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Abstract
Blanking processes belong to the most widely used manufacturing techniques due to their economic efficiency. Their eco-
nomic viability depends to a large extent on the resulting product quality and the associated customer satisfaction as well as on 
possible downtimes. In particular, the occurrence of increased tool wear reduces the product quality and leads to downtimes, 
which is why considerable research has been carried out in recent years with regard to wear detection. While processes have 
widely been monitored based on force and acceleration signals, a new approach is pursued in this paper. Blanked workpieces 
manufactured by punches with 16 different wear states are photographed and then used as inputs for Deep Convolutional 
Neural Networks to classify wear states. The results show that wear states can be predicted with surprisingly high accuracy, 
opening up new possibilities and research opportunities for tool wear monitoring of blanking processes.
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1 Introduction

Increasing quality requirements, high production rates and 
progressively more complex product geometries pose man-
ufacturers with the challenges of a systematic automation 
and an efficient monitoring of blanking processes. Therefore, 
sensors are increasingly integrated into the processes and 
attempts are made to identify correlations between process 
anomalies and features of the recorded time series. Con-
ventional approaches monitor the time series with the help 
of thresholds [1], linear discriminant functions [2] or enve-
lope curves and can thus distinguish binary process states 
from each other. In particular, the occurrence of punch wear, 
which has a negative impact on the resulting product quality 
[3], is a widely researched application scenario. Knowledge 
about the current wear can help manufacturers to reduce 
downtimes and flexibly adapt maintenance intervals to 
the punch wear state. Modern monitoring approaches pre-
dict, for example, the edge radius of the punch by means 

of multiple linear regressions, whereby features from force 
signals are used as input variables [4].

Other authors predict that artificial intelligence and 
machine learning will have enormous effects on blanking 
processes [5], while the first applications have already been 
presented. For example, neural networks can be used to 
approximate the effects of fluctuating process parameters on 
geometric product properties, whereby training data can be 
obtained through FEM simulations, as presented by Stanke 
et al. [6] or Hambli and Guerin [7]. It was also shown that 
wear conditions can be accurately classified by extracting 
features from force signals and inputting them into Support 
Vector Machines [8].

Such time-series-based monitoring approaches have two 
different key disadvantages. First, the sensors are heavily 
loaded during the process due to high force and acceleration 
peaks, which can cause contact losses or slipping. Second, 
they need to be integrated as close as possible to the tool 
in order to realistically display the dynamic effects of the 
process [9]. To circumvent these issues, other data that con-
tain correlations to wear conditions must be recorded and 
processed in real time.

An efficient approach to overcome this problem is the 
recording of image data. Image-based sensors enable con-
tactless monitoring of production processes and depict opti-
cally perceptible process characteristics in great detail [10]. 
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In combination with the advances made in the field of deep 
learning over the past decade, images can be processed in 
real time and correlations with labels recorded in produc-
tion processes can be explored. However, to the best of the 
authors’ knowledge, no image-based, data-driven moni-
toring approaches of blanking processes can be found in 
the literature. Therefore, this paper shows how images of 
blanked workpieces can be used to predict wear conditions 
of the punch. For this purpose, 7440 photos of 1860 work-
pieces, produced by punches with 16 different edge radii, are 
taken and used as inputs of Convolutional Neural Networks 
(CNN). Subsequently, it is demonstrated to what extent the 
CNN can classify the workpiece images according to the 16 
wear states.

The paper is organized as follows. Section 2 gives an 
overview of the blanking process, its wear phenomena, cor-
responding monitoring approaches and basics about CNNs. 
Section 3 presents the methodology consisting of the experi-
mental setup, data generation process and CNN based mod-
elling. Section 4 presents the results obtained from a pre-
trained and a self-created CNN as well as their performance 
comparison. Finally, the results are summarised in Sect. 5 
and new research opportunities are discussed.

2  Wear monitoring in blanking processes

2.1  Blanking processes

Blanking is one of the most frequently used sheet metal 
forming process and is part of the value chain in the auto-
motive, information technology, power electronics and con-
sumer goods sector. Blanking is a manufacturing process 
in which the final workpiece is separated from a sheet by 
applying a shearing force [11]. In the blanking process, the 
entire outer geometry of the workpiece is obtained in one 
working stroke whereby grid-shaped discard is left on the 
sheet metal strip [12]. Although, blanking is a separation 
process according to DIN 8588, the literature classifies this 
manufacturing technique as a sheet metal forming process.

As shown in Fig. 1a, blanking processes can be divided 
into three phases according to their force displacement curve 
[14]. In the punch-phase (I), the tool hits the sheet and starts 
to elastically deform the system consisting of tool, material 
and press. If the stresses are further increased the material 
tends to a plastic deformation until the shearing stresses 
exceed the shear fracture limit, the material breaks and the 
elastic energy stored in the systems is abruptly released. In 
the push-phase (II), the workpiece is completely separated 
from the discard and pushed through the sheet metal strip. 
At the end of the push-phase the tool passes the bottom dead 
center and is pulled out of the die during the withdraw-phase 
(III). While the maximal forces during the punch-phase 

depend on process parameters (clearance, cutting edge radii, 
cutting line), material properties (tensile strength, sheet 
thickness) or press settings (stroke speed, stiffness of the 
press), the pushing as well as the withdrawing forces are 
mainly due to contact normal forces influenced by ongoing 
wear on the lateral punch surface [15]. As an indicator for 
the quality of blanked workpieces, the cutting edge surface 
is quantified according to Lange [12]. As shown in Fig. 1b, 
the form error found on the blanked surface is divided into 
rollover zone he , shear zone hl and rupture zone hf  . In addi-
tion, the burr height hb is a key indicator of poor product 
quality and is directly influenced by the wear state [16].

2.2  Wear phenomena during blanking

Failures of blanking tools are often caused by major wear 
mechanisms referred to in the literature as adhesion, abra-
sion, surface fatigue and tribochemical wear [12]. Espe-
cially, abrasive wear related to the rounding of the punch 
cutting edge due to the trend of processing high-strength 
materials is a major issue manufactures have to deal with 
[17]. Hohmann et al. showed in their work that high-strength 
materials ( Rm > 600 MPa) tend to abrasive wear on the tip 
while soft graded steels ( Rm < 350 MPa) tend to adhesive 
wear on the lateral tool surface [15]. Many authors have 

a

b

Fig. 1  Phases of the blanking process indicated by a force-displace-
ment curve [4] (a) and forming zones of the cutting edge surface [13] 
(b)



483Production Engineering (2022) 16:481–492 

1 3

shown that abrasive wear directly influences product qual-
ity in terms of cutting edge surface and burr height of the 
blanked workpieces [18]. They have carried out experimen-
tal and numerical studies on the correlation between cutting 
edge quality and abrasive wear state on the tool. One of 
the first studies in this area was conducted by Meade and 
Matsuno, who investigated the influence of wear on the burr 
height [19]. Cheung et al. explored the influence of different 
process variables on the wear state of the blanking tool and 
correlated it with burr height and the required blanking force 
[20]. Kubik et al. systematically investigated the influence of 
semi-finished products and tool parameters on the quality of 
the cutting edge surface. They showed that the rounding of 
the cutting edge significantly increases the burr height and 
enhances the fraction of the sheared surface [14]. In addi-
tion to experimental investigations, numerical methods are 
increasingly used to predict tool wear in blanking processes. 
Hambli implemented a finite element (FE) wear model to 
predict tool wear in blanking steel and correlated tool wear 
with burr formation [21]. A more advanced approach was 
developed by Cheong and Kim, who took the effect of pro-
gressive tool wear into account of a FE model using a modi-
fied Archard wear model and a Lemaitre damage model. In 
addition, the geometry of the tool was adjusted based on the 
predicted wear volume, the tool replacement time was pre-
dicted, and the product quality was quantified based on the 
decrement of the hole area [22]. Due to the non-linearity of 
the blanking process and the variety of process variables, a 

detailed description of the wear state by analytical, empiri-
cal or numerical models is only possible to a limited extent. 
In this context, data-driven approaches based on acquired 
process data offer the possibility to identify the cause of 
wear as well as to quantify the extent of the worn out region.

2.3  Data driven methods for process monitoring

Since the 1990s, data-driven monitoring approaches have 
been researched and used in blanking processes. The 
approaches, which are mostly based on time series, differ 
considerably. Conventional monitoring approaches define 
envelope curves or thresholds that enable time series or 
extracted features to be monitored, whereby only binary 
statements about faultless pc or faulty process states pf can 
be made. More advanced approaches use machine learning 
algorithms that offer the potential to detect different error 
patterns pf ,i . Recent publications in other production pro-
cesses use deep learning algorithms, which can deal with 
a variety of raw data. Additionally there is no need for 
hand-crafted feature engineering, extraction and selection. 
An overview of the abstracted processes of the different 
approaches is provided in Fig. 2.

2.3.1  Conventional monitoring approaches

One of the first qualitative investigations on time series-
based monitoring of blanking processes go back to Breitling 

Fig. 2  Overview over data driven monitoring approaches
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et al. [23], who integrated different sensors both in the press 
frame and in the progressive die. They showed that the opti-
cal appearance of the signals differs when using different 
materials, stroke speeds and punch-die clearances, from 
which the fundamental suitability of monitoring blanking 
processes through time series is justified. The first real-time 
monitoring of tool wear in a blanking process was published 
by Lee et al. [2] who used force signals to build an autore-
gressive model in order to estimate blanking force peaks. 
The coefficients of the autoregressive model were used 
as inputs for a linear discriminant function that classifies 
between new and worn tool. Koh et al. showed how wavelet 
transform-based Haar coefficients from a force signal can 
be used to detect faulty conditions in a stamping process 
[24], similar wavelet-based approaches were investigated on 
force [25] and acceleration signals [26]. Zhang et al. applied 
bispectral analysis to acceleration signals to identify defec-
tive products [27]. Recent publications monitor stamping 
processes by recording acoustic emissions. Ubhayaratne 
et al. revealed correlations between wear and lubricant con-
ditions with features of acoustic emission signals in the time 
[28] and frequency domain [29]. The potentials of applying 
time-frequency transformations to acoustic signals, such as 
the short-time Fourier transform, wavelet packet transform 
and Hilbert-Huang transform, were presented by Shanbhag 
et al. [30].

2.3.2  Machine learning approaches

The use of machine learning algorithms to monitor produc-
tion processes opens up the possibility of classifying condi-
tions in a much more detailed way or predicting quantita-
tively labels using regression algorithms. For this reason, 
machine learning algorithms are widely used in academic 
research as well as in industrial production, e.g., for condi-
tion monitoring or predictive maintenance.

The first application of a machine learning algorithm in a 
stamping process goes back to Jin and Shi, who used princi-
pal component analysis (PCA) to extract features from force 
signals. The PCA features were used as input variables for 
a decision tree to classify the combined presence of dif-
ferent process states, such as material thickness, lubrica-
tion, stroke speed and blank holder pressure [31]. Ge et al. 
extracted coefficients of an autoregressive model from the 
force signal of a stamping process and fed them into a hid-
den Markov model. Their approach can distinguish differ-
ent fault types such as deviations from the desired material 
thickness, misfeed or slug with 87.5% classification accuracy 
[32]. In another publication, the authors applied support vec-
tor machines and showed that accuracies of almost 100% can 
be achieved [33].

Unsupervised learning algorithms are also used in 
stamping processes. Bassiuny et al. applied empirical mode 

decomposition to force signals of a stamping process and 
obtained intrinsic mode functions from which they extracted 
the signal energy and the Hilbert marginal spectrum as fea-
tures. Then, they used learning vector quantisation to detect 
misfeeds and sheet thickness deviations [34]. Ge et al. used a 
self-organizing map to classify five different fault types [35]. 
Bergs et al. recorded force signals in a blanking process, 
extracted 14 statistical features from the time domain and 
applied PCA to them. The Euclidean and Mahalanobis dis-
tance of the first two PCA components were used to detect 
anomalies in consecutive punches. The authors showed that 
the process is subject to extensive fluctuations even with 
constant process settings [36].

2.3.3  Deep learning approaches

The application of machine learning algorithms to time 
signals is accompanied by the application of transforma-
tions, hand-crafted feature engineering, extraction and selec-
tion. Features must be extracted either model-based, e.g., 
by autoregressive models or PCA, in the time, frequency 
or time-frequency domain [37]. Deep learning approaches 
tackle this problem by unifying the process steps of data 
transformation and model building, consequently expanding 
the variety of usable data [38]. For example, the application 
of filtering and pooling operations in CNNs can simplify 
the high-dimensional representation of image data so that 
it can be used efficiently for classification and regression 
tasks. Publications from stamping, blanking and in general 
sheet metal forming processes rarely apply deep learning 
algorithms. Huang and Dzulfikri transformed acceleration 
signals into the frequency domain and used the entire power 
density spectrum as input for a one dimensional CNN. They 
demonstrated that they can distinguish seven different wear 
states with more than 99% accuracy [39]. Unterberg et al. 
recorded magnetic barkhausen noise from different material 
coils, created recurrence plots of the time series and used 
them as inputs for a two dimensional CNN. They classified 
whether certain material sections belong to the beginning, 
middle or end of a coil, as these sections have different semi-
finished product properties [40].

Approaches that use deep learning for the purpose of 
tool condition monitoring are relatively new. This is evi-
denced by the fact that a comprehensive review paper 
from 2013 did not present any deep learning applications 
[41], whereas recent review papers discussed and empha-
sised the suitability of such algorithms [42]. For example, 
Gouarir et al. recorded triaxial force signals in a milling 
process, applied a method called Gramian Angular Sum-
mation Field to the time series to obtain a two-dimensional 
representation and classified the force signals according to 
three wear states using CNN [43]. Cao et al. also classified 
tool wear conditions by transforming recorded time series 
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into two-dimensional representations, which are then used 
as inputs for a CNN [44]. Recent publications used image 
data in combination with deep learning algorithms to detect 
wear states. A particularly interesting approach was taken by 
Bergs et al. who took 50 microscopic images of each of eight 
different tools. Then, they generated artificial images using 
data augmentation techniques and fed the images into a Fully 
Convolutional Network (FCN). The task of the FCN was 
to separate worn-out areas of the tool from non-worn-out 
areas, so that each pixel was labeled according to whether 
it represents a worn area or not. The authors showed that 
the deep learning approach is superior to classical computer 
vision algorithms and that local wear can be detected using 
FCN [45]. Marei et al. took 327 microscope images of the 
cutting tool flank of a CNC machine and applied different 
CNN transfer learning models to them to classify and regress 
14 different wear states of the tool. The ResNet-18 model 
led to both the highest classification accuracy of 84% and 
the lowest normalized mean absolute error of 0.0773 [46]. 
Other image-based CNN approaches can be found in the 
literature, such as predicting the remaining useful life of 
cutting wheels [47] or classifying different types of wear in 
a face milling process [48]. These findings prove that image-
based methods are highly suitable for the detection of wear 
states. Since wear conditions are reflected in the geometric 
properties of the products, especially in blanking processes 
[3], the authors of the present paper choose the approach of 
taking images of workpieces and correlating them with the 
existing tool wear using CNN.

2.4  Convolutional neural networks

CNNs are one of the most important deep learning algo-
rithms and are used in different application areas, such as 
object detection, object recognition, pose estimation and 
text recognition [49]. Ever since CNN showed unbeatable 
performance in high-level image classification competitions 
compared to shallow learning algorithms [50], they have 
become a standard in image classification applications.

CNNs consist of an input layer and an output layer, 
between which convolutional, pooling, flatten and, if 
required, fully connected layers are arranged. The typical 
structure of a CNN is shown in Fig. 3. The input variable of 
image-processing CNNs are the original images, which can 
be represented as a two-dimensional matrix Xin in the case 
of black-and-white images, or as a three-dimensional tensor 
�in in the case of RGB images. One of the most important 
components of CNNs are convolutional layers. In convolu-
tional layers, feature maps are generated by applying filters, 
also called kernels. If Xl

j
 is the j-th feature map in the l-th 

layer, it is calculated according to

where Wl
ij
 is a weighting matrix, ∗ is the computational sym-

bol of a two dimensional convolution with predefined filters 
and bl

j
 are bias parameters of the l-th layer. Here, f (⋅) is a 

non-linear activation function, whereby especially in image 
processing deep networks Rectified Linear Unit (ReLU)

is used. The convolutional layer is usually followed by pool-
ing layers, which reduce the dimensionality of the previ-
ous feature map according to predefined rules. In common 
CNNs, average pooling or max pooling layers are used. After 
a mostly alternating sequence of convolutional and pooling 
layers, a flatten layer follows, which transforms the multi-
dimensional feature map into a one dimensional representa-
tion. At the end of the network topology, several fully con-
nected layers usually form a multilayer perceptron (MLP), 
which transforms the one dimensional input to output values. 
Within the MLP, the output of the lth hidden layers is cal-
culated by

In the classification case, the output layer has as many neu-
rons as there are classes, with the softmax function

(1)Xl
j
= f

(

N
∑

i=1

Xl−1
i

∗ Wl
ij
+ bl

j

)

,

(2)f (x) = max[0, x]

(3)xl = f
(

Wl
⋅ xl−1 + bl

)

.

Fig. 3  Structure of a CNN
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now serving as the activation function of the k-th output 
neuron.

3  Methodology

In order to quantify the state of abrasive wear based on 
images of the blanked workpieces, a CNN is used to clas-
sify sixteen wear states of the cutting edge radii ri . The 
applied procedure is shown in Fig. 4. In the first step, 
experiments are carried out and 1860 workpieces are 
manufactured. Subsequently, the photos are taken, which 
form a labeled image data set for tool wear classification 
by assigning the individual cutting edge radii ri . In the 
model building step, it is investigated which pre-trained 
image classification model is suitable for wear detection 
and a self-created model topology is used. The models 
resulting from the different approaches are hyperparameter 
optimized and finally their performance is quantified and 
compared with each other.

(4)fsof t,k(xi) =
exk

∑N

i=1
exi

3.1  Experimental setup

The experiments to produce the blanked workpieces are 
performed on a mechanical high-speed press from Bru-
derer AG (BSTA 810). The machine has a nominal force 
of 810 kN and stroke rates of up to 1000 spm at a stroke 
height of 16 mm. The experiments are carried out with a 
stroke speed of 300 spm and a stroke distance of 35 mm. 
As an experimental material a micro-alloyed steels with 
high yield strengths for cold forming approaches (1.0480) 
is used. Figure 5 shows the experimental set-up, including 
the blanking tool. Table 1 summarizes the selected param-
eters of the press and the tool as well as the properties of the 
experimental material.

3.2  Data generation

As input of the CNN, a comprehensive data set is gener-
ated with 7440 workpiece images. When generating the data 
set, two basic principles must be taken into consideration. 
Product properties that correlate with tool wear must be rep-
resented as best as possible and the images should be repro-
ducible and taken from the same perspective. This prevents 
the model from suffering performance degradation as it has 
to generalize more than necessary.

Fig. 4  Procedure for classifying tool wear conditions in a blanking 
process using image-based CNN

a

b

Fig. 5  Setup of the blanking tool (a) and blanking machine (b)
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To meet these criteria, the images are shot in a illumi-
nated environment using a rigid camera mount from an 
oblique side view. Each of the 1860 workpieces is photo-
graphed four times, with the images taken 90 degrees apart 
from each other. The camera used is a Canon EOS 6D SLR, 
which is capable of capturing images at 3648 × 3648 pixels. 
The images are then cropped to the region of interest con-
sisting of 800 × 800 pixels and finally resized to the target 
input size of the corresponding CNN. Figure 6 shows three 
workpieces that have been produced with punches with dif-
ferent levels of cutting edge radii ri.

As the used Deep Learning approach is based on a super-
vised learning technique, the generated image data set is 
labeled with the wear states of the punch. It is assumed that 
abrasive wear causes the rounding of the cutting edge radii 
of the punch [14, 51]. In order to replicate the desired abra-
sive wear conditions without the need for time-consuming 

long-term experiments, the cutting edges are mechanically 
rounded by a post machining process. The cutting edge radii 
ri are varied in sixteen steps according to

After the images are taken, they are read into Python and 
then divided into training, validation and test data. Care 
was taken to ensure that images of the same workpiece are 
only used in the training or test data set, so that the test 
data set only consists of images of workpieces that are not 
known to the model. The RGB images are transformed into 
NumPy arrays so that the images are available as a tensor 
�in . Finally, the tensor elements are normalized to values 
between zero and one, since CNNs can best process this 
value range.

3.3  Deep learning modeling

In order to find the best possible network topology, two dif-
ferent approaches are chosen. Network topologies can be 
freely chosen and then hyperparameter optimized. Another 
approach is transfer learning, which [52] allows the use of 
pre-trained models whose performance has already been 
proven in other image classification tasks [53]. The machine 
and deep learning community was able to demonstrate sev-
eral years ago that CNNs are capable of learning generic 
mid-level image representations [54]. As a result, weights 
and topologies of networks obtained in image classification 
tasks with millions of labeled images and several thousand 
classes can also bring advantages to tasks that have com-
paratively few images and classes [55].

3.3.1  Choice of the transfer learning model

All models presented are developed in Python, popular 
deep learning libraries such as Keras and Tensorflow [56] 
are used. Keras provides a variety of pre-trained models 

(5)
ri ∈ {0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80}mm.

Table 1  Selected parameters of the process and material

process parameters

Stroke speed 300 spm
Stroke distance 35 mm
Clearance 7.5 %

material parameters

Description HC 260 LA (1.0480)
Tensile strength 365 Nmm−2

Elongation A80 27.10 %
Sheet thickness (2.00 ± 0.1) mm

ca b

Fig. 6  Workpieces produced with cutting edge radii r
i
 of a 0 mm, b 

0.4 mm and c 0.8 mm
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that have been used for the transfer learning approach. The 
dataset described in chapter 3.2 is divided into 70% test, 
15% validation and 15% training data and fed into 27 pre-
trained models. Sparse categorial cross entropy (SCCE) is 
used as the loss function and Adam [57] as the optimiza-
tion algorithm. No additional fully connected layers are 
added to the models, the inputs of the output layer are 
taken from the flatten layer and the training of the models 
is stopped after 5 epochs. The results of the comparison 
of all pretrained models can be seen in Fig. 7. It is evident 
that the accuracy of the different models varies greatly. 
The VGG models [58] deliver classification accuracies 
between 45 and 50%, whereas different versions of ResNet 
models achieve accuracies of up to 79%. The MobileNet, 
which is originally used for object recognition in com-
mercially available smartphones [59], performs best with 
classification accuracies over 80%. Last but not least due 
to the comparatively low number of trainable parameters 
and the associated low model complexity, it was decided 
to use the MobileNet as transfer learning model in the 
following.

3.3.2  Hyperparameter optimization

In order to determine optimal hyperparameters for the devel-
oped models, a comprehensive hyperparameter optimiza-
tion is carried out for both the self-created CNN and the 
pre-trained MobileNet. Due to the probability-based search 
and computational efficiency advantages over conventional 
optimization methods such as grid search, Bayesian hyper-
parameter optimization [60] is applied. In the optimization 
process, the individual runs are trained on 50 epochs and 
those hyperparameters are selected that lead to the high-
est accuracies. Table 2 gives an overview of the optimized 
hyperparameters. Table 3 presents the final network topolo-
gies obtained and additional information on the training 
processes.

4  Results

In the present section, the performances of the two mod-
els obtained from hyperparameter optimization are com-
pared. To be able to compare the model performances in 

Fig. 7  Comparison of pretrained 
models

Table 2  Overview over optimized hyperparameters

Hyperparameter MobileNet Self-created CNN

Amount of FCLs Not used (0) 3
Neurons in FCLs Not used 512; 512; 512
Batch normalization Not used After every FCL
Dropout Not used Not used
L2-regularization Not used 0.01
Amount of CL Not optimized 7
Learning rate 0.0001 0.001
Trained layers Last 24 layers All layers
Filters in CL Not optimized 25 ; 26 ; 26 ; 27 ; 28 ; 28 ; 28

Table 3  Overview over network topologies and informations on the 
training process

Network parameter MobileNet Self-created CNN

Activation function ReLU ReLU
Amount of layers 88 31
Trainable parameters 3,223,376 2,273,680
Output activation function Softmax Softmax
Pooling operation used Average Max
Amount of CL 27 7
Amount of PL 1 6
Input dimension of �in ℝ

224×224×3
ℝ

128×128×3

Amount of output neurons 16 16
Amount of FCL 0 3
Optimization algorithm Adam Adam
Loss function SCCE SCCE
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a statistically robust way, the two models are both trained 
100 times over 200 epochs, whereby the training process 
is stopped if no significant performance improvements are 
recorded over 30 consecutive epochs. 64 images of each 
wear class are used as validation data, another 64 images 
of each class as test data. The remaining 5392 images are 
used to train the models.

Figure 8 shows the results of 100 independent model 
runs as a boxplot, descriptive statistics of the results can 
be found in Table 4. It can be seen that both models deliver 
extremely high accuracy values and the wear condition of 
the tool can be determined by both models with almost 99 
% accuracy. The accuracies of the models differ only in the 
decimal range, whereby the performance of the MobileNet is 
slightly better. The robustness of the MobileNet also appears 
to be higher, which is indicated by lower standard deviations 
and closer confidence intervals of the model performance. 
This is either due to the initialised weights of the MobileNet 
and the associated ability to provide generic mid-level image 
representations, or to the higher number of trainable model 
parameters.

In order to make statistically reliable statements about the 
superiority of one machine learning algorithm over another, 
methods from statistics can be applied. One approach to 
detect significant differences in performances of classifi-
ers is the Welch’s unequal variances t test for differences in 
mean accuracy [61]. Since it is assumed that the pre-trained 
MobileNet can generate generic mid-level image represen-
tations, a one-tailed hypothesis test is conducted and the 
significance level is chosen to be p = 0.01 . If the mean accu-
racies of MobileNet and self-created CNN are described by 
�Mob and �CNN , respectively, then the null hypothesis is:

H0 : The accuracy of the MobileNet is equal to or less than 
that of the self-created CNN (�Mob ≤ �CNN).

The t-statistic value can be calculated by

where �Mob and �CNN are the standard deviations of the accu-
racies of Mobilenet and self-generated CNN, respectively.

The results of the t test can be seen in Table 5. It is shown 
that the test is significant due to

which is why the null hypothesis must be rejected. This leads 
to the statistically robust statement that the MobileNet is bet-
ter suited for the classification of tool wear conditions and 
leads to higher accuracies.

Table 6 gives an overview over the percentage misclassi-
fications of the 100 trained MobileNets in the form of a con-
fusion matrix, from which the wear states that are difficult 
to classify for the models can be derived. While there are 
low numbers of misclassifications at low cutting edge radii 
and especially with unworn punches, the models seem to 
become less accurate with increasing wear. Figure 9 shows 
example workpiece images for each wear class, which can 
be used to make assumptions about the increasing number 
of misclassifications with increasing wear. While differences 
in the geometric properties of the workpieces in the lower 
wear classes are particularly noticeable in the burr height 
and the impressions of the punch on the punching surface, 
which can thus potentially be discriminatory parameters for 
class classification, a differentiation of the high wear classes 
on the basis of optical properties is only possible to a lim-
ited extent. This is consistent with results from experimental 
studies in which the burr height grows asymptotically with 

(6)
tstat =

�Mob − �CNN
√

�
2

Mob

N
+

�
2

CNN

N

,

(7)p(tstat ≤ tcrit ) < p = 0.01,

Fig. 8  Performance comparison of MobileNet and self-created CNN

Table 4  Descriptive statistics of the model performances

Statistical parameter MobileNet Self-created CNN

Mean accuracy � 98.94 % 98.80 %
Median accuracy 98.93 % 98.83 %
Standard deviation � 0.24 % 0.37 %
95% confidence intervals (98.94 ± 0.06)% (98.80 ± 0.10)%

Maximum accuracy 99.41 % 99.71 %
Minimum accuracy 98.44 % 97.47 %

Table 5  Results of the one-tailed t test for differences in mean accu-
racies between MobileNet and self-created CNN

Observations N per model 100
Degrees of freedom 169
tstat 3.13
tcrit one-tailed 2.35
p(tstat ≤ tcrit ) 0.001
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increasing wear, reaches a plateau and therefore no longer 
serves as a discriminating feature above a certain degree of 
wear [62]. From wear class r55 upgoing, the punch leaves 
hardly any marks on the blanking surface. In addition, it can 
be seen that the burr height over the rotationally symmetrical 
edge shows strong variances, which make a local feature 
extraction for the CNN more difficult.

Furthermore, the cutting surface also contains potentially 
discriminating features that cause a more accurate classifica-
tion in lower wear classes. While especially in wear classes 
≤ r20 the share of the shear zone in the total height of the 

workpiece correlates positively with the wear, such tenden-
cies are not recognizable in higher wear classes.

5  Conclusion and outlook

While monitoring approaches of blanking processes are 
nowadays largely based on time series, this paper presents 
an approach for image-based tool wear monitoring. For 
this purpose, abrasive wear is simulated by mechanically 
rounding the edges of punches, whereby 1860 workpieces 
are manufactured with 16 differently worn punches. By cap-
turing 7440 workpiece images, a labeled data set is gener-
ated, which is then processed using Convolutional Neural 
Networks. A pre-trained CNN called MobileNet as well as 
a self-generated CNN are hyperparameter optimized and 
used for the image classification task. The results show that 
both models have excellent classification accuracies of up 
to 99% and are thus highly suitable for tool wear classifica-
tion. Using statistical testing methods, it can be shown that 
the pre-trained MobileNet is slightly superior to the self-
created CNN. In addition, images of the workpieces show 
that optical properties correlate with the punch wear, but 
their ambiguity prevents an even more precise classification, 
especially in the presence of high wear.

These promising results open up new possibilities for 
future research. Future research efforts should investigate the 
extent to which models react to workpiece images of differ-
ent semi-finished products and punch geometries. A highly 
interesting approach is to train the models on unlabeled data 
by using domain adaptation techniques in order to generate 
models that are as generalisable as possible and adaptable 

Table 6  Cumulative confusion matrix for tool wear classification of all 100 trained MobileNets in %

r
i
 [ mm] 0 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8

0 100 – - – – – – – – – – – – – – –
0.10 – 98.47 .39 – 1.11 – .03 – – – – – – – – –
0.15 – – 100 – – – – – – – – – – – – –
0.20 – – .02 99.98 – – – – – – – – – – – –
0.25 – – .05 – 99.95 – – – – – – – – – – –
0.30 – – – – – 100 – – – – – – – – – –
0.35 – – – – – – 100 – – – – – – – – –
0.40 – – – – – – – 99.97 – .03 – – – – – –
0.45 – – – – – – – – 99.73 – .27 – – – – –
0.50 – – – – – – – – – 100 – – – – – –
0.55 – – – – – – – – .02 – 98 1.98 – – – –
0.60 – – – – – – – – – – .52 96.86 .22 2.41 – –
0.65 – – – – – – – – – – .86 .81 98.23 .08 .02 –
0.70 – – – – – – – – – – – 1.03 2.05 94.67 1.89 .36
0.75 – – – – – – – – – – – – – .03 99.97 –
0.80 – – – – – – – – – – – – – – 2.78 97.22

Fig. 9  Example images of workpieces produced with 16 different 
punch edge radii r

i



491Production Engineering (2022) 16:481–492 

1 3

to different applications. Another interesting object of inves-
tigation is the performance behaviour of the models with 
varying data set sizes and how data augmentation techniques 
can improve model performances. In addition, the workpiece 
images offer the possibility to apply computer vision algo-
rithms for hand-crafted feature extraction in order to capture 
product properties as time-efficiently as possible. A process-
integrated acquisition of the workpiece images and their 
fusion with sensor data enables the identification of corre-
lations between time series signals and product properties, 
which in turn can be used for predictive quality applications.
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