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Abstract
In this paper, stability investigations of a novel roughing-finishing end mill are carried out. This tool possesses two sharp 
finishing teeth and two radially recessed, chamfered roughing teeth. By applying the same tool for roughing and finishing 
operations, tool changes and process time can be reduced. For the stability investigations, the semi-discretization method 
for calculating stability charts was extended and made applicable for the novel tool concept by taking into account the radial 
recession of the chamfered cutting teeth. This is necessary because the radial recession leads to varying time-delays during 
the tooth engagement. Stability charts were then calculated for roughing-finishing tools with different radial recession as 
well as for conventional finishing and roughing tools. Furthermore, experimental stability charts were created. The results 
show a good agreement between calculated and experimental stability charts for the finishing tool. However, the calculated 
stability limits of the roughing-finishing tool and the roughing tool do not met with the experimental stability limits, which 
is attributed to inaccuracies in the modelling of process damping. Nevertheless, calculated as well as experimental stabil-
ity charts indicate a significant increase of the stability limit of the roughing-finishing tool compared to the finishing tool.

Keywords Process stability · Process damping · Roughing · Finishing · Semi-discretization

1 Introduction

In high performance cutting, the machining processes aim 
for high material removal rates. Besides the power limit of 
the machine tool, chatter vibrations are of high importance 
regarding a high productivity. Chatter vibrations can mostly 
be attributed to the regenerative effect [1, 2]. This effect is 
based on the assumption that a cutting tooth does not gen-
erate an ideal smooth surface. Instead, a defined waviness 
on the surface is created due to the dynamic compliance 
of the system. Therefore, the following tooth has to cut the 
wavy surface, the so-called outer modulation. In addition 
to this, the tooth vibrates with a phase shift � to the outer 
modulation. This vibration path is called inner modulation. 
Therefore, the phase shift � leads to a dynamic uncut chip 
thickness. In case of regenerative chatter, the vibrations of 
the individual tooth increase due to the dynamic uncut chip 

thickness and result in an unstable system. This effect is 
pictured in Fig. 1.

Since a higher depth of cut increases the dynamic forces of 
the regenerative effect, cutting processes are mostly stable to 
a certain depth of cut, the so-called stability limit, and unsta-
ble for higher depth of cut. To increase the stability limit of 
cutting processes, various methods can be used. One of the 
most common methods is the disturbance of the regenerative 
effect through varying time delays [4]. This can be achieved 
for example by serrated cutting edges [5], varying helix angles 
[6] or spindle speed variation techniques [7]. Another mecha-
nism leading to higher stability limits is the process damping 
effect. When a cutting tooth penetrates the material, for exam-
ple due to material springback or periodic vibrations, a force 
arises as a result of the elastic deformation of the material. 
This force can be modelled as product of indented volume V, 
friction coefficient � and a constant Kpd (Eq. 1).

The model was first derived by Wu [8] and thereafter adapted 
by various other authors [9–13]. In literature, the considera-
tion of process-damping effects has taken place mostly for 
worn tools [11, 13]. However, a significant increase due to 
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the process damping effect can also be achieved with flank 
face chamfers [3]. The disadvantages of chamfered cutting 
teeth are burr formation and a higher surface roughness com-
pared to tools with only sharp cutting teeth [14]. Therefore, 
an additional finishing process has to be carried out, leading 
to higher process times. In this paper, a novel tool concept, 
which is applicable for roughing as well as finishing opera-
tions, is examined [15, 16]. Thereby, the number of tool 
changes can be reduced. The tool possesses two chamfered, 
radial recessed cutting teeth and two sharp cutting teeth. 
Due to the radial recession �R, the chamfered cutting teeth 
do not get in contact with the final surface. Thus, surface 
defects from the chamfered cutting tooth are always cut off 
by the following sharp tooth. Moreover, the radial reces-
sion �R leads to a higher maximum uncut chip thickness 
on the finishing teeth. In order to compensate the result-
ing higher thermomechanical loads, the tool is unequally 
pitched. To avoid a contact between chamfer and workpiece 
due to runout errors or tool wear, �R should be greater than 
10 μm. Nevertheless, it is expected that a higher tool wear 
arises for the chamfered teeth, and �R therefore increases 
with increasing wear. The tool concept is pictured in Fig. 2.

Investigations of the achieved surface quality with the 
roughing-finishing tool were carried out and discussed in [15, 
17]. Compared to a conventional roughing tool, a significant 
reduction of burr formation and the avoidance of material 
adhesions on the workpiece surface could be detected. Fur-
thermore, a higher dimensional accuracy could be achieved 
due to lower tool deflection and surface generating forces [15].

The objective of this paper is the investigation of the pro-
cess stability of the roughing-finishing tool concept. Therefore, 
the semi-discretization method for calculating stability charts 
was extended. With this method, the influence of different tool 
geometries on the process stability can be investigated without 
extensive cutting experiments. Moreover, experimental stabil-
ity charts were created for two roughing-finishing tools with 
different radial recession �R, one conventional roughing tool 
with only chamfered cutting teeth and one conventional finish-
ing tool with only sharp cutting teeth. Furthermore, stability 
charts were calculated with the semi-discretization method 
and the input parameters derived. The results are presented 
and discussed.

2  Modelling of the dynamic behaviour

In this paper, the process stability was determined using the 
semi-discretization method derived in [3, 15]. The method is 
described briefly in the following. In general, the dynamics of 
the milling process can be expressed by Eq. (2). The left hand 
side of the equation describes the dynamics of the system, 
while the right hand side depicts the force resulting from the 
uncut chip thickness.

Nt is the number of teeth. �j describes the time between 
two tooth engagements. The matrices M, D and K contain 
mass, damping and stiffness of the single modes of tool and 
workpiece in x- and y-direction. The individual frequency 
response functions are modelled as superposition of single 
modes. The total displacement, as pictured in Fig. 3a, can be 
calculated as superposition of the displacement of the single 
modes (Eq. (3)).

(2)
Mq̈⟨t⟩ + Dq̇⟨t⟩ + Kq⟨t⟩ = TT

q

Nt�
j=1

Qj⟨t⟩(𝜟q⟨t − �j⟩

− 𝜟q⟨t⟩)

(3)

xw⟨t⟩ =
r�

i=1

xw,i⟨t⟩ yw⟨t⟩ =
s�

i=1

yw,i⟨t⟩

xt⟨t⟩ =
u�
i=1

xt,i⟨t⟩ yt⟨t⟩ =
v�

i=1

yt,i⟨t⟩

w = r + s + u + v

Fig. 1  Inner and outer modulation [3]

Fig. 2  Roughing-finishing tool concept
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The terms r, s, u and v are the number of modes in x- and 
y-direction for workpiece and tool. The vector q〈t〉 describes 
the dynamic deflection of each single mode. By multiplying 
q〈t〉 with the matrix Tq, the vector � q〈t〉 can be calculated, 
which contains the relative dynamic displacement in x- and 
y-direction between tool and workpiece. Therefore, � q〈t-�j〉  
is the outer modulation and � q〈t〉 the inner modulation. Tq 
is defined as

By applying Eq. (2) on the roughing-finishing tool, certain 
extensions have to be made. To consider the influence of the 
chamfer, a velocity-dependant process damping term has to 
be added [3]. Furthermore, the individual cutting teeth pos-
sess different radii. Therefore, the time-delay term can be 
time-dependant and it has to be taken into account, which 
tooth was in cut previously. Moreover, the varying process 
forces along the end mill axis are considered by dividing the 
z-axis in Nz discrete segments with length zd and helix angle 
� = 0◦ for the individual segments (Fig. 3b).

These extensions result in the following second-order linear 
delay differential equation:

(4)Tq =

[
1(1,r) 0 −1(1,u) 0

0 1(1,s) 0 −1(1,v)

]

(5)

Mq̈⟨t⟩ + Qdq̇⟨t⟩ + Qkq⟨t⟩

= TT
q

Nt�
j,u=1

Nz�
i=1

Qj,u⟨t, zi⟩𝜟q⟨t − �j,u⟨zi⟩⟩

with

Qk⟨t⟩ = K + TT
q

Nt�
j,u=1

Nz�
i=1

Qj,u⟨t, zi⟩Tq

Qd⟨t⟩ = D + TT
q

Nt�
j,u=1

Nz�
i=1

Qpd,j,u⟨t, zi⟩Tq

The matrix Qj,u〈t〉 contains the projected cutting force coef-
ficients according to Eq. (6). Thereby, gj,u〈t〉 is a step-func-
tion, which is 1, if the j-th tooth is in cut with u as previous 
tooth and 0 else. Ktc and Krc are tangential and radial cutting 
force coefficients, respectively.

The matrix Qpd,j,u〈t,zi〉 describes the process damping force 
and is defined as follows:

The second order differential Eq. (5) can be transformed into 
the first order differential Eq. (8).

Thereby, I is the identity matrix. By introducing the time 
discrete term

Equation (8) can be solved for a known initial state td-1 for 
the time td as

(6)

Qj,u⟨t, zi⟩ = Tj,dyn⟨t, zi⟩
�
0 Ktc

0 Krc

�
T−1
j,dyn

⟨t, zi⟩zdgj,u⟨t, zi⟩
with

Tj,dyn⟨t, zi⟩ =
�
cos(−φj⟨t, zi⟩) − sin(−φj⟨t, zi⟩)sin(�j⟨zi⟩)
sin(−φj⟨t, zi⟩) cos(−φj⟨t, zi⟩)sin(�j⟨zi⟩)

�

(7)

Qpd,j,u⟨t, zi⟩

=
b2
f

2vc
Tj,dyn⟨t, zi⟩

�
0 1

0 �

�
KpdT

−1
j,dyn

⟨t, zi⟩zdgj,u⟨t, zi⟩

(8)

ẋ⟨t⟩ = A⟨t⟩x⟨t⟩ +
Nt�

j,u=1

Nz�
i=1

Bj,u⟨t, zi⟩𝜟q⟨t − �j,u⟨zi⟩⟩

with

x⟨t⟩ =
�
q⟨t⟩
q̇⟨t⟩

�

A⟨t⟩ =
�

0(w,w) I(w,w)
M−1Qk⟨t⟩ M−1Qd⟨t⟩

�

B⟨t⟩ =
�

0(w,2)
M−1TT

q
Qj,u⟨t, zi⟩

�

(9)td = dT + T with {d ∈ ℕ | d > 0},

(10)

x⟨td⟩ = eAd(td−td-1)x⟨td-1⟩

+

Nt�
j,u=1

Nz�
i=1

∫
td

td-1

eAd(td−�)Bd,j,u⟨zi⟩�q⟨� − �j,u⟨zi⟩⟩d�

with

Ad =
1

T ∫
td+1

td

A⟨t⟩dt

Bd,j,u⟨zi⟩ = 1

T ∫
td+1

td

Bj,u⟨t, zi⟩dt.

Fig. 3  a Dynamic model of the milling process [3]. b Axial tool dis-
cretization [15]
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In the later calculation, one tool revolution will be dis-
cretised in Nk steps of the length T. The relative dynamic 
displacement � q〈t〉 in Eq. (10) can be solved iteratively 
for the following time step. However, with this method the 
integrated function � q〈t-�j,u〉 〈zi〉〉 is only known for discrete 
time-steps. The time delay term is therefore approximated by

By assuming that θj,u〈zi〉≫T, the following case analysis

can be made. This approximation is pictured in Fig. 4 for a 
one-dimensional case. Implementing the case analysis into 
Eq. (10) leads to Eq. (13):

By using the substitution

(11)

(mj,u⟨zi⟩ − 𝛾j,u⟨zi⟩)T = 𝜃j,u⟨zi⟩
with

{mj,u⟨zi⟩ ∈ ℕ � mj,u⟨zi⟩ ≥ 1}

{𝛾j,u⟨zi⟩ ∈ ℝ � 0 ≤ 𝛾j,u⟨zi⟩ < 1}.

(12)

𝜏 − 𝜃j,u⟨zi⟩
=

�
dT − mj,u⟨zi⟩T if dT ≤ 𝜏 < dT + (1 − 𝛾j,u⟨zi⟩)T
dT − (mj,u⟨zi⟩ − 1)T if dT + (1 − 𝛾j,u⟨zi⟩T) ≤ 𝜏 ≤ dT + T

(13)

x⟨dT + T⟩ = eAdTx⟨dT⟩

+

Nt�
j,u=1

Nz�
i=1

�
∫

a0

dT

eAd(dT+T−�)Bd,j,u⟨zi⟩d��q⟨dT − mj,u⟨zi⟩T⟩

+∫
dT+T

a0

eAd(dT+T−�)Bd,j,u⟨zi⟩d��q⟨dT − (mj,u⟨zi⟩ − 1)T⟩
�

with

a0 = dT + (1 − �j,u⟨zi⟩)T

(14)�⟨�⟩ = dT + T − � ⇒
d�⟨�⟩
d�

= −1 ⇔ d� = −d�,

the integration limits can be adjusted as

Equation (15) can be summarized as

Thereby �d,j,u is defined as

By expanding the vector x〈T〉 to

the system can be expressed as

where �exp,d〈T〉 is the monodromy matrix. The construction 
of the matrix is shown in Fig. 5.

For the stability analysis, the monodromy matrix has 
to be calculated for a whole system period Tper. For equal 
tooth pitch and cutting edge radii, Tper equals mT. If tool 
runout is considered, Tper corresponds to one tool revolu-
tion. According to the Floquet theorem, the monodromy 
matrix of a system period can be calculated as

(15)

x⟨dT + T⟩ =eAdTx⟨dT⟩

+

Nt�
j,u=1

Nz�
i=1

�
∫

T

�j,u⟨zi⟩T
eAd�Bd,j,u⟨zi⟩d��q⟨dT − mj,u⟨zi⟩T⟩

+∫
�j,u⟨zi⟩T

0

eAd�Bd,j,u⟨zi⟩d��q⟨dT − (mj,u⟨zi⟩ − 1)T⟩
�
.

(16)

x⟨dT + T⟩ = �d⟨T⟩x⟨dT⟩

+

Nt�
j,u=1

Nz�
i=1

[�d,j,u,1⟨T , zi⟩�q⟨dT − mj,u⟨zi⟩T⟩

+ �d,j,u,2⟨T , zi⟩�q⟨dT − (mj,u⟨zi⟩ − 1)T⟩]
with

�d⟨t⟩ = eAdt

�d,j,u,1⟨T , zi⟩ = �d,j,u⟨T , zi⟩ − �d,j,u⟨�j,u⟨zi⟩T , zi⟩
�d,j,u,2⟨T , zi⟩ = �d,j,u⟨�j,u⟨zi⟩T , zi⟩.

(17)
�d,j,u⟨T , zi⟩ = ∫

t

0

eAd�Bd,j,u⟨zi⟩d�
= A−1

d
(eAdt − I(2w,2w))Bd,j,u⟨zi⟩.

(18)

xexp⟨dT⟩ =

⎡
⎢⎢⎢⎢⎢⎣

x⟨dT⟩
�q⟨dT − T⟩
�q⟨dT − 2T⟩

⋮

�q⟨dT − mT⟩

⎤⎥⎥⎥⎥⎥⎦
with

m = max(mj,u⟨zi⟩)

(19)xexp⟨dT + T⟩ = �exp,d⟨T⟩xexp⟨dT⟩

Fig. 4  Discrete approximation of the relative displacement � q 
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To determine the stability of the system, an eigenvalue anal-
ysis has to be conducted:

To calculate stability charts, the eigenvalue analysis has to 
be conducted for various combinations of spindle speed n 
and depth of cut ap.

3  Experimental setup

3.1  Cutting experiments

Besides the mathematical examination of the process stabil-
ity, the process stability was determinated experimentally 
on a Heller MC16 machine tool for machining of Al7075. 
The experimental setup is shown in Fig. 6. A unidirectional 
flexure was used to provoke chatter vibrations and prevent 
damage of the machine tool. To exclude influences of the 
minor cutting edge, the experiments were conducted with 
free corner radius. Therefore, the workpieces were prepared 
for the specific depths of cut ap. The results of the modal 
analysis suggest that the preparation does not have a signifi-
cant influence on the dynamic behaviour.

(20)

xexp⟨T + Tper⟩ = �exp,per⟨T⟩xexp⟨dT⟩
with

Tper = pT , �exp,per⟨T⟩ =
p�

d=1

�exp,d⟨T⟩.

(21)eig(�exp,per⟨T⟩)
⎧
⎪⎨⎪⎩

< 1, stable

= 1, stability limit

> 1, unstable

The experiments were conducted with two novel rough-
ing-finishing prototypes ( �R = 40 μm and 20 μm), a con-
ventional finishing tool with only sharp cutting teeth and 
a conventional roughing tool with only chamfered cutting 
teeth. All tools possess four teeth and an unequal pitch angle 
�p = 10◦ . The chamfers have a chamfer width bf = 200 μm 
and a chamfer angle �f = 1◦ . Stability charts were created 
for spindle speeds n = 2000–10,000 min−1 , a feed per tooth 
fz = 0.12 mm and full radial immersion. The process stabil-
ity was evaluated based on the force signal, noise emissions 
and chatter marks. To ensure the machine safety, the highest 
applied depth of cut was ap = 16 mm.

3.2  Input parameters for the stability investigations

For the calculation of the stability charts using the semi-
discretization method, modal parameters and force coeffi-
cients are required beforehand. To determine the force coef-
ficients, the process forces are measured experimentally with 
a Kistler 9257B three-component dynamometer. Thereafter, 
a particle swarm optimization algorithm is used to fit the 
measured process forces for one tool revolution with six cut-
ting coefficients of a mathematical force model. Thereby, 
a trochoidal tooth path is assumed. The full algorithm is 
derived in [15]. The forces of the model can be calculated 
as follows, where Ff, FfN and Fp are feed force, feed normal 
force and passive force, respectively:

Fig. 5  Construction of the monodromy matrix. Thereby, the position 
of Γj,u depends on the individual time delay [15]

Fig. 6  Experimental setup and used tools. All tools possess four 
teeth, an unequal pitch angle �p = 10◦ , a radius R = 10 mm and a 
helix angle �  =  30◦
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The curve fitting was carried out for the three tool concepts 
with the results shown in Fig. 7. The dashed lines picture the 
measured forces, the continuous lines show the calculated 
forces. Thereby, the specific cutting coefficients Ktc, Krc and 
Kac were set equal for all three tools based on the measure-
ments of the finishing tool. This assumption is based on 
results of Sellmeier, who showed that the flank face chamfer 
only influences the edge coefficients Kte, Kre and Kae [3]. The 
values shown are the mean value of ten fittings at different 
times of force measurement. The results show a good agree-
ment between experimental and simulated process forces. 
The shape of the process forces of the prototype tool sig-
nificantly differs from the process forces of the two other 
tools, which can be attributed to the radial recession of the 
chamfered cutting teeth. Additionally, higher maximum pro-
cess forces can be observed for the roughing tool compared 
to the finishing tool, which is the result of an increased flank 
face to workpiece contact.

Furthermore, the process damping coefficient Kpd and 
the friction coefficient � are needed to account for the 
influence of the flank face chamfer. The friction coeffi-
cient between the aluminium workpiece and the cemented 
carbide tool was assumed to be 0.3 based on [3, 15]. Since 
there are large differences between the process damping 
coefficients Kpd used in the literature, the calculations were 
carried out with two different coefficients Kpd = 10,000 N/
mm3 and Kpd = 50,000 N/mm3. These values are in line 
with the ones used in [9, 15].

Frequency response functions (FRFs) were determined 
with an impact hammer test (hammer type PCB 086C03, 
aluminum tip). The output signals were measured with an 
accelerometer (type 352A21). Contactless measurements 
of the resulting displacement with a laservibrometer (Poly-
tec OFV-3001) showed similar results. To reduce meas-
urement errors, the FRFs were determined as means of 
ten impact tests. The modal parameters were determined 
using a genetic algorithm. The measured and fitted fre-
quency response functions are shown in Fig. 8. The modal 
parameters are given in Tables 1, 2, 3 and 4. The system 
has the highest compliance in x-direction of the workpiece 
at 124 Hz due to the unidirectional flexure. The FRF of the 

(22)

⎡⎢⎢⎣

Ff⟨t⟩
FfN⟨t⟩
Fp⟨t⟩

⎤⎥⎥⎦
=

Nt�
j=1

Nz�
i=1

⎡⎢⎢⎣
Tj⟨t, zi⟩

Nt�
u=1

⎡⎢⎢⎣

⎡⎢⎢⎣

Ktc

Krc

Kac

⎤⎥⎥⎦
hj,u⟨t, zi⟩

+

⎡
⎢⎢⎣

Kte

Kre

Kae

⎤
⎥⎥⎦

1

sin(�j)cos(�j)
gj,u⟨t, zi⟩zd

⎤
⎥⎥⎦

⎤
⎥⎥⎦

with

Tj⟨t, zi⟩ =
⎡
⎢⎢⎣

cos(−φj) − sin(−φj)sin(�j) − sin(−φj)cos(�j)

sin(−φj) cos(−φj)sin(�j) cos(−φj)cos(�j)

0 − cos(�j) sin(�j)

⎤
⎥⎥⎦

workpiece in y-direction changes depending on the depth 
of cut ap. However, calculated stability charts for the dif-
ferent FRFs indicate only a small influence of this mode 
on the process stability (Fig. 9). Therefore, only the FRFs 
for a depth of cut ap = 6 mm were used for the calculation 
of the stability charts.

4  Results and discussion

Figure 10 shows the experimental and calculated stability 
charts of a roughing tool, a finishing tool and two pro-
totype tools ( �R = 40 μm and 20 μm). The continuous 
lines illustrate the calculated stability charts, while the 
points of the experimental stability charts are marked with 
red (instable), yellow (marginal stable) and green (sta-
ble) symbols. The stability charts of the roughing tool and 
the prototype tools were calculated with process damp-
ing coefficients Kpd = 10,000 N/mm3 (black lines) and 
Kpd = 50,000 N/mm3 (grey lines).

In the upper diagramm, it can be seen that a good agree-
ment exists between simulated and experimental stabil-
ity charts for the sharp cutting tool. Possible deviations 
between calculated and experimental stability charts (e.g. 
at n = 2000 min−1 ) could be caused by runout errors [15] or 
differences between real and modelled dynamic behaviour 

Fig. 7  Measured and simulated process forces for one tool revolution 
(feed per tooth fz = 0.12 mm, depth of cut ap = 2 mm, width of cut 
ae = 20 mm, cutting speed vc = 251 m/min, down milling)
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[18]. However, the measured runout error is approximately 
2 μm. The influence is therefore only small. The highest 
experimental stability limit could be achieved at spindle 
speed n = 8000 min−1 with ap,lim = 9 mm, which is close to 
the highest calculated stability limit at n = 8500 min−1 . To 

investigate the calculation approach in more detail, simu-
lations using various axial discretization steps Nz as well 
as angular discretization steps Nk ( Fig. 11a) and different 
modal parameters and force coefficients (Fig. 11b) are car-
ried out. For a small number of discretization steps, there 
are regocnizable differences between the stability charts. 
However, the charts calculated with Nz = 20, Nk = 720 and 
Nz = 25, Nk = 900 are almost identical. Thus, the stability 

Fig. 8  Frequency response functions

Fig. 9  Calculated stability charts for different preparation states (feed 
per tooth fz = 0.12 mm, width of cut ae = 20 mm, axial discretiza-
tion steps Nz  =  20  mm, discretization steps for one tool revolution 
Nk = 720 mm). Thereby, ap,mod stands for the thickness of the work-
piece at the prepared position

Table 1  Modal parameters of the workpiece in x-direction

No. f in Hz m in kg d in Ns/m k in N/μm � in %

1 85 34.4 9248.2 9.8 25.2
2 124 19.2 1349.6 11.7 4.5
3 951 4.2 6533.4 149.7 13.0

Table 2  Modal parameters of the workpiece in y-direction 
(ap,mod = 6 mm)

No. f in Hz m in kg d in Ns/m k in N/μm � in %

1 110 17.2 9966.0 8.2 42.0
2 216 6.1 3920.2 11.3 23.5
3 920 23.1 20,027.6 771.8 7.5
4 4220 1.0 638.7 730.2 1.2

Table 3  Modal parameters of the tool in x-direction

No. f in Hz m in kg d in Ns/m k in N/μm � in %

1 31 10,781.8 308,343.5 411.4 7.3
2 36 14,537.8 353,170.6 743.8 5.4
3 140 204.4 36,619.8 159.8 10.1
4 284 51.3 27,848.4 163.7 15.2
5 379 58.0 36,020.4 329.6 13.0
6 592 22.5 13,703.5 312.0 8.2
7 690 40.5 10,958.1 761.8 3.1
8 697 5.9 9865.9 112.8 19.2
9 976 8.5 3873.4 318.5 3.7
10 1074 20.8 6022.1 950.1 2.1
11 1290 7.7 3745.7 506.1 3.0
12 1403 3.9 3402.9 299.8 5.0
13 1556 0.9 1012.2 90.4 5.5
14 2120 3.9 5686.0 703.2 5.4
15 2751 0.5 2256.0 148.9 13.0
16 3829 0.2 339.1 136.0 3.0
17 4709 1.8 3244.3 1604.1 3.0
18 5079 0.3 438.7 349.9 2.0
19 6389 0.3 605.3 447.5 2.7
20 6970 0.5 863.1 701.4 2.7
21 7602 0.5 1758.6 1214.0 3.5
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limits converge for a high number of discretization steps. 
The influence of force coefficients Ktc and Krc on the sta-
bility limit is pictured in Fig. 11b. A change in the force 
coefficients leads to a shift in the stability limit along the 
y-axis. There is no significant influence on the shape of the 
curve. Additionally, a stability chart in which the dominant 
mode of the workpiece in the x-direction (ftl,x2 = 124 Hz) 
was not taken into account was calculated. This leads to a 
significant higher stability limit and a change in the shape 
of the stability charts for n = 2000–5500 min−1 . Due to the 
unequal tooth pitch of the tool, the periodicity of the process 
equals two times the spindle speed n. Accordingly, the perio-
dicity for spindle speeds n = 2000–5500 min−1 is located in 
a frequency range f = 66.6–183.3 Hz, which corresponds 
to the dominant mode ftl,x2 = 124 Hz. At spindle speeds 
n > 5500 min−1 , the mode is irrelevant and the stability limit 
is identical to the reference process.

The charts of the roughing tool show significant higher 
experimental and calculated stability limits compared to the 
finishing tool. For spindle speeds n = 6000–10,000 min−1 
all stability experiments were stable up to the maximum 

Table 4  Modal parameters of the tool in y-direction

No. f in Hz m in kg d in Ns/m k in N/μm � in %

1 75 238.9 3,813,213.8 53.6 16.9
2 187 484.8 3,257,353.5 673.6 2.9
3 256 43.6 1,390,578.7 113.1 9.9
4 317 170.6 1,578,896.8 678.6 2.3
5 608 6.2 471,628.4 90.1 10.0
6 798 12.3 304,491.4 309.4 2.5
7 1229 2.3 133,518.6 139.7 3.7
8 1520 1.6 110,179.3 149.1 3.5
9 2106 3.4 337,665.4 603.8 3.7
10 3833 0.2 26,862.6 112.7 2.9
11 5075 0.3 48,639.3 352.5 2.2
12 6270 0.3 61,954.6 452.0 2.7
13 6967 0.3 86,097.9 698.0 2.7
14 7558 0.5 177,008.3 1200.9 3.5

Fig. 10  Calculated stability 
charts for different prepara-
tion states (feed per tooth 
fz = 0.12 mm, width of cut 
ae = 20 mm, axial discretization 
steps Nz = 20, discretization 
steps for one tool revolution 
Nk = 720)
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considered depth of cut ap  =  16  mm. Instable or mar-
ginal stable processes only appeared for spindle speeds 
n = 3000–5000 min−1 with a minimum stability limit of 
ap = 10 mm. For the calculated stability charts a low stability 
was determined for low spindle speeds n = 2000–5000 min−1 
similar to the calculated stability chart of the finishing tool. 
For n > 6000  min−1 the roughing tool exhibits a significantly 
higher stability limit for both process damping coefficients 
Kpd. The increased calculated and experimental stability lim-
its can be attributed to the process damping effect.

However, there are significant differences between cal-
culated and experimental stability charts for the roughing 
tool. The deviations indicate inaccuracies in the process 
damping model. While some processes with low process 
damping effects can be modelled with sufficient accuracy as 
shown in [3, 10], the model does not seem to be applicable 
to the examined use cases. One possible explanation for this 
is the non-linear behaviour of the process damping. While 
the process damping force in the model is expressed as lin-
ear to the dynamic velocity over the entire system period, 
it only occurs in the real process if the tool moves into the 
workpiece and therefore actually indents material. To illus-
trate this effect, process damping considered in the semi-
discretization is analyzed in more detail in Fig. 12. Figure 12 
pictures the Frobenius norm of the process damping matrix

(23)Qpd,sum⟨t⟩ =
�����
�����

Nt�
j,u=1

Nz�
i=1

Qj,u⟨t, zi⟩
�����
�����F
,

which describes the overall acting tangential and radial 
process damping coefficient in x- and y-direction. The term 
is calculated for every calculation step of the semi-discre-
tization and therefore one system period. In theory, process 
damping only occurs when material is indented by the flank 
face, which can be derived by the relative velocity between 
tool and workpiece as stated in [3]. However, the actual 
velocity vector can not be calculated with the semi-dis-
cretization since it simplifies the second-order linear delay 
differential equation to an eigenvalue problem. As a result, 
the process damping term is always added to the structural 
damping. The fluctuation of Qpd,sum can be attributed to 
numerical reasons. As comparison to the process damping 
term calculated with semi-discretization, the indented vol-
ume V, which is proportional to the process damping, was 
calculated using a time-domain simulation presented in [19] 
for one system period. It can be seen that the volume is 
zero for most of the discretization steps. Thus, time-domain 
simulations are a promising approach to improve the fore-
cast accuracy as discussed in [15]. However, due to long 
calculation times, time-domain simulations can not create 
stability charts efficiently. Another approach to consider the 
non-linear behaviour in the semi-discretization is the lineari-
zation around the stationary solution of the dynamic milling 
system and therefore the prior calculation of the indented 
volume using the shooting method. However, this approach 
only works for systems with one single time-delay [20]. Fur-
ther existing deviations between calculated and experimental 
stability charts could possibly be reduced by considering 
plastic deformations under the flank face and thermal effects.

The third diagram in Fig. 10 shows the experimental and 
calculated stability charts of the prototype with radial reces-
sion �R = 20 μm. Compared to the finishing tool, the experi-
mental stability limit increases significantly for most spindle 
speeds n (e.g. increased stability limit from ap,lim = 3 mm to 

Fig. 11  Simulated stability charts of the finishing tool. a Variation of 
discretization steps Nz and Nk. b Variation of force coefficients and 
modal parameters for Nz = 20, Nk = 720

Fig. 12  Illustration of non-linear effects by comparing Qpd,sum 
with V calculated using time-domain simulations (feed per tooth 
fz  =  0.12  mm, width of cut ae  =  20  mm, depth of cut ap  =  8  mm, 
spindle speed n = 9000 min−1 , axial discretization steps Nz = 20, dis-
cretization steps for one tool revolution Nk = 720, Kpd = 10,000 N/
mm3)
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ap,lim = 8 mm at n = 3000 min−1 ). This is the result of the 
process damping effect of the two chamfered cutting teeth. 
In comparison to the roughing tool, the experimental sta-
bility investigations indicate reduced process stability. This 
can be attributed to the fact that the process damping effect 
of the roughing tool is greater due to the four chamfered 
cutting edges. The calculated stability charts indicate a low 
stability limit for low spindle speeds n. By increasing the 
process damping coefficient Kpd, the stability limit increases 
significantly for spindle speeds n > 4000 min−1 . However, 
both stability charts do not fit with the experimental data, 
which is the result of inaccuracies in the modelling of the 
process damping effect.

The stability charts of the second prototype with radial 
recession �R = 40 μm show similar results as the first proto-
type. The maximum deviation between the two experimental 
stability charts appears at spindle speed n = 7000 min−1 . The 
first prototype ( �R = 20 μm) is stable up to a depth of cut 
ap,lim = 14 mm, while the second prototype ( �R = 40 μm) is 
stable up to a depth of cut ap,lim = 10 mm. Furthermore, the 
calculated stability charts for Kpd = 50,000 N/mm3 indicate 
a higher stability limit for n = 4000–6000 min−1 and a lower 
stability limit for n > 6000 min−1 compared to the first pro-
totype tool. Experimental and calculated differences between 
the two prototypes can be attributed to two effects. First, a 
higher radial recession leads to a higher interruption of the 
regenerative effect and therefore an increasing stability limit 
[15]. Second, a higher radial recession leads to a later entry 
and earlier exit of the chamfered cutting teeth in the work-
piece. Hence, the process damping is reduced.

In comparison of the four tools, the highest stability can 
be achieved with the roughing tool due to the highest pro-
cess damping. In contrast to that, both prototype tools have 
a lower calculated and experimental stability limit for most 
spindle speeds n, since only two chamfered teeth contribute 
to the process damping. Nevertheless, for certain spindle 
speeds (e.g. n = 4000 min−1 ) there are only slight differences 
between the stability limit of roughing-finishing-prototype 
and roughing tool. In addition to that, most industrial rough-
ing processes do not work close to the stability limit. There-
fore, there is a high potential in substituting conventional 
roughing tools with a roughing-finishing tool and thereby 
using only one tool for the machining process.

5  Conclusion and outlook

In this paper, process stability investigations for a novel 
roughing-finishing tool with two sharp and two chamfered 
radially recessed teeth as well as a conventional rough-
ing tool (chamfered teeth only) and a conventional finish-
ing tool (sharp teeth only) were conducted. An extended 

semi-discretization model was presented, applied for the 
different tool concepts and compared with experimental 
stability charts. A good agreement between calculated and 
experimental stability charts could be reached for the fin-
ishing tool. However, experimental and calculated stability 
charts of the prototype tools and the roughing tool show high 
deviations, which can be attributed to an inaccurate model-
ling of the process damping.

Calculated and experimental stability charts of the rough-
ing-finishing prototypes show significantly increased stabil-
ity limits up to 300% compared to the finishing tool. The 
process stability of a conventional roughing tool could not be 
reached for most spindle speeds n since the process damping 
effect is lower for the roughing-finishing prototype. Never-
theless, with the right chosen spindle speed n the differences 
between roughing tool and roughing-finishing prototype can 
be reduced. For example, the difference in stability limits 
between roughing tool and prototype ( �R = 40 μm) at a 
speed of n = 3000 min−1 is 10 mm, while the difference at a 
speed of n = 5000 min−1 is only 4 mm.

Further investigations will focus on the influence of man-
ufacturing errors and wear on the tool concept. The control 
of the manufacturing process is important, since chamfer 
geometry and radial recession � R exhibit small dimensions 
and significantly influence process stability and surface 
quality. Wear investigations are of relevance due to a high 
flank wear on the chamfered cutting teeth. In addition, the 
roughing-finishing tool will be applied on different materi-
als, e.g. steel and titanium. Moreover, the process damping 
model must be improved in order to increase the accuracy 
of the semi-discretization.
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