
Vol.:(0123456789)1 3

Production Engineering (2023) 17:329–339
https://doi.org/10.1007/s11740-023-01183-w

ASSEMBLY AND AUTOMATION

Modular lightweight robot system for aircraft production using
a generic OPC UA skill concept

Philip Koch1  · Parth Rawal1  · Nico Töpfer1  · Tim Haß1  · Christian Böhlmann1  · Wolfgang Hintze1,2 

Received: 15 September 2022 / Accepted: 10 January 2023 / Published online: 15 March 2023
© The Author(s) 2023

Abstract
There is a continuing trend in the aircraft industry to automate production. In order to be able to react to shortages of skilled
workers, high order fluctuations and machine breakdowns, cost-effective, mobile and flexible systems are required to sup-
port the workers. This paper focuses on the integration of existing skill-based engineering concepts into production using
standard OPC Unified Architecture interface, where production systems can be built quickly by simply interconnecting
modules. The interconnected modules together form higher level subsystems enabling reusability of the individual modules
as well as the assembled subsystems across several use cases. The approach is evaluated on a production related mobile robot
system, whose task is to drive to the workstation, reference the component and drill holes in a vertical tail plane section of
an aircraft. All devices from different suppliers contain skill-based modules based on standards defined by OPC Foundation
and communicate via OPC UA-based Client/Server communication.

Keywords  Robotics · Manufacturing automation · Aircraft production · OPC UA · Skill-based engineering

1  Introduction

Industry 4.0 marks the beginning of a digital transformation
of the traditional manufacturing sector which will reimag-
ine the way manufacturing is achieved [1]. This is not only
essential to make the production setup more flexible, but also
to make industries more competitive in the global market
thereby achieving a paradigm shift in business operations and
performance [2]. The 5-Layers Purdue model of the automa-
tion pyramid is becoming increasingly inaccurate and should
be replaced in the long term by a fully connected network
map for representing the concept of a smart factory [3].
According to this new network model, a strict separation
between information technology (IT) and operational tech-
nology (OT) will also be avoided, enabling not just a vertical
but also a horizontal machine-to-machine integration of a

manufacturing system [4]. However, different manufacturers
have developed devices with their own proprietary hardware
communication interfaces, resulting in uncountable number of
different protocols, bus systems, data formats and interfaces.
Consequently, a lack of common standard communication
interfaces between machines has resulted in compatibility
issues when integrating machines and systems from different
manufacturers into the same production environment.

A possible solution to these shortcomings is the applica-
tion of a platform independent service-oriented architecture
known as Open Platform Communications Unified Archi-
tecture (OPC UA) with its information modelling capability
[5]. Furthermore, OPC UA has its own communication inter-
face based on TCP/IP protocol for system interoperability
between devices. Although OPC UA enables the definition
of data types and uniform data access, the definition of the
parameters and functionalities must be clearly described
to ensure exchangeability of modules [4]. The potential of
OPC UA was realized and demonstrated in [6].

Skills are solution-neutral capabilities offered by devices
to execute a task, where solution-neutral means independent
of manufacturer [7]. In order to define the parameters and
functionalities of skills, the production process needs to be
broken down into a generic description of the capabilities
of individual components. A concept of how skills can be

 *	 Philip Koch
	 philip.koch@ifam.fraunhofer.de

1	 Fraunhofer Institute for Manufacturing Technology
and Advanced Materials (IFAM), Ottenbecker Damm 12,
21684 Stade, Germany

2	 Institute of Production Management and Technology (IPMT),
Hamburg University of Technology TUHH, Denickestraße
15, 21071 Hamburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-023-01183-w&domain=pdf
http://orcid.org/0000-0003-0075-7196
http://orcid.org/0000-0001-8469-5783
http://orcid.org/0000-0002-4398-3399
http://orcid.org/0000-0003-2362-8960
http://orcid.org/0000-0002-5697-7852
http://orcid.org/0000-0001-9025-8803

330	 Production Engineering (2023) 17:329–339

1 3

used not only in engineering, but also for field-level device
control using OPC UA is proposed in [8]. The known related
works only propose the OPC UA based skill concept by
modelling the system architecture and implementing them
at most for simple robot movements [9, 10].

In this paper, this concept was modelled, implemented
using programming interfaces and demonstrated with a
use case in a production-related environment consisting of
a lightweight robot, stereo camera, drilling unit and other
devices. Additionally, this work shows that the devices used
for production do not matter as far as they offer skills to fulfil
the capabilities needed for the use case.

The following section provides an overview of related
work in the area of skill-based engineering and OPC UA.
The system and the use cases are described in detail in
Sect. 3. This is followed by the approach and the implemen-
tation in Sects. 4 and 5 respectively. Finally, the summary
and outlook are mentioned in Sect. 6.

2 � Related work

OPC UA provides a framework for industrial interoperability
through inbuilt data modelling capability in the form of OPC UA
Information Modelling. This brings structure to the system data
being modelled and makes data interpretation easier for machines
and humans. According to the Reference Architecture Model for
Industry 4.0 (RAMI 4.0) described in [11], the OPC UA standard
is considered to be the only recommended framework to ensure
that all hardware and software devices within a network are
able to exchange information via the TCP/IP protocol and new
devices do not need to be reconfigured to interact. In addition to
this, leading automation industry companies such as Siemens
and Beckhoff, are already using OPC UA for standardized com-
munication [4].

Using a robot instead of a machine in production requires
a semantic model description of robots. A generic concept
for robotics was defined by the Mechanical Engineer-
ing Industry Association (VDMA) and OPC Foundation
in [12], which in fact is derived from the device informa-
tion model [13]. Currently, the robotics information model
contains only the asset management and runtime data of
robotic systems, described as motion device systems in the
specifications.

Some of the early works related to skill-based engineer-
ing in production include the work by Julius et al. in [14],
where the product, process and ressource approach for defin-
ing the skills in AutomationML is proposed. Later, a skill
taxonomy in terms of assembly technology by Hammerstingl
and Reinhart is discussed in [7]. This work defines terms
such as capability, basic skill and composite skill and pro-
poses a methodology for derivation of skill parameters. In
the work [15] by Malakuti et al., the challenges in industrial

automation systems using the skill-based approach are
addressed. This work lists lack of standardized softwares as
one of the challenges to skill taxonomies. An overall skill-
based Plug & Produce concept for robotic applications is
proposed in [16], where Heuss et al. present a modular skill
framework for robots using PackML and Robot Operating
System (ROS) for assembly operations with lightweight
robots. The authors here also talk about SkiROS; a ROS
based software framework for planning and execution of
robot tasks based on their skills [17]. However, this frame-
work is dependent on ROS and lacks standardized interfaces
for communication.

Skill modelling approach together in conjugation with
OPC UA is presented in [18] and [19] where, for the first
time, OPC UA Programs are referred with skills. A skill can
be modelled into an OPC UA Program using the finite state
machine. Some of the works also provide insights on the
application part of the skill-based engineering. [8] shows
an example application using skills on a field device level.
A simple solution for flexible modern industrial automa-
tion systems with skills and OPC UA state machine is pre-
sented by Sidorenko et al. in [20]. However, this approach
still suffers in standardization and modularity. Some works
presented by Profanter et al. in [9] and [10] were based on
these standards and were developed to integrate the skill
concept for simple applications like pick and place using
robots. These works display a very detailed skill model for
robots based on OPC UA by providing a good ontological
description of robot skills and are implemented for three dif-
ferent cobots using OPC UA program state machines.

Our work is based on Profanter et al. in [9] and [10],
where the concept of skill state machines, compromising of
basic and composite skills, is extended and implemented for
a full-fledged use case in a production-related environment.
This was achieved by developing a modular architecture for
an overall system and the same was validated for a light-
weight robot system, where all the involved partners with
their modules successfully demonstrated the interoperability
of the overall system.

3 � Use case and system

To ensure that the development is not only applicable in a
laboratory environment, a complex use case from the avia-
tion industry was chosen for validation. The use case deals
with vertical tail plane (VTP) component of an airplane,
which can be seen in Fig. 1. The use case comprises of holes
to be drilled on the component with the help of a drilling
template and a drilling unit which are carried out normally
by technicians. However, in the project Commands2 under

331Production Engineering (2023) 17:329–339	

1 3

grant ZW 1 80154419, it is implemented with the help of
lightweight robots.

The process flow is as follows: The technician begins to
assemble the drilling templates. After the first drilling tem-
plate has been mounted, the robot system can be initialized.
The robot system moves to the machining position while
the technician mounts another drilling template. A camera
based referencing system is mounted on the mobile platform
and determines the relative pose between robot system and
drilling template. Now the end effector can be moved by
the robot in front of the drill bush. Another measuring sys-
tem, located at the end effector, measures its position to the
selected drill bush and the perpendicularity to the template.
After the robot has compensated for the positioning error,
the concentric collet nose on the drilling machine can be
guided into a drill bush in the drilling template. High preci-
sion is required here, as both components have tight toler-
ances. An expanding mandrel is used to lock into the drill
bush. A forward movement of the nose allows to push the
part and clamp the stacks. The drilling machine is then posi-
tioned and fixed and the drilling process can begin. Process
forces that occur are diverted into the template. After the
drilling operation has been performed on requested bush-
ings, the drilling template can be dismounted. During the
activities, the worker is guided through the process with
augmented reality glasses.

The robotic system for the template drilling process con-
sists of different modules, which are shown in Table 1.

4 � Proposed approach

One of the main challenges for the mentioned use case in
Sect. 3 is to divide the production process into subprocesses
and restructure them in the form of basic and composite skills
as well as resources. While the modules such as a drilling
unit or stereo camera need to be integrated for the current use

case, the overall system should be modular enough to adapt
to changing subsystems. Such systems have an added advan-
tage of being able to be used for multiple use cases which is
the idea of the Plug & Produce concept. After going through
the state of the art and current challenges in the industry, a
modular skill-based OPC UA architecture for future produc-
tion is proposed.

The main concept behind structuring OPC UA nodesets
is to keep the architecture modular and scalable. In order to
have a modular software architecture, the OPC UA names-
paces are structured at first as depicted in Fig. 2. The fig-
ure shows four groups: the entity, the process dependent
namespaces and the two partner-specific namespaces. The
UA Namespace from the OPC Foundation forms the base.
The Common Skills Namespace, where our uniform skill is
defined is based on the UA Namespace. In addition, general
skills related to production are defined in this namespace,
such as the movement skill AbsoluteCartesianMove. The
standard UA Device Integration (DI) Namespace is derived
from UA Namespace and is independent of the Common
Skills Namespace. This all together forms a basic entity of
common skills irrespective of the use case where they will
be used. All further namespaces are only dependent on the
basic entity consisting of the three namespaces. Both the
DI Namespace and the Skill Namespace of the entity can
be expanded in separate groups. Partners can thus develop
their modules and reuse them in further applications without
dependency on process-specific or other namespaces except
to the entity.

Fig. 1   Robotic system performs template drilling

Table 1   Overview of the main devices used to realize the template
drilling use case

Device Involved partner

Mobile platform ek robotics
Lightweight robot UR10e Fraunhofer IFAM
Template referencing unit Axios3D
Hole referencing unit Broetje automation
Drilling unit from SetiTec Broetje automation
Augmented reality glasses HoloLens2 SWMS

UA Namespace

Application Skills
Namespace

UA DI Namespace

Application DI Namespace

Common Skills Namespace

PartnerY Skills Namespace

PartnerY DI Namespace

ModuleB
Namespace

ModuleC
Namespace

Application Namespace

ytitnE
ssecorP

tnedneped

Pa
rtn

er
 X

PartnerX Skills Namespace

PartnerX DI Namespace

ModuleA Namespace

Pa
rtn

er
 X

Pa
rtn

er
 Y

Fig. 2   Proposed namespace structure and its derivation from UA
Nodeset

332	 Production Engineering (2023) 17:329–339

1 3

The skills modelled in the Application Skills Namespace
in contrast to the skills inside Common Skills Namespace,
are specific to use cases. One example of such a skill is
PositionEndEffectorBeforeHole. Similarly, the resources
consisting of software as well as hardware which are used
in production are defined in the Application DI Namespace
which in fact relies on the Application Skills Namespace.
The Application Namespace inherits the entity below to
replicate a basic system for production. Secondary devices
and third-party software from project partners, such as serial
robot, drilling unit, stereo camera, etc. are also based on the
basic entity with their own skills and DI namespaces parallel
to the Application Namespace. It is this building block based
approach that ensures modularity in production.

From the process point of view, each skill defined in the
above namespaces has its own finite state machine. A finite
state machine represents an abstract software machine that has
the ability to switch between a finite number of states, but only
one state can be active at any given time. The states are rep-
resenting the status of a program, which defines the software
logic executed by the state machine. Every state change (transi-
tion) has an effect by triggering specific parts of the software. In
the context of OPC UA, the Specification Part 5: Information
Model [21] implements the model of a finite state machine in
the OPC UA information model by defining the abstract object
type FiniteStateMachineType. While FiniteStateMachineType
is the base object type for all state machines which explicitly
define the possible states and transitions, the derived Program-
StateMachineType, defined in OPC UA Specification Part 10:
Programs [22], specifies a statemachine with four states: Ready,
Running, Halted and Suspended, as visualized in Fig. 3.

To change between these states, ProgramStateMachineType
defines a set of legal transitions, represented by instances of the
TransitionType. These transitions are then triggered by OPC UA
service requests and cause a TransitionEvent. Depending on the
current and the next state of the state machine, specific software
logic is executed. Apart from defining states and transitions,

executable skills of a device represented in the OPC UA
address space need to be configurable to specify the exe-
cution of the skill depending on the use case. Therefore,
the ProgramSkillStateMachineType, derived from the
ProgramStateMachineType is defined, which additionally
implements an InputParameterSet node for storing all vari-
ables representing input data. All further defined skills in
this paper are derived from the ProgramSkillStateMachineType,
implementing the exact same states, transitions, etc.

In addition to basic skills of a field device, the skill concept can
also be used to describe higher-level skills of a device system using
OPC UA state machines. For this purpose, cascaded execution
of several skills is utilized to describe more complex motion
sequences known as composite skills. These skill compositions
can consist of both basic skills and other composite skills.

An example of a composite skill can be described using the
commonly known Pick-and-Place task to be performed by a
robotic system consisting of a lightweight robot and a gripper
tool. By combining the basic skills “Moving” and “Gripping” of
both devices, as shown in Fig. 4, the system can offer a higher-
level “Pick-and-Place” skill via OPC UA interface. In this way,
composite skills can be adapted and modified to fit the overall
process for a use case.

5 � Implementation

All partners of the Commands2 project modelled an
OPC UA interface in order to integrate their modules into
the overall system. For this, a standardized approach and
tools for working with relevant OPC UA information models

Start()
Halt()

Ready

Suspend()

Running

Reset()

Halted

Halt()
Resume()Suspended

Halt()

OPC UA Method-Call State-Transition:
RunningToReady

Transition-
Event

Fig. 3   Example of a ProgramStateMachine with 4 explicit states
according to [22]

Lightweight Robot

executes

executes

Robotic System

Basic Skill

DirectMovementSkill

Input: target position

LinearMovementSkill

Input: target position

CircularMovementSkill

Input: target position

GetRobotPosSkill

Output: position

Gripper tool

ForceSensitiveGrippingSkill

Input: max. force

ShapeSensitiveGrippingSkill

Input: gripping width

Composite Skill

Device / Module

Input Parameter
Output Parameter

Pick-and-Place

PickObjectSkill

Input: target position, force

PlaceObjectSkill

Input: target position

Fig. 4   Pick-and-place skill composition

333Production Engineering (2023) 17:329–339	

1 3

were communicated in advance. Apart from that, the model-
ling approach was also addressed in particular the exchange
of data between all project partners. Additionally, the termi-
nology for file names as well as OPC UA specific terms were
defined in order to structure the creation and management
of data.

In order to simplify the manipulation and exchange of
information models, the OPC UA modelling editor SiOME
is used. SiOME is the abbreviation for Siemens OPC UA
Modeling Editor and represents a software tool to create,
modify and export OPC UA information models. To enable
easy data exchange and versioning of information models,
the Git framework was used.

To implement the required software components for the
skill-based approach described in Sect. 4, interface classes
considering two different programming languages were
prepared for implementing the logic of the state machines.
These included the asynchronous Free OPC UA Python
library1 and the C++ library open625412. These libraries
already support many functionalities of the OPC UA proto-
col including an implementation of the client-server model
as well as OPC UA service requests which were required
to implement the ProgramSkillStateMachine. However, the
choice of the programming language and interface is com-
pletely free as far as the OPC UA standards are ensured. The
main purpose for providing interfaces in this project was
solely to speed up the implementation process and share
experiences.

5.1 � Application modelling

Figure 5 shows the main structure of the information model
with respect to the proposed namespace structure along with
the notation used to visualize these models. This resembles to
the top left process dependent namespace structure shown in
Fig. 2. Some parts have been omitted for the sake of clarity.
The use case specific skill compositions in the Commands2
Skill Namespace are derived from CompositeSkillType and
therefore also from ProgramSkillStateMachineType belong-
ing to the Common Skills Namespace. The Common Skills
Namespace is intended to only define generic skills, which
should be used to derive new and more specific skills depend-
ing on the use case. Hence, this namespace only covers pro-
cess independent functionalities, such as basic move skills
derived from MoveSkillType. In order to adapt skills in terms
of input and output parameters or events, an OPC UA interface
derived from ISkillSetType can be referenced, as shown for
IRelativeCartesianMoveSkillParameterType in Fig. 5.

Furthermore, the resources for the Commands2 processes
are described in the Commands2 DI Namespace which defines
TemplateDrillingLwrSystemType as derived from LwrSystem-
Type which in turn is defined as a ComponentType in the UA
DI nodeset. To implement the skills for a device, each device
type specified in the Commands2 DI Namespace has a SkillSet
to which all skills are hierarchically subordinated. Each skill
then can be instantiated using a generic or process-specific
skill type definition and a HasComponent reference. Finally, an
instance of TemplateDrillingLwrSystem is created in the Com-
mands2 Process Namespace which initializes the resources
with all the elements.

Apart from the skill definitions, our use case is also han-
dling data about the position and orientation of the robots,
drill holes as well as hand-eye calibration of the stereo
camera. This information must be exchanged between the
devices and software components using the same convention.
To overcome this challenge, OPC UA defines a structured
variable type known as 3DFrameType to describe coordi-
nate frames and transformations. Figure 6 shows the structure
of the 3DFrameType as defined by the OPC Foundation in
the UA nodeset. The 3DFrameType is comprises of 3DCar-
tesianCoordinatesType and 3DOrientationType. This implies
that 3DCartesianCoordinatesType can be used to describe
the position separately whereas 3DOrientationType can be
used only for the orientation. 3DCartesianCoordinatesType
further consists of X, Y and Z values of the data type double.
Similarly, 3DOrientationType consists of A, B and C val-
ues of data type double. 3DOrientationType is also defined
geometrically by OPC UA specifications in [23]. This is the
same convention as roll, pitch and yaw where A represents
the rotation about the X axis (roll), B the rotation about the
Y axis (pitch) and C the rotation about Z axis (yaw), respec-
tively. Thus, irrespective of conventions used by individual
devices and softwares for processing the data, the informa-
tion is exchanged over OPC UA as per defined standards. In
our case, 3DFrameType is mostly used as all six degrees of
freedom need to be described.

5.2 � UR connector module

A UR Connector module in the form of an OPC UA server
was developed by Fraunhofer IFAM for communicating with
a robot manufactured by Universal Robots in compliance with
OPC UA standards. The focus for developing this connec-
tor lied on implementing the movements of the robot in the
form of skills. Furthermore, information about the states of
the robot such as the safety states, actual pose, joint states as
well as the actual TCP pose are also exchanged over OPC UA.

The UR Connector was developed using the UR RTDE
library by SDU Robotics3 and was later deployed in the form

1  https://​freeo​pcua.​github.​io/.
2  http://​www.​open6​2541.​org/. 3  https://​sduro​botics.​gitlab.​io/​ur_​rtde/.

https://freeopcua.github.io/
http://www.open62541.org/
https://sdurobotics.gitlab.io/ur_rtde/

334	 Production Engineering (2023) 17:329–339

1 3

of a container using Docker. Starting the module is as simple
as running the container specifying the IP address of the
robot as an argument. In this way, multiple instances of UR
Connector can be used with multiple robots over different
ports simultaneously.

The namespace structure for such a module can be
realized in Fig. 2 in the form of Partner Namespaces.
IFAM UR Connector Namespace is defined over IFAM
DI Namespace, which in turn depends on the UA Robot-

ics Namespace from OPC Foundation. Moreover, it
does not have its own skill namespace since it uses
the skills defined in Common Skills Namespace. Fig-
ure 7 shows the OPC UA information model of the
UR Connector. The MotionDeviceSystemType from
the UA Robotics Namespace is inherited by UR10e-
MotionDeviceSystemType in the IFAM DI Namespace.

Has SubType

Has Property

Has ComponentObject VariableObjectType VariableType

Has Interface

InterfaceType

Interface:Types: Instances: References:

HasTypeDefini�on

Method

UA Namespace
ProgramStateMachineType BaseObjectType

BaseInterfaceType

HaltStart Suspend Resume

HaltedRunning SuspendedReady

FinalResultData

FiniteStateMachineType StateMachineType

StateType

TransitionType

Common Skills Namespace

CompositeSkillType

ProgramSkillStateMachineType

IAbsolutCartesianMoveSkillParameterType

IAbsolutJointMoveSkillParameterType

IRelativeCartesianMoveSkillParameterType

IRelativeJointMoveSkillParameterType

ISkillSetType

IMoveSkillSetType

RelativTargetPose

InputParameterSet

MoveSkillType

InputParameterSet

MessageSkillType

LinearMoveSkillType

PtpMoveSkillType

CartesianLinearMoveSkillType

AbsoluteCartesianLinearMoveSkillType

RelativeCartesianLinearMoveSkillType

JointPTPMoveSkillType

AbsoluteJointPTPMoveSkillType

Commands2 Skills Namespace
ReferenceDrillBushCompositeSkillType DrillHoleCompositeSkillType

Commands2 DI Namespace
LwrSystemType Func�onalGroupType:

Configura�on
Func�onalGroupType:
Kinema�cRela�ons

BaseObjectType:
MethodSet

Func�onalGroupType:
ModuleDependencies

BaseObjectType:
ParameterSet

TemplateDrillingLwrSystemTypeBaseObjectType:
SkillSet

DrillHoleReferenceDrillBush

Commands2 Process Namespace
TemplateDrillingLwrSystemRoot FolderType:

Objects
BaseObjectType:

DeviceSet

UA DI Namespace

TopologyElementType

ComponentType

DeviceType

Manufacturer

...

SoftwareType

3DFrameType

Fig. 5   Modular architecture for Commands2 nodeset

335Production Engineering (2023) 17:329–339	

1 3

This means, only properties specific to robots from
Universal Robots are specified within this structure and
others are inherited from MotionDeviceSystemType.
UR10eMotionDeviceSystemType is instantiated in the IFAM
UR Connector Namespace as IFAMUR10eMotionDevice-
System. It has the same structure as specified by the OPC UA
Robotics specification, where it is divided into Controllers,
MotionDevices and SafetyStates. URController has Skill-
Set which includes the basic move skills for robots. These
are generically defined for robots in the Common Skills
Namespace as AbsoluteJointPTPMoveSkillType, Relative-
CartesianLinearMoveSkillType and AbsoluteCartesianLin-
earMoveSkillType. Each of these skills have input param-
eters such as target pose, speed and acceleration. Upon start-
ing the skill, the state machine goes into Running state until
the movement of the robot is finished. Upon executing the
skill successfully, the state machine returns to Ready. In case
the movement is stopped via emergency stop oder triggered
internally, the state machine goes to Halted state and needs
to be reset.

5.3 � Skill composition

Once the OPC UA information model is designed, the
next step is to program an OPC UA server with logic.
For the drilling use case, two composite skills were
drafted namely ReferenceDrillBushCompositeSkillType
and DrillHoleCompositeSkillType as depicted in Fig. 5
in the Commands2 Skills Namespace. The ReferenceDrill-
BushCompositeSkill altogether moves the robot to a rough
pose of a drill bush measured by the stereo camera, fine refer-
ences the pose with the help of the secondary measuring unit
at the end effector and finally positions the drill end effector
in front of the the drill bush, where the hole is to be drilled.

The DrillHoleCompositeSkill skill later consists of driving
the drill end effector into the drill bush of the drilling tem-
plate, drilling the hole with the prescribed parameters and
later driving out of the template, thereby completing the drill-
ing process for a hole. Both composite skills are repeated for
every hole.

Figure 8 shows an example of the DrillHoleCompositeSkill
skill. It consists of three capabilities which are executed one
after the other. In order to drive the drill end effector into the
drill bush of the template, the RelativeCartesianLinearMove
basic skill from the UR Connector is used. Further, to clamp
the drilling unit and to drill a hole in the component, the
TemplateDrilling basic skill from the drill end effector is
executed. Finally, RelativeCartesianLinearMove basic skill
is executed again to drive the drill end effector out of the
template. The Z hole offset distance as well as the drilling
parameters are provided as input parameters to the basic
skills through the parameter set of the TemplateDrilling-
LwrSystem. The composite skills in the drilling use case were
programmed in the form of an OPC UA server which is
connected with other OPC UA servers in order to utilize
their basic skills. For such an approach, the logical and error
handling aspect is addressed within the composite skills.
For example, if one of the basic skills is unavailable or is
in Halted state, the composite skill also needs to go into
Suspended or Halted state. This ensures the information
flow from the innermost to the outermost level.

By implementing the skills and their compositon we can
use, for instance, the UR Connector in different use cases.
Also the Common Skills Namespace can be reused in other
serial robots to implement their capabilities. Last but not
least, the composite skills (e.g DrillHoleCompositeSkill)
from Commands2 Process Namespace can be used when
changing the robot, in case the new robot implements the
same skills from the Common Skill Namespace.

5.4 � Visualization of the framework

As decribed above, one key advantage of using the described
information models with OPC UA is the accessability of
process and machine data through standardized interfaces.
This enables the sharing of relevant data with interested par-
ties, who as clients can obtain exactly the information they
need for their specific use case. Existing data silos are thus
broken up and their data released for use in cross-manufac-
turer applications, for example for monitoring and control-
ling purposes.

In the Commands2 project, a visualization client that dis-
plays the current state of resources and processes via a web
interface has been developed in order to demonstrate one
possible way of data utilization. In a general overview, the

UA Namespace
BaseDataVariableType

Orientation

CartesianCoordinates

3DFrameType

FrameType

X

Y

Z

3DCartesianCoordinatesType

CartesianCoordinatesType

LengthUnit

A

B

C

3DOrientationType

OrientationType

AngleUnit

Fig. 6   3DFrameType Structure according to [23]

336	 Production Engineering (2023) 17:329–339

1 3

workstation is shown together with the resources involved in
the processes and supplemented pictographically by the status
of the skills executed by them as seen in Fig. 9.

In addition, various information about the individual
resources can be looked up in detail: for example certain pro-
cess parameters or general information about the OPC UA
server such as operating time. Since each transition of the
previously described skill state machines triggers an event

message, the information is stored in an event log in order to
be accessed later through another page within the dashboard.

The web application consists of a frontend, essentially
created with Javascript and the React library4, and a back-
end written in Python with Flask framework5 and again the
asynchronous Free OPC UA Python library. The backend
establishes the connection to each OPC UA server of the con-
figured resources and provides its data in JSON format via an
API with several endpoints. This data can then be retrieved

UA DI Namespace

ComponentType

UA Robotics Namespace

MotionDeviceSystemType MotionDeviceType

MotionDevices Controllers

<MotionDeviceIdentifier> <ControllerIdentifier>

ControllerTypeAxisTypeMotorTypePowerTrainType

SafetyStates <SafetyStateIdentifier>

UA Namespace
ProgramStateMachineType

Common Skills Namespace
ProgramSkillStateMachineType MoveSkillType

LinearMoveSkillTypePtpMoveSkillType CartesianLinearMoveSkillType

AbsoluteCartesianLinearMoveSkillTypeRelativeCartesianLinearMoveSkillType

JointPTPMoveSkillType

AbsoluteJointPTPMoveSkillType

IFAM DI Namespace

SerialRobotType

ArticulatedArmRobotType SixAxisRobotType

UniversalRobotsRobotTypeUr10eRobotType

Axis

Axis1

...

Axis6

SkillSet

URControllerType

AbsoluteCartesianLinearMove

UR10eMotionDeviceSystemType

MotionDevicesControllers

Ur10e

URController

RelativeCartesianLinearMove

AbsoluteJointPTPMove

IFAM UR Connector Namespace

IFAMUR10eMo�onDeviceSystem

Root FolderType:
Objects

BaseObjectType:
DeviceSet

MotionDevices

Controllers

UR10eRobot

URController

SafetyStates<ControllerIdentifier>

Fig. 7   UR connector nodeset as derived from other nodesets

4  https://​react​js.​org/.
5  https://​palle​tspro​jects.​com/p/​flask/.

https://reactjs.org/
https://palletsprojects.com/p/flask/

337Production Engineering (2023) 17:329–339	

1 3

Fig. 8   Example of drill hole composite skill

Fig. 9   Web-based dashboard application for the Commands2 project

by the frontend with HTTP GET methods: for example while
loading the initial states of all components. To push event
messages retrieved from the OPC UA server such as skill
transitions or the (dis)connection of a resource to the frontend

during runtime, the Server-Sent Events (SSE) mechanism
over HTTP is used, which is supported by most web brows-
ers. At the same time, the python backend stores all event

338	 Production Engineering (2023) 17:329–339

1 3

messages in a separate SQLite database in order to make
the event log persistent and thus available for future access.

6 � Results and discussion

In this article, the implementation of an OPC UA-based skill
concept is presented. The underlying concept is explained
and validated using a modular lightweight robot application
in an aircraft production environment (see Fig. 10). All mod-
ules necessary for the use case could be realized with the
skill concept, so that all modules communicate uniformly
via an OPC UA interface and offer their skills as services
within the production network.

The namespace structure presented in Sect. 4 enables the
inheritance of elements and type definitions from the respec-
tive parent namespaces. Child namespaces can thus adopt
data structures and interfaces, which in principle enables
interchangeability of modules and devices, as well as skills
and skill definitions. However, this interchangeability is lim-
ited to the scope of the parent namespaces. Reusability thus
depends on the scope of the namespaces in which they are
distributed as standards. The dissemination of these stand-
ards can be industry-specific through UA Companion Speci-
fications, vendor-specific or application-specific. To achieve
the greatest possible compatibility, existing standards from
the namespaces with the larger scope should therefore be
adopted if they are available. Since there is currently no
standardized skill interface with which basic functionalities
can be mapped, it is proposed that these be included in a
UA standard specification in accordance with the proposed
Common Skills Namespace.

The definition and semantics of basic skills need to be
evaluated and could be based on standard taxonomies such

as VDI 2860 [24] and DIN 8580 [25] for manufacturing
and handling processes as suggested in [7]. This allows
inter-company compatibility and thus more flexible and
quickly adaptable systems. In addition, the development of
skill interfaces should be further simplified and the advan-
tages for both device manufacturers and integrators must be
worked out.

Possible future developments could include the use of dis-
covery functionalities so that endpoints to the OPC UA serv-
ers of the individual modules no longer have to be defined.
Instead, required capabilities would be requested and the
modules that can provide the capabilities would connect
automatically.

Acknowledgements  The present work is conducted with support of the
Lower Saxony Ministry of Economic Affairs, Employment, Transport
and Digitalization and the N-Bank following the project Commands2
under grant ZW 1 80154419. We are grateful for the images and valu-
able expert information provided especially by project partners and
suppliers and every member of the project team Integrated Production
Systems as well as the Head of Stade Branch Dr. Dirk Niermann at
Fraunhofer IFAM. Special thanks to our former colleague Julian Bonas,
who has had significant role in this work.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest   The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Heidel R, Hoffmeister M, Hankel M, Döbrich U (2017) Basiswis-
sen RAMI 4.0. Industrie 4.0 Basiswissen RAMI 4.0. Beuth, Berlin

	 2.	 Wiendahl H-P, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl
H-H, Duffie N, Brieke M (2007) Changeable manufacturing—
classification, design and operation. CIRP Ann. https://​doi.​org/​
10.​1016/j.​cirp.​2007.​10.​003

	 3.	 Steiner W, Poledna S (2016) Fog computing as enabler for the
Industrial Internet of Things. Elektrotech Informationstech
133(7):310–314. https://​doi.​org/​10.​1007/​s00502-​016-​0438-2

	 4.	 Hoppe S (2014) Standardisierte horizontale und vertikale
Kommunikation: status und Ausblick. In: Bauernhansl T, ten
Hompel M, Vogel-Heuser B (eds) Industrie 4.0 in Produktion,

Fig. 10   Two mobile lightweight robot systems performing an auto-
mated template drilling (right) and collar screwing process (left) on
an airplanes vertical tail plane

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirp.2007.10.003
https://doi.org/10.1016/j.cirp.2007.10.003
https://doi.org/10.1007/s00502-016-0438-2

339Production Engineering (2023) 17:329–339	

1 3

Automatisierung und Logistik. Springer, Wiesbaden. https://​doi.​
org/​10.​1007/​978-3-​658-​04682-8_​16

	 5.	 Pauker F, Frühwirth T, Kittl B, Kastner W (2016) A systematic
approach to OPC UA information model design. Procedia CIRP.
https://​doi.​org/​10.​1016/j.​procir.​2016.​11.​056

	 6.	 Reiser R, Thiele B, Bellmann T, Koch P, Walter C (2022) Real-
time simulation and virtual commissioning of a modular robot
system with OPC UA. In: ISR Europe 2022. 54th international
symposium on robotics, pp 1–8

	 7.	 Hammerstingl V, Reinhart G (2018) Skills in assembly. Tech. Rep,
Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb)

	 8.	 Zimmermann P, Axmann E, Brandenbourger B, Dorofeev K,
Mankowski A, Zanini P (2019) Skill-based engineering and con-
trol on field-device-level with OPC UA. In: 24th IEEE interna-
tional conference on emerging technologies and factory automa-
tion (ETFA), pp 1101–1108. https://​doi.​org/​10.​1109/​ETFA.​2019.​
88694​73

	 9.	 Profanter S, Breitkreuz A, Rickert M, Knoll A (2019) A hardware-
agnostic OPC UA skill model for robot manipulators and tools.
In: 24th IEEE international conference on emerging technologies
and factory automation (ETFA), pp 1061–1068. https://​doi.​org/​
10.​1109/​ETFA.​2019.​88692​05

	10.	 Profanter S, Perzylo A, Rickert M, Knoll A (2021) A generic
plug & produce system composed of semantic OPC UA skills.
IEEE Open J Ind Electron Soc 2:128–141. https://​doi.​org/​10.​1109/​
OJIES.​2021.​30554​61

	11.	 DIN SPEC 91345:2016-04 (2016) Referenzarchitekturmodell
Industrie 4.0 (RAMI4.0). Beuth, Berlin

	12.	 Foundation OPC (2019) OPC UA for robotics companion speci-
fication part 1: vertical integration. Tech, Rep

	13.	 OPC Foundation (2019) OPC UA specification part 100: devices
1.02. Tech. Rep

	14.	 Pfrommer J, Schleipen M, Beyerer J (2013) PPRS: Production
skills and their relation to product, process, and resource. In: IEEE
18th conference on emerging technologies & factory automation
(ETFA), pp 1–4. https://​doi.​org/​10.​1109/​ETFA.​2013.​66481​14

	15.	 Malakuti S et al (2018) Challenges in skill-based engineering of
industrial automation systems. In: IEEE 23rd International confer-
ence on emerging technologies and factory automation (ETFA),
pp 67–74. https://​doi.​org/​10.​1109/​ETFA.​2018.​85026​35

	16.	 Heuss L, Blank A, Dengler S, Zikeli GL, Reinhart G, Franke J
(2019) Modular robot software framework for the intelligent and
flexible composition of its skills. IFIP Adv Inf Commun Technol
566:248–256. https://​doi.​org/​10.​1007/​978-3-​030-​30000-5_​32

	17.	 Rovida F et al (2017) SkiROS—a skill-based robot control plat-
form on top of ROS. In: Koubaa A (eds) Robot operating system
(ROS). Studies in computational intelligence, vol 707. Springer,
Cham. https://​doi.​org/​10.​1007/​978-3-​319-​54927-9_4

	18.	 Dorofeev K, Zoitl A (2018) Skill-based engineering approach
using OPC UA programs. In: 2018 IEEE 16th international con-
ference on industrial informatics (INDIN), pp 1098–1103. https://​
doi.​org/​10.​1109/​INDIN.​2018.​84719​78

	19.	 Köcher A, Hildebrandt C, Vieira da Silva LM, Fay A (2018) A
formal capability and skill model for use in plug and produce
scenarios. In: 25th IEEE international conference on emerging
technologies and factory automation (ETFA), pp 1663–1670.
https://​doi.​org/​10.​1109/​ETFA4​6521.​2020.​92118​74

	20.	 Sidorenko A, Volkmann M, Motsch W, Wagner A, Ruskowski
M (2021) An OPC UA model of the skill execution interaction
protocol for the active asset administration shell. Procedia Manuf
v 55:191–199. https://​doi.​org/​10.​1016/j.​promfg.​2021.​10.​027

	21.	 OPC Foundation (2022) OPC UA specification part 5: information
model (1.05.01) Tech. Rep

	22.	 OPC Foundation (2021) OPC UA specification part 10: programs
(1.05.00) Tech. Rep

	23.	 OPC Foundation (2019) OPC UA amendment 11: spatial types
(1.04) Tech. Rep

	24.	 VDI 2860:1990-05 (2009) Assembly and handling; handling
functions, handling units; terminology, definitions and symbols.
Beuth, Berlin

	25.	 DIN 8580:2022-12 (2022) Manufacturing processes—terms and
definitions, division. Beuth, Berlin

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-658-04682-8_16
https://doi.org/10.1007/978-3-658-04682-8_16
https://doi.org/10.1016/j.procir.2016.11.056
https://doi.org/10.1109/ETFA.2019.8869473
https://doi.org/10.1109/ETFA.2019.8869473
https://doi.org/10.1109/ETFA.2019.8869205
https://doi.org/10.1109/ETFA.2019.8869205
https://doi.org/10.1109/OJIES.2021.3055461
https://doi.org/10.1109/OJIES.2021.3055461
https://doi.org/10.1109/ETFA.2013.6648114
https://doi.org/10.1109/ETFA.2018.8502635
https://doi.org/10.1007/978-3-030-30000-5_32
https://doi.org/10.1007/978-3-319-54927-9_4
https://doi.org/10.1109/INDIN.2018.8471978
https://doi.org/10.1109/INDIN.2018.8471978
https://doi.org/10.1109/ETFA46521.2020.9211874
https://doi.org/10.1016/j.promfg.2021.10.027

	Modular lightweight robot system for aircraft production using a generic OPC UA skill concept
	Abstract
	1 Introduction
	2 Related work
	3 Use case and system
	4 Proposed approach
	5 Implementation
	5.1 Application modelling
	5.2 UR connector module
	5.3 Skill composition
	5.4 Visualization of the framework

	6 Results and discussion
	Acknowledgements
	References

