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Abstract
Metabolic associated steatotic liver disease (MASLD) is the most common liver condition. It is associated with increased 
liver-related morbidity and mortality, and also with high risk of cardiovascular events (CVD), representing itself an independ-
ent risk factor for it. This makes MASLD a presentation of high interest for internal medicine, also because of its association 
with metabolic syndrome (MetS). It is crucial to assess its risks in a noninvasive way. With the aim of finding specific risk 
profiles for CVD development in MASLD by performing a noninvasive assessment of: (1) preclinical signs of endothelial 
dysfunction (ED); (2) clinical assessment of CVD risk by Framingham Heart Risk Score (FHRs); (3) genomic characteriza-
tion of MASLD associated polymorphisms; (4) specific untargeted metabolomic profiles, we enrolled 466 MASLD patients 
non-invasively classified in 4 group of liver fibrosis severity (group-A: low-fibrosis risk, group-B: high-fibrosis risk, group-
C: MASLD-cirrhosis, group-D: MASLD-HCC) and 73 healthy controls. FHRs was similar in controls and low-fibrosis 
group and significantly higher in high-fibrosis patients, cirrhosis, and HCC, increasing among classes. At a multivariable 
regression, FHRs was associated with liver disease severity and diabetes. 38.2% of patients had altered EndoPAT, resem-
bling ED. Patients with high FHRs (> 40%) and ED had different metabolomics compared to those without ED. Our study 
reveals that a deep, non-invasive characterization of MASLD patients through precision medicine approaches (untargeted 
metabolomics, SNPs, ED assessment) was able to show a peculiar pattern in MASLD patients with increased CVD risk, 
mostly correlated with liver disease severity.
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Abbreviations
CVD	� Cardiovascular disease
FHRs	� Framingham Heart Risk Score
MASLD	� Metabolic-associated steatotic liver disease
T2DM	� Type 2 diabetes mellitus
FIB-4	� Fibrosis-4 score
NFS	� NAFLD fibrosis score
LSM	� Liver stiffness measurement
SNP	� Single nucleotide polymorphism
GC–MS	� Gas chromatography–mass spectrometry
PAT	� Peripheral arterial tonometry
PLS-DA	� Partial least square discriminant analysis
VIP	� Variable importance in projection
ALT	� Alanine aminotransferase
AST	� Aspartate amino-transferase
BMI	� Body mass index

Introduction

Metabolic steatosis, formerly known as nonalcoholic fatty 
liver disease (NAFLD), defined as a significant accumula-
tion of fat in the hepatocytes (more than 5%) in those who 
do not consume unsafe quantities of alcohol, is the emer-
gent liver disease. It is estimated that its prevalence is about 
20–30% of general population in western countries and 
5–18% in Asia, and even more represented in patients with 

obesity (54–90% among the studies) and/or metabolic syn-
drome (78.8%) [1, 2]. It is rapidly increasing, especially in 
developing countries, due to the spread of Western lifestyle 
and its associated conditions: sedentary lifestyle, obesity, 
dyslipidemia, insulin resistance, metabolic syndrome and 
diabetes [3]. Due to the strict connection with these clinical 
aspects, a consensus of experts firstly promoted a change in 
its nomenclature to metabolic-associated fatty liver disease 
(MAFLD) [4], then, recently, a multi-society Delphi con-
sensus statement proposed to further changing the definition 
to metabolic dysfunction-associated steatotic liver disease 
(MASLD) [5]. These recent frequent changes of terminol-
ogy, and the associated debate in the scientific community, 
highlight how important are the pathogenetic features of this 
condition in its natural history. As already mentioned, those 
features are mostly represented by obesity, insulin resist-
ance, type 2 diabetes mellitus (T2DM) and endothelial 
dysfunction, which are in common with the cardiovascular 
diseases (CVD) ones, such as angina, myocardial infarction, 
and stroke [6]. Evidence of this stringent pathophysiologi-
cal association is that CVD is the most common cause of 
morbidity and mortality in patients with MASLD, making 
it an independent CVD risk factor, and even promoting the 
development of CVD, hypertension and T2DM [6, 7].

Therefore, MASLD patients have an increased overall 
mortality in comparison to matched control patients, which 
is only partially due to liver-related deaths [8]. This peculiar 
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pathophysiology makes this disease a topic of high inter-
est for Internal Medicine specialty, due to its multi-organic 
involvement [9]. Since the already high global burden of 
MASLD continue to increase, internal medicine physicians 
will very likely more and more face the difficulty, in their 
everyday clinical practice, to identify those patients who are 
at higher risk, and also which type of risk (liver- or CVD-
related) they have [10]. To perform this task is of crucial 
importance in a screening setting; indeed, many efforts have 
been made to identify a way to perform clinical evaluation 
with non-invasive methods that could be both reliable and 
applicable to a large number of patients. In fact, a non-inva-
sive approach has been indicated as the preferred way to 
identify patients at highest risk of advanced liver disease, as 
well as of progression and mortality [11]. As a matter of fact, 
nowadays, all the most updated scientific societies guide-
lines on the management of NAFLD consider non-invasive 
methods to assess its severity [12]. In example, the Italian 
guidelines on NAFLD, promoted by the Italian Association 
for the Study of the Liver (Associazione Italiana Studio 
Fegato—AISF), indicated that, in NAFLD patients, a two-
tier sequential combination of noninvasive scores (Fibrosis-4 
score—FIB-4 and NAFLD fibrosis score—NFS), and liver 
stiffness measurement (LSM) by transient elastography, have 
acceptable accuracy to identify those cases at low risk of 
advanced fibrosis, thus allowing to identify subjects at high 
risk of advanced fibrosis, for further assessment [2]. Even 
if this method has been demonstrated to have good support-
ing evidence, it is mostly limited to liver disease assessment 
(namely fibrosis), and only by inference to other complica-
tions, such as CVD risk.

The Framingham Hearth Risk Score (FHRs) was firstly 
developed in 1998 on the basis of data coming from the 
Framingham Heart Study, to estimate the 10-year risk of 
developing coronary heart disease [13]. Subsequently, in 
order to better assess the cardiovascular risk, on top of coro-
nary heart disease, also cerebrovascular events, peripheral 
artery disease and heart failure were added as disease out-
comes and the 2008 Framingham Risk Score was developed 
[14]. Although the questionable impact of such CVD risk 
scores in patients’ clinical outcomes, FHRs can reliably indi-
viduate those at higher risk of CVD events at 10 years, and 
may direct clinicians’ decisions about prevention and treat-
ment of the higher risk subjects [15]. In the 2008 version, it 
indicates that individuals have a risk at 10 years that is low 
when it is 10% or less, intermediate when it is 10–20%, and 
high when it is 20% or more. However, it should be pointed 
out that these categories have been arbitrarily selected.

Digital peripheral artery tonometry (PAT) is a novel 
noninvasive method to assess endothelial and microvas-
cular dysfunction by measuring reactive hyperemia in the 
blood micro-vessels of the fingers. It has been reported that 
it is correlated with CVD risk and the presence of coronary 

artery disease, also at a preclinical stage [16, 17]. Recently, 
it is also been related to cardiovascular events in a follow-up 
study carried out in the Framingham cohort [18].

In the picture of its pathophysiological assessment, a 
high interest is posed on the genetics of NAFLD. Several 
genome-wide association and candidate gene studies have 
identified single nucleotide polymorphisms (SNP) that have 
been associated with NAFLD onset, severity, and peculiar 
clinical presentations. Among these, I148M PNPLA3 variant 
is recognized as the most common genetic determinant of 
NAFLD onset and progression towards Nonalcoholic steato-
hepatitis (NASH) fibrosis and even hepatocellular carcinoma 
(HCC) [19, 20]. Other variants with moderate effect size 
(but with peculiar manifestations) have been also reported 
in other genes, such as in TM6SF2, MBOAT7 and GCKR 
[21]. Transmembrane 6 superfamily member 2 (TM6SF2) 
is involved in the secretion of very low-density lipoproteins 
from the hepatocytes. Its rs58542926 C>T polymorphism 
seems to confer a higher risk of liver disease but lower risk 
of CVD events [22]. Membrane bound O-acyltransferase 
domain-containing 7 (MBOAT7) locus rs641738 C>T vari-
ant has been associated with reduced levels of phosphatidyl-
inositol containing arachidonic acid in hepatocytes and in 
the circulation, leading to higher risk of NAFLD, inflamma-
tion, fibrosis and HCC [23, 24]. The glucokinase regulator 
(GCKR) gene variant rs1260326 has been associated with 
hepatic fat accumulation via the dysregulation of glucoki-
nase, thereby activating glucose uptake and lipogenesis in 
the liver [25].

Altogether, these SNPs are closely related to lipid metab-
olism derangement in the liver and at the systemic level.

Untargeted metabolomics is a powerful novel method to 
study diseases pathophysiology by mean of a comprehen-
sive analysis of intermediate and end products of various 
biochemical pathways. It has the advantage to evaluate more 
accurately the “phenotype” of a disease, in respect to genes, 
transcripts and proteins, which very likely undergo to epi-
genetic, transcriptional and pre-/post-translational modifi-
cations [26]. Our group recently reported how untargeted 
metabolomics, analyzed with a GC–MS technique, was able 
to discriminate among the various stages of NAFLD [27]. 
By applying this technique on MASLD patients character-
ized by non-invasive tools in respect of their liver disease 
severity and their CVD risk, it could be possible to indi-
viduate peculiar metabolic phenotypical patterns able to 
discriminate those at high risk of CVD.

Aim

The aim of the present study is to deeply characterize 
patients with MASLD, by mean of pre-clinical, clinical, 
genetics and metabolomics study in respect to their clinical 
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risk of CVD, in the most non-invasive way possible, to offer 
an insight into patient management in daily clinical practice.

Patients and methods

Patients and controls

Four hundreds and sixty-six patients with ultrasonographical 
evidence of liver steatosis (bright liver echo pattern) com-
ing as outpatients in a hepatology tertiary center of south-
ern Italy, were consecutively enrolled from January 2018 to 
December 2022 to participate in this single center obser-
vational study. At the time of the enrolling, the exclusion 
criteria comprehended any unsafe alcohol consumption in 
the personal history, any other cause of liver disease (auto-
immune, viral, metabolic other than NAFLD) and also the 
absence of any of the metabolic syndrome components (obe-
sity, hyperglycemia or diabetes, hypertension, hypertriglyc-
eridemia, low HDL cholesterol). Therefore, this method of 
selection, aimed at building up a cohort of NAFLD patients 
with metabolic derangements with the scope of precisely 
investigate the CVD risk of associated steatosis allowed us 
to define them as MASLD patients, after the introduction 
of the new nomenclature. Also 73 age- and sex-matched 
healthy subjects were recruited by a local blood bank as 
controls.

Clinical evaluation

For each subject, we recorded: clinical history, physical 
examination, biochemical data, a complete drug history. We 
performed liver disease assessment and stratified the patients 
in three categories: low risk of advanced fibrosis [group A: 
subjects with a NFS lower than − 1.455 and a FIB-4 < 1.30 
or NFS > − 1.455 and/or FIB-4 > 1.30 and a LSM < 8 kPa or 
no significant fibrosis at the liver biopsy (F0–F1)], high risk 
of advanced fibrosis [group B: patients with a FIB-4 > 1.30 
and/or a NFS > − 1.455 and a LSM > 8 kPa or significant 
fibrosis at the liver biopsy (F2–F3)], and clinical cirrhosis 
(group C). A group of patients with a diagnosis of steato-
sis-associated hepatocellular carcinoma were also included 
(group D). More details in Supplementary data.

Framingham Heart Risk Score calculation

Age, sex, smoking habit, systolic and diastolic blood pres-
sure, total cholesterol, low-density lipoprotein (LDL) cho-
lesterol, high-density lipoprotein (HDL) cholesterol, and tri-
glycerides levels were collected for the evaluation of CVD 
risk at 10 years by the Framingham Heart Risk (FHR) score 
calculation as by European Guidelines indications [14, 28]. 
More details in Supplementary data.

EndoPAT evaluation

To evaluate the presence of endothelial dysfunction, 
which is the preclinical sign of CVD, finger plethysmog-
raphy (Endopat2000, Itamar) was performed in a subset 
of patients, randomly selected. This technique measures 
pulsatile arterial volume changes in fingers by means of 
plethysmographic probes before and after reactive hyper-
emia induced by occluding blood flow through the brachial 
artery for 5 min using an inflatable cuff on one hand. A 
reactive hyperemia index (RHI) below 1.67 was defined 
as endothelial dysfunction, in line with the manufacturer’s 
recommendations [29].

Serum and plasma collection

Serum and EDTA plasma collection tubes were provided by 
BD Vacutainer® (Becton Dickinson Italia S.p.A). Serum and 
plasma aliquots were recovered from patients’ and controls’ 
samples collected after an overnight fasting and transferred 
into prelabeled cryovials and store at − 80 °C (Supplemen-
tary data).

Genetic study

SNPs genotyping

DNAs have been extracted from peripheral blood. The 
rs738409 (I148M, PNPLA3), rs58542926 (E167K, 
TM6SF2), rs641738 (MBOAT7), and rs1260326 (P446L, 
GCKR) SNPs have been genotyped by TaqMan 5’-nuclease 
allelic discrimination assays.

The contribution of genetic factors was estimated by 
assuming an additive, dominant or recessive genetic model, 
separately (Supplementary data).

Metabolomics analysis

Metabolomics evaluation was performed by mean of a 
GC–MS analysis; the extended methodology has been 
already published [27, 30, 31]. In brief, the metabolome 
extraction, purification, and derivatization were conducted 
using the MetaboPrep GC kit (Theoreo, Montecorvino Pug-
liano, Italy) according to the manufacturer’s instructions. 
2-isopropyl malic acid was used as the internal standard. 
Instrumental analyses were performed with a GC–MS sys-
tem (GC-2010 Plus gas chromatograph and QP2010SE mass 
spectrometer; Shimadzu Corp., Kyoto, Japan). The analytical 
details are reported in Masarone et al. [27]. More details in 
Supplementary data.
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Statistical analysis

Clinical and genetics data

Data are reported as mean ± standard deviation for continu-
ous variables and number (percentage) for categorical vari-
ables. Statistical analysis was performed using IBM SPSS 
Statistics for MacIntosh, Version 26.0 (IBM Corp. Armonk, 
NY, Released 2019). Normal distribution of data was veri-
fied using the Shapiro–Wilks test. Since the data were 
normally distributed, we used one-way ANOVA with the 
Tukey post hoc test for inter-group comparisons. Pearson’s 
Chi squared test was used to determine differences among 
groups for the categorical variables. Multivariate analyses 
were performed by mean of a multiple linear regression 
when the dependent variable was continuous and a multiple 
logistic regression when the dependent variable was dichoto-
mous. The alpha (α) value was set to 0.05 in a two-tails 
comparison.

Metabolomics data

Dataset preparation

Within each total ion count (TIC) chromatogram, > 300 sig-
nal peaks were detected in each specimen. Chromatograms 
were first aligned by means of parametric time warping 
(PTW) using the PTW package [32]. Some of the peaks 
were not investigated further, as they were not consistently 
found in at least 80% of the samples, were too low in con-
centration, or were of poor spectral quality to be confirmed 
as metabolites. A total of 242 endogenous metabolites were 
detected consistently. The aligned chromatograms were 
tabulated with one sample per row and one metabolite area 
ratio (with respect to the internal standard area) per column. 
Each value was transformed by taking the natural log and 
then scaled by mean-centering and dividing by the standard 
deviation of that column (i.e., autoscaled) [33].

Feature selection

To reduce the dataset dimension and focus the analysis on 
the most relevant metabolites, a process referred to as feature 
selection was performed using a genetic algorithm that is a 
heuristic search that mimics the process of natural evolution 
such as inheritance, mutation, selection, and crossover [34] 
(Supplementary data).

Partial least square discriminant analysis (PLS‑DA)

PLS-DA was performed to find the combination of metabo-
lites that best separated the different classes on the basis 
of a specific metabolomic profile (Supplementary data). A 

permutation test was performed to verify the significance 
of class discrimination. For each permutation, a PLS-DA 
model was built between the data and the permuted class 
labels using the optimal number of components determined 
by cross-validation for the model based on the original class 
assignment. Two types of test statistics were used to meas-
ure class discrimination. The first was based on prediction 
accuracy during training. The second made use of separation 
distance based on the between/within distance ratio (B/W). 
If the observed test statistics was part of the distribution 
based on the permuted class assignments, class discrimina-
tion could not be considered significant from a statistical 
point of view [35].

The “Metacost” algorithm was used to correct the imbal-
ance effect for each class [36].

Identification of relevant metabolites

Two separate selection strategies were used to find the most 
relevant metabolites. First, the importance of each metab-
olite in class separation was evaluated using the variable 
importance in projection (VIP) scores [37] calculated for 
each metabolite used in the PLS-DA classification model. 
Second, metabolites were selected based on their fold change 
(FC) and t test-based p values (Volcano plot). Metabolites 
that showed both FC > 2 or FC < − 2 and p values lower than 
0.05 were selected (Supplementary data).

Results

Of the 466 patients included, after the clinical work-up, 
which included (as described in the methods section) the 
non-invasive assessment of liver disease severity by mean 
of the diagnostic algorithm proposed by AISF [2], 227 sub-
jects were defined to have a “steatosis with low risk of sig-
nificant fibrosis” (group A). One hundred and one patients 
were defined to have steatosis with “high risk of significant 
fibrosis” (group B), see methods section for more informa-
tion on the groups’ classification.

One hundred and five patients with NAFLD-associated 
clinical cirrhosis (group C) and 33 NAFLD-associated HCC 
(group D) were also enrolled. The demographical data of 
the study population are summarized in Table 1. Over-
all, MASLD population (n. 466) compared to age- (66.71 
vs 65.35 years; p: ns) and sex-matched (male sex 58.1 vs 
51.38%; p: ns) controls (n. 73) presents higher mean BMI 
(30.52 vs 23.32 kg/m2; p: 0.021), GGT (83.60 vs 55.96 U/L; 
p: 0.025), glycaemia (116.85 vs 96.77 mg/dL; p < 0.0001), 
LSM (13.21 vs 5.08 kPa; p < 0.0001), FIB-4 (3.29 vs 2.81; p: 
0.018), higher rates of diabetes (46.4 vs 13.84%; p < 0.0001), 
hypertension (72.0 vs 60.93%; p: 0.039), metabolic syn-
drome (41.3 vs 13.2%; p < 0.0001) and PNPLA3 dominant 
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genetic profile (CG + GG) (56.8 vs 37.93%; p: 0.035). No 
significant differences were found in AST, ALT, Total and 
HDL cholesterol, triglycerides, and for the other genetic 
profiles (MBOAT recessive, GCKR recessive, TM6SF2 
dominant). When comparing the single patients’ groups, 
patients in group A compared to controls, had significantly 
higher mean BMI (31.34 vs 23.32 kg/m2; p < 0.0001), gly-
caemia (116.18 vs 96.77 mg/dL; p: 0.001), total cholesterol 
(173.21 vs 152.45 mg/dL; p: 0.004), higher rates of diabetes 
(39.16 vs 13.84%; p < 0.0001), metabolic syndrome (47.05 
vs 13.20%, p < 0.0001) and a lower FIB-4 (1.56 vs 2.81; 
p < 0.001) but with equal LSM (7.76 vs 5.08, p: ns). Moreo-
ver, those with high risk of fibrosis (group B), compared to 
group A had significantly higher mean ALT (53.10 vs 41.05 
U/L; p: 0.039), GGT (89.82 vs 58.61; p: 0.025), FIB-4 (3.71 
vs 1.56; p < 0.0001), LSM (13.629 vs 7.76; p < 0.0001), FHR 
score (35.81 vs 23.28; p: 0.004), a higher rate of PNPLA 
dominant genetic profile (71.42 vs 50.6%; p: 0.019). Patients 
of group B compared with NAFLD patients with clinical 
cirrhosis (group C) differ only for higher levels of triglyc-
erides (156.42 vs 103.73 mg/dL; p < 0.0001) and lower val-
ues of FIB-4 (3.71 vs 5.30, p: 0.20) and LSM (13.629 vs 
25.23 kPa; p: 0.003). In the same way, patients of group 
C (NAFLD-related clinical cirrhosis) differ from group D 
(NAFLD-HCC) only for lower mean GGT (122.48 vs 224.29 
U/L; p: 0.011) FHR (31.90 vs 49.47%; p: 0.044) and LSM 
(25.23 vs 54.07 kPa; p: 0.0139). Moreover, also an analysis 
of the medications that might affect metabolism and CVD 
(lipid-lowering agents, hypertension and antidiabetic drugs) 
was performed and, being the results consistent with the 
prevalence of the corresponding conditions, were reported 
as supplementary Table 1 (see supplementary material).

An analysis of variance across the four groups reveals 
that age (p < 0.0001), AST (p: 0.002), diabetes prevalence 
(p < 0.0001), FHRs (p: 0.004), FIB-4 (p < 0.001) and LSM 
(p < 0.001) increase among classes.

Moreover, a univariate analysis was performed to cor-
relate FHRs (as the dependent variable) with clinical and 
laboratory parameters of patients with MASLD. From 
this analysis, age (p: 0.001), male sex (p: 0.030), ALT 
(p: 0.015), glycaemia (p: 0.001), diabetes (p < 0.0001) 
HDL cholesterol (p: 0.011), hypertension (p < 0.0001), 
metabolic syndrome (p < 0.0001), FIB-4 (p: 0.001) and 
LSM (p: 0.005) were significantly associated with higher 
scores of FHR (Table 2). At the subsequent multiple linear 
regression analysis, including all the variables significant 
at the univariate, age (p < 0.0001), HDL cholesterol (p: 
0.010) diabetes (p < 0.0001) and FIB-4 (p: 0.003) were 
confirmed independently associated with FHRs (Table 3a). 
However, because FHRs is a score calculated from age, 
sex, total cholesterol, HDL cholesterol and blood pressure 
(other than smoking habits), we also performed another 
multivariable analysis excluding age and HDL cholesterol 

with the aim of overcoming an eventual incorporation 
bias. In this calculation, only the presence of diabetes 
(p < 0.0001) and LSM (p: 0.033) remained correlated with 
FHRs (Table 3b).

Importantly, FHRs values significantly increased among 
the patients’ classes (p < 0.001, one-way ANOVA), as 
shown in Fig. 1.

Endo‑PAT subgroup analysis

In a subgroup of 110 patients (60.9% group A; 20.0% 
group B; 17.3% group C; 1.8% group D), we also assessed 
a peripheral artery tonometry measurement by EndoPAT, 
to evaluate if there was a measurable preclinical endothe-
lial dysfunction. An altered EndoPAT (below 1.67) was 
found in 42 out of 110 subjects (38.2%). In particular, 
31.8% of patients with low risk of fibrosis (group A) had 
endothelial dysfunction, 37.2% of group B (high risk of 
fibrosis), 52.6% of patients with clinical cirrhosis corre-
lated to MASLD (group C) (p: ns). Group D was repre-
sented only by two subjects and, therefore, were excluded 
from further analyses. As expected, EndoPAT values cor-
related with FHRs (OR 19.078–2.584–35.571 95% CI—p: 
0.024), demonstrating a direct correlation between the two 
parameters.

Table 2   Univariate analysis vs FHRs as a dependent variable

The text was in bold when p was considered statistically significant 
(ie <0.05)

Variable B 95% CI p

Age 1.502 1.358–2.647 0.001
Sex 7.409 1.939–14.079 0.030
AST 0.038 0.030–1.106 0.268
ALT 2.079 1.015–3.142 0.015
BMI 1.045 0.678–2.589 0.890
GGT​ 1.003 0.028–2.034 0.835
Glycaemia 2.220 1.146–3.293 0.001
HDL cholesterol 0.292 0.067–0.517 0.011
Total cholesterol 1.066 0.050–1.033 0.070
Triglycerides 1.011 0.330–1.056 0.610
Diabetes 26.990 21.430–32.551 0.000
Hypertension 25.467 18.681–32.253 0.000
Metabolic syndrome 16.130 9.881–22.380 0.000
FIB-4 1.706 1.503–2.689 0.001
LSM 1.767 1.066–2.602 0.005
PNPLA3 dominant model 

(CG + GG)
0.669 0.643–10.980 0.898

MBOAT recessive model (TT) 1.749 0.082–14.581 0.787
GCKR recessive model (TT) 1.972 0.382–12.326 0.706
TM6SF2 dominant model 

(CT + TT)
1.387 0.704–14.478 0.834
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Metabolomics analysis

Gas chromatography–mass spectrometry consistently 
detected 296 endogenous metabolites in each specimen. 
These compounds are involved in many biochemical pro-
cesses, such as energy metabolism, lipid metabolism and 
amino acid metabolism. For chromatographic peak iden-
tification, the linear retention index difference max toler-
ance was set to 10, while the minimum matching for NIST 
library search of the corresponding mass spectrum was set 
to 85%. Results were summarized in a comma separated 
matrix file and loaded in the appropriate software for statisti-
cal manipulation. After data alignment using the parametric 
time wrapping algorithm [32] and peak picking, integration 
and deconvolution, the chromatographic data were tabulated 
with one sample per row and one variable (metabolite) per 
column. The normalization procedures consisted of data 
transformation and scaling. Data transformation was per-
formed by generalized log transformation while data scaling 
was by auto scaling (mean-centered and divided by standard 
deviation of each variable) [35].

Metabolomics profiles were used to train several clas-
sification models based on PLS-DA algorithm. Model 
trained using at least 40% FHRs resulted significant (data 
not shown) while lower thresholds not, as shown in Fig. 2.

A well-defined differentiation of the high (H-FHRs) and 
low (L-FHRs) serum profiles was achieved (R2

Ycum = 0.89, 
Q2

Ycum = 0.57) (Fig. 2a), also showing a significant permu-
tation test (p value = 0.007). Variable importance in projec-
tion (VIP) scores were calculated for each component in the 
PLS-DA regressions. Panel b of Fig. 2 shows the metabolites 
selected as being those most responsible for class separation 
(with a VIP-score > 1.5). Lactic acid was also selected by 
the volcano plot (Fig. 2c) showing both p value < 0.05 and a 
fold change (FC) higher than 2.0. All these metabolites were 
also analyzed in the context of a metabolites enrichment 
analysis resulting in the alteration of ascorbate and aldarate 
metabolism, butanoate metabolism, pyruvate metabolism 
and glycolysis/gluconeogenesis (Fig. 2d).

Good class separation was also achieved classifying 
samples on the basis of EndoPAT results (normal vs abnor-
mal, R2

Ycum = 0.93, Q2
Ycum = 0.78) (Fig. 3a), also showing 

Table 3   Multivariate analysis (multiple linear regression) vs FHRs as a dependent variable

The text was in bold when p was considered statistically significant (ie <0.05)

(a) Coefficients

Model Unstandardized coefficients Standardized 
coefficients

t Sig. 95.0% confidence interval for B

B Std. error Beta Lower bound Upper bound

1
 (Constant) − 42.596 9.749 − 4.369 0.000 − 62.022 − 23.170
 Age 1.118 0.099 0.725 11.297 0.000 0.921 1.316
 ALT 0.036 0.025 0.084 1.446 0.152 − 0.014 0.085
 Sex 4.835 2.835 0.106 1.705 0.092 − 0.814 10.484
 Glycaemia − 0.041 0.046 − 0.061 − 0.876 0.384 − 0.133 0.052
 HDL − 0.225 0.085 − 0.160 − 2.636 0.010 − 0.395 − 0.055
 Diabetes 15.020 3.181 0.352 4.722 0.000 8.681 21.358
 Metabolic syndrome 4.868 2.582 0.118 1.885 0.063 − 0.277 10.013
 FIB4 1.628 0.535 − 0.224 − 3.045 0.003 1.563 2.693
 LSM 0.189 0.107 0.122 1.764 0.082 0.024 0.403

(b) Coefficients

Model Unstandardized coefficients Standardized 
coefficients

t Sig. 95.0% confidence interval for B

B Std. error Beta Lower bound Upper bound

1
 (Constant) 11.292 3.435 3.287 0.002 4.453 18.131
 ALT − 0.036 0.036 − 0.085 − 1.004 0.319 − 0.108 0.036
 Diabetes 24.239 4.270 0.569 5.677 0.000 15.739 32.740
 Metabolic syndrome 6.025 4.026 0.146 1.497 0.139 − 1.990 14.040
 FIB4 1.593 0.818 0.031 0.724 0.041 1.036 2.221
 LSM 1.336 0.172 0.023 0.211 0.033 1.037 2.380
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a significant permutation test (p value = 0.0035). variable 
importance in projection (VIP) scores were calculated for 
each component in the PLS-DA regressions. Panel b of 
Fig. 3 shows the metabolites selected as being those most 
responsible for class separation (with a VIP-score > 1.5). 
Phenylalanine, tyramine, butanoic acid and a metabolite for 
which was not possible to determine the structure resulted 
higher concentrated in patients with normal EndoPAT, while 
thymine, serine, glucose, choline, deoxyglucose, arabinose 
and pipecolic acid resulted with a higher concentration in 
patients with abnormal EndoPAT (Fig. 3c).

All these metabolites and the ones with a VIP-score 
higher than 1.5 were also analyzed in the context of a 
metabolites enrichment analysis resulting in the alteration of 
Warburg effect, Krebs cycle, gluconeogenesis, and tyrosine 
metabolism (Fig. 3d).

Discussion

Nowadays, it is well known that CVD occurrence repre-
sents the most important factor of morbidity and mortal-
ity in patients with NAFLD/MASLD, in fact CVD events 
are higher than those liver-related [38]. Indeed, NAFLD/
MASLD is accounted for being an independent CVD risk 
factor, even independent from smoke, obesity, diabetes, and 
metabolic syndrome (and its components, hypertension, dys-
lipidemia, visceral obesity and hyperglycemia) [39]. This 
peculiar characteristic is even more interesting today, as the 

pathogenetic relationship between non-alcoholic steatosis 
and the dysmetabolic state has been more forcefully estab-
lished by the new definition of MASLD. A non-invasive 
assessment of the CVD risk for a MASLD patient should 
be the most appropriate approach, considering the global 
increasing burden of this condition, although this evalua-
tion is always difficult. In the present study, we precisely 
aimed to evaluate the clinical risk of CVD occurrence by 
calculating it with a well-validated risk score (the 2008 ver-
sion of the Framingham Hearth Risk score) and correlating 
it with a mostly non-invasive assessment (a precision medi-
cine multi-OMIC approach) of MASLD severity. We believe 
that our interesting results clarify how and which MASLD 
patients should be attentioned for CVD risk. In fact, our 
overall MASLD cohort presents most of known CVD risk 
parameters (BMI, glycemia, prevalence of hypertension, dia-
betes and metabolic syndrome) significantly different, apart 
from those correlated with the liver disease itself (such as 
FIB-4 and LSM), but not FHRs itself, compared to age and 
sex-matched controls. At a first glance, these results look 
inconsistent with the supposed higher CVD risk in NAFLD 
patients, however, further analyzing the data we found out 
that only patients with low risk of advanced fibrosis (group 
A) and controls had similar FHRs. In fact, FHR scores were 
significantly different between controls and MASLD patients 
of group B, C and D (aggregated) (p: 0.024, Mann–Whitney 
U for independent samples), whereas there was no statis-
tical difference between controls and group A (p: 0.451). 
Indeed, the group A patients had very likely simple steatosis, 
a metabolic condition very similar to matched healthy con-
trols. Therefore, our finding seems to confirm, once again, 
that simple steatosis doesn’t confer any additional risk to 
its carrier.

Interestingly, analyzing FHRs among the four groups of 
MASLD, we observed a statistically significant increasing 
trend (as showed in Table 1 and Fig. 1; p: 0.004). These 
findings suggest that the non-invasive algorithm used to 
stratify MASLD patients based on fibrosis, was useful also 
to predict their CVD risk. In turn, this confirms previous 
reports that one of the strongest predictors of CVD risk 
in MASLD is the severity of the liver disease itself [40]. 
However, to better understand the relationship between 
CVD risk and MASLD disease we performed univariate 
and multivariate analyses with FHRs as the dependent 
variable. In the univariate analysis (Table 2), we observed 
well knows CVD risk factors associated with higher values 
of FHRs, such as age, sex and metabolic syndrome (and its 
components: glycaemia, hypertension, HDL cholesterol) 
and diabetes, apart from factors associated with liver dis-
ease (ALT, FIB-4 and LSM). Interestingly, the SNPs for 
NAFLD/MASLD risk were not correlated with FHRs. At 
the multivariate analysis, performed with all the signifi-
cant variables at the univariate as independent factors, age, 

Fig. 1   FHRs among patients’ classes. Group A: no fibrosis; group B: 
fibrosis; group C: cirrhosis; group D: HCC (p < 0.0001, independent 
samples Kruskal–Wallis test with 4 degrees of freedom; for the pair-
wise comparisons see the image)
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HDL, diabetes and FIB-4 were confirmed independently 
associated with FHRs (Table 3a). However, since FHRs is 
calculated from age, sex, total cholesterol, HDL choles-
terol and blood pressure (other than smoking habits), there 
is a high risk of an incorporation bias on the statistical 
significance of these variables. Therefore, we performed 
another multivariate analysis, excluding Age and HDL 
cholesterol (Table 3b). Thus, only diabetes and LSM were 
significantly associated with higher FHRs, demonstrating, 
again, that liver disease severity (also if assessed in a non-
invasive way) is the stronger driver of CVD risk, together 
with the presence of type 2 diabetes mellitus.

FHRs has the limitation to be precisely a risk score, 
calculated from clinical parameters, therefore there is no 
direct measurement of any pathophysiological impairment 
predisposing the patient to CVD. For this reason, we also 
performed, in a subgroup of patients, a direct measure-
ment of endothelial dysfunction, which is the early vascular 
derangement that correlates with CVD [41]. Endothelial 
dysfunction, measured by peripheral artery tonometry was 
already present in 38.2% of the 110 patients who underwent 
the procedure. Overall, there was no differences between 
the classes of fibrosis risk, however there was a higher per-
centage (52.6% vs 39.3%) of altered endoPAT in group C 

Fig. 2   FHRs PLS-DA classification model: a high (H-FHRs > 40%, 
blue) vs low (L-FHRs < 40%, green) score plot, axes represent the 
latent components, the amount of explained variance were reported 
in bracket. b Metabolites showing a VIP score > 1.5 in the PLS‐DA 

analysis. c Volcano plot reporting metabolite concentration fold 
changes and their statistical significance comparing H-FHRs vs 
L-FHRs subjects. d Metabolite set enrichment analysis using the 
selected metabolites (VIP and Volcano) (Color figure online)
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(clinical cirrhosis) compared to all the other groups that did 
not reach the statistical significance due to the small sam-
ple size. Moreover, we found a linear correlation between 
endoPAT values and FHRs, as expected. Since the included 
patients were all free from active/previous CVD, these find-
ings suggest that an already existing vascular derangement 
is, once again, correlated with the worst-case scenarios con-
cerning liver disease severity.

Noteworthy, several interesting results emerged from the 
untargeted metabolomics analyses. First, the PLS-DA analy-
sis, conducted to discover metabolic difference in FHRs, 
revealed no differences in metabolites profiles below the 
value of 40%. This is of particular significance, because it 
is reported that a FHRs > 30% is classified as high CVD risk. 
In our cohort, the number of patients with FHRs ≥ 40% was 
65 out of 466 (13.95%), 21 out of 185 (11.35%) in group 
A, 18 out of 83 in group B (21.68%), 18 out of 86 in group 
C (20.93%) and 5 out of 26 in group D (19.24%). Also, 
10 out of 73 controls (13.69%) had this FHR score. Once 

again, there was a statistically significant difference between 
group A and the other groups (A vs B p: 0.027; A vs C p: 
0.037, Mantel–Haenszel), and no difference with controls 
(p: 0.602). Very interestingly, the metabolites classified as 
predicting an FHRs > 40% were in the ascorbate and aldarate 
metabolism, butanoate metabolism, pyruvate metabolism 
and glycolysis/gluconeogenesis. Ascorbate (vitamin C) is a 
well-known anti-oxidant, associated with CVD and cancer 
protection [42]. Butanoate metabolism derangement showed 
detrimental effects on CVD risk and endothelial dysfunc-
tion [43, 44]. In fact, it is well known that the decrease of 
butyrate-producing bacteria abundance in the Gut-microbi-
ota leads to increased CVD risk [45]. Pyruvate metabolism 
impairment has been associated with increased fatty acid 
oxidation, mitochondrial dysfunction (typical of NAFLD/
NASH), and reduced cardiac efficiency [46]. Finally, also 
glycolysis/gluconeogenesis intermediates have been demon-
strated to contribute to metabolic classes separation between 
subjects with a high (> 40%) and a low FHRs. This finding 

Fig. 3   EndoPAT PLS-DA classification model: a abnormal (orange) 
vs normal (purple) score plot, axes represent the latent components, 
the amount of explained variance were reported in bracket. b Metabo-
lites showing a VIP score > 1.5 in the PLS‐DA analysis. c Volcano 

plot reporting metabolite concentration fold changes and their statisti-
cal significance comparing normal vs abnormal EndoPAT. d Metabo-
lite set enrichment analysis using the selected metabolites (VIP and 
Volcano) (Color figure online)
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is unsurprising, given the well-known association between 
diabetes/insulin resistance and CVD risk.

The metabolomics analysis on endothelial dysfunction, 
measured by EndoPAT, revealed an association between 
higher concentrations of butanoate, phenylalanine, and 
tyramine and normal EndoPAT values. In accordance with 
the forementioned supposed protective mechanisms against 
CVD, Butanoate concentrations are higher in patients 
without ED [43–45]. Also, higher phenylalanine levels in 
patients without preclinical ED is in line with previous 
reports which highlight that its concentrations are inversely 
correlated with carotid atherosclerosis and CVD risk [47]. 
As well, low levels of tyramine have been associated with 
cardiometabolic risk and inflammation in Metabolic Syn-
drome, therefore, finding it elevated in normal EndoPAT has 
a plausible explanation [48]. Conversely, thymine, serine, 
glucose, choline, deoxyglucose, arabinose and pipecolic acid 
were in higher concentrations in patients with ED (abnormal 
EndoPAT). Thymine was already demonstrated as a marker 
of coronary artery disease (CAD) in one metabolomic study 
[49]. Unsurprisingly, we observed high levels of glucose 
and deoxyglucose in patients with ED, in accordance with 
the already known association between hyperglycemic states 
and CVD risk. As well, high levels of Choline have been 
associated with major cardiovascular events in patients 
with myocardial infarction [50]. Pipecolic acid is an inter-
mediate metabolite of the essential amino acid lysine whose 
degradation metabolites have been associated with the risk 
of type 2 diabetes and cardiovascular disease [51]. On the 
contrary, arabinose, a dietary pentose, has been associated 
with protective effects on diabetes, metabolic syndrome and 
dyslipidemia [52]. In the same way, high levels of the amino 
acid Serine have been inversely associated with the risk of 
peripheral artery disease in previous studies [53]. Therefore, 
our contradictory findings on these two metabolites need 
more explanations in future studies; perhaps, however, we 
could hypothesize a “metabolic attempt” to compensate the 
endothelial dysfunction in a preclinical stage.

Finally, it has to be noticed that in our cohort, the most 
studied SNPs for NAFLD/MASLD risk didn’t intercept any 
adjunctive cardiovascular risk. This could be mostly due to 
several reasons. First, these SNPs were identified mostly 
by inferring from the liver disease severity (inflammation 
and fibrosis), and most of them have specific activity in the 
processes of inflammation and fibrosis within the liver. Fur-
thermore, even if some of them (i.e. TM6SF2) have been 
reported to exert also an effect on cardiometabolic risk (both 
detrimental and protective), it is not known already their 
penetrance in the general population, apart from NAFLD 
patients. Finally, our patients showed no statistically dif-
ferent SNPs prevalence among the liver disease severity 
groups, except for PNPLA3 dominant model that was more 
represented (as expected) in MASLD overall compared to 

controls, and in patients with higher risk of fibrosis (Group 
B) compared to those with lower risk (group A). Therefore, 
a possible explanation is that these SNPs are to be taken 
into account only partially for liver disease severity which, 
in turn, is itself the major marker for CVD risk.

However, a convincing theory postulated that “Metabolic 
NAFLD” could be different from “Genetic NAFLD” [54], 
therefore, we performed such an analysis in our population. 
Thus, we clustered MASLD patients in “Genetic” (sub-
jects having at least one pathological mutation in any of 
the SNPs we analyzed) and “Non-genetic” (no mutations 
at all) MASLD. One more time we found that patients with 
“Genetic MASLD” had an increased risk of liver fibrosis, 
but not an adjunctive CVD risk (see supplementary Table 2).

Taken as a whole, we believe that our approach, if con-
firmed and validated in larger cohorts and in other popu-
lations, could be a valid strategy to correctly address the 
clinical risk of MASLD patients, both in terms of what 
type (e.g. CVD and/or liver-related) and what degree. Our 
method could possibly represent a cost-effective diagnostic 
tool for such a large population, which in turn may have an 
impactful effect in decreasing the costs of National Health-
care systems, both by improving disease progression preven-
tion and diagnosis.

Finally, our present work has some limitations to discuss. 
First of all, the present data are to be considered cross-sec-
tional. Therefore, no data are available at the time, on the 
real incidence of CV diseases in our population. However, 
the score we chose (FHR) has been widely demonstrated to 
be reliable in predicting CVD risk in longitudinal studies. 
Moreover, by study protocol, we didn’t collect liver biopsy 
of every single patient in the cohort, but only in 68 of them 
(14.59%). Therefore, it is likely that there is no absolute 
certainty on liver disease severity in each patient. However, 
our data showed a good discrimination between the classes 
in terms of both clinical and omics data, thus successfully 
demonstrating the effectiveness of this diagnostic algorithm, 
which is also recommended by guidelines. Furthermore, the 
effective presence of endothelial dysfunction by EndoPAT 
was measured only in a subgroup of patients. However, our 
data demonstrated that there was a significant linear correla-
tion between PAT results and FHR score. Finally, it has to 
be mentioned that our study population had an average age 
of about 65 years (65.35 years for controls and 66.67 years 
for MASLD patients), therefore, it is to be considered a high 
CVD risk category, as universally agreed [55]. Therefore, 
even if our data demonstrated that, when accounting for the 
incorporation bias of the FHRs calculation, the presence of 
T2DM and higher liver stiffness values were the only vari-
ables that intercepted the higher CVD risk, it could be advis-
able to repeat such analyses in further longitudinal studies 
in younger populations to verify our findings in lower risk 
settings.
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Conclusions

Our data demonstrated that: (A) a noninvasive diagnostic 
approach based on clinical, laboratory, and OMICs data 
is capable of identifying the severity of liver disease and 
the CVD risk of MASLD patients in a reliable way. (B) 
CVD risk is mostly correlated to MASLD disease sever-
ity, increasing together with it. (C) Metabolomic profiles of 
high CVD risk patients showed peculiar metabolic pathways 
involved that could be considered as therapeutic targets. Fur-
ther longitudinal studies should be necessary to verify the 
occurrence of CVD events in such population.
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