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Abstract
There is a continuing trend in the aircraft industry to automate production. In order to be able to react to shortages of skilled 
workers, high order fluctuations and machine breakdowns, cost-effective, mobile and flexible systems are required to sup-
port the workers. This paper focuses on the integration of existing skill-based engineering concepts into production using 
standard OPC Unified Architecture interface, where production systems can be built quickly by simply interconnecting 
modules. The interconnected modules together form higher level subsystems enabling reusability of the individual modules 
as well as the assembled subsystems across several use cases. The approach is evaluated on a production related mobile robot 
system, whose task is to drive to the workstation, reference the component and drill holes in a vertical tail plane section of 
an aircraft. All devices from different suppliers contain skill-based modules based on standards defined by OPC Foundation 
and communicate via OPC UA-based Client/Server communication.

Keywords  Robotics · Manufacturing automation · Aircraft production · OPC UA · Skill-based engineering

1  Introduction

Industry 4.0 marks the beginning of a digital transformation 
of the traditional manufacturing sector which will reimag-
ine the way manufacturing is achieved [1]. This is not only 
essential to make the production setup more flexible, but also 
to make industries more competitive in the global market 
thereby achieving a paradigm shift in business operations and 
performance [2]. The 5-Layers Purdue model of the automa-
tion pyramid is becoming increasingly inaccurate and should 
be replaced in the long term by a fully connected network 
map for representing the concept of a smart factory [3]. 
According to this new network model, a strict separation 
between information technology (IT) and operational tech-
nology (OT) will also be avoided, enabling not just a vertical 
but also a horizontal machine-to-machine integration of a 

manufacturing system [4]. However, different manufacturers 
have developed devices with their own proprietary hardware 
communication interfaces, resulting in uncountable number of 
different protocols, bus systems, data formats and interfaces. 
Consequently, a lack of common standard communication 
interfaces between machines has resulted in compatibility 
issues when integrating machines and systems from different 
manufacturers into the same production environment.

A possible solution to these shortcomings is the applica-
tion of a platform independent service-oriented architecture 
known as Open Platform Communications Unified Archi-
tecture (OPC UA) with its information modelling capability 
[5]. Furthermore, OPC UA has its own communication inter-
face based on TCP/IP protocol for system interoperability 
between devices. Although OPC UA enables the definition 
of data types and uniform data access, the definition of the 
parameters and functionalities must be clearly described 
to ensure exchangeability of modules [4]. The potential of 
OPC UA was realized and demonstrated in [6].

Skills are solution-neutral capabilities offered by devices 
to execute a task, where solution-neutral means independent 
of manufacturer [7]. In order to define the parameters and 
functionalities of skills, the production process needs to be 
broken down into a generic description of the capabilities 
of individual components. A concept of how skills can be 
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used not only in engineering, but also for field-level device 
control using OPC UA is proposed in [8]. The known related 
works only propose the OPC UA based skill concept by 
modelling the system architecture and implementing them 
at most for simple robot movements [9, 10].

In this paper, this concept was modelled, implemented 
using programming interfaces and demonstrated with a 
use case in a production-related environment consisting of 
a lightweight robot, stereo camera, drilling unit and other 
devices. Additionally, this work shows that the devices used 
for production do not matter as far as they offer skills to fulfil 
the capabilities needed for the use case.

The following section provides an overview of related 
work in the area of skill-based engineering and OPC UA. 
The system and the use cases are described in detail in 
Sect. 3. This is followed by the approach and the implemen-
tation in Sects. 4 and 5 respectively. Finally, the summary 
and outlook are mentioned in Sect. 6.

2 � Related work

OPC UA provides a framework for industrial interoperability 
through inbuilt data modelling capability in the form of OPC UA 
Information Modelling. This brings structure to the system data 
being modelled and makes data interpretation easier for machines 
and humans. According to the Reference Architecture Model for 
Industry 4.0 (RAMI 4.0) described in [11], the OPC UA standard 
is considered to be the only recommended framework to ensure 
that all hardware and software devices within a network are 
able to exchange information via the TCP/IP protocol and new 
devices do not need to be reconfigured to interact. In addition to 
this, leading automation industry companies such as Siemens 
and Beckhoff, are already using OPC UA for standardized com-
munication [4].

Using a robot instead of a machine in production requires 
a semantic model description of robots. A generic concept 
for robotics was defined by the Mechanical Engineer-
ing Industry Association (VDMA) and OPC Foundation 
in [12], which in fact is derived from the device informa-
tion model [13]. Currently, the robotics information model 
contains only the asset management and runtime data of 
robotic systems, described as motion device systems in the 
specifications.

Some of the early works related to skill-based engineer-
ing in production include the work by Julius et al. in [14], 
where the product, process and ressource approach for defin-
ing the skills in AutomationML is proposed. Later, a skill 
taxonomy in terms of assembly technology by Hammerstingl 
and Reinhart is discussed in [7]. This work defines terms 
such as capability, basic skill and composite skill and pro-
poses a methodology for derivation of skill parameters. In 
the work [15] by Malakuti et al., the challenges in industrial 

automation systems using the skill-based approach are 
addressed. This work lists lack of standardized softwares as 
one of the challenges to skill taxonomies. An overall skill-
based Plug & Produce concept for robotic applications is 
proposed in [16], where Heuss et al. present a modular skill 
framework for robots using PackML and Robot Operating 
System (ROS) for assembly operations with lightweight 
robots. The authors here also talk about SkiROS; a ROS 
based software framework for planning and execution of 
robot tasks based on their skills [17]. However, this frame-
work is dependent on ROS and lacks standardized interfaces 
for communication.

Skill modelling approach together in conjugation with 
OPC UA is presented in [18] and [19] where, for the first 
time, OPC UA Programs are referred with skills. A skill can 
be modelled into an OPC UA Program using the finite state 
machine. Some of the works also provide insights on the 
application part of the skill-based engineering. [8] shows 
an example application using skills on a field device level. 
A simple solution for flexible modern industrial automa-
tion systems with skills and OPC UA state machine is pre-
sented by Sidorenko et al. in [20]. However, this approach 
still suffers in standardization and modularity. Some works 
presented by Profanter et al. in [9] and [10] were based on 
these standards and were developed to integrate the skill 
concept for simple applications like pick and place using 
robots. These works display a very detailed skill model for 
robots based on OPC UA by providing a good ontological 
description of robot skills and are implemented for three dif-
ferent cobots using OPC UA program state machines.

Our work is based on Profanter et al. in [9] and [10], 
where the concept of skill state machines, compromising of 
basic and composite skills, is extended and implemented for 
a full-fledged use case in a production-related environment. 
This was achieved by developing a modular architecture for 
an overall system and the same was validated for a light-
weight robot system, where all the involved partners with 
their modules successfully demonstrated the interoperability 
of the overall system.

3 � Use case and system

To ensure that the development is not only applicable in a 
laboratory environment, a complex use case from the avia-
tion industry was chosen for validation. The use case deals 
with vertical tail plane (VTP) component of an airplane, 
which can be seen in Fig. 1. The use case comprises of holes 
to be drilled on the component with the help of a drilling 
template and a drilling unit which are carried out normally 
by technicians. However, in the project Commands2 under 
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grant ZW 1 80154419, it is implemented with the help of 
lightweight robots.

The process flow is as follows: The technician begins to 
assemble the drilling templates. After the first drilling tem-
plate has been mounted, the robot system can be initialized. 
The robot system moves to the machining position while 
the technician mounts another drilling template. A camera 
based referencing system is mounted on the mobile platform 
and determines the relative pose between robot system and 
drilling template. Now the end effector can be moved by 
the robot in front of the drill bush. Another measuring sys-
tem, located at the end effector, measures its position to the 
selected drill bush and the perpendicularity to the template. 
After the robot has compensated for the positioning error, 
the concentric collet nose on the drilling machine can be 
guided into a drill bush in the drilling template. High preci-
sion is required here, as both components have tight toler-
ances. An expanding mandrel is used to lock into the drill 
bush. A forward movement of the nose allows to push the 
part and clamp the stacks. The drilling machine is then posi-
tioned and fixed and the drilling process can begin. Process 
forces that occur are diverted into the template. After the 
drilling operation has been performed on requested bush-
ings, the drilling template can be dismounted. During the 
activities, the worker is guided through the process with 
augmented reality glasses.

The robotic system for the template drilling process con-
sists of different modules, which are shown in Table 1.

4 � Proposed approach

One of the main challenges for the mentioned use case in 
Sect. 3 is to divide the production process into subprocesses 
and restructure them in the form of basic and composite skills 
as well as resources. While the modules such as a drilling 
unit or stereo camera need to be integrated for the current use 

case, the overall system should be modular enough to adapt 
to changing subsystems. Such systems have an added advan-
tage of being able to be used for multiple use cases which is 
the idea of the Plug & Produce concept. After going through 
the state of the art and current challenges in the industry, a 
modular skill-based OPC UA architecture for future produc-
tion is proposed.

The main concept behind structuring OPC UA nodesets 
is to keep the architecture modular and scalable. In order to 
have a modular software architecture, the OPC UA names-
paces are structured at first as depicted in Fig. 2. The fig-
ure shows four groups: the entity, the process dependent 
namespaces and the two partner-specific namespaces. The 
UA Namespace from the OPC Foundation forms the base. 
The Common Skills Namespace, where our uniform skill is 
defined is based on the UA Namespace. In addition, general 
skills related to production are defined in this namespace, 
such as the movement skill AbsoluteCartesianMove. The 
standard UA Device Integration (DI) Namespace is derived 
from UA Namespace and is independent of the Common 
Skills Namespace. This all together forms a basic entity of 
common skills irrespective of the use case where they will 
be used. All further namespaces are only dependent on the 
basic entity consisting of the three namespaces. Both the 
DI Namespace and the Skill Namespace of the entity can 
be expanded in separate groups. Partners can thus develop 
their modules and reuse them in further applications without 
dependency on process-specific or other namespaces except 
to the entity.

Fig. 1   Robotic system performs template drilling

Table 1   Overview of the main devices used to realize the template 
drilling use case

Device Involved partner

Mobile platform ek robotics
Lightweight robot UR10e Fraunhofer IFAM
Template referencing unit Axios3D
Hole referencing unit Broetje automation
Drilling unit from SetiTec Broetje automation
Augmented reality glasses HoloLens2 SWMS
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Fig. 2   Proposed namespace structure and its derivation from UA 
Nodeset
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The skills modelled in the Application Skills Namespace 
in contrast to the skills inside Common Skills Namespace, 
are specific to use cases. One example of such a skill is 
PositionEndEffectorBeforeHole. Similarly, the resources 
consisting of software as well as hardware which are used 
in production are defined in the Application DI Namespace 
which in fact relies on the Application Skills Namespace. 
The Application Namespace inherits the entity below to 
replicate a basic system for production. Secondary devices 
and third-party software from project partners, such as serial 
robot, drilling unit, stereo camera, etc. are also based on the 
basic entity with their own skills and DI namespaces parallel 
to the Application Namespace. It is this building block based 
approach that ensures modularity in production.

From the process point of view, each skill defined in the 
above namespaces has its own finite state machine. A finite 
state machine represents an abstract software machine that has 
the ability to switch between a finite number of states, but only 
one state can be active at any given time. The states are rep-
resenting the status of a program, which defines the software 
logic executed by the state machine. Every state change (transi-
tion) has an effect by triggering specific parts of the software. In 
the context of OPC UA, the Specification Part 5: Information 
Model [21] implements the model of a finite state machine in 
the OPC UA information model by defining the abstract object 
type FiniteStateMachineType. While FiniteStateMachineType 
is the base object type for all state machines which explicitly 
define the possible states and transitions, the derived Program-
StateMachineType, defined in OPC UA Specification Part 10: 
Programs [22], specifies a statemachine with four states: Ready, 
Running, Halted and Suspended, as visualized in Fig. 3.

To change between these states, ProgramStateMachineType 
defines a set of legal transitions, represented by instances of the 
TransitionType. These transitions are then triggered by OPC UA 
service requests and cause a TransitionEvent. Depending on the 
current and the next state of the state machine, specific software 
logic is executed. Apart from defining states and transitions, 

executable skills of a device represented in the OPC UA 
address space need to be configurable to specify the exe-
cution of the skill depending on the use case. Therefore, 
the ProgramSkillStateMachineType, derived from the 
ProgramStateMachineType is defined, which additionally 
implements an InputParameterSet node for storing all vari-
ables representing input data. All further defined skills in 
this paper are derived from the ProgramSkillStateMachineType, 
implementing the exact same states, transitions, etc.

In addition to basic skills of a field device, the skill concept can 
also be used to describe higher-level skills of a device system using 
OPC UA state machines. For this purpose, cascaded execution 
of several skills is utilized to describe more complex motion 
sequences known as composite skills. These skill compositions 
can consist of both basic skills and other composite skills.

An example of a composite skill can be described using the 
commonly known Pick-and-Place task to be performed by a 
robotic system consisting of a lightweight robot and a gripper 
tool. By combining the basic skills “Moving” and “Gripping” of 
both devices, as shown in Fig. 4, the system can offer a higher-
level “Pick-and-Place” skill via OPC UA interface. In this way, 
composite skills can be adapted and modified to fit the overall 
process for a use case.

5 � Implementation

All partners of the Commands2 project modelled an 
OPC UA interface in order to integrate their modules into 
the overall system. For this, a standardized approach and 
tools for working with relevant OPC UA information models 

Start()
Halt()

Ready

Suspend()

Running

Reset()

Halted

Halt()
Resume()Suspended

Halt()

OPC UA Method-Call State-Transition: 
RunningToReady 

Transition-
Event

Fig. 3   Example of a ProgramStateMachine with 4 explicit states 
according to [22]
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PlaceObjectSkill

Input: target position

Fig. 4   Pick-and-place skill composition
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were communicated in advance. Apart from that, the model-
ling approach was also addressed in particular the exchange 
of data between all project partners. Additionally, the termi-
nology for file names as well as OPC UA specific terms were 
defined in order to structure the creation and management 
of data.

In order to simplify the manipulation and exchange of 
information models, the OPC UA modelling editor SiOME 
is used. SiOME is the abbreviation for Siemens OPC UA 
Modeling Editor and represents a software tool to create, 
modify and export OPC UA information models. To enable 
easy data exchange and versioning of information models, 
the Git framework was used.

To implement the required software components for the 
skill-based approach described in Sect. 4, interface classes 
considering two different programming languages were 
prepared for implementing the logic of the state machines. 
These included the asynchronous Free OPC UA Python 
library1 and the C++ library open625412. These libraries 
already support many functionalities of the OPC UA proto-
col including an implementation of the client-server model 
as well as OPC UA service requests which were required 
to implement the ProgramSkillStateMachine. However, the 
choice of the programming language and interface is com-
pletely free as far as the OPC UA standards are ensured. The 
main purpose for providing interfaces in this project was 
solely to speed up the implementation process and share 
experiences.

5.1 � Application modelling

Figure 5 shows the main structure of the information model 
with respect to the proposed namespace structure along with 
the notation used to visualize these models. This resembles to 
the top left process dependent namespace structure shown in 
Fig. 2. Some parts have been omitted for the sake of clarity. 
The use case specific skill compositions in the Commands2 
Skill Namespace are derived from CompositeSkillType and 
therefore also from ProgramSkillStateMachineType belong-
ing to the Common Skills Namespace. The Common Skills 
Namespace is intended to only define generic skills, which 
should be used to derive new and more specific skills depend-
ing on the use case. Hence, this namespace only covers pro-
cess independent functionalities, such as basic move skills 
derived from MoveSkillType. In order to adapt skills in terms 
of input and output parameters or events, an OPC UA interface 
derived from ISkillSetType can be referenced, as shown for 
IRelativeCartesianMoveSkillParameterType in Fig. 5.

Furthermore, the resources for the Commands2 processes 
are described in the Commands2 DI Namespace which defines 
TemplateDrillingLwrSystemType as derived from LwrSystem-
Type which in turn is defined as a ComponentType in the UA 
DI nodeset. To implement the skills for a device, each device 
type specified in the Commands2 DI Namespace has a SkillSet 
to which all skills are hierarchically subordinated. Each skill 
then can be instantiated using a generic or process-specific 
skill type definition and a HasComponent reference. Finally, an 
instance of TemplateDrillingLwrSystem is created in the Com-
mands2 Process Namespace which initializes the resources 
with all the elements.

Apart from the skill definitions, our use case is also han-
dling data about the position and orientation of the robots, 
drill holes as well as hand-eye calibration of the stereo 
camera. This information must be exchanged between the 
devices and software components using the same convention. 
To overcome this challenge, OPC UA defines a structured 
variable type known as 3DFrameType to describe coordi-
nate frames and transformations. Figure 6 shows the structure 
of the 3DFrameType as defined by the OPC Foundation in 
the UA nodeset. The 3DFrameType is comprises of 3DCar-
tesianCoordinatesType and 3DOrientationType. This implies 
that 3DCartesianCoordinatesType can be used to describe 
the position separately whereas 3DOrientationType can be 
used only for the orientation. 3DCartesianCoordinatesType 
further consists of X, Y and Z values of the data type double. 
Similarly, 3DOrientationType consists of A, B and C val-
ues of data type double. 3DOrientationType is also defined 
geometrically by OPC UA specifications in [23]. This is the 
same convention as roll, pitch and yaw where A represents 
the rotation about the X axis (roll), B the rotation about the 
Y axis (pitch) and C the rotation about Z axis (yaw), respec-
tively. Thus, irrespective of conventions used by individual 
devices and softwares for processing the data, the informa-
tion is exchanged over OPC UA as per defined standards. In 
our case, 3DFrameType is mostly used as all six degrees of 
freedom need to be described.

5.2 � UR connector module

A UR Connector module in the form of an OPC UA server 
was developed by Fraunhofer IFAM for communicating with 
a robot manufactured by Universal Robots in compliance with 
OPC UA standards. The focus for developing this connec-
tor lied on implementing the movements of the robot in the 
form of skills. Furthermore, information about the states of 
the robot such as the safety states, actual pose, joint states as 
well as the actual TCP pose are also exchanged over OPC UA.

The UR Connector was developed using the UR RTDE 
library by SDU Robotics3 and was later deployed in the form 

1  https://​freeo​pcua.​github.​io/.
2  http://​www.​open6​2541.​org/. 3  https://​sduro​botics.​gitlab.​io/​ur_​rtde/.

https://freeopcua.github.io/
http://www.open62541.org/
https://sdurobotics.gitlab.io/ur_rtde/
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of a container using Docker. Starting the module is as simple 
as running the container specifying the IP address of the 
robot as an argument. In this way, multiple instances of UR 
Connector can be used with multiple robots over different 
ports simultaneously.

The namespace structure for such a module can be  
realized in Fig. 2 in the form of Partner Namespaces.  
IFAM UR Connector Namespace is defined over IFAM 
DI Namespace, which in turn depends on the UA Robot- 

ics Namespace from OPC Foundation. Moreover, it 
does not have its own skill namespace since it uses 
the skills defined in Common Skills Namespace. Fig-
ure  7 shows the OPC UA information model of the 
UR Connector. The MotionDeviceSystemType from 
the UA Robotics Namespace is inherited by UR10e-
MotionDeviceSystemType in the IFAM DI Namespace. 

Has SubType

Has Property

Has ComponentObject VariableObjectType VariableType

Has Interface

InterfaceType

Interface:Types: Instances: References:

HasTypeDefini�on

Method

UA Namespace
ProgramStateMachineType BaseObjectType

BaseInterfaceType

HaltStart Suspend Resume

HaltedRunning SuspendedReady

FinalResultData

FiniteStateMachineType StateMachineType
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TransitionType
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IAbsolutJointMoveSkillParameterType

IRelativeCartesianMoveSkillParameterType
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IMoveSkillSetType

RelativTargetPose

InputParameterSet

MoveSkillType

InputParameterSet
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CartesianLinearMoveSkillType

AbsoluteCartesianLinearMoveSkillType

RelativeCartesianLinearMoveSkillType
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LwrSystemType Func�onalGroupType: 

Configura�on
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Kinema�cRela�ons
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MethodSet
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ModuleDependencies

BaseObjectType: 
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TemplateDrillingLwrSystemTypeBaseObjectType: 
SkillSet

DrillHoleReferenceDrillBush

Commands2 Process Namespace
TemplateDrillingLwrSystemRoot FolderType: 

Objects
BaseObjectType: 

DeviceSet

UA DI Namespace

TopologyElementType

ComponentType

DeviceType

Manufacturer 

...

SoftwareType

3DFrameType

Fig. 5   Modular architecture for Commands2 nodeset
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This means, only properties specific to robots from  
Universal Robots are specified within this structure and  
others are inherited from MotionDeviceSystemType.  
UR10eMotionDeviceSystemType is instantiated in the IFAM 
UR Connector Namespace as IFAMUR10eMotionDevice- 
System. It has the same structure as specified by the OPC UA 
Robotics specification, where it is divided into Controllers, 
MotionDevices and SafetyStates. URController has Skill-
Set which includes the basic move skills for robots. These 
are generically defined for robots in the Common Skills  
Namespace as AbsoluteJointPTPMoveSkillType, Relative- 
CartesianLinearMoveSkillType and AbsoluteCartesianLin-
earMoveSkillType. Each of these skills have input param-
eters such as target pose, speed and acceleration. Upon start-
ing the skill, the state machine goes into Running state until 
the movement of the robot is finished. Upon executing the 
skill successfully, the state machine returns to Ready. In case 
the movement is stopped via emergency stop oder triggered 
internally, the state machine goes to Halted state and needs 
to be reset.

5.3 � Skill composition

Once the OPC UA information model is designed, the 
next step is to program an OPC UA server with logic. 
For the drilling use case, two composite skills were 
drafted namely ReferenceDrillBushCompositeSkillType 
and DrillHoleCompositeSkillType as depicted in Fig. 5 
in the Commands2 Skills Namespace. The ReferenceDrill-
BushCompositeSkill altogether moves the robot to a rough 
pose of a drill bush measured by the stereo camera, fine refer-
ences the pose with the help of the secondary measuring unit 
at the end effector and finally positions the drill end effector 
in front of the the drill bush, where the hole is to be drilled. 

The DrillHoleCompositeSkill skill later consists of driving 
the drill end effector into the drill bush of the drilling tem-
plate, drilling the hole with the prescribed parameters and 
later driving out of the template, thereby completing the drill-
ing process for a hole. Both composite skills are repeated for 
every hole.

Figure 8 shows an example of the DrillHoleCompositeSkill 
skill. It consists of three capabilities which are executed one 
after the other. In order to drive the drill end effector into the 
drill bush of the template, the RelativeCartesianLinearMove 
basic skill from the UR Connector is used. Further, to clamp 
the drilling unit and to drill a hole in the component, the  
TemplateDrilling basic skill from the drill end effector is 
executed. Finally, RelativeCartesianLinearMove basic skill 
is executed again to drive the drill end effector out of the 
template. The Z hole offset distance as well as the drilling 
parameters are provided as input parameters to the basic 
skills through the parameter set of the TemplateDrilling- 
LwrSystem. The composite skills in the drilling use case were 
programmed in the form of an OPC UA server which is 
connected with other OPC UA servers in order to utilize 
their basic skills. For such an approach, the logical and error 
handling aspect is addressed within the composite skills. 
For example, if one of the basic skills is unavailable or is 
in Halted state, the composite skill also needs to go into  
Suspended or Halted state. This ensures the information 
flow from the innermost to the outermost level.

By implementing the skills and their compositon we can 
use, for instance, the UR Connector in different use cases. 
Also the Common Skills Namespace can be reused in other 
serial robots to implement their capabilities. Last but not 
least, the composite skills (e.g DrillHoleCompositeSkill) 
from Commands2 Process Namespace can be used when 
changing the robot, in case the new robot implements the 
same skills from the Common Skill Namespace.

5.4 � Visualization of the framework

As decribed above, one key advantage of using the described 
information models with OPC UA is the accessability of 
process and machine data through standardized interfaces. 
This enables the sharing of relevant data with interested par-
ties, who as clients can obtain exactly the information they 
need for their specific use case. Existing data silos are thus 
broken up and their data released for use in cross-manufac-
turer applications, for example for monitoring and control-
ling purposes.

In the Commands2 project, a visualization client that dis-
plays the current state of resources and processes via a web 
interface has been developed in order to demonstrate one 
possible way of data utilization. In a general overview, the 

UA Namespace
BaseDataVariableType

Orientation

CartesianCoordinates

3DFrameType

FrameType

X

Y

Z

3DCartesianCoordinatesType

CartesianCoordinatesType

LengthUnit

A

B

C

3DOrientationType

OrientationType

AngleUnit

Fig. 6   3DFrameType Structure according to [23]
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workstation is shown together with the resources involved in 
the processes and supplemented pictographically by the status 
of the skills executed by them as seen in Fig. 9.

In addition, various information about the individual 
resources can be looked up in detail: for example certain pro-
cess parameters or general information about the OPC UA 
server such as operating time. Since each transition of the 
previously described skill state machines triggers an event 

message, the information is stored in an event log in order to 
be accessed later through another page within the dashboard.

The web application consists of a frontend, essentially 
created with Javascript and the React library4, and a back-
end written in Python with Flask framework5 and again the 
asynchronous Free OPC UA Python library. The backend 
establishes the connection to each OPC UA server of the con-
figured resources and provides its data in JSON format via an 
API with several endpoints. This data can then be retrieved 
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MotionDevices Controllers

<MotionDeviceIdentifier> <ControllerIdentifier>

ControllerTypeAxisTypeMotorTypePowerTrainType
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URControllerType
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Fig. 7   UR connector nodeset as derived from other nodesets

4  https://​react​js.​org/.
5  https://​palle​tspro​jects.​com/p/​flask/.

https://reactjs.org/
https://palletsprojects.com/p/flask/
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Fig. 8   Example of drill hole composite skill

Fig. 9   Web-based dashboard application for the Commands2 project

by the frontend with HTTP GET methods: for example while 
loading the initial states of all components. To push event 
messages retrieved from the OPC UA server such as skill 
transitions or the (dis)connection of a resource to the frontend 

during runtime, the Server-Sent Events (SSE) mechanism 
over HTTP is used, which is supported by most web brows-
ers. At the same time, the python backend stores all event 
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messages in a separate SQLite database in order to make 
the event log persistent and thus available for future access.

6 � Results and discussion

In this article, the implementation of an OPC UA-based skill 
concept is presented. The underlying concept is explained 
and validated using a modular lightweight robot application 
in an aircraft production environment (see Fig. 10). All mod-
ules necessary for the use case could be realized with the 
skill concept, so that all modules communicate uniformly 
via an OPC UA interface and offer their skills as services 
within the production network.

The namespace structure presented in Sect. 4 enables the 
inheritance of elements and type definitions from the respec-
tive parent namespaces. Child namespaces can thus adopt 
data structures and interfaces, which in principle enables 
interchangeability of modules and devices, as well as skills 
and skill definitions. However, this interchangeability is lim-
ited to the scope of the parent namespaces. Reusability thus 
depends on the scope of the namespaces in which they are 
distributed as standards. The dissemination of these stand-
ards can be industry-specific through UA Companion Speci-
fications, vendor-specific or application-specific. To achieve 
the greatest possible compatibility, existing standards from 
the namespaces with the larger scope should therefore be 
adopted if they are available. Since there is currently no 
standardized skill interface with which basic functionalities 
can be mapped, it is proposed that these be included in a 
UA standard specification in accordance with the proposed 
Common Skills Namespace.

The definition and semantics of basic skills need to be 
evaluated and could be based on standard taxonomies such 

as VDI 2860 [24] and DIN 8580 [25] for manufacturing 
and handling processes as suggested in [7]. This allows 
inter-company compatibility and thus more flexible and 
quickly adaptable systems. In addition, the development of 
skill interfaces should be further simplified and the advan-
tages for both device manufacturers and integrators must be 
worked out.

Possible future developments could include the use of dis-
covery functionalities so that endpoints to the OPC UA serv-
ers of the individual modules no longer have to be defined. 
Instead, required capabilities would be requested and the 
modules that can provide the capabilities would connect 
automatically.
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