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Abstract
The Automated Fibre Placement process is commonly used in aerospace for the manufacturing of structural components, 
but requires a subsequent inspection to meet the corresponding safety requirements. In order to improve this mostly manual 
inspection step, machine learning methods for the interpretation of 2D surface images are being increasingly utilised in 
research. Depending on the manufacturing process, a very long time can elapse between the appearance of a manufacturing 
defect and its recognition. Hence, in this paper Convolutional and Recurrent Neural Network techniques are presented that 
allow a line-by-line analysis of the incoming height profile scans of a Laser Line Scan Sensor as a 1D signal, which enables 
a direct reaction to a defect, even if only one or a few individual height profiles of the defect have been recorded. The com-
bination of Convolutional and Recurrent Neural Network structures is particularly beneficial for this application. The inves-
tigations in this paper are especially interesting for developers of automated inspection systems in composite engineering.

Keywords Recurrent neural networks · Automated fibre placement · Inline inspection · Generative adversarial networks · 
Laser line scan sensor

1 Introduction

Lightweight structures are widely used in the aerospace 
industry, for instance in the Airbus A350 XWB or the 
Boeing 787 [1, 2]. The Carbon Fibre Reinforced Plas- tic 
(CFRP) material often have a greater stiffness and strength 
than metallic materials, which makes them ideal for light-
weight structures. The production of these usually complex 
structures is often quite expensive, which is why fast and 
efficient manufacturing techniques are essential to realise an 
economical production. To ensure the quality of the com-
ponents, an additional visual inspection is carried out in the 
aerospace industry after manufacturing.

This visual inspection often takes up to 50% [3] of the 
overall manufacturing time and it is also often very difficult 
to achieve the required inspection quality, which offers great 
potential for improvement.

An important step in automated inspection is the reliable 
classification of manufacturing defects from sensor data [4, 
5]. Machine learning methods are particularly well-suited for 
this purpose, although currently mostly the entire 2D images 
of a material surface are evaluated [6, 7]. This approach 
involves two challenges: Firstly, a large number of full train-
ing images are required to train modern Neural Network 
based classifiers [8–10], and secondly, a full image of the 
defect must be recorded before a classification and subse-
quent system response can be performed [11–13]. Thus, 
depending on the size of the captured image and the speed 
of the manufacturing process, considerable time can elapse 
between the appearance of a manufacturing defect and its 
classification. To address this issue, it has been investigated 
approaches to classify fibre layup defects from typical Auto-
mated Fibre Placement (AFP) processes through line-by-line 
interpretation of the input data. On the one hand, this offers 
the potential to reduce the time between the defect appear-
ance and classification, and on the other hand, it offers the 
possibility to provide significantly more training data.

For the investigations in this study, the application case 
of AFP manufacturing is considered, as this is a widely 
used process in industry and thus the transferability of the 
research results is ensured [14–17]. A Laser Line Scan 
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Sensor (LLSS) is often applied for inline inspection in this 
process, which is why data from such a sensor system is used 
in this research [11, 15, 18, 19]. This sensor type projects a 
laser line onto a surface and calculates the surface topology 
line by line from the reflected beam.

[20] The research question addressed in this publication 
is:

Which Artificial Neural Network (ANN) architectures 
are suitable to perform a line-by-line interpretation of LLSS 
height profile scans with respect to AFP fibre placement 
defects?

The structure of this paper involves a description of the 
state of the art and research, followed by the development 
of suitable ANN architectures. Then the performance of the 
various ANN designs are examined for real and synthetically 
generated data of fibre layup defects.

2  Related research

2.1  Manufacturing process

Various fibre placement methods are available whereby 
Automated Fibre Placement (AFP) [21, 22], Dry Fibre 
Placement (DFP) [21, 22], Automated Tape Laying (ATL) 
[21] and Direct Roving Placement (DRP) [23] are particu-
larly popular techniques. They apply CFRP material in lay-
ers to a mould, which is illustrated in Fig. 1 and described 
in detail by Campbell [24].

For the fabrication of more complex lightweight compo-
nents, the AFP process is often used, which lays down nar-
row strips of fibre material along a given path [17, 24, 25]. 
This involves an effector guiding the fibre material to the 
mould’s surface where it is heated up and pressed onto the 
mould or layer underneath [21, 24]. Rudberg [26] expects an 
increasing application of this flexible manufacturing process 
in the future.

During AFP, various defects can arise which reduce the 
mechanical properties of a component and are therefore 
undesirable [17, 27].Typical defect types from the literature 

are wrinkles, twists, foreign bodies, overlaps and gaps, 
which are visualised in Fig. 2.

2.2  Composite inspection and data

The monitoring of AFP processes is being increasingly 
investigated in industry and research. InFactory Solutions 
[15], Electroimpact [16, 28], Danobat Composites [29] and 
Profactor [30] use LLSS for AFP monitoring, which cap-
tures the 3D topology of the deposited composite material.

Sacco et al. [18, 31] studied the Convolutional Neural 
Network (CNN) based segmentation of defects from LLSS 
depth images of AFP layup defects. They utilised 800 × 800 
pixel LLSS depth images for training their fully linked CNN. 
Zambal et al. [10, 32] presented an end-to-end deep learning 
approach for AFP defect segmentation under consideration 
of synthesised training images. For this purpose, they used 
a U-net CNN introduced by Ronneberger et al. [33] in 2015 
along with realistic validation images from a LLSS.

In previous research Meister et al. addresses the segmen-
tation of fibre layup defects in full scan images [7, 11], the 
synthetic generation of training images for the AFP inspec-
tion [12] as well as the robust and traceable classification of 
such defects [4, 5, 34]. For the investigations in this paper, 
the real defect images and synthetic data from the previous 
papers [7, 11, 12] are utilised. For recording the real scan 
images, manually produced defect samples are scanned with 
a LLSS. The defect samples are made of 1/4” prepreg tows, 
with one or more defects located on a single defect sample. 
For the scanning process, the LLSS is attached to an articu-
lated robot, which moves it parallel to the composites sur-
face at a speed of 200 mm/s. The image data recorded in this 
way is then smoothed using the Contrast Limited Adaptive 
Histogram Equalization (CLAHE) algorithm. Subsequently, 
the synthetic defect images are generated on the basis of the 
real defects via a Deep Convolutional Generative Adver-
sarial Network (DCGAN) algorithm in order to obtain a sig-
nificantly larger data base. The studies from Meister et al. [7, 
11] describe in detail the acquisition and pre-processing of 
the real defect images, whereas the paper [12] outlines the 
synthesis of the synthetic defect images additionally applied 
in this study. Randomly selected images from the real defect 

Fig. 1  AFP process with a heater and a compaction roller. Compac-
tion force: � ; Effector velocity: � Fig. 2  Common AFP defects
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dataset are illustrated as examples in Fig. 3 and from the 
synthetic dataset in Fig. 4.

In addition to CNNs, Recurrent Neural Network (RNN) 
architectures are often applied to evaluate time series data, 
for instance to predict faults or identify changes in sequential 
data [35–37].Such techniques are explained in more detail 
in the following section.

2.3  Recurrent neural networks

RNNs are ANNs which are dedicated to process 
sequential data. It processes a sequence of data vectors 
�t = (�1, �2,… , �T ) with time step t, where in reality the 
RNN works on individual mini-batches [38].In actual opera-
tion, gated RNNs such as Long Short-Term Memory (LSTM) 
or Gated Recurrent Unit (GRU) are frequently used. A funda-
mental idea of LSTM is the ability to forget an older state of an 
entry by so-called self-loops. This is implemented by internal 
recurrence in individual LSTM cells. Essential components 
of these LSTM cells are the state unit �t,i and the forget gate 
�t,i which adjusts the self-loop weights and can be formulated 
as [35, 38, 39]:

where �t is the input data and �t the hidden layer vector 
with all outputs of the individual LSTM cells. Moreover Wf  
are recurrent weights, Uf  the input weights and bf  represent 
respective biases.

The internal LSTM long-term state �t,i is updated with the 
conditional self-loop weight �t,i as follows [35, 38, 39]:

with �t,i as external input gate unit which is calculated analo-
gous to the forget gate in Equation 1. The output �t,i of a hid-
den LSTM cell, which represents the short-term state, can 
also be switched off via the output gate �t,i using a sigmoid 
function, which can be expressed as [35, 38, 39]:

�t,i is again calculated analogous to the forget gate from 
Eq. 1 with it’s own parameters W0 , U0 and bf .

The other very popular method is GRU, as stated above. 
The main difference to LSTM is, that GRU has a single gat-
ing unit that controls both the forgetting factor as well as the 
update decision and there is no distinction between short- and 
long-term state:
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Fig. 3  Randomly chosen real defect depth maps captured by a LLSS 
for different classes, each having the dimension of 128 × 128 px from 
the previous paper Meister et al. [11, 12]

Fig. 4  Randomly chosen synthetic defect depth maps for different 
classes, each having the dimension of 128 × 128 px from the previous 
paper Meister et al. [12]
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with �i representing the update gate and �t−1,j the reset gate 
[38, 40].

3  Methodology

3.1  Experimental data and processing

For the investigations, suitable defect types were selected 
with reference to Sect. 2.1. Accordingly, flawless areas, 
wrinkles, twists, foreign bodies, gaps and overlaps are exam-
ined. These defect types have already been used in related 
studies by Oromiehie et al. [17], Harik et al. [27] as well 
as Heinecke and Willberg [41] and are therefore a suitable 
choice for the investigations in this paper. As mentioned 
above, the basis for this paper was the real and synthetic 
data from previous studies [7, 11, 12] which are illustrated 
in Figs. 3 and 4. The number and distribution of the available 
data is summarised in Table 1 once again.

As explained in Meister et al. [12], the synthetic data 
was generated using a conditional DCGAN. The applied 
DCGAN consists of a generator with six convolutional lay-
ers and a discriminator with five convolutional layers. The 

processing was performed on a machine with Intel Xeon 
Gold 5122 @ 3.60 GHz CPU, 48 GB RAM and a NVIDIA 
Quadro P6000 GPU.

3.2  Analysis concept of images

The idea behind this research was to analyse individual 
image rows in order to classify a fibre placement defect. 
Thus, instead of examining an entire image, as often 
described in the related research from Sect. 2.2, only a single 
image row was considered. The signal that was derived from 
each individual image row represents the grey scale values 
along the pixels of that respective row. This is illustrated in 
Fig. 5 using a twist defect as an example. On the left side 
in Fig. 5 a full defect image is displayed, from which in this 
paper only the individual signals per row were used for pro-
cessing, as presented on the right side in Fig. 5b.

The idea behind was, based on the modelling from 
Meister et al. [20], that a single height profile of the LLSS, 
which represents the height profile of the surface along the 
laser line at a certain point in time, can also be understood as 
a sequence of point by point scans of the defect’s height pro-
file. Therefore, the laser line, which was recorded at a given 

Table 1  The number of 
available real and synthetic 
defect images used for the 
experiments in this study is 
given

Data None Wrinkle Twist Foreign body Overlap Gap

Real defs. 86 49 53 22 166 93
Synth. defs. 1000 1000 1000 1000 1000 1000

Fig. 5  A twist defect and the respective height profile along the read line are presented
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point in time, was interpreted as a sequence of individual 
measuring points at neighbouring measuring positions. Each 
pixel along the laser line defines an inherent sampling point 
with a small positional distance to the previous pixel.

3.3  Neural network setups

In accordance with the analysis idea outlined in Sect. 3.2, 
ANN architectures for the line-by-line interpretation of 
defect images are presented below. Referring to the CNN 
architecture from the previous studies by Meister et al. [4, 5, 
12], a 1D CNN architecture was first constructed. The design 
is directly inspired by these studies and adapted to a 1D case. 
Subsequently, recurrent designs have been set up, where the 
input part is again designed as stacked convolutional layers 
followed by LSTM or GRU units which have been intro-
duced in Sect. 2.3. Since it was very time consuming to 
determine exactly the number of recurrent units required 
and adds only limited value to the very special case of fibre 
placement defect detection, the number of recurrent units 
was changed with a larger step size. Thus, the performance 
of the RNN was investigated for 50, 100 and 200 recurrent 
units respectively.

General parameters that were consistently used across all 
experimental setups are listed in Table 2.

The first network architecture to be used as the 1D CNN 
is given in Table 3, where the configurations and dimen-
sions of the individual layers are indicated. The column ’out-
put shape’ indicates the size of the output data after each 
individual layer, where ’None’ in this case means that the 
dimension is variable, depending on the configuration of the 
Neural Network.

Table 4 presents the layered structure including configu-
ration of the LSTM and GRU.

Table  5 provides an overview of the total number 
of network parameters for the individual architectures 
and describes the amount of trainable and non-trainable 

Table 2  Overview of hyper-parameters.

�i give the exponential decay rate for the i-th moment estimates. � 
describes a constant for numerical stability

Parameter Value

Image size 128 × 128 × 1
Batch size 32
Optimiser Adam
Learning rate 0.0002
�
1

0.5
�
2

0.999
� 10

−7

Activation functions ReLU
Training epochs 40

Table 3  The layer architecture and number of parameters for the 
applied 1D CNN are presented

This design is related to Meister et al. [4, 5, 12, 13]. sk : kernel size; 
sp : pooling size; mom: momentum

Layer type Config. Output shape

Conv1D sk = 5 (None, 128, 32)
Conv1D sk = 5 (None, 128, 64)
MaxPooling1D sp = 2 (None, 64, 64)
Batch normalization mom = 0.8 (None, 64, 64)
Conv1D sk = 5 (None, 64, 128)
Conv1D sk = 5 (None, 64, 256)
MaxPooling1D sp = 2 (None, 32, 256)
Batch normalization mom = 0.8 (None, 32, 256)
Flatten – (None, 8192)
Dense – (None, 100)
Dropout 0.15 (None, 100)
Batch normalization mom = 0.99 (None, 100)
Dense – (None, 6)

Table 4  Layer architecture for applied RNN approaches {LSTM, 
GRU } with given number of units #UNITS {50, 100, 200}.

sk kernel size, sp pooling size, mom momentum

Layer type Config. Output shape

Conv1D sk = 5 (None, 128, 32)
Conv1D sk = 5 (None, 128, 64)
Conv1D sk = 3 (None, 128, 128)
Conv1D sk = 3 (None, 128, 256)
Conv1D sk = 15 (None, 128, 512)
Dropout 0.5 (None, 128, 512)
MaxPooling1D sp = 2 (None, 64, 512)
Recurrent Unit {LSTM, GRU } (None, <#UNITS>)
Dropout 0.5 (None, <#UNITS>)
Dense - (None, 100)
Dense - (None, 6)

Table 5  Overview trainable parameters

Trainable Non-trainable Total

1D CNN 1,036,426 840 1,037,266
LSTM 50 2,218,658 0 2,218,658
LSTM 100 2,356,258 0 2,356,258
LSTM 200 2,691,458 0 2,691,458
GRU 50 2,186,498 0 2,186,498
GRU 100 2,291,098 0 2,291,098
GRU 200 2,545,298 0 2,545,298
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parameters. The non-trainable parameters are constant set-
tings which were not updated during the training, whereas 
the trainable parameters are slightly modified after each 
iteration in the training process. This gives an impression 
of the network’s complexity and allows conclusions about 
possible overfitting issues.

3.4  Performance validation

In order to investigate the performance of the individual 
ANN architectures, the real image data of the height profile 
scans of the fibre placement defects were initially taken. This 
was then divided in half into a training and a test data set 
and then separated into individual lines to be used for the 
analysis. In this way, a proper separation of the training and 
test data sets was achieved. For the following investigations, 
the test data was again divided into validation data, which 
was used for validation during the training, and test data, 
which was finally taken in order to analyse the performance 
of an approach. This results in a final data split of 50% train-
ing data, 25% validation data and 25% test data. This split 
was chosen in particular because in some cases only very 
few truly different real data sets per class were available, as 
indicated in Table 1. In order to provide sufficient data for a 
robust training process, but still allow a meaningful valida-
tion/ testing, the distribution given above was chosen.

The investigations were first carried out for the setups 
outlined above in Sect. 3.3. The accuracy and the loss for 
the training and validation data were analysed for each of the 
40 training epochs. This served to verify that the training of 
the respective ANN converged accurately and that possible 
overfitting issues could be detected. In the case of overfit-
ting, it would be evident that the fitting of the respective 
ANN shows increasingly improved training accuracies, but 
the accuracy on the validation data decreases.

Subsequently, the seed for the random training, validation 
and test data split was varied and the mean and standard 
deviation over five runs for the different random training 
and test data sets were determined in order to evaluate the 
robustness of the training process and the classification 
results. Thus, error scores were also established, which can 
be used as rough deviation estimates for the interpretation of 
the classification results in this paper. The results for differ-
ent ANN configurations were presented as individual confu-
sion matrices in order to investigate the deviations for each 
defect category.

Subsequently, the performance of the ANNs were ana-
lysed for the synthetic defect images generated by Meister 
et al. [12] via a DCGAN. The accuracy and loss of the 
training and validation data were plotted and the confusion 
matrices for the the results on the test data were calculated. 
The analyses were carried out only for one single random 
split of training, validation and test data, assuming that the 

error rates determined above also apply as well in a rough 
approximation. Moreover, only 200 training images, 100 
validation images and 100 test images per class were used 
for the analysis in order to reduce calculation time.

Finally, the validation method GAN-Train GAN-Test [42] 
already used for fibre placement defect images by Meister 
et al. [12] was applied to estimate the classification behav-
iour of the different ANN for altered test data.

The sequence of the different experiments and their char-
acteristical properties are illustrated in the flowchart in Fig. 6 
for a better overview.

4  Results

4.1  Original process data

Initially, the results for training, validating and testing with 
real defect image data are discussed. Please note that the 
data sets are truly different from each other, as described 
in Sect. 3.4. Figure 7a displays the training history for the 
training data over the training epochs, with accuracy and 
loss given on the ordinate for each individual ANN from 
Sect. 3.3. Accordingly, in Fig. 7b the accuracy is plotted for 
the validation data per training epoch. Figure 7a shows that 
during the training process the accuracy converges towards 
one and the loss towards zero. This can be interpreted as an 
indicator of a stable training process for the utilised data. In 

Fig. 6  Flowchart of the sequence of the different conducted experi-
ments
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addition, the respective ANN seems to be able to distinguish 
the training samples well from each other. Figure 7b presents 
the actual classification accuracy for the validation data set, 
whereby the results of the LSTMs and the GRUs converge 
towards a certain value> 0.9 or even continue to rise margin-
ally. The 1D CNN, however, seems to have more problems 
classifying the validation data correctly at the beginning, 
but also yield a stable classification level > 0.9 from about 
epoch 30 onwards. Since none of the configurations reveal 
a reduction in validation accuracy with increasing number 
of epochs, it can be assumed that there is no overfitting of 
the trained ANNs after 40 training epochs, but that a station-
ary classification state has been reached, which is why 40 
training epochs are chosen for the further experiments in 
this paper.

Figure 8 presents the individual confusion matrices for 
the classification performance of the trained ANNs on the 
test dataset. As described in Sect. 3.4, the seed for the ran-
dom splitting of the data were changed several times and the 
training and testing steps are repeated. Based on this, mean 
classification rates and the corresponding standard devia-
tions are calculated.

The overall accuracy is for GRU and LSTM only 
2.9–3.7% increased compared to the 1D CNN architecture. 
Due to the standard deviations of up to 1.84% for certain 
defect categories, the overall performance is considered to 
be slightly increased for the RNN architectures but relatively 
similar across the individual ANN architectures. It is note-
worthy that such a high standard deviation is evident across 

all ANN architectures for the flawless category. Hence, when 
looking at the individual defect classes, larger differences are 
partially evident. None, twists and gaps yield relatively equal 
classification rate across all ANN architectures. Wrinkles 
and overlaps show improved classification accuracies for 
the RNN architectures but lower classification performance 
for the 1D CNN. Foreign bodies generally have a relatively 
high misclassification rate compared to the respective overall 
accuracy. This difference in accuracy is 32.36% for the 1D 
CNN, 20.85% for LSTM and 26.77% for GRU.

4.2  Synthesised data

In order to assess the classification performance of the devel-
oped ANN architectures and configurations for alternative 
training and test data, the networks are trained and tested 
with synthetic defect images. Figure 9a presents the loss 
and accuracy of the training process for different training 
epochs and Fig. 9b gives the validation accuracy per epoch 
for the test data. In Fig. 9b it is evident that the training 
accuracy and training loss converge towards one and towards 
zero, respectively, and thus a stable training process can be 
concluded. This behaviour is very similar to the analysis of 
the real defect images from above. In Fig. 9a the validation 
accuracy of LSTM and GRU converges towards 0.85. This 
is slightly less than for the real data and might be related to 
the design or parametrisation of the upstream convolutional 
layers in the ANN layouts. This could possibly be related 
to the construction or parametrisation of the upstream 

Fig. 7  History for training and validation for different ANN architectures
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convolutional layers in the ANN layout, as the synthetic data 
used in this experiment tend to have rounder edges.

The confusion matrices in Fig. 10 show the classifi-
cation results for the synthetic data in detail. However, 
only one run was performed to get an impression of the 

ANN performance, but to keep the computation time for 
this much larger data set manageable. Please note that the 
standard deviation for the synthetic data might be slightly 
increased compared to the real data since the overall 

Fig. 8  Confusion matrices for the three architectures 1D CNN, LSTM and GRU for different seeds including standard deviation � tested on the 
original data
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classification rates are slightly reduced, but it should be 
in a similar range as for the real defect images.

In general, it is apparent that the overall accuracy for all 
three ANN layouts is reduced by about 10% compared to 
the results for the real defect images. Compared to the real 
defect data, it is observed that almost all classification rates 
of the individual defects are above the mean classification 
rates of each ANN. The only exceptions are twists for the 
LSTM architecture and overlaps across all ANN designs. 
For twists, the classification rate is only 1.66% below the 
mean accuracy of the LSTM. Overlaps, on the other hand, 
have very severe misclassification rates from at least 25.53% 
for the GRU and up to 34.01% for the 1D CNN. These syn-
thetic overlaps are mistakenly identified as flawless areas 
within the range of 22.9% and 25.91%, which is critical for 
practical applications. On the other hand, however, flaw-
less regions are also incorrectly categorised as overlaps by 
between 7.58% (LSTM) and 13.99% (1D CNN). The mis-
classification as ’none’ is somewhat lower for gaps, but is 
still between 9.45% and 10.39% for the three ANN setups 
considered.

Presumably this classification behaviour can be due to 
artificially generated artefacts within the images, which 
were added through the DCGAN based synthesis process. 
Such artefacts are particularly noticeable when comparing 
synthetic to real data, but do not represent the actual defect. 
They occur predominantly with less pronounced defect 
types such as none, gaps and overlaps, as can be seen in the 
example images in Fig. 4. Thus, the 1D analysis approach 

introduced in this paper may have difficulties to classify 
these defects correctly.

4.3  Cross‑validaton

In this final experiment, the performance of the ANNs are 
evaluated crosswise when trained with synthetic data and 
validated/ tested with real data, and compared to the perfor-
mance of the inverse case when trained with real data and 
validated/ tested with synthetic data. For this purpose, the 
loss and accuracy for the training processes of the ANNs as 
well as the validation accuracy for both scenarios are illus-
trated in Fig. 11. The rates are displayed on the ordinate and 
the number of training epochs on the abscissa.

At first, it can be seen once more in Fig. 11a, b that the 
loss and accuracy for the training of all ANN converge 
towards zero and one, respectively, both for the training with 
synthetic data and for the training with real data. When train-
ing with synthetic data, however, a stationary state is reached 
after approximately 35–40 epochs, whereas for training with 
real data this is already achieved after about 20 training 
epochs. In general, however, a stable training process can 
be assumed for all considered ANN architectures and both 
training datasets.

The results are different for the validation accuracy. For 
training with synthetic data and validating with real data in 
Fig. 11c, the validation accuracy is around 0.85 for LSTM 
and GRU, where the accuracy over the various epochs is 
slightly greater and less fluctuating for LSTM compared to 

Fig. 9  The loss and accuracy for the various training processes as well as the accuracy for a different data set are displayed
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GRU. For the 1D CNN architecture, no stable classification 
accuracy can be observed, which indicates that the 1D CNN 
has much more difficulty in extracting suitable features from 
the input defect images.

For training with real data and validation with synthetic 
data, it is evident again that the validation accuracy of the 

1D CNN fluctuates strongly and is very unstable. The vali-
dation accuracy of LSTM and GRU stabilises at a relatively 
low value of slightly above 0.7, which is about 0.15 lower 
than for the inverse case when trained with synthetic data. 
From this it can be concluded that the synthetic data rep-
resent the real data much better than the other way round. 

Fig. 10  Confusion matrices for the three architectures 1D CNN as well as LSTM and GRU with 200 recurrent units each tested on the synthetic 
data
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However, the significantly lower classification rate compared 
to the results from Sects. 4.1 and 4.2 suggests that the usage 
of synthetic data for training ANNs offers minor advantages, 
especially when sufficient training data for the respective use 
case is available.

Figure 12 presents the classification results in detail as a 
confusion matrix, where the matrices on the left side repre-
sent the performance for training the ANNs with synthetic 
data and the right side represents the results for training the 
ANNs with real data. The best mean classification accuracy 

Fig. 11  Training and validation histories for different data
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of 85.07% is obtained in Fig. 12c for LSTM with 200 recur-
rent units, trained with synthetic data. The worst accuracy 
results in Fig. 12b for the 1D CNN trained with real images. 

Furthermore, it is evident that flawless regions yield rela-
tively high classification rates compared to the respective 
mean overall classification rates with classification scores 

Fig. 12  Confusion matrices for various combinations of training and test data
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between 80.39 and 93.6% across all setups. This also applies 
to the right column of Fig. 12 where the ANNs have been 
trained with real data and tested on synthetic data. Moreo-
ver, it is noteworthy that gaps are always classified between 
4.45 and 7.89% worse compared to the respective mean clas-
sification rate when the ANNs are trained with synthetic 
data, whereas these defects are always classified with at 
least 2.52% and up to 11.25% greater accuracy in relation 
to the respective average classification rate when the ANNs 
are trained with real images. Synthetic gap images do not 
seem to represent real gap images quite well. Beyond that, 
an increased tendency of misclassifying overlaps and gaps as 
none is apparent. For training the ANNs with synthetic data, 
these misclassification rates are between 7.24 and 20.33%. 
For training with real data, the misclassification scores are 
considerably worse with at least 13.12% and up to 47.32%. 
During training with real data as well as in general for the 
1D CNN setup, an increased misclassification of wrinkles, 
twists and foreign bodies among each other appears. For 
training the LSTM and GRU with synthetic data, this ten-
dency is significantly lower, except for the misclassification 
of foreign bodies as wrinkles, which reaches a misclassifica-
tion rate of up to 14.43%.

The observed lower classification rate with different lev-
els of severity for the individual classes results from the 
diverging nature of real and synthetic images. This does not 
necessarily mean that the synthetic data are in general not 

suitable for the 1D data analysis considered in this study, but 
artefacts or noise may have been added to the artificial defect 
images during the data synthesis, which may have a much 
stronger effect on the 1D analysis case than when consider-
ing the entire 2D input image. However, from this it can cer-
tainly be concluded that training the ANNs with representa-
tive data sets from a given application case is to be preferred, 
unless a data augmentation is absolutely necessary.

5  Discussion

The presented approach of a line-by-line interpretation of 
fibre layup defect images provides a sound alternative to 
the 2D CNN approaches from the previous research of 
Meister et al. [4, 5, 12]. Especially the issue of having an 
insufficient amount of training data can be significantly 
reduced. Using a window-based implementation of the 
presented method, presumably also defect segmentation 
like described by Sacco et al. [18, 31] can probably be 
realised quite well. However, this has not been part of 
this study. Through the investigations it has been realised, 
however, that deviations between training and test data 
or image artefacts potentially have a greater influence 
on the result of this 1D analysis than it is possibly the 
case when examining the overall defect image. This con-
cern has also already been discussed in Meister et al. [4] 

Fig. 12  (continued)
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when examining the input data of a CNN. Accordingly, 
the results of this paper show that while the amount of 
image data can be reduced with the presented 1D analysis 
approach, it is even more crucial to use representative data 
for training the ANNs.

Regarding the research question, it can be concluded that 
especially the recurrent network architectures LSTM and 
GRU with 200 recurrent units show particularly stable clas-
sification properties. When representative training and test 
data are used, average classification accuracies of > 94 % 
can be achieved with these methods. The pure CNN setup, 
however, reveals quite unstable classification results in cer-
tain cases.

The results of this paper are particularly beneficial for 
developers of LLSS based inline inspection systems, which 
perform a direct, line-by-line interpretation of the height 
profile of a surface. The proposed RNN architectures can 
be trained directly for the respective application case after 
adapting the input dimension. That enables a rapid transfer 
of the findings into industrial applications. It can be assumed 
that the layout and configuration of these ANNs can also 
be applied beyond inspection in composite manufacturing.

In future research, the presented methodology should 
be applied to height profiles of an entire fibre placement 
course with several parallel aligned tows. In this context, a 
window-based analysis approach or the direct assignment 
of a classification result to an image coordinate could be 
investigated. Furthermore, the presented technique needs to 
be investigated within a realistic manufacturing process on a 
geometrically more complex component in order to evaluate 
the method’s performance for this use case.

6  Conclusion

Three line-based analysis algorithms were investigated, 
where LSTM and GRU enable a stable training process with 
classification accuracies of > 94 %. In particular, the ability 
to perform the ANN training with much smaller datasets is 
a major advantage of this approach. The classification rate is 
comparable to that of 2D image analysis methods.

The contribution for the community and the industry are 
suitable ANN setups, which are suitable for the line-by-line 
evaluation of topographical data.
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