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Abstract
This paper presents the results of research on the analysis of historical data from a vision system developed by the authors, 
installed inside a glass furnace in one of the packaging glassworks. In particular, the authors focused on analysis of the batch 
blanket asymmetry coefficient and the batch line position in the furnace tank. The information obtained from the vision 
system allows to see phenomena occurring in the glass furnace that were previously difficult to notice. Based on this, recom-
mendations for operators have been formulated to facilitate the glass melting process more efficiently. Based on historical 
process data from the SCADA production system, several models were developed that allow the batch line position in the 
glass furnace to be estimated. The best accuracy was achieved using the model based on neural networks. Such a model can 
be used to optimise furnace operation, which is at present based on the experience of human operators.

Keywords  Computer vision · Decision support · Furnaces · Glass industry · Industrial plants

1  Introduction

Glass furnaces are a crucial part of the production line in 
every glass factory. The operating parameters of furnaces 
have a decisive influence on the efficiency of the process 
and pollution (especially NOx emission), and on the qual-
ity of the final product. Therefore, its correct operation is 
extremely important. To a large extent, the parameters of 
the glass are estimated by the operator on the basis of the 
image from a camera installed inside the furnace. In par-
ticular, the operator should ensure the optimal positioning 
of the batch line (i.e. the distance to which the unmelted 
glass pieces reach) and similar distribution of the unmelted 
glass on both sides of the furnace. If the batch line moves 
too close to the working end of the furnace, the glass quality 

dramatically decreases, while the batch line too close to the 
front of the tank results in high emissions of NOx, and CO2 
[1] and unnecessary energy consumption, which is a signifi-
cant part of production costs [2].

The subject of the research is a glass furnace with a 
capacity of approx. 150 tons a day. A schematic drawing of 
the furnace is shown in Fig. 1. It is a 6 × 10 m furnace with 
one hopper located on the left side.1 Two gas burners (left 
and right) are used to melt the glass in the furnace, working 
alternately for 30 min. The process of changing the working 
burner (called the reversal) lasts one minute. During this 
time, neither of the burners are working. Every 30 min it is 
therefore possible to obtain an image of the glass pane inside 
the furnace, not obscured by the flame of a burner. This 
determines the maximum frequency at which the camera 
on the wall of the furnace opposite the burners can analyse 
the image. Two sets of electric electrodes are used to heat 
the glass from the bottom—one in the melting part of the 
furnace and the other at the break wall.
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2 � Previous work

Computer vision systems are becoming common elements 
of production lines. They are used for the inspection and 
control of industrial processes, including glass production. 
Various vision systems have been developed for monitor-
ing different glass manufacturing stages, from the hot end 
of the production line, for example vision systems for gob 
inspection [7, 8] to the inspection of semi-products and 
the final product [9, 10]. Vision systems have also been 
applied for the inspection of furnace structure [11] or 
vision-based analysis of flames [12].

In the literature, there is also some research on com-
puter vision for the automatic detection of batches in glass 
furnaces [13, 14, 19] the distribution of which is crucial 
for the correct control of the furnace. Vision systems can 
be used not only for full automation of the process, but 
also to help the operator to make correct decisions by mak-
ing suggestions. They may also help by visually presenting 
the furnace interior, as in [15], where the image from a 
single furnace camera is used to create an enhanced 3D 
image of the furnace, which can be viewed from a virtual 
camera located at an arbitrary point in the furnace or using 
stereoscopic devices.

This study is a continuation of our previous research 
on the vision system supervising the operation of a glass 
furnace [3, 4] and control systems in the glass industry 
[5]. In the above-mentioned works, we proposed an image 
processing method for automatic analysis of the symmetry 
of the glass melting process based on a series of images 
captured by a camera inside a glass furnace. We recom-
mended a set of asymmetry indicators that are not influ-
enced by asymmetries that result from glass melting tech-
nology (i.e. consecutive heating of first one, then the other 
side of the furnace). As a result of this research we pro-
posed rule-based system which makes inferences about the 
asymmetry of chargers and burners from the distribution 
of the batch on the glass surface and the distribution of 

correlated colour temperature. The proposed method indi-
cates the reasons for any asymmetry, for example whether 
heating of the left and right hand sides of the furnace is 
unbalanced or whether chargers are not working properly.

The above works resulted in the SCADA-like industrial 
vision system for glass furnaces supervision, which is briefly 
described in [6]. The system was implemented in the glass-
works and the results of its operation are presented in the 
following chapters. In particular, we focused on analysis of 
historical data from the period of over a month of operation 
of the furnace, concerning the asymmetry of the batch and 
the position of the batch line. Based on the data, selected sta-
tistics of furnace operation were calculated. An attempt was 
also made to calculate the position of the batch line using 
regression and neural models, based on historical process 
data from the SCADA system.

The main contribution of this research is thorough analy-
sis of the furnace process variables and indicators provided 
by the vision system over a long time. These studies gave 
deeper insight into the melting process and showed that it is 
possible to model certain aspects of the furnace operation 
by the use of machine learning technics based on historical 
data. Analysis performed here is, according to our knowl-
edge, the first study of this type based on real data obtained 
during the glass melting process.

3 � Vision system

The research presented in this paper is based on the vision 
system created by the authors, whose prototype version was 
described in [3]. It was initially used for the extraction of 
relevant glass melting parameters based on pairwise com-
parisons [4]. The system was later developed [6], and the 
current version is equipped with tools for remote connection 
to the glassworks, making it possible to collect and process 
data remotely in real time. It also includes tools for statistical 
analysis of data, such as statistics describing the variability 
of the distribution of the batch over time, including sym-
metry analysis. The interface of the system is presented in 
Fig. 2.

Our vision system calculates the distribution of the batch 
at each reversal, based on an image from a camera placed in 
the furnace. Then, on the basis of the distribution, the aver-
age asymmetry value of the batch is calculated based on the 
following procedure:
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Fig. 1   Glass furnace
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1.	 Segmentation2 of the batch from the camera image—
Fig. 2c (i.e. making a distinction between the raw mate-
rial and the melted glass [3]).

2.	 Geometric transformation to the view from above [16]—
Fig. 2e.

3.	 Calculation of the batch coverage of the right side and 
of the left side of the furnace as a function of x coordi-
nate, i.e. the percentage of batch coverage for each line 
perpendicular to the furnace axis X. The result of this 
operation is shown in Fig. 2d.

4.	 Calculation of the difference between the right and left 
coverage as a function of x coordinate. The result of 
this operation is shown in Fig. 2f (the vertical line is the 
centre of the furnace; if the graph is on the left side of 
this line, it means that there is an asymmetry with more 
batch on the left side of the furnace).

5.	 Calculation of the mean value from the diagram in 
Fig. 2f. This value is the mean asymmetry of the batch 

for a given reversal, which is plotted as a time series in 
Fig. 2b1 (for the right burner) and Fig. 2b2 (for the left 
burner).

Since the nature of the asymmetry differs significantly 
depending on which burner preceded the given reversal 
(which will be further elaborated in the next chapter), the 
trend is drawn separately for the left burner (more pre-
cisely—for the series of every second reversal preceded by 
operation of the left burner) and for the right burner.

Additionally, on the basis of the batch coverage, the 
location of the batch line is calculated. The location in this 

Fig. 2   Main window of the vision system. Depictions: a1 and a2, 
mean values of asymmetry coefficients for defined period of time for 
right and left burner; b1 and b2, asymmetry trends for right and left 
burner; c, an image of the furnace from the camera; d, the batch cov-

erage of the right and left sides of the furnace; e, batch blanket after 
geometric projection; f, distribution of the batch asymmetry for actual 
reversal

Fig. 3   Batch line recognition examples. A bright area means molten 
glass, green—an unmelted batch, brown—stubble on the camera

2  In glass melting technology the term segmentation may also refer 
to the separation of the stages of the glass fusion process into distinct 
devices [17]. However, in this article we use ‘segmentation’ in the 
context of image analysis, where it means automatic separation of dif-
ferent image areas.
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context is the position of the farthest (from the burner wall), 
unmelted part of the batch (yellow line in the image of the 
glass pane). Figure 3 shows different examples of recognis-
ing this line. The first three examples are correct, and the last 
is incorrect. In practice, incorrect identification is rare. It is 
usually caused by misclassifying stubble on the camera as 
a batch. During the analysed period, incorrect line recogni-
tion occurred 47 times out of 1678 reversals, which is 2.8% 
of all cases.

For correct operation, the vision system needs informa-
tion from the furnace control system, such as the beginning 
of the reversal (initiates analysis of the camera image), time 
to the next reversal (for information purposes) and informa-
tion about which burner is currently operating (to divide the 
asymmetry into the left and right burner). This information 
is obtained from the SCADA system using the OPC protocol 
(for security reasons, the system is not connected directly 
to the PLC).

4 � Data analysis

Data from 35 days of continuous operation of the installa-
tion (about 847 h) were taken for analysis. The data cover 
1678 reversals.

4.1 � Analysis of the asymmetry of the batch 
distribution

Figure 4 shows time series of the asymmetry in the analysed 
period. Each point on the graph represents the average asym-
metry of the batch calculated during one reversal. The same 
figure also shows the histogram and the plot of the asym-
metry differences.

The average value of the batch asymmetry is − 11% 
(this means that, statistically, 11 per cent more batch is 
on the right side of the furnace). The smallest registered 
asymmetry is − 32%, the highest is 7%, and the standard 
deviation is 7%. Statistically, the asymmetry distribution 
resembles a normal distribution with a slightly outlined 
bimodality (see the histogram in Fig. 4). On the basis 
of the plot of the asymmetry differences (differences of 
consecutive asymmetry values), we can conclude that the 
asymmetry fluctuates strongly from reversal to reversal. 
The variance of the differences is high, reaching approx. 
136.

The oscillation of the asymmetry from reversal to reversal 
shows that batch asymmetry depends on the burner that was 
operating before the reversal. In fact, when analysing the 
asymmetry for each burner separately, we can see interesting 
relationships. The asymmetry after the operation of the left 
burner means that we only analyse the measurements taken 
during the reversals directly preceded by the operation of 
the left burner (see the left chart in Fig. 5). The asymmetry 
for the reversals preceded by operation of the right burner is 
presented in the chart on the right.

First, there is a clear difference in the mean values of 
asymmetry: − 16 for the left burner compared to − 6 for 
the right burner. Both averages are negative (which means 
statistically more batch on the right side of the furnace), but 
for the right burner the absolute value is much smaller than 
for the left burner. This means that, after operation of the left 
burner, approx. 10% more of the batch is accumulated on the 
right side of the furnace than after the operation of the right 
burner. Therefore, the batch distribution after operation of 
the left burner has much greater asymmetry. The standard 
deviation for both cases is 5%, which is approx. 29% lower 
than for analysis of all measurements without separation into 
the right and left burners. This proves that the process has a 
different character for the left and right burner.

Fig. 4   Time series of the batch asymmetry along with the plot of dif-
ferences and the histogram

Fig. 5   Batch asymmetry depending on the working burner
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Certainly, the construction of the furnace with only one 
batch hopper contributes to the asymmetry in the batch 
distribution. During the operation of the left burner (the 
one closest to the hopper), the batch piles pushed out of 
the hopper will not have time to melt and flow to the right 
side of the furnace, where they accumulate. The problem 
could most likely be solved by adapting the hopper opera-
tion depending on which burner is currently operating.

In addition to the asymmetry distribution, the degree of 
batch coverage of the furnace tank was also analysed. In 
our vision system the image of the tank has been divided 
into three zones (dashed lines in Fig. 2e). These are the 
batch zone, the melting zone and the glass zone. During 
each reversal, coverage percentage is calculated for the left 
and right size of each zone. Figure 6 shows the coverage 
charts of each zone for 1678 consecutive reversals. These 
trends reveal some interesting information:

•	 Oscillations are much larger for the right side of the 
furnace (greater deviations from the mean).

•	 In the batch zone, the mean coverage value for the right 
side is approx. 8% greater, and the standard deviation 
22% greater, than for the left side.

•	 In the melting zone, the mean value for the right side 
is approx. 54% greater, and the standard deviation 45% 
greater, than for the left side.

•	 In the glass zone, the mean value for the right side is 
similar, and the standard deviation is 28% larger, than 
for the left side.

The greatest asymmetries are in the middle of the fur-
nace. The distribution of the batch on the left side of the 
furnace is more stable (less variance).

4.2 � Analysis of the batch line

Time series of the batch line positions for 1678 reversals are 
presented in Fig. 7. The values represent the distance of the 
batch line from the burner wall in cm.

Analysis of the chart shows that the position of the batch 
line, unlike the asymmetry coefficient, is non-stationary due 
to mean value. This is mainly because the batch line position 
largely depends on the actual furnace pull value. In Table 1 
we present the statistics (standard deviation and variance) for 
the time series of batch line position and batch asymmetry, 
normalised to the range [0, 1]. The results are shown for the 
raw time series and their differences. The variance of both raw 
time series is very similar (approx. 0.03), while in the case of 
differences, the asymmetry variance (0.0378) is greater than 
the batch line position variance (0.0272) by approx. 39%. This 
means that the asymmetry is much more variable from reversal 
to reversal than the batch line. Unlike asymmetry, burner rever-
sals do not have much of an effect on the batch line position.

4.3 � Analysis of the relationship between batch 
asymmetry and batch line and other process 
variables

One of the goals of this research was to discover the relation-
ship between the batch asymmetry, the batch line position, 

Fig. 6   Batch coverage for each zone of the furnace Fig. 7   Batch line position

Table 1   Statistics for raw waveforms and differences for batch line 
and batch asymmetry

Raw time series Differences

std. var. std. var.

Batch asymmetry 0.1751 0.0306 0.1945 0.0378
Batch line position 0.1743 0.0304 0.1648 0.0272
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and other process variables that have the greatest impact on 
the operating parameters of the glass furnace. These other 
variables were logged by the SCADA production system 
in the glassworks. The variables, directly related to the 
operation of the furnace, were used for analysis, as listed 
in Table 2.

For the same period as for the asymmetry and batch line 
analysis (35 days of continuous operation of the installation), 
data were collected from SCADA (logged with a sampling 
period of 1 s). Each variable is 2,764,801 samples long. The 
time series of these variables are presented in Fig. 8.

As can be seen the data are not continuous. There are 
some gaps in the analysed period. The shortest gap is two 
minutes long and the longest is over 18 h (see Table 3). It 
is difficult to say why the SCADA system did not log data 
during these periods.

The batch charger parameters (like the feeder positions 
and the feeding hopper speed) are certainly important for the 
asymmetry of the batch. However, these variables remained 
constant throughout the observation period and were there-
fore not included in analysis.

Data regarding the batch distribution and position of the 
batch lines were collected from the vision system every 
30 min. This is due to the fact that analysis of the glass sur-
face can only be performed during the reversal, when there 
is no flame in the camera’s field of view. On the other hand, 
data from SCADA are logged every second, which causes a 
problem in analysis. Therefore, we divided SCADA meas-
urements into 30-min firing fragments and 1-min reversal 
fragments. Each 30-min data packet was aggregated to its 
average value. Thanks to this, it is possible to check how 
the averaged values of the process variables from the firing 
period affect the parameters calculated in the reversal period 
(the asymmetry and batch line position).

For example, the plot of the MG_FLOW_PV variable 
(burner gas flow) shown in Fig. 8 is very densely sampled 
(2,764,801 samples). Therefore, its character is not clearly 
visible. Figure 9 shows a fragment of the plot, including 
three reversals. The data range between two consecutive 
reversals is the firing cycle (during the reversal, the gas 
flow drops to zero). For each cycle, the average value was 
calculated from 1800 samples (which corresponds to 30 min 
of firing). These values constitute a new time series of the 
aggregated process variable. The above procedure was 
applied to all analysed variables from SCADA. The charts 
of aggregated variables are presented in Fig. 10, where each 
point is the average of the 30-min firing periods.

Table 2   List of process variables from scada system

Tag name Description Unit

MG_FLOW_PV Gas flow to the burners Nm3/h
FU_PULL Glass pull t/24 h
FU_LEV_PV Glass level in the furnace tank mm
BC_SPD_PV Batch charging speed %
EBM_PWR_PV Electric boosting of melting kW
EBB_PWR_PV Electric boosting of barrier kW
ME_TEMP_PV Glass temperature °C

Fig. 8   Time series of the variables from the SCADA system

Table 3   Data gaps

No. From To Length

1 19/11/19 23:59:59 20/11/19 13:47:01 13 h 47 m 2 s
2 25/11/19 23:59:59 26/11/19 18:15:50 18 h 15 m 51 s
3 30/11/19 12:37:32 30/11/19 12:39:32 0 h 2 m 0 s
4 30/11/19 12:49:40 30/11/19 12:51:33 0 h 1 m 53 s
5 30/11/19 20:19:10 30/11/19 20:20:17 0 h 1 m 7 s
6 03/12/19 23:59:59 04/12/19 16:51:27 16 h 51 m 28 s

mean = 660 mean = 678

firing firing
reversal

mean = 660 mean = 678

Fig. 9   Fragment of the MG_FLOW_PV variable for three consecu-
tive reversals
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To check the linear relationship between the process vari-
ables, the cross-correlation coefficients for each pair of vari-
ables were calculated (see Table 4).

From the above matrix we can conclude that:

•	 There is no linear correlation between the batch asym-
metry and the batch line.

•	 There is no linear correlation between batch asymmetry 
and other SCADA variables.

•	 There is a clear linear correlation between the batch line 
and the other process variables, especially MG_FLOW_
PV, FU_PULL, EBB_PWR_PV.

Certainly, the fact that there is no simple linear relation-
ship in the data does not mean that there is no more compli-
cated non-linear relationship. The above results suggest that 

batch asymmetry probably depends mainly on the param-
eters of the batch hopper operation, which we are not able 
to check here due to the lack of variability of these param-
eters. The other parameters that we considered apparently 
do not affect the asymmetry value. However, we can see the 
potential of predicting the position of the batch line based on 
other variables, which will be the subject of the next section.

5 � Estimation of batch line position

We used machine learning methods to create a number of 
models predicting the position of the batch line on the basis 
of selected process variables. The best of the several dozen 
tested models turned out to be the regression model, cal-
culated using the GPR method (Gaussian Process Regres-
sion—a non-parametric kernel-based probabilistic model) 

[18]. The input variables are listed in Table 5.
The mean square error of the model fit to the actual data 

(calculated using the five-fold cross-validation method) is 
38.6 (RMSE), and the fit factor R2 is 0.56. These results 
show that the model is not very accurate.

Fig. 10   Aggregated process variables from the SCADA system

Table 4   The cross-correlation matrix

Batch line Batch asym-
metry

MG_FLOW_
PV

FU_PULL FU_LEV_
PV

BC_SPD_
PV

EBM_PWR_
PV

EBB_PWR_
PV

ME_TEMP_
PV

Batch line 1 0.13 0.63 0.65 − 0.11 0.39 0.56 0.62 0.54
Batch asym-

metry
0.13 1 − 0.11 − 0.11 − 0.24 0.02 − 0.1 − 0.11 − 0.1

MG_FLOW_
PV

0.63 − 0.11 1 0.97 − 0.08 0.61 0.79 0.91 0.93

FU_PULL 0.65 − 0.11 0.97 1 − 0.1 0.59 0.84 0.94 0.91
FU_LEV_PV − 0.11 − 0.24 − 0.08 − 0.1 1 − 0.34 − 0.07 − 0.11 − 0.11
BC_SPD_PV 0.39 0.02 0.61 0.59 − 0.34 1 0.46 0.57 0.52
EBM_PWR_

PV
0.56 − 0.1 0.79 0.84 − 0.07 0.46 1 0.77 0.76

EBB_PWR_
PV

0.62 − 0.11 0.91 0.94 − 0.11 0.57 0.77 1 0.88

ME_TEMP_
PV

0.54 − 0.1 0.93 0.91 − 0.11 0.52 0.76 0.88 1

Table 5   Parameters of the batch line position model

Input Output Type of model Accuracy

MG_FLOW_PV
FU_PULL
BC_SPD_PV
EBM_PWR_PV
EBB_PWR_PV
ME_TEMP_PV

Batch line Exponential GPR RMSE = 38.6
R2 = 0.56

Neural Net RMSE = 31.3
R2 = 0.84
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Since the classical methods did not give satisfactory 
results, we used artificial neural networks. We arbitrarily 
assumed a shallow network with three hidden layers (see 
Fig. 11). The inputs and outputs were the same as for the 
regression model. The data were randomly divided into a 
training set (70%), used to train the network, a validation 
set (15%), used to assess the effectiveness of the learning 
process, and a test set (15%), on which the final accuracy of 
the model was verified.

Since the learning method and the number of neurons 
in individual hidden layers are hyperparameters that can-
not be determined optimally in advance, a simple method 
was used to search the space of parameters. For each of 11 
back propagation-based learning methods (such as BFGS 
quasi-Newton, Conjugate gradient, Gradient descent with 
adaptive learning rate, Gradient descent with momentum, 
Levenberg–Marquardt, and Bayesian regularisation), all 
combinations of architectures with three hidden layers, 
where the number of neurons in each layer varied from 10 

to 50 with a step of 10, were created and trained. As a result, 
1375 networks were obtained, the best of which was the 
network size [h1 = 30, h2 = 20, h3 = 30] and the learning 
method based on back-propagation with Bayesian regulari-
sation [19].

When analysing the results shown in Fig. 12, it can be 
seen that the model follows the trend in the data, although it 
does not reflect all the details. The histogram of the model 
residuals (the differences between the model and the actual 
data) and the auto-correlation waveform of the residuals 
indicates that the residuals are practically uncorrelated white 
noise. This means that the residuals do not contain any use-
ful information, so the model is adequate. The mean square 
error of fitting the model output to the real data is 31.3, and 
the fit coefficient R2 is 0.84. The results are much better 
than for the regression model. Such a model could be used 
to predict the position of the batch line depending on other 
process variables in the glass furnace.

6 � Conclusion

The information obtained from our vision system allowed 
observation of phenomena occurring in glass furnaces, 
which were previously difficult to notice. Historical data 
on batch asymmetry show that the furnace distributes the 
batch asymmetrically—10% more batch is accumulated on 
the right side of the furnace. Moreover, data analysis showed 
that the asymmetry was greatly influenced by which burner 
was running before the reversal, and that asymmetry was 
much greater after operation of the left burner. The large 
asymmetry of the batch in the furnace is disadvantageous, as 
it makes it difficult to melt the batch evenly and may lead to 
the penetration of the unmelted batch into the working end.

Historical data of the batch line position allows an assess-
ment of whether the operator is controlling the process opti-
mally. Typically, operators tend to shorten the batch line 
unnecessarily to avoid the risk of unmelted glass entering 
the working end. However, doing so leads to much higher 
energy consumption and process inefficiency.

Summarising this research, it can be stated that:

•	 On the basis of the available data, it is not possible to 
find a relationship between the asymmetry of the batch 
and other process variables. Perhaps carrying out some 
experiments on the object, such as changing the batch 
charger parameters in a carefully planned scenario, would 
provide new data useful for this analysis.

•	 The location of the batch line can be estimated based on 
aggregated SCADA data. We have tested several mod-
els and the best accuracy was achieved using the model 
based on neural network. Revealing a complex relation-
ship between process parameters and batch line position 

MG_FLOW_PV

FU_PULL

BC_SPD_PV

EBM_PWR_PV

EBB_PWR_PV

ME_TEMP_PV

⁞

h1

30

⁞

h2

20

⁞

h3

30

Batch 
line

input

output

Fig. 11   Neural network with three hidden layers. Big blank arrows 
indicate fully connected layers

Fig. 12   Results of modelling the batch line position using a neural 
network
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can be used for optimisation of the furnace operation, 
which is currently based on the experience of human 
operators.

In future research, additional process variables logged in 
SCADA can be included in analysis. These variables may 
include gas calorific value or the level of a glass cullet in the 
batch (as it acts as a fluxing agent and decreases the melting 
energy). Perhaps it would make sense to build a separate 
model for each burner, because, as research has shown, the 
process is slightly different depending on which burner is 
working.

From the point of view of the process operator, running 
the process as efficiently as possible is important. Therefore, 
operators should observe the following recommendations:

•	 The operator should control the batch asymmetry trend 
and properly adjust the batch charger settings and the 
load of both burners so that the asymmetry coefficient is 
as close as possible to zero.

•	 The operator should also control the trend of the line 
position of the batch and adjust the amount of energy 
supplied to the furnace appropriately, to ensure optimal 
line position. Too short a line increases energy consump-
tion, and too long a line may result in the penetration of 
unmelted glass into the working end.

Acknowledgements  This research is a result of cooperation between 
AGH University of Science and Technology and Techglass Ltd. We 
would like to thank the employees of Techglass Ltd. and Zignago Vetro 
Polska S.A. for their cooperation and many helpful comments.

Authors contributions  PR conceived this research and designed algo-
rithms for vision analysis. MK designed the vision system, imple-
mented it in the glassworks, and conducted data analysis. AS directed 
the research in the context of glass production and provided the data.

Funding  This work was supported in part by the Polish Ministry of 
Science and Higher Education from research subsidy 16.16.120.773.

Availability of data and materials  The authors do not provide data and 
additional materials.

Declarations 

Conflict of interests  The authors declare no competing interests.

Consent to publish  The authors consent to the publication of this arti-
cle in Production Engineering—Research and Development.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Kawaguchi M, Kato T, Imamura Y, Yoshida N, Aoki S (2008) 
Challenge to improve glass melting and fining process. In: pre-
sented at the Advanced Glass Materials and Innovative Glass 
Melting Technology in the Year 2020, Brig, Switzerland

	 2.	 Ross CP, Tincher GL (2004) Glass melting technology: a techni-
cal and economic assessment. In: Glass Manufacturing Indus-
try Council, US Department of Energy Industrial Technologies 
Program

	 3.	 Rotter P, Skowiniak A (2013) Image-based analysis of the sym-
metry of the glass melting process. Glass TechnolEur J Glass 
SciTechnol Part A 54:119–131

	 4.	 Rotter P (2014) Extraction of relevant glass melting parameters 
based on the pairwise comparisons of sample images from a fur-
nace. Glass TechnolEur J Glass SciTechnol Part A 55:55–62

	 5.	 Grega W, Tutaj A, Klemiato M, Byrski W (2016) Comparison of 
real-time industrial process control solutions: glass melting case 
study. In: MMAR 2016: 21th international conference on Methods 
and Models in Automation and Robotics, Międzyzdroje, Poland

	 6.	 Rotter P, Klemiato M (2017) Prototype vision-based system for 
the supervision of the glass melting process: implementation for 
industrial environment. In: Advances in intelligent systems and 
computing, Springer International Publishing, cop. 2017. ISSN 
2194-5357; vol. 577, ISBN: 978-3-319-60698-9

	 7.	 Laizola E, Jimenez AR, Morgado F, Calvache M, Seco F (2003) 
Computer-vision-based gob inspection system for monitoring and 
control in glass industry. Mach Vis ApplInd Inspection XI SPIE 
5011:90–100

	 8.	 Garbacz P (2019) Inspection of tableware glass products at the hot 
end of production line. J Mach Constr Maintenance 112:77–84

	 9.	 Hotar V (2008) Monitoring of glass production using vision sys-
tems. Adv Mater Res 39–40:511–516

	10.	 Nishu A, Agrawal S (2011) Glass defect detection techniques 
using digital image processing—a review, special issues on IP. 
Multimedia Commun 1:65–67

	11.	 Garbacz P, Giesko T, Czajka P, Mazurkiewicz (2017) Vision sys-
tem for inspection of glass furnace structure. In: presented at the 
International Conference Automation (ICA)

	12.	 Santos-Victor JA, Costeira JP, Tome JAB, Sentieiro JJS (2002) A 
computer vision system for the characterization and classification 
of flames in glass furnaces. IEEE Trans IndAppl 29(3):470–478

	13.	 Muller J, Chmelar J, Bodi R, Matustik F, Viktorin P (2013) Auto-
matic batch position control by expert system ESIIITM. In: pre-
sented at the 23rd International Congress on Glass (ICG), Prague

	14.	 Czajka P, Mizak W (2019) A method for monitoring glass melt 
surface in a glass furnace. J Mach Constr Maintenance 4:37–48

	15.	 Rotter P (2017) Virtual cameras and stereoscopic imaging for the 
supervision of industrial processes. In: Artificial Intelligence and 
Soft Computing, Proceedings of the 16th International Confer-
ence on Artificial Intelligence and Soft Computing, ICAISC 2017, 
Zakopane, pp 563–659

	16	 Hartley R, Zisserman A (2003) Multiple view geometry in com-
puter vision. Cambridge University Press, Cambridge

	17.	 Ross CP (2004) Innovative glass melting technologies. Am Ceram 
Soc Bull 83(1):18–20

http://creativecommons.org/licenses/by/4.0/


734	 Production Engineering (2021) 15:725–734

1 3

	18.	 Rasmussen CE, Williams CKI (2006) Gaussian processes for 
machine learning. MIT Press, Cambridge

	19.	 Schagen J, Beerkens R, Faber A, Hemmann P, Hemmann G (2008) 
Application of batch blanket monitoring system in glass furnaces. 
In: 64th conference on glass problems: ceramic engineering and 
science proceedings, volume 25, pp 209–218

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Analysis of batch asymmetry and batch line position for the decision support in the glass melting process
	Abstract
	1 Introduction
	2 Previous work
	3 Vision system
	4 Data analysis
	4.1 Analysis of the asymmetry of the batch distribution
	4.2 Analysis of the batch line
	4.3 Analysis of the relationship between batch asymmetry and batch line and other process variables

	5 Estimation of batch line position
	6 Conclusion
	Acknowledgements 
	References




