Skip to main content

Advertisement

Log in

The potential pathogenic role of gut microbiota in rheumatic diseases: a human-centred narrative review

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

A growing amount of evidence suggests that gut microbiota plays an important role in human health, including a possible role in the pathogenesis of rheumatic and musculoskeletal diseases (RMD). We analysed the current evidence about the role of microbiota in rheumatoid arthritis (RA), spondyloarthritis (SpA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In RA, we found a general consensus regarding a reduction of diversity and a specific bacterial signature, with consistent changes according to the different ethnic and geographical areas. The major pathogenetic role in RA is recognised for P. copri, L. salivarius and Collinsella, even if findings become more heterogeneous when considering established disease. In SpA, we found a relative gut abundance of Akkermansia, Coprococcus, Ruminoccocus and a relative reduction in Bacterioides and Firmicutes spp. Human and preclinical data suggest loss of mucosal barrier, increased permeability and Th1- and Th17-mediated inflammation. Additionally, HLA-B27 seems to play a role in shaping the intestinal microbiota and the consequent inflammation. In SLE, the typical gut microbiota signature was characterised by a reduction in the Firmicutes/Bacteroidetes ratio and by enrichment of Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium and Flavonifractor, even if their real pathogenic impact remains unclear. In SSc, gastrointestinal dysbiosis is well documented with an increase of pro-inflammatory species (Fusobacterium, Prevotella, Ruminococcus, Akkermansia, γ-Proteobacteria, Erwinia, Trabsulsiella, Bifidobacterium, Lactobacillus, Firmicutes and Actinobacteria) and a reduction of species as Faecalibacterium, Clostridium, Bacteroidetes and Rikenella. In conclusion, seems possible to recognise a distinct gut microbiota profile for each RMD, even if significant differences in bacterial species do exist between different studies and there is a high risk of bias due to the cross-sectional nature of such studies. Therefore longitudinal studies are needed, especially on patients with preclinical and early disease, to investigate the real role of gut microbiota in the pathogenesis of RMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  Google Scholar 

  2. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352. https://doi.org/10.1038/nri.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong Y, Yao J, Deng Q et al (2023) Relationship between gut microbiota and rheumatoid arthritis: a bibliometric analysis. Front Immunol 14:1131933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232. https://doi.org/10.1038/nri.2017.7

    Article  CAS  PubMed  Google Scholar 

  5. Bashir H, Singh S, Singh RP et al (2023) Age-mediated gut microbiota dysbiosis promotes the loss of dendritic cells tolerance. Aging Cell 22:e13838. https://doi.org/10.1111/acel.13838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  Google Scholar 

  7. Smolen JS, Aletaha D, Barton A et al (2018) Rheumatoid arthritis. Nat Rev Dis Primer 4:18001. https://doi.org/10.1038/nrdp.2018.1

    Article  Google Scholar 

  8. Alpizar-Rodriguez D, Lesker TR, Gronow A et al (2019) Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis 78:590–593. https://doi.org/10.1136/annrheumdis-2018-214514

    Article  CAS  PubMed  Google Scholar 

  9. Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. https://doi.org/10.7554/eLife.01202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaahtovuo J, Munukka E, Korkeamäki M et al (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35:1500–1505

    CAS  PubMed  Google Scholar 

  11. Chen J, Wright K, Davis JM et al (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:43. https://doi.org/10.1186/s13073-016-0299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiang H-I, Li J-R, Liu C-C et al (2019) An association of gut microbiota with different phenotypes in Chinese patients with rheumatoid arthritis. J Clin Med 8:1770. https://doi.org/10.3390/jcm8111770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Zhang D, Jia H et al (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895–905. https://doi.org/10.1038/nm.3914

    Article  CAS  PubMed  Google Scholar 

  14. Kishikawa T, Maeda Y, Nii T et al (2020) Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis 79:103–111. https://doi.org/10.1136/annrheumdis-2019-215743

    Article  CAS  PubMed  Google Scholar 

  15. Berthelot J-M, Lioté F, Sibilia J (2023) Methotrexate also improves rheumatoid arthritis through correction of microbiota dysbiosis. Joint Bone Spine 90:105602. https://doi.org/10.1016/j.jbspin.2023.105602

    Article  CAS  PubMed  Google Scholar 

  16. Vallier M, Segurens B, Larsonneur E et al (2023) Characterisation of gut microbiota composition in patients with axial spondyloarthritis and its modulation by TNF inhibitor treatment. RMD Open 9:e002794. https://doi.org/10.1136/rmdopen-2022-002794

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pianta A, Arvikar S, Strle K et al (2017) Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol Hoboken NJ 69:964–975. https://doi.org/10.1002/art.40003

    Article  CAS  Google Scholar 

  18. Rashid T, Ebringer A (2012) Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis 2012:539282. https://doi.org/10.1155/2012/539282

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Heemst J, Jansen DTSL, Polydorides S et al (2015) Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 6:6681. https://doi.org/10.1038/ncomms7681

    Article  CAS  PubMed  Google Scholar 

  20. Parsaei M, Sarafraz N, Moaddab SY, Ebrahimzadeh Leylabadlo H (2021) The importance of Faecalibacterium prausnitzii in human health and diseases. New Microb New Infect 43:100928. https://doi.org/10.1016/j.nmni.2021.100928

    Article  CAS  Google Scholar 

  21. van Delft MAM, van der Woude D, Toes REM, Trouw LA (2019) Secretory form of rheumatoid arthritis-associated autoantibodies in serum are mainly of the IgM isotype, suggesting a continuous reactivation of autoantibody responses at mucosal surfaces. Ann Rheum Dis 78:146–148. https://doi.org/10.1136/annrheumdis-2018-213724

    Article  CAS  PubMed  Google Scholar 

  22. Kokkonen H, Mullazehi M, Berglin E et al (2011) Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther 13:R13. https://doi.org/10.1186/ar3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rantapää-Dahlqvist S, de Jong BAW, Berglin E et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749. https://doi.org/10.1002/art.11223

    Article  CAS  PubMed  Google Scholar 

  24. Maeda Y, Takeda K (2019) Host–microbiota interactions in rheumatoid arthritis. Exp Mol Med 51:1–6. https://doi.org/10.1038/s12276-019-0283-6

    Article  CAS  PubMed  Google Scholar 

  25. Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet Lond Engl 390:73–84. https://doi.org/10.1016/S0140-6736(16)31591-4

    Article  Google Scholar 

  26. FitzGerald O, Ogdie A, Chandran V et al (2021) Psoriatic arthritis. Nat Rev Dis Primer 7:1–17. https://doi.org/10.1038/s41572-021-00293-y

    Article  Google Scholar 

  27. Ciccia F, Rizzo A, Triolo G (2016) Subclinical gut inflammation in ankylosing spondylitis. Curr Opin Rheumatol 28:89–96. https://doi.org/10.1097/BOR.0000000000000239

    Article  CAS  PubMed  Google Scholar 

  28. Costello M-E, Elewaut D, Kenna TJ, Brown MA (2013) Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther 15:214. https://doi.org/10.1186/ar4228

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gilis E, Mortier C, Venken K et al (2018) The role of the microbiome in gut and joint inflammation in psoriatic arthritis and spondyloarthritis. J Rheumatol Suppl 94:36–39. https://doi.org/10.3899/jrheum.180135

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Han R, Zhang X et al (2019) Fecal microbiota in patients with ankylosing spondylitis: correlation with dietary factors and disease activity. Clin Chim Acta Int J Clin Chem 497:189–196. https://doi.org/10.1016/j.cca.2019.07.038

    Article  CAS  Google Scholar 

  31. Wen C, Zheng Z, Shao T et al (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18:142. https://doi.org/10.1186/s13059-017-1271-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tito RY, Cypers H, Joossens M et al (2017) Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol Hoboken NJ 69:114–121. https://doi.org/10.1002/art.39802

    Article  CAS  Google Scholar 

  33. Breban M, Tap J, Leboime A et al (2017) Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 76:1614–1622. https://doi.org/10.1136/annrheumdis-2016-211064

    Article  CAS  PubMed  Google Scholar 

  34. Scher JU, Ubeda C, Artacho A et al (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol Hoboken NJ 67:128–139. https://doi.org/10.1002/art.38892

    Article  CAS  Google Scholar 

  35. Mielants H, De Keyser F, Baeten D, Van den Bosch F (2005) Gut inflammation in the spondyloarthropathies. Curr Rheumatol Rep 7:188–194. https://doi.org/10.1007/s11926-996-0038-y

    Article  CAS  PubMed  Google Scholar 

  36. Gill T, Asquith M, Rosenbaum JT, Colbert RA (2015) The intestinal microbiome in spondyloarthritis. Curr Opin Rheumatol 27:319–325. https://doi.org/10.1097/BOR.0000000000000187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turpin W, Espin-Garcia O, Xu W et al (2016) Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 48:1413–1417. https://doi.org/10.1038/ng.3693

    Article  CAS  PubMed  Google Scholar 

  38. Asquith M, Sternes PR, Costello M-E et al (2019) HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol Hoboken NJ 71:1642–1650. https://doi.org/10.1002/art.40917

    Article  CAS  Google Scholar 

  39. Berland M, Meslier V, Berreira Ibraim S et al (2023) Both disease activity and HLA-B27 status are associated with gut microbiome dysbiosis in spondyloarthritis patients. Arthritis Rheumatol Hoboken NJ 75:41–52. https://doi.org/10.1002/art.42289

    Article  CAS  Google Scholar 

  40. Ciccia F, Guggino G, Rizzo A et al (2017) Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 76:1123–1132. https://doi.org/10.1136/annrheumdis-2016-210000

    Article  CAS  PubMed  Google Scholar 

  41. Veys EM, van Leare M (1973) Serum IgG, IgM, and IgA levels in ankylosing spondylitis. Ann Rheum Dis 32:493–496. https://doi.org/10.1136/ard.32.6.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laurent MR, Panayi GS (1983) Acute-phase proteins and serum immunoglobulins in ankylosing spondylitis. Ann Rheum Dis 42:524–528. https://doi.org/10.1136/ard.42.5.524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Demetter P, Van Huysse JA, De Keyser F et al (2002) Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J Pathol 198:517–522. https://doi.org/10.1002/path.1235

    Article  CAS  PubMed  Google Scholar 

  44. Romero-Sánchez C, Bautista-Molano W, Parra V et al (2017) Gastrointestinal symptoms and elevated levels of anti-saccharomyces cerevisiae antibodies are associated with higher disease activity in Colombian patients with spondyloarthritis. Int J Rheumatol 2017:4029584. https://doi.org/10.1155/2017/4029584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wallis D, Asaduzzaman A, Weisman M et al (2013) Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res Ther 15:R166. https://doi.org/10.1186/ar4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Henke MT, Kenny DJ, Cassilly CD et al (2019) Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA 116:12672–12677. https://doi.org/10.1073/pnas.1904099116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  48. Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT (2021) Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis 80:14–25. https://doi.org/10.1136/annrheumdis-2020-218272

    Article  PubMed  Google Scholar 

  49. Lei Y, Liu Q, Li Q et al (2023) Exploring the complex relationship between microbiota and systemic lupus erythematosus. Curr Rheumatol Rep 25:107–116. https://doi.org/10.1007/s11926-023-01102-z

    Article  PubMed  Google Scholar 

  50. Hevia A, Milani C, López P et al (2014) Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 5:e01548-e11514. https://doi.org/10.1128/mBio.01548-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He Z, Shao T, Li H et al (2016) Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog 8:64. https://doi.org/10.1186/s13099-016-0146-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santiago-Rodriguez TM, Hollister EB (2019) Human virome and disease: high-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses 11:656. https://doi.org/10.3390/v11070656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li B-Z, Wang H, Li X-B et al (2022) Altered gut fungi in systemic lupus erythematosus—a pilot study. Front Microbiol 13:1031079. https://doi.org/10.3389/fmicb.2022.1031079

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu F, Ren T, Li X et al (2021) Distinct microbiomes of gut and saliva in patients with systemic lupus erythematous and clinical associations. Front Immunol 12:626217. https://doi.org/10.3389/fimmu.2021.626217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Shu Q, Song L et al (2022) Gut microbiota in systemic lupus erythematosus and correlation with diet and clinical manifestations. Front Med 9:915179. https://doi.org/10.3389/fmed.2022.915179

    Article  Google Scholar 

  56. Azzouz D, Omarbekova A, Heguy A et al (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 78:947–956. https://doi.org/10.1136/annrheumdis-2018-214856

    Article  CAS  PubMed  Google Scholar 

  57. Toumi E, Goutorbe B, Plauzolles A et al (2022) Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front Immunol 13:943241. https://doi.org/10.3389/fimmu.2022.943241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerges MA, Esmaeel NE, Makram WK et al (2021) Altered profile of fecal microbiota in newly diagnosed systemic lupus erythematosus Egyptian patients. Int J Microbiol 2021:9934533. https://doi.org/10.1155/2021/9934533

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Wang H-F, Li X et al (1979) (2019) Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci Lond Engl 133:821–838. https://doi.org/10.1042/CS20180841

    Article  Google Scholar 

  60. López P, de Paz B, Rodríguez-Carrio J et al (2016) Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 6:24072. https://doi.org/10.1038/srep24072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo M, Wang H, Xu S et al (2020) Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microb 11:1758–1773. https://doi.org/10.1080/19490976.2020.1768644

    Article  Google Scholar 

  62. Allanore Y, Simms R, Distler O et al (2015) Systemic sclerosis. Nat Rev Dis Primer 1:15002. https://doi.org/10.1038/nrdp.2015.2

    Article  Google Scholar 

  63. McMahan ZH (2019) Gastrointestinal involvement in systemic sclerosis: an update. Curr Opin Rheumatol 31:561–568. https://doi.org/10.1097/BOR.0000000000000645

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feng X, Li X-Q, Jiang Z (2021) Prevalence and predictors of small intestinal bacterial overgrowth in systemic sclerosis: a systematic review and meta-analysis. Clin Rheumatol 40:3039–3051. https://doi.org/10.1007/s10067-020-05549-8

    Article  PubMed  Google Scholar 

  65. Caimmi C, Caramaschi P, Venturini A et al (2018) Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin Rheumatol 37:987–997. https://doi.org/10.1007/s10067-017-3932-y

    Article  CAS  PubMed  Google Scholar 

  66. Volkmann ER, Chang Y-L, Barroso N et al (2016) Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol Hoboken NJ 68:1483–1492. https://doi.org/10.1002/art.39572

    Article  Google Scholar 

  67. Andréasson K, Alrawi Z, Persson A et al (2016) Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther 18:278. https://doi.org/10.1186/s13075-016-1182-z

    Article  PubMed  PubMed Central  Google Scholar 

  68. Volkmann ER, Hoffmann-Vold A-M, Chang Y-L et al (2017) Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol 4:e000134. https://doi.org/10.1136/bmjgast-2017-000134

    Article  PubMed  PubMed Central  Google Scholar 

  69. Patrone V, Puglisi E, Cardinali M et al (2017) Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci Rep 7:14874. https://doi.org/10.1038/s41598-017-14889-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Wei J, Zhang W et al (2022) Gut dysbiosis in rheumatic diseases: a systematic review and meta-analysis of 92 observational studies. EBioMedicine 80:104055. https://doi.org/10.1016/j.ebiom.2022.104055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan TC, Chandrasekaran L, Leung YY et al (2023) Gut microbiome profiling in systemic sclerosis: a metagenomic approach. Clin Exp Rheumatol 41:1578–1588. https://doi.org/10.55563/clinexprheumatol/jof7nx

    Article  PubMed  Google Scholar 

  72. Yong WC, Upala S, Sanguankeo A (2018) Helicobacter pylori infection in systemic sclerosis: a systematic review and meta-analysis of observational studies. Clin Exp Rheumatol 36(Suppl 113):168–174

    PubMed  Google Scholar 

  73. Efthymiou G, Liaskos C, Simopoulou T et al (2020) Antigen-specific humoral responses against Helicobacter pylori in patients with systemic sclerosis. Immunol Res 68:39–47. https://doi.org/10.1007/s12026-020-09124-w

    Article  PubMed  Google Scholar 

  74. Bellocchi C, Volkmann ER (2018) Update on the gastrointestinal microbiome in systemic sclerosis. Curr Rheumatol Rep 20:49. https://doi.org/10.1007/s11926-018-0758-9

    Article  PubMed  Google Scholar 

  75. Pittman N, Rawn SM, Wang M et al (2018) Treatment of small intestinal bacterial overgrowth in systemic sclerosis: a systematic review. Rheumatol Oxf Engl 57:1802–1811. https://doi.org/10.1093/rheumatology/key175

    Article  CAS  Google Scholar 

  76. Frech TM, Khanna D, Maranian P et al (2011) Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention. Clin Exp Rheumatol 29:S22-25

    PubMed  Google Scholar 

  77. Marighela TF, Arismendi MI, Marvulle V et al (2019) Effect of probiotics on gastrointestinal symptoms and immune parameters in systemic sclerosis: a randomized placebo-controlled trial. Rheumatol Oxf Engl 58:1985–1990. https://doi.org/10.1093/rheumatology/kez160

    Article  CAS  Google Scholar 

  78. Mehta H, Goulet P-O, Mashiko S et al (2017) Early-life antibiotic exposure causes intestinal dysbiosis and exacerbates skin and lung pathology in experimental systemic sclerosis. J Invest Dermatol 137:2316–2325. https://doi.org/10.1016/j.jid.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  79. Gómez-Hurtado I, Santacruz A, Peiró G et al (2011) Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS ONE 6:e23037. https://doi.org/10.1371/journal.pone.0023037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chioma OS, Mallott E, Shah-Gandhi B et al (2023) Low gut microbial diversity augments estrogen-driven pulmonary fibrosis in female-predominant interstitial lung disease. Cells 12:766. https://doi.org/10.3390/cells12050766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Marta Fraccaro for revising the English language in the text and Dr Francesca Pistillo for help in reviewing the literature for the spondylarthritis section.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

RB and MR were responsible for the conceptualisation of the study. RB and DB were responsible for writing the first draft. RB, DB, EB and AM were responsible for carrying out the review for the different sections. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Riccardo Bixio.

Ethics declarations

Conflict of interest

All authors have completed the COI disclosure form.

Statements on human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bixio, R., Bertelle, D., Bertoldo, E. et al. The potential pathogenic role of gut microbiota in rheumatic diseases: a human-centred narrative review. Intern Emerg Med (2023). https://doi.org/10.1007/s11739-023-03496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11739-023-03496-1

Keywords

Navigation