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Abstract
Perishable products require accurate inventory control models as their effect on operations management can be critical. This 
assumption is particularly relevant in highly uncertain and dynamic markets, as for the ones generated by the pandemic era. 
This paper presents an inventory control model for perishable items with a demand rate variable over time, and dependent 
on the inventory rate. The model also considers the potential for backlogging and lost sales. Imperfect product quality is 
included, and deterioration is modelled as a time-dependent variable. The framework envisages the possibility to define 
variables affected by uncertainty in terms of probability distribution functions, which are then jointly managed via a Monte 
Carlo simulation. This paper is intended to provide an analytical formulation to deal with uncertainty and time-dependent 
inventory functions to be used for a variety of perishable products. The formulation is designed to support decision-making 
for the identification of the optimal order quantity. A numerical example exemplifies the outcomes of the paper and provides 
a cost-based sensitivity analysis to understand the role of main parameters.
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List of symbols
a 
[
unit

t

]
	� Demand rate in D (t = 0) (a > 0)

b 
[
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t2

]
	� Demand rate coefficient (b ≠ 0)

bc 
[

C
unit∗t

]
	� Unit backorder cost

c 
[
unit

t3

]
	� Demand rate coefficient (c ≠ 0)

d 
[

C
unit

]
	� {\rm unit} deteriorating cost

g 
[

C
unit

]
	� Constant coefficient of the holding cost

h 
[

C
unit∗t

]
	� Variable coefficient of the holding cost

ls 
[

C
unit

]
	� Unit lost sale cost

s 
[

C
unit

]
	� Unit screening cost

t1 [t]	� Screening process starting time

t2 [t]	� Stock-out starting time

α	� Percentage of defective products

θ 
[
unit

t

]
	� Deterioration rate

λ 
[
unit

t

]
	� Screening rate

μ [t]	� Deterioration process starting time
φ
[
1

t

]
	� Backlogging parameter (𝜑 > 0)

Br(t)	� Backlogging rate
D(t) 

[
unit

t

]
	� Demand rate

Db 
[
unit

t

]
	� Demand rate when inventory is null

H(t) 
[

C
unit

]
	� Holding cost function

I0 [unit]	� Maximum inventory level
I1(t) [unit]	� Inventory level in the time interval [0, t1]
I1′(t) [unit]	� Inventory level in the time interval [t1, μ]
I2(t) [unit]	� Inventory level in the time interval [μ, t2]
I3(t) [unit]	� Inventory level in the time interval [t2, T]
Id [unit]	� Inventory level in t1, considering defective 

products
Is [unit]	� Inventory level in t1, without defective 

products
Iμ [unit]	� Inventory level in μ
Q [unit]	� Ordered quantity
Qb [unit]	� Maximum backorder quantity
T [t]	� Inventory cycle length

 *	 R. Patriarca 
	 riccardo.patriarca@uniroma1.it

1	 Department of Mechanical and Aerospace Engineering, 
Sapienza University of Rome, Via Eudossiana, 18, 
00184 Rome, Italy

http://orcid.org/0000-0001-5299-9993
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-020-00986-5&domain=pdf


602	 Production Engineering (2020) 14:601–612

1 3

1  Introduction

The economic order quantity (EOQ) is an inventory control 
model largely accepted in industrial operations manage-
ment, since its introduction in the earliest decades of the 
twentieth century [1]. However, the original model presents 
several unrealistic assumptions that motivated scholars to 
study the EOQ under real-life scenarios [2]. One of the more 
investigated area refers to products that suffer of a short life-
cycle. This vast literature becomes particularly relevant in 
current days for the identification of the control models to 
be adopted for sustainable inventory and production man-
agement. Besides traditional food and beverage products, 
more critical items refer indeed to medical supplies such as 
surgical masks, reagents, swabs, pads that in the pandemic 
era require even more accurate ordering and replenishment 
strategies.

From a production management perspective, such prod-
ucts are currently critical, due to the large size of demand 
required by societal needs and subjected to public purchas-
ing with urgent timing. The batch size becomes a crucial 
variable considering the difficulties arising in product 
transferring between suppliers and customers. Products 
may also suffer from possible damages during deliveries, 
reducing their quality level. The highly dynamic current 
market also pushes competition over quality, jeopardizing 
products’ integrity, as well as facilitating products’ deterio-
ration. Furthermore, since in real settings all these features 
are largely affected by uncertainty, deterministic inventory 
models become no more effective for the minimization of 
respective management costs.

An opportunity emerges here to further investigate and 
refine an EOQ model in light of the features required to sup-
port a sustainable production management for products that 
are strategic during a pandemic. It thus becomes necessary 
to ensure that operations rely on optimization of parameters 
referred to reduced quality of products over time, and to the 
deterioration effects on customers’ purchasing interest. In 
addition, deterioration may also yield waste, which has to be 
disposed, generating not-negligible disposal cost.

On these assumptions, this paper contributes to the field 
of production engineering research by proposing a new 
model that can take into account costs related to perishable 
products, along with the uncertainty of demand and quality 
level, and the associated effect on customers, i.e. backorder-
ing or lost sales. Even though this document presents an 
integrated formulation for modelling the features of pan-
demic related items, the model has been built to provide an 
analytic formulation easily extensible to a large set of per-
ishable products (e.g. pharmaceutical, food and beverages).

The remainder of the paper is organized as follows. Sec-
tion 2 provides a literature review on more relevant EOQ 

models for perishable products. Section 3 details the pro-
posed integrated analytical model, which is then exploited 
via a numerical Monte Carlo simulation in Sect. 4. Finally, 
the conclusions summarize the outcome of this work and the 
potential for future research.

2 � Literature review

Products can lose their value during storage due to: (1) obso-
lescence, i.e. losing value over time due to technological 
changes or substitutes entering the market; (2) deterioration, 
i.e. the change or decay of the physical characteristics of a 
product which results in a reduction in the usefulness. Prod-
ucts affected by deterioration can be classified as perishable, 
with a known lifetime and expiry date, and decaying, with 
unknown lifetime. The ones characterized by high deterio-
ration rate can generate stock-out, lost sales and disposal 
costs [3].

In EOQ models for perishable products, each batch 
presents a constant or variable rate of deterioration that 
can move compliant products to defective, even after their 
receipt in the factory. In recent years, an instantaneous 
deterioration at a constant rate has been proposed with a 
demand linearly increasing in time, assuming full recov-
ery of backorder after replenishment [4]. Karthikeyan 
and Santhi [5] consider the demand as a cubic function 
over time, for which stock-out is not allowed but products 
have a salvage value. Khurana and Chaudhary [6] follow 
a demand depending on both the level of available stock 
and price, and then develop two models with a different 
backlogging rate, i.e. constant or depending on the waiting 
time until the arrival of the next batch. Mahapatra [7] study 
a model for high reliability products: buyers are inclined 
to acquire high-quality products to reduce maintenance 
costs and the possibility of failure, stock-out is partially 
managed in backorder. Kumar [8] examines the effect of 
a time-dependent linear demand in case of positive stock 
level, and a constant demand during stock-out. Tripathi [9] 
develops a model for seasonal food products with quadratic 
demand over time, and possible stock-out with no lost sale. 
Shaikh [10] proposes a model with temporary discount on 
the purchase unit cost, where the demand function depends 
on the price and the level of available stock, while dur-
ing stock-out the demand depends only on the price of the 
product.

A further specialization for perishable products pro-
vides a constant rate with non-instantaneous deterioration, 
starting after a certain amount of time [11]. In particu-
lar, Tat et al. [12] develop a model for a two-tier supply 
chain, allowing stock-out. Palanivel and Uthayakumar 
[13] consider the demand function dependent on price and 
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advertising, assessing the effect of inflation and the time 
value of money.

In reality, a constant rate of deterioration rarely occurs 
as most products deteriorate more as time passes. Mishra 
[14] present the demand as a linear function over time when 
the stock level is positive, becoming constant during stock-
out, and backlogging rate inversely proportional to the lead 
time of the next replenishment. With the same assumptions, 
Singh [15] develop a model with a time-dependent deteriora-
tion rate and no stock-out allowed, where the demand rate 
changes over time, i.e. constant over time before deteriora-
tion, and linear in time after deterioration starts.

Other examples of a variable rate consider the adoption of 
Weibull distribution. For instantaneous deterioration, a two-
parameter Weibull distribution is proposed by: Rajoria et al. 
[16] (with both time-dependent demand and backlogging 
rate, considering inflation), Sharma et al. [17] (price and 
expiry-date dependent demand and two backlogging rates, 
constant or variable) and Pervin et al. [18] (linear demand 
over time and partial backorder). A two-parameter Weibull 
distribution can be used if the deterioration rate is decreasing 
and the initial value is very high or if it is increasing with an 
initial value approximately null. Otherwise, (e.g.) when the 
deterioration starts after a certain period, a three-parameter 
Weibull distribution is required: Sanni and Chukwu [19] 
develop a model with time-dependent quadratic demand and 
partial backorder; Singh et al. [20] develop a model for a 
new seasonal product with time-dependent ramp demand, 
possible stock-out and full recovery. Finally, Palanivel and 
Uthayakumar [21] present a model where the demand is a 
function of price, advertising, and inflation, admitting stock-
outs, and partial backlogging with a rate depending on the 
lead time until the arrival of the next batch. The deteriora-
tion starts only after a certain period with a rate represented 
by three continuous probability distributions: uniform, tri-
angular, and beta.

From the analysis of this literature, it emerges the need to 
develop a model which is able to represent the features of a 
complex scenario such as the one present during a pandemic, 
via an analytic formulation which is also subjected to uncer-
tainty. On these bases, this paper presents an integrated EOQ 
inventory control model for perishable products, subject to 
variable defectiveness checked during quality control and 
time-dependent deterioration, which can cause both back-
order and lost sale. The proposed paper indeed integrates 
different analytical formulations discussed individually in 
previous research and adopts Monte Carlo simulation to 
solve the resulting optimization problem. In addition to 
the integrated analytical nature of this work (whose detail 
choices have been discussed in detail in Sect. 3), the contri-
bution proposed here is intended to support decision-making 
with a clear representation of uncertainty effects.

3 � Analytical model

The analytical formulation models an economic order quan-
tity problem for a single perishable item. The deterioration 
of the products determines the likely possibility of generat-
ing an anticipated stock-out situation [22], which is consid-
ered in a partial backlogging scenario. The deterioration rate 
starts after a specific known time moment μ and is a random 
variable [13]. No substitution or repair of deteriorated prod-
ucts is allowed during the re-ordering period. In practical 
terms, the total costs referred to this situation are represented 
by a combination of holding cost (cost due to the materials 
stocked in the warehouse), screening cost (cost to be paid 
for checking the quality of products), disposal costs (cots 
required to dispose the products that do not satisfy the qual-
ity level after the initial screening, or when the deterioration 
starts); the shortage cost (cost to be paid when the demand 
is not matching the remaining inventory), and the lost sale 
costs (cost paid in case there is left in the inventory at the 
moment of re-ordering). Figure 1 summarizes conceptually 
the different cost components, as a basis for the subsequent 
mathematical formulation.

Additional specific features of the model can be sum-
marized as follows:

•	 Replenishment occurs instantaneously
•	 The demand is stock-dependent: a quadratic function in 

standard situations [19], and constant influenced by Br(t) 
during the stock-out period [14].

•	 DETERIORATION. The products can be sold until T, 
which corresponds to the expiry date of the product in 
question, assumed to be equal to the inventory ordering 
cycle. Products left in stock after T constitute lost sales, 
since they do not respect the requirements of the customer.

•	 BACKLOGGING. The backlogging rate Br(t) , i.e. the 
portion of demand to be satisfied in backorder, is variable 
and is dependent on the length of the waiting time for 
the next replenishment: a longer backlogging rate would 
imply a smaller portion of customers would accept back-
logging at time t. This situation is described in case of 
negative inventory, as follows [15]:

	 where (T − t) is the remaining time before next replen-
ishment, and 𝜑 > 0 is a factor inversely representing the 
backorder rate imposed by the company: � = 0 implies a 
full backorder management Br(t) = 1 , with progressively 
lower backlogging rates for larger values of �.

D(t) =

{
a + bt + ct20 ≤ t ≤ t2
DbBr(t)t2 ≤ t ≤ T

Br(t) =
1

1 + �(T − t)
t2 ≤ t ≤ T
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•	 DEFECTIVENESS. Every order includes a percentage of 
defective products α, which is a random variable whose 
probability density function f(α) is uniform and known 
[23]. Screening is conducted in the interval 

[
0, t1

]
 with a 

screening frequency λ. The screening process is assumed 
to be perfect: no mis-classified products are possible. 
All defective units are removed contemporarily from 
the inventory at the end of the screening process, i.e. t1 . 
The screening rate is sufficiently large to ensure that a 
number of products larger than the demand is screened 
in 
[
0, t1

]
 . This assumption is acceptable since the screen-

ing process takes only little time, especially consider-
ing modern automated technologies for screening. The 
defective items are independent of deterioration (t1 < 𝜇) . 
A constraint on � is needed to avoid stockout during the 
screening process:

•	 HOLDING. The holding cost per unit is proportional 
to both the storage time and consists of two compo-

(1 − 𝛼)Q > D(t)t1 → 𝛼 ≤ 1 −
D(t)

𝜆
, t1 =

Q

𝜆

nents: a constant part (g) and another part linearly 
increasing with the storage time (h). The holding cost 
function is H(t) = (g + ht) . This assumption motivates 
the potential benefits of larger holding cost to com-
pensate the deterioration process increasing over time 
[10].

The stock level in t = 0 corresponds to the maximum 
level of inventory I(t = 0) = I0 . In the time interval [0,�] 
the stock level decreases following the demand D(t):

where imposing I1(0) = I0 , and considering and t1 as a func-
tion of the screening rate � , t1 =

Q

�
:

The inventory level including defective products is 
I1d

(
t1
)
:

(1)
�I1(t)

�t
= −D(t), 0 ≤ t ≤ �

(2)I1(t) = I0 −
(
at +

b

2
t2 +

c

3
t3
)
, 0 ≤ t ≤ t1

Fig. 1   Conceptual overview of the stock level in a period T
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Since the amount of defective items t1 is equal to αQ [23], 
the actual level of usable products is:

Consequently, the stock level in 
[
t1,�

]
 can be modelled as:

where I1� (�) = I�.
Since deterioration starts at μ, the inventory level in 

[
�, t2

]
 

is:

(3)I1d
(
t1
)
= I0 −

(
at1 +

b

2
t2
1
+

c

3
t3
1

)

(4)I1s
(
t1
)
= I1d

(
t1
)
− �Q

(5)I1� (t) = I0 −
(
at +

b

2
t2 +

c

3
t3
)
− �Q, t1 ≤ t ≤ �

(6)
�I2(t)

�t
+ �I2(t) = −D(t),� ≤ t ≤ t2

where, the condition I3
(
t2
)
= 0 is needed to ensure the back-

order condition, starting after t2:

And consequently, the value of I3(t)[15]:

Here, Qb is obtained for t = T  , i.e. the maximum amount 
of demand backlogged per cycle:

Hence Q:

Then the respective inventory management costs can be 
calculated, as for the following formulas:

(10)
�I3(t)

�t
= −DbBr(t), t2 ≤ t ≤ T

(11)
�I3(t)

�t
= −

Db

1 + �(T − t)
, t2 ≤ t ≤ T

(12)

I3(t) =
Db

�

[
ln(1 + �(T − t)) − ln(1 + �

(
T − t2

)
)
]
, t2 ≤ t ≤ T

(13)Qb = −I3(T) =
Db

�
ln
[
1 + �

(
T − t2

)]

(14)
Q = I

0
+ Qb ==

1

�

{[(
a + bt

2
+ ct2

2

)
−

(
b+2ct

2

�

)
+

2c

�2

]
e�(t2−�) −

[(
a + b� + c�2

)
−

(
b+2c�

�

)
+

2c

�2

]}

(1 − �)

+

(
a� +

b

2
�2 +

c

3
�3

)
+ �Qb

(1 − �)
+

Db

�
ln
[
1 + �

(
T − t

2

)]

This differential equation can be solved imposing 
I2(�) = I� and I2

(
t2
)
= 0 [9]:

Considering I1� (�) = I2(�):

where, after simple mathematical manipulations and con-
sidering Q = I0 + Qb:

After t2 , a partial backorder phenomenon is activating 
[14]:

(7)I2(t) =
1

�

{[(
a + bt2 + ct2

2

)
−

(
b + 2ct2

�

)
+

2c

�2

]
e�(t2−t) −

[(
a + bt + ct2

)
−

(
b + 2ct

�

)
+

2c

�2

]}

(8)I
0
−

(
a� +

b

2
�2 +

c

3
�3

)

− �Q =
1

�

{[(
a + bt

2
+ ct2

2

)
−

(
b + 2ct

2

�

)
+

2c

�2

]
e�(t2−�) −

[(
a + b� + c�2

)
−

(
b + 2c�

�

)
+

2c

�2

]}

(9)

I0 =

1

�

⎧
⎪⎨⎪⎩

��
a + bt2 + ct2

2

�
−

�
b+2ct2

�

�
+

2c

�2

�
e�(t2−�)

−

��
a + b� + c�2

�
−

�
b+2c�

�

�
+

2c

�2

�
⎫
⎪⎬⎪⎭
+

�
a� +

b

2
�2 +

c

3
�3

�
+ �Qb

(1 − �)

–	 Screening Cost:
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–	 Holding Cost:

	   Full details on analytical characteristics of 
HC1,HC2, and HC3 are presented in the Appendix.

–	 Disposal Cost:

	   where Qd represents the amount of deteriorated prod-
ucts in 

[
�, t2

]
:

–	 Shortage cost [14]:

–	 Lost sales cost [14]:

(15)ScC = sQ

(16)HC = ∫
t1

0

H(t)I1(t)dt + ∫
�

t1

H(t)I1� (t)dt + ∫
t2

�

H(t)I2(t)dt = HC1 + HC2 + HC3

(17)DC = d(Qd + �Q)

(18)Qd = I� − ∫
t2

�

D(t)dt = I0(1 − �) −

(
a� +

b

2
�2 +

c

3
�3

)
− �Qb − t2

(
a +

b

2
t2 +

c

3
t2
2

)
+ �

(
a +

b

2
� +

c

3
�2

)

(19)ShC = bc

[
−∫

T

t2

I3(t)dt

]
= −

bcDb

� ∫
T

t2

[
ln(1 + �(T − t)) − ln

(
1 + �

(
T − t2

))]
= bcDb

[
T − t2

�
−

1

�2
ln(1 + �(T − t2)

]

(20)LsC = lQls = l∫
T

t2

[
Db

(
1 −

1

1 + �(T − t)

)]
dt = lDb

[
T − t2 −

1

�
ln
(
1 + �

(
T − t2

))]

Finally, the total cost is the sum of the previous elements:

4 � Numerical example

The complicated structure of the proposed formulation does 
not allow an efficient analytical closed-form solution, espe-
cially when considering the probabilistic nature of the men-
tioned variables. As such, the problem has been solved via 
a Monte Carlo simulation model, which ensures a relatively 
simple, flexible, and computationally efficient analysis. Each 
Monte Carlo simulation consisted of 5000 iterations [24], 
relying on Mersenne twister, an efficient pseudo-random 
numbers generating algorithm.

4.1 � Base scenario

The model has been then validated with the data presented in 
Table 1. Besides a base scenario which summarizes the val-
ues representative of plausible settings, a sensitivity analysis 
has been performed to study the impact of main variables 
on the order quantity and respective total cost. The numeri-
cal values assigned in the base scenario have been based on 

previous literature on perishable products (e.g. [9, 10, 22, 
23]) as well as some manipulated data of a company dealing 
with ordering of products for pandemic. These values serve 
only for demonstration purposes. Considering indeed that 
the contribution of this research consists of proposing a for-
mulation suitable for different products, it has been decided 
to provide a sensitivity analysis in order to further prove the 

(21)TC = ScC + HC + DC + ShC + LsC

Table 1   Values of adopted variables and parameters

The distributions’ parameters are synthetically described as follows: 
normal (mean, std. dev), triangular (min, mode, max), uniform (min, 
max).

Variable Base scenario

a Normal (100, 10)
b Normal (50, 5)
bc 0.2
c Normal (10, 1)
d 0.03
g 0.003
h 0.001
ls 0.07
s 0.001
α Uniform (0, 0.1)
� 0.2
λ Uniform (5000, 6000)
μ 2
φ 0.1
Db Triangular (60, 60, 80)
T 6
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validity and robustness of the results with different input 
values.

From the analysis of results presented in Fig. 2, it clearly 
appears the major contribution to the total cost (TC) played 
by the shortage cots (ShC) and the disposal cost (DC), which 
shows a similar pattern of the holding cost (HC). This proba-
bilistic analysis confirms the trade-off to be set to ensure an 
economical order strategy.

This analysis can be used as a support for decision-
making under uncertainty, as shown in Fig. 3. Besides the 
inherent uncertainty on the demand value, there could be 
randomness in any of the proposed variable. Therefore, a 
certain threshold on the total cost (vertical axis) can be set 
to understand the feasibility of an imposed budget constraint. 
The decision-maker can thus establish a certain range of Q 
to assess the effect on total cost (or of course, on any other 
cost).

For example, within the range of Q (1500, 3500), the 
total cost will exceed the budget constraint (TC = 220) only 
for about 6%. A larger or shorter range can be proposed, 
depending on exogenous variables (e.g. supplier’s constraint 
on ordering quantity).

4.2 � Sensitivity analysis

Three sensitivity analyses have been performed to study 
the impact of the defect rate α), deterioration ( θ ), and the 
backlogging parameter (φ). Results show consistency with 
potential real scenarios, as detailed in the following figures 
(see Figs. 4, 5, 6).  

4.2.1 � Defective products ratio

The sensitivity analysis on the defective product ratio shows 
that there is no significant contribution to the total cost, 
while deviations can be ascribed to the random nature of 
the other variables: α has been set ranging from 0 (no defect) 
to 0.10 (10 percentage of defective products during screen-
ing), as shown in Fig. 4.

4.2.2 � Deterioration rate

About the deterioration rate, as it increases, there is a sig-
nificant increase in the required lot size (Q), and associated 

Fig. 2   Cost vs quantity functions in the base scenario
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costs, as shown in Fig. 5. This increment is largely represent-
ative of the increment in the shortage costs (ShC) and the 
lost sale costs (LsC), while negligible variations are expe-
rienced in the holding cost (HC). The sensitivity analysis is 

here stopped at θ=0.50, representing a reasonable boundary 
condition for deterioration rate in line with previous research 
which usually reports a value of θ never exceeding 0.3 [9, 
10, 22].

Fig. 3   Example of cost/quantity parametric decision-making process for the base scenario

Fig. 4   Box-plot of total cost, with changing α, highlighted item corresponds to α = 0.05
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4.2.3 � Backlogging parameter

The backlogging parameter φ shows a non-negligible effect 
on the total cost. In the range from 0.1 to 1, the total cost pre-
sents a decrease up to φ = 0.70. As expected, the tendency is 
largely due to the effect on the shortage costs (ShC) which 
progressively are affected by a reduced randomness, due to 
the increased acceptance of the backlogging (see Figs. 6, 7). 
Minor effects are observable in lost sale costs (LsC), while 

negligible effects are presented in the other components of 
the cost function.

5 � Conclusions

Current competitiveness requires dedicated strategies to deal 
with the uncertainty of market in highly dynamic settings. 
The paper presents an EOQ model which integrates a variety 

Fig. 5   Box-plot of total cost, with changing � , highlighted item corresponds to �=0.20

Fig. 6   Box-plot of total cost, with changing φ, highlighted item corresponds to φ = 0.10
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of products features to extend the credibility of the stand-
ard formulation also to cases affected by uncertainty, via a 
Monte Carlo simulation. The model allows the identification 
of advantageous quantity ranges for orders and the respec-
tive economic risk profile.

Furthermore, in more general terms, as proved by the 
cost sensitivity analysis, the model allows the isolation of 
the most significant variable dependencies (i.e. backlogging 
parameter, deterioration coefficient), supporting a parametric 
EOQ assessment.

Future research directions may include additional mod-
els of the deterioration process, i.e. other probability dis-
tribution functions suitable to represent the behaviours of 
specific products over time. Additionally, the framework 
could be enhanced to encompass other operations manage-
ment aspects, (e.g.) permissible delay in payments, quantity 
discounts flexible re-ordering intervals. Considering the 
positive results obtained via the proposed Monte Carlo sim-
ulation in combination with the provided analytical frame-
work, this research confirms the usefulness of the proposed 
approach as decision-making support tools able to ensure an 
effective inventory management for critical products.

The proposed framework can be adopted for a large vari-
ety of deteriorating items, whose market presence can also 

be indirectly affected by the pandemic scenario itself. In 
this sense, a proper setting of the input, as well as the deci-
sional, variables allows a flexible optimization process. The 
framework remains also extensible to post-pandemic sce-
narios for traditional deteriorating products (e.g. milk, fruits, 
vegetables, among others), whose uncertainty is expected 
to be limited in (e.g.) the demand variability over time. In 
these cases, the decisional variables may also be adjusted to 
reflect proper risk appetite of the decision-makers or even 
be iteratively defined to run what-if scenarios.
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