resulting in significantly 
improved dynamic accuracy.
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1 Introduction

The positioning with controlled feed drives is a key task in 
production engineering [1]. The dynamic positioning accu-
racy of feed drives determines the quality and efficiency of 
machine tools in production processes during motion [2]. 
Feed drives are responsible for the feed movement of the 
workpiece or tool, and thus generating a relative movement 
between them [3]. A ball screw drive is often used as a feed 
drive in machine tools. It transmits the rotary motion of the 
electric motor via the spindle to the nut, thus converting the 
rotary motion into a linear axis motion. Ball screw drives are 
characterized by low friction and high efficiency, but their 
spindle stiffness depends on the load position [4, 5], result-
ing in position-variant machine dynamics. This degrades the 

achievable control performance if it is not considered in the 
control design.

Nowadays, cascaded P and PI controllers are well estab-
lished in industry for position, velocity and current control, 
due to the fact that they are straightforward to parameterize 
and disturbances are compensated in the inner cascades. The 
integral action of the PI velocity controller of a drive sys-
tem is required to achieve offset-free tracking behavior [6]. 
Although cascaded controllers are generally effective and 
straightforward to implement, the cascaded structure limits 
the dynamics, as the inner cascade must be faster than the 
outer [7]. The utilised controller has a significant influence 
on the tracking error dynamics and the disturbance behavior.

A possible increase in the dynamics of feed drives is 
considered by a model-based method of direct drive con-
trol. Model predictive control (MPC) , which is increasingly 
used for high dynamic processes, is applied. To investigate 
this potential for improvement, a model predictive control-
ler is being implemented on a ball screw drive. MPC uses 
a dynamic behavior process model, not only in the design 
phase, but also in the operation of the controller on the real 
plant [8]. Based on this model, a prediction is made for 
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several time steps. An integrating behavior must be consid-
ered in the design of model predictive control to compensate 
for mismatches between the model and the real plant.

Therefore, the novelty of this paper is to provide a MPC 
formulation that combines a compliant mechanical model, 
including the position-varying stiffness of the ball screw, 
with an integral disturbance compensation for offset-free 
tracking despite errors due to using a low-order predic-
tion model. Two MPC approaches with different lineariza-
tion strategies are presented and experimentally compared 
with the state-of-the-art cascaded control with velocity and 
acceleration feedforward on a test bench with respect to their 
potential dynamic improvement.

The paper is organized as follows. Section 2 discusses 
relevant publications for feed drive control. Based on Sect. 2, 
the control design is presented in Sect. 3. Thereby, the plant 
model and the fundamentals of the MPC formulation are dis-
cussed. The proposed MPC formulations with the selected 
state space are validated with test bench data in Sect. 4. 
Therefore, the test bench is explained in more detail, the 
model identification is conducted and the controller perfor-
mance is compared. A conclusion is given at the end, which 
completes the presented paper.

2  State of the art MPC for drive systems

MPC has been used in recent decades to control systems 
with slow dynamics, as they offer more time for solving the 
optimization problem [9]. However, the increase in com-
putation power and solver speed allows to aim for systems 
with faster dynamics, such as robot joint control [10], feed 
drives [9] or piezoactuated systems with sampling rates up 
to 10 kHz [11].

Various MPC structures have been established for drive 
systems. Berners et al. use a MPC instead of a position 
controller in the cascaded form in [12]. Others use a direct 
approach, where a MPC is used to control the axis position 
using the servo torque as the manipulated variable [7, 9, 
13]. The replacement of the current controller gained some 
traction as well, e.g. by controlling a permanent magnetic 
synchronous machine (PMSM) [14]. An overview of current 
control with MPC is given in [15].

There are already several automated solutions for param-
eter determination, e.g. a genetic algorithm for designing the 
MPC parameters [12]. Dong et al. present a Markov algo-
rithm in [16] and Stenger et al. use a Bayesian algorithm in 
[17] for the parameterization.

For the application in industrial machine tools, the MPC 
can also be adjusted to more than one axis, such as a biaxial-
system [18, 19] or a tool center point control for a five-axis-
system [20]. [19, 20] control the system only indirectly via 
the motor encoder and therefore do not consider a compliant 

feed drive. In [18], a compliant feed drive is considered, 
but only simulation results are presented and the distur-
bance behavior is not analysed. This paper focuses on high 
dynamic profiles with small tracking errors and analyses the 
position-dependent stiffness on a single axis.

The advantage of MPCs is the explicit consideration of 
constraints, but these are not considered in every implemen-
tation. In [13, 22, 23] constraints for the MPC are considered 
and implemented. In other approaches, the constraints are 
not taken into account in order to reduce the computational 
time [19] or because the feedforward control or path plan-
ning already takes them into account [12].

It is also possible to use the MPC for path planning to 
determine an optimal trajectory. In [24] a control approach 
with two MPCs is presented to control a machine tool. One 
generates the reference trajectory in the time domain based 
on a trajectory in the position domain and transfers it to the 
other MPC , which directly controls the machine tool [24].

Industrial feed drives require offset-free tracking, which 
is achieved by the integral action in cascaded control, e.g. 
in the velocity controller. As direct MPC has no such inte-
gral action, and due to the mismatch between the nominal 
model and the real plant, steady-state errors remain [25]. 
One approach to achieve offset-free tracking is to modify 
the plant model to take the input rate as a new input, which 
introduces an integral action [7]. Another approach is to 
extend the plant model by a disturbance model [25].

As shown before, there are numerous approaches in the 
state of the art for using a MPC to increase the dynamic 
path accuracy of machine tool feed drives. However, none of 
these publications take into account the nonlinearity of fric-
tion and the position dependence of spindle stiffness in the 
prediction model. Furthermore, only [7] proposes a solution 
to avoid the control error inherent in direct control due to 
model errors. Therefore, this paper presents a model predic-
tive control for offset-free tracking behavoir of machine tool 
feed drives taking into account the position dependence of 
the spindle stiffness.

3  Control design

The concept considered in this paper is based on replacing 
the position and velocity controller with an MPC . The cas-
caded control structure established in the industry is shown 
in Fig. 1. From the inside out, the controller consists of a 
current control loop, a velocity control loop and a position 
control loop. The P position controller reacts to the posi-
tion error of the desired position value xd and the actual 
load position xl . The controller output, which is the desired 
motor velocity vd , is calculated using the measured velocity 
from the table and transferred to the PI velocity control-
ler as a control error. The current controller is located in 
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the inner cascade. The cascaded control structure in Fig. 1 
also has an additional feedforward control for velocity vFF 
and acceleration aFF . For this purpose, the desired velocity 
and desired acceleration are derived from the desired set-
point position by assuming a rigid model, i.e. no compliance 
between motor and load. The setpoints are then added to the 
corresponding control error. The acceleration is multiplied 
by � = m∕

(
iSkM

)
 to calculate the corresponding value for 

the current with the mass m, the transmission ratio iS and 
the torque constant kM.

Within this paper we replace the position and velocity 
control loop with an MPC (see Fig. 2). The MPC directly 
provides the desired motor current based on the measured 
encoder value from the ball screw drive to control the 
motion.

3.1  Plant model

The plant model is used for model prediction in the control-
ler. Therefore, it is critical to the overall system performance. 
The chosen model must represent a compromise between 
modeling accuracy and computation time. However, a more 
detailed model may lead to numerical and identification 
issues and even deteriorate the overall prediction quality. 
In this paper, we choose to use a two-mass oscillator struc-
ture, since the sensor values (motor current, motor position 
and table position) can be used directly and, with numerical 
differentiation for the velocities, no observer needs to be 
implemented.

The two-mass model is sketched in Fig. 3. We follow 
the convention that motor-side variables are denoted with 
index (⋅)m and load-side variables with index (⋅)l . For ease 
of interpretation, the model is posed in purely translational 
coordinates, i.e., the motor side is converted from rota-
tional to axial motion via the transmission ratio iS m/rad . 

ml describes the load mass and mm = Jm∕i
2
S
 the mass of 

the motor and spindle of the ball screw drive, which is 
proportional to the inertia moment Jm . The degrees of free-
dom are the translational motor motion xm = �miS with the 
measured motor encoder angle �m and the load position xl . 
Further, the position-varying spring stiffness is described 
by k(xl) and the damping constant by d. In addition, a fric-
tional force FF is applied to both masses.

This model is able to reproduce the dominant compliant 
mode, while neglecting higher modes. A typical ball screw 
drive characteristic is found in the frequency variation of 
the dominant mode due to the time-varying spindle length. 
This is considered by a position-dependent spindle stiff-
ness k, where the ansatz function

depending on the position xl is used for a ball screw drive 
with one fixed and one free bearing. This is loosely moti-
vated by the physical stiffness modeling based on Hooke’s 
law [3]:

for the rotatory and the axial case with shear modulus G, 
torsional moment IT , Young’s modulus E, spindle cross-
section area A and unused spindle length l0 . The damping d 
is in general challenging to model [26] and, hence, assumed 
to be constant.

The resulting state space for the two-mass model in 
Fig. 3 with combined static friction FF is

(1)k(xl) =
k0

k1 + xl
+ k2

(2)krot =
GIT

l0 + leff
and kax =

EA

l0 + leff

Fig. 1  P-PI structure with 
feedforward control Source of 
ballscrew and motor image: 
Neubauer et al. [21], CC BY 
license

- - -

posi�on cascade
velocity cascade

current cascade

motor
ball screw

Fig. 2  Model predictive control structure Source of ballscrew and 
motor image: Neubauer et al. [21], CC BY license

Fig. 3  Schematic model of the ball screw drive system used for 
model-based control
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with state vector x =
[
xm xl ẋm ẋl

]T , input u being the motor 
torque and transmission ratio iS of the ball screw. The static 
friction force FF = FF,m + FF,l is combined on the motor 
side. Note, that the states are transformed to linear positions, 
but the input u is the motor torque, which results in expres-
sions of the same magnitude and, hence, is beneficial for the 
optimization problem convergence. The torque u can then be 
converted via the torque constant kM into the desired motor 
current id = u∕kM . To determine the state space from (3), the 
unknown parameters have to be identified. These are identi-
fied in the frequency domain by optimizing to the frequency 
response using input and output measurements from the test 
bench. The transfer function for parameter identification is 
determined from the desired torque to the table position. 
The two-mass oscillator is optimized to the transfer function 
G(s) = Xl(s)∕U(s) . The friction FF is modeled with static 
characteristics of the Stribeck-Model [27] as two superim-
posed functions ( FF,m , FF,l ). Note, that the Coulomb friction 
of the load side is mapped to the motor side and identified in 
combination with the motor friction as identifying separate 
friction models would require additional, non-standard sen-
sors (e.g., force sensing in the ball screw nut) or significant 
velocity differences between motor and table, which are 
challenging to achieve without damaging the feed drive. To 
identify the friction characteristics, trajectories with constant 
velocities were used to measure the respective mean friction 
force. The least-squares error is then minimized by particle 
swarm optimization using the friction FF = FF,m + FF,l with

Due to a missing integrator and the fact, that there is a mismatch 
between the two-mass model and the test bench, the MPC will 
show a steady-state error. To achieve an offset-free MPC ,  Pan-
nocchia showed in [25] different design methods to eliminate 
this error. One method is to add an additional integrating state, 
which is usually described as a disturbance [25]. The system 
dynamics from (3) is extended accordingly to:

(3)

ẋ =A(xl)x + bu + FF(x)

=

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−
k(xl)

mm

k(xl)

mm

−
d

mm

d

mm
k(xl)

ml

−
k(xl)

ml

d

ml

−
d

ml

⎤
⎥⎥⎥⎥⎦
x +

⎡
⎢⎢⎢⎢⎣

0

0
iS

mm

0

⎤
⎥⎥⎥⎥⎦
u

−

⎡
⎢⎢⎢⎢⎣

0

0
1

mm

0

⎤
⎥⎥⎥⎥⎦
FF

y = c
T
x =

�
0 1 0 0

�
x

(4)
FF,i(x) = sign(v)

(
Fc,i + (Fs,i − Fc,i)e

(
−| v

vs,i
|�i
))

+ Fv,iv, for i = {m, l}.

where d is the known disturbance.
In this study, two different MPC formulations are used 

to control the feed drive motion. The first one is a linear 
MPC , indicated by LMPC, which means that it cannot take 
into account the friction and the position-dependent stiff-
ness. The second MPC is able to consider the friction and 
the varying stiffness at each time step and is called adaptive 
MPC , in the following AMPC. The discontinuous Stribeck 
function from (4) is approximated by a hyperbolic tangent 
for finite derivatives for the AMPC formulation. Therefore, 
the signum function is replaced by tanh(�v) with � = 1 ⋅ 103 , 
which determines the slope at the origin. For the lineariza-
tion of (3), a distinction is made between the linear and the 
adaptive MPC . The linear MPC is linearized at the spindle 
position with maximum stiffness and without considering 
the nonlinear friction terms using xs = 0 . For the adaptive 
MPC , a linearization is executed at each sampling step tk 
around the current (measured) state x(tk) . The linearizations 
are listed in (5) and (6).

Finally, for real-time application the continuous model is 
discretized by the forward Euler method. Since the LMPC 
cannot consider the friction and the position-dependent stiff-
ness, the friction is neglected and a constant stiffness k is 
realised by the discretisation. The AMPC, on the other hand, 
takes into account the friction and the varying stiffness at 
each time step. The discretization is described as follows

with fs = 2 kHz and Ts = 1∕fs , where we use the index (⋅)k as 
shorthand notation for time step tk of the discrete signal. The 
Euler discretization does not destabilize the system here due 
to the fast sample rate of the position controller.

3.2  MPC formulation

The MPC is designed to control the feed drive model (7). The 
model predictive controller solves a quadratic optimization 
problem in each sampling step tk to determine the optimal 
motor torque for the ball screw drive. The optimization is 
based on minimizing the cost function

(5)
ẋ = A(xl)x + bu + bdd + FF(x)

y = c
T
x + cdd

(6)
ALMPC =

�
(
A
(
xl
)
+ FF(x)

)
�x

||||x=xs
,

AAMPC =
�
(
A
(
xl
)
+ FF(x)

)
�x

||||x=x(tk)

(7)
xk+1 = xk + Ts

(
ACxk + buk + bddk

)
,

for C ∈ {LMPC,AMPC}
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with the predicted tracking error e ∶= yd − y between the 
desired and predicted load position and the manipulated var-
iable change for a prediction horizon of N steps. The predic-
tion horizon length in (8) should be long enough to predict at 
least half the period of the model eigenfrequency, i.e.

The cost function also includes a constant gain Qc and 
Rc,Δu to weight the cost function. The weighting terms 
depend on the number of plant output variables ny and the 
number of manipulated variables nu with Qc ∈ ℝ

ny×ny and 
Rc,Δu ∈ ℝ

nu×nu . Qc penalises the tracking error and Rc,Δu 
penalises the output variation to reduce high frequency oscil-
lations in the manipulated variable. To improve the tracking 
behavior, we use the fact that for computerized numerical 
control (CNC)-guided axis motion the dynamic trajectory 
of each axis is known in beforehand. Hence, for each step k, 
the cost function is provided with the desired axis positions 
{yd(k + i), i = 1,… ,N} . With the system dynamics (7) and 
box-constraints for valid states and inputs the overall opti-
mization problem becomes

and its solution at each time step tk results in the optimal 
motor torque u∗

k
 . For the numerical solution the optimization 

(8)

Jk =

N∑
i=1

‖‖‖ek+i|k
‖‖‖
2

Qc

+

N−1∑
i=0

‖‖‖uk+i|k − uk+i−1|k
‖‖‖
2

Rc,Δu

,

(9)N ≥
�

Ts

√
m

k
.

(10)

u∗
k
= argmin

u
Jk

s.t. xk+1 = xk + Ts
(
ACxk + buk + bddk

)

xk ∈ [x, x]

uk ∈ [u,u]

problem is stacked into a general quadratic program (QP) 
problem, which is solved using the active-set algorithm from 
the MPC toolbox in Matlab.

4  Validation

The proposed MPC formulations are implemented on a ball 
screw drive test bench. The cascaded P-PI controller is run-
ning at a sample time of 4 kHz and the MPCs at 2 kHz . The 
validation is conducted on a test bench, which is described 
in more detail in the following section.

4.1  Experimental setup

To analyze the controllers on a physical system, a test 
bench with common industrial implementations is used. 
The test bench for experimental validation is shown in 
Fig. 4. A linear motion is generated by a servo motor actu-
ating the machine table via a ball screw drive (Steinmeyer 
3526/40.40.6.3) with diameter of 40 mm and transmission 
ratio of 0.04∕(2�) m/rad . The mounted table has a mass of 
∼ 400 kg and a motion range of 0.75 m. The ball screw is 
driven by a Siemens PMSM (1FT7085-7WF71-1ML1) with 
a rated torque of 38 Nm, which is equipped with a motor 
encoder with a resolution of 20481/rev ( ≈ 3.1μm axial). 
The load position xl is measured using a linear measure-
ment system (Heidenhain LS187C) with a grating period 
of 0.5μm and an accuracy grade of 3 μm . A specific char-
acteristic of the experimental setup is a linear direct drive 
(LSP200U-RU2-BN), which is mounted parallel to the 
guide rails under the machine table. The direct drive can 
apply a maximum force of 13.2 kN and is used to simulate 
disturbance forces. The current control loop for motor and 
linear direct drive are running on an industrial control unit 
(CU320-2 DP) via a terminal module (TM31). The veloc-
ity and position controller and the motion generation are 

Fig. 4  The ball screw drive test 
bench used for validation
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running on a dSPACE rapid prototyping system (DS1006 
processor board) at a sampling frequency of 4 kHz . The con-
trol functionality is developed in Matlab Simulink and com-
piled with code generation for the target architecture of the 
rapid prototyping system. The desired torque u is provided 
as an analog voltage ∈ ±10V  to avoid additional dead times 
of a digital fieldbus. Thus, the industrial control unit runs 
in torque control mode with only the current control loop 
running locally.

4.2  Model identification

To identify the state space model parameters, first the 
unknown friction parameters from equation (4) have to be 
determined. For this purpose, different constant velocities 
are used and the corresponding force is calculated (see 
FF,meas in Fig. 5). Thus, the friction can be identified. These 
measured values are used to perform a nonlinear least-
squares curve fitting. The friction function from equation 
(4) is used and approximated to the measured values. The 
result can be seen in Fig. 5.

The parameters ( k0 , k1 and k2 ) for the position-depend-
ent stiffness from (1) also have to be identified. For this 
purpose, the frequency response is performed at different 
positions and the stiffness is determined with a parameter 
identification in the frequency domain in positive and nega-
tive travel direction, respectively. The frequency response 
is evaluated with a sine sweep on the velocity at different 
positions and depending on the direction. For each frequency 
response, the stiffness is identified (see kmeas in Fig. 6). The 
position-dependent stiffness is evaluated at different table 
positions over the entire travel distance. Thereby, a nonlin-
ear least-squares curve fitting was performed for the vary-
ing spring stiffness parameters from (1). The damping d is 
assumed to be constant. The parameter identification result 
is shown in Table 1. With the identified parameters, the 

position-dependent stiffness can now be taken into account 
and the curve is shown in Fig. 6 with the measured values.

The masses for the motor mm and the table ml were not 
considered in the parameter identification, as they can be 
determined from datasheet values and the CAD model, and 
were set to fixed values, which are listed in Table 1. All 
identified parameters for the two-mass model from (3) are 
listed in Table 1.

4.3  Controller performance

The controllers are compared on the test bench and the 
behavior is evaluated in terms of trajectory tracking and 
disturbance rejection. Four different excitation signals are 
used to investigate the behavior in the time and frequency 
domain. The excitation signals used and their parameteriza-
tion are shown in Table 2.

4.3.1  Validation trajectories

The trajectory tracking behavior in the time domain is vali-
dated on a time-optimal trajectory with a trapezoidal accel-
eration profile, which is a common speed profile in machin-
ing [28, Sect. 5.4.3]. This trajectory is called s-profile and 
the parameters used are shown in Table 2 with dynamic 
configuration.

In the frequency domain, the trajectory tracking is vali-
dated with a transfer function using a pseudo-random-binary-
sequence (PRBS) excitation. To determine the disturbance 
rejection behavior, disturbance forces are applied to the table 
using a force-controlled linear direct drive, which is mounted 
underneath the table (cf. Fig. 4). The time domain behavior is 
shown with a disturbance step, while for the frequency domain 
a disturbance chirp signal is used as excitation for the compli-
ance transfer function. Both motions are performed with small 

Fig. 5  Approximation of the friction

Fig. 6  Approximation of the position-dependent stiffness
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table velocities ( ẋs = 0.01m∕s ) to avoid the nonlinear friction 
domain.

4.3.2  Evaluation criteria

In the following, three different error types are defined, which 
are used for the comparison of the controllers. Thus, a state-
ment can be made based on the quality of the error devia-
tion. The tracking error ex = xd − xl refers to the deviation 
between the desired position signal xd and the actual load posi-
tion xl . As error measures in time domain we use the mean 
absolute error Jx(e) = 1∕M

∑M

i=1
�ex� , the standard deviation 

std(e) =

�
1∕(M − 1)

∑M

i=1

�
ex − Jx(e)

�2 and the maximum 

max(e) of the tracking error.

4.3.3  Controller parameterization

To validate the controllers experimentally, their parameters 
need to be tuned. For a fair comparison, the cascaded control-
ler with velocity and acceleration feedforward control and the 
MPCs are tuned according to the maximum peak criteria from 
[29], where the maximum peak of the sensitivity is defined as

(11)MS = max
�

|S(j�)|

and is typically required to be ≤ 2 ( 6 dB ) [29]. The sensitiv-
ity function is defined as S(j�) = Ex(j�)∕Xd(j�) . The value 
of MS is also a measure of robustness, which is explained in 
detail in [29]. Before tuning the controller, it is necessary to 
determine the measured disturbance of the MPC . The distur-
bance is defined as the integrated error between the desired 
and the actual position, as d = Kn ∫ ex dt . The integrator gain 
is set to the integral gain value of the PI controller. The dis-
turbance only affects the plant output and is included in the 
cost functional, resulting in bd = 0 and cd = −1 . The MPC 
can be adjusted and for this purpose three parameters have to 
be tuned: the prediction horizon length N, the weighting Qc 
and weighting Rc,Δu

 . The weightings Qc and Rc,Δu
 have been 

parameterized for maximum bandwidth under the constraint 
of a worst-case sensitivity peak of MS ≤ 6 dB . For control-
ler performance evaluation, the bandwidth fB is used and is 
defined as the lowest frequency at which the sensitivity |S| 
crosses the -3 dB for the first time from below [29]. To find 
the lower estimation of the prediction horizon length N the 
equation from (9) with Ts = 0.5ms results in

The influence of the prediction horizon is shown in the experi-
mentally determined sensitivity transfer function in Fig. 7 using 
the linear MPC . The figure shows that the prediction horizon 

(12)N ≥
�

Ts

√
ml

k(xl,max)
=

�

Ts

√
412.6

5.22 ⋅ 107
= 17.66

Table 1  Identified parameters for the state space model

Parameter Value Unit Parameter Value Unit

k0 5.32·106 N Fc,1 301.61 N

k1 0.31 m Fc,2 11.56 N

k2 4.69·107 N/m Fs,1 663.59 N

d 9395.00 Ns/m Fs,2 206.01 N

mm 133.00 kg N Fv,1 55.81 N

ml 412.60 kg Fv,2 271.42 N

vs,1 0.16 m/s �1 −0.71 –
vs,2 5.27·10−4 m/s �2 0.80 –

Table 2  Feed parameters of the reference inputs

s-profile PRBS noise

ẋs ≤ 700 mm/s x̂P 0.01 mm
|ẍs| ≤ 8 ⋅ 103 mm/s2 fmax,P 400 Hz
|x⃛s| ≤ 1 ⋅ 106 mm/s3 ẋs,P 10 mm/s
Disturbance step Disturbance chirp
Fd 500 N Fc 200 N

fmin,c 10 Hz
fmax,c 200 Hz

Fig. 7  Influence of the prediction horizon on the sensitivity function 
with LMPC
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has a great influence on the controller performance. The longer 
the horizon in Fig. 7, the smaller the peak and, since it is a new 
optimization problem, also a higher bandwidth fB.

However, an increase in the horizon is also accompanied 
with a decrease in tracking behavior. According to equation 
(9), a lower estimation can be established. In the further 
course of the study a prediction horizon of N = 18 is used 
because it satisfies the maximum peak criteria. The velocity 
controller of the cascaded control was designed with loop-
shaping and the position controller subsequently with the 
maximum peak criteria.

4.3.4  Experimental validation

Figure 8 shows the comparison of the cascaded controller 
with velocity and acceleration feedforward control and the 
model predictive controllers in the frequency domain with 
the sensitivity function. For this purpose, a PRBS was used 
as reference input. In Fig. 8 it can be seen that the MPCs 
have a significantly higher bandwidth and almost the same 
peak (to which they were tuned). To stay in the frequency 
domain, we analyze the disturbance behavior in the follow-
ing. A disturbance chirp has been applied to the machine 
table as a disturbance force. Figure 9 shows that disturbances 
with low frequencies are better compensated by the MPCs.

However, frequencies in the range of f ∈ [40, 80]Hz are 
better compensated by the cascaded controller with feed-
forward control. The controllers were also compared in the 
time domain. Disturbance behavior and reference tracking 
are examined in more detail. Figure 10 shows the distur-
bance rejection behavior in time domain. The MPCs show a 

smaller error in case of a disturbance and reacts faster to the 
disturbance than the cascaded controller.

For reference tracking in time domain, a s-profile for 
xs ∈ [0, 0.7]m is used to evaluate the tracking performance 
on the test bench.

In Fig. 11, the upper figure shows the desired reference 
trajectory xd and the table position xl , and the control error 
ex,i is shown below. The control error of the MPCs are sig-
nificantly reduced, especially in the acceleration phase 

Fig. 8  Sensitivity analysis of the controllers in the frequency domain

Fig. 9  Disturbance rejection behavior in frequency domain

Fig. 10  Disturbance rejection behavior in time domain

Fig. 11  Position and tracking error for P-PI and MPCs for the refer-
ence trajectory

Table 3  Performance of the controllers

Controller P-PI LMPC AMPC
K
v

= 60 1∕s

K
p

= 190 1∕s

K
n

= 68 1∕s

Qc = 4.9 ⋅ 10
13

Rc,Δu = 1 ⋅ 10
−2

N = 18

Time domain
 Jx(e) /μm 5.05 3.18 2.79
 std(e) /μm 11.10 4.75 4.26
 max (e) /μm 56.76 23.04 21.94

Frequency domain
  fB /Hz 13.67 38.27 38.86
 MS /dB 5.78 5.70 3.69
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for t ∈ [0, 0.2]s . Due to the offset-free MPC , the error is 
reduced during constant travel and no steady-state error 
remains. Table 3 shows the error measures in time domain 
for the tracking behavior from Fig. 11 as well as the fre-
quency domain performance from Fig. 8.

4.4  Discussion

The MPCs show a significant increase in bandwidth and thus 
the potential of the presented MPC formulations for the con-
trol of machine tool feed drives.

A current limitation of the discussed approaches is the 
iterative parameter tuning during commissioning on the real 
plant. Therefore, future research is needed towards auto-
mated model-based controller tuning for safe parameteri-
zation on the plant. Another limitation is the accuracy of 
the low-order prediction model. A more complex prediction 
model could be selected for improvement. However, higher 
order models have a more complex parameter identification 
and the optimization problem at each control step requires 
more computational effort. Furthermore, the low-order 
model formulation directly supports the extension to other 
drive systems, such as robot joints or rack and pinion drives.

The transferability of the application to feed drive axes in 
machine tools depends on their specific design, especially 
the coupled mechanical behavior, as well as the process. 
By taking the dominant natural vibration into account in 
the model, this is also dampened by the controller. Cascade 
control cannot actively dampen resonances, so a significant 
increase in bandwidth can also be expected on machine 
tools. If a single resonance does not dominate, then a differ-
ent model must be used for the MPC , but the remainder of 
the proposed methodology can still be used. More challeng-
ing is the integration of the optimization problem into the 
control system, which requires direct access to the control 
system interfaces. On the frequency converter this is cur-
rently impossible, but the trend of modern CNC controls 
to open interfaces, as with the open data layer of Rexroth 
CtrlX, allows an integration of the controllers here.

5  Conclusion

A model predictive controller for compliant feed drives 
was presented. Motivated by the increase in dynamics and 
to investigate the direct MPC potential, two MPC struc-
tures with integral action have been proposed, a linear one 
(LMPC), which is linearized once during the controller 
design phase, and an adaptive controller (AMCP), which 
is linearized locally at each time step, hence considering 
nonlinearities and the position-dependent stiffness of the 
ball screw spindle. The proposed approaches have been 
implemented and evaluated on a ball screw drive test bench. 

Compared to state-of-the-art cascaded P-PI controller, the 
MPCs demonstrates the potential of a model-based control-
ler with an increase in bandwidth of up to 184% . Moreover, 
the MPCs reduce the peaks during acceleration by 59.41% 
(LMPC) and 61.35% (AMPC) and thus improve the track-
ing behavior. Furthermore, disturbance rejection has been 
improved by reducing the maximum error for a step dis-
turbance force by 46.74% (LMPC) and 45.88% (AMPC). 
Future work will consider the integration of the offset-free 
controllers directly in the numerical control, the transfer-
ability to other drive systems as well as the data-driven iden-
tification of more accurate models.
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