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Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotrans-
formation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules 
on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA 
are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota 
profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory 
bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors 
contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-
dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists 
and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological 
and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
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Introduction

Bile acids (BA) are amphipathic lipid components of the 
human bile with non-esterified cholesterol and phospho-
lipids. The BA pool is composed of primary BA synthe-
sized from cholesterol in the liver and secondary BA from 
microbiota-driven biotransformation in the colon. In the 
gut, BA are involved in the emulsification and absorption 
of dietary fat and fat-soluble vitamins [1], have regulatory 
functions on epithelial cell proliferation [2–4] and gut bar-
rier [4], affect expression of several genes involved in meta-
bolic homeostasis [1, 5–7], stimulate epigenetic profiles [8, 
9], modulate gut microbiota [6, 10], and have antimicrobial 
properties [10]. Substantial changes of the BA pool also 
affect the integrity of the intestinal barrier [4, 11], promote 

immune-modulatory effects [12–14], and modulate inflam-
matory pathways through signaling mechanisms that involve 
the nuclear receptor farnesoid X receptor (FXR) [15] and 
the membrane-associated G-protein-coupled BA receptor-1 
(GPBAR1).

Evidence points to a close link between BA homeostasis 
and gut integrity in health and disease. Inflammatory bowel 
disease (IBD) is associated with disturbances in the gut 
microbiota and immune imbalance, which, in parallel with 
the influence of environmental factors, can greatly affect the 
integrity of the gut barrier [16]. In addition, IBD patients 
display a consistent shift of the BA pool, e.g., increased fecal 
concentrations of primary and conjugated BA [17].

In this review, we discuss the bidirectional intersection 
of BA homeostasis and chronic intestinal inflammation con-
sidering novel therapeutic approaches. In recent reviews, we 
focused on specific aspects of BA homeostasis, enterohe-
patic circulation, and function as signaling molecules [7, 
15].
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BA synthesis secretion and absorption

Primary BA (cholic acid [CA] and chenodeoxycholic acid 
[CDCA]) are synthetized as catabolic products of choles-
terol in the pericentral hepatocyte and undergo subsequent 
conjugation with taurine (2-aminoethanesulfonic acid) and 
the amino acid glycine (ratio 3:1) through N-acyl amida-
tion at carbon 24 of the aliphatic side chain [18]. This step 
increases BA solubility in bile (an aqueous solutions) and 
decreases BA toxicity. BA are actively secreted mainly 
by the bile salt export pump (BSEP; ABCB11/Abcb11) 
into the canaliculi [19] and then appear in bile, stored and 
concentrated in the gallbladder and periodically delivered 
to the intestine during fasting and mainly during the fat-
cholecystokinin-dependent stimulation of the gallbladder 
in the postprandial period [1].

Reabsorption of about 95% of BA occurs in terminal 
ileum with uptake by the apical sodium-dependent bile 
salt transporter (ASBT; SLC10A2/Slc10a2) [20] and 
binding and transport across the enterocyte by the ileal 
BA-binding protein (IBABP) [21, 22]. The basolateral 
BA efflux into the portal circulation requires a third trans-
porter, the organic solute transporters (OSTα and OSTβ 
heterodimer) [23]. The hepatic reuptake of BA occurs at 
the basolateral (sinusoidal) membrane, and requires the 
sodium taurocholate co-transporting polypeptide (NTCP; 
SLC10A1/Slc10a1) [24]. The sodium-independent baso-
lateral BA uptake into hepatocytes accounts for only 25% 
of the uptake of mainly unconjugated BA, and is mediated 
by organic anion transporting polypeptides (OATPs) [1, 
19, 25]

A small amount of primary BA escapes ileal re-absorp-
tion and enters the colon, where the resident microbiota 
promotes the deconjugation, dehydrogenation, and dihy-
droxylation of primary BA to secondary BA, mainly 
deoxycholic acid (DCA), small amount of lithocholic acid 
(LCA), and the “tertiary” ursodeoxycholic acid (UDCA). 
This additional pool of colonic unconjugated BA under-
goes passive diffusion, i.e., ~ 50% DCA, minimal LCA 
(both mainly insoluble) and UDCA and is transported back 
to the liver through the portal circulation where both sec-
ondary and tertiary BA are conjugated again with taurine 
or glycine in the liver and re-secreted [26]. This amount of 
colonic BA which is passively reabsorbed contributes to 
the enterohepatic circulation of BA with 95% re-absorp-
tion at every cycle [27]. The remaining DCA, and a small 
amount of LCA and UDCA are lost in the feces, account-
ing for ~ 5% of the total BA pool at every cycle [28]. In 
health, this BA fecal loss is a fraction of the total amount 
lost daily according to the number of enterohepatic cycles, 
and must be compensated by the daily de novo synthesis 
in the liver [29, 30] (Fig. 1). In general, if the pool cycles 

2–3 times per meal, according to the meal frequency, size, 
and composition, i.e., 4–12 times/day, this increases the 
BA pool to a “dynamic” size (3 g x − 12 cycles = 12–36 g/
day), and a capacity to reabsorb 10–30 g of BA per day [1].

Deranged BA homeostasis

IBD patients can develop changes of BA synthesis and enter-
ohepatic circulation, both predisposing factors to deranged 
BA homeostasis. Table 1 depicts the main pathogenic mech-
anisms able to derange BA homeostasis in IBD patients [17]. 
In general, mechanisms include changes of BA absorption, 
microbiota biosynthesis, altered signaling mechanisms, and 
or deranged BA metabolism.

Early findings documented increased levels of unconju-
gated BA in subjects with ulcerative colitis (UC) or Crohn’s 
disease (CD), as compared with healthy subjects. Changes 
included a decreased BA pool size in CD, but not in UC 
patients [31]. Nihlin et al. [32] used tauroselcholic [(sele-
nium-75) acid] to assess BA malabsorption and BA pool 
loss. The authors found BA malabsorption in CD patients 
and this finding can explain, at least in part, the chronic 
diarrhea.

Zhen-Huan Yang et al. [33] investigated the relation-
ships between BA, gut microbiota, and gut inflamma-
tion in patients with UC. The study found gut dysbiosis 
with decreased population of Firmicutes, Butyricicoccus, 
Clostridium XlVa, Faecalibacterium, and Roseburia, and 
increased pathogens such as E. Coli, Proteobacteria, Kleb-
siella, and Streptococcus. This deranged microbiota profile 
was associated in feces with decreased amounts of sec-
ondary BA concentration (LCA, DCA, glyco-conjugated 
GDCA, GLCA, and tauro-conjugated TLCA), and with 
increased concentrations of primary BA (TCA, CA, TCDA, 
and GCDA).

In patients with active IBD, another study showed 
increased rates of conjugated BA and decreased rates of 
secondary BA profile, as compared with controls [34]. 
Changes of BA profiles were associated with altered fecal 
microbiota, i.e., decreased ratio between Faecalibacterium 
prausnitzii and Escherichia coli, and with significantly 
decreased bacterial activities of deconjugation, transforma-
tion and de-sulphation of BA. The evidence suggests that 
the presence of gut dysbiosis reduces the anti-inflammatory 
effects promoted by secondary BA, due to their increased 
sulphation [34].

Decreased serum levels of BA have been documented in 
patients with CD, depending on altered intestinal re-absorp-
tion of BA at the level of terminal ileum. In UC patients, 
the level of deoxy-BA such as DCA, LCA, and conjugates 
was decreased in comparison to healthy and CD subjects, 
depending on altered colonic microbiota and, in turn, on 
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a decreased deoxidation capacity (7α- dihydroxylation) 
responsible for the biotransformation of unconjugated to 
secondary BA [35].

A cross-sectional study measuring the plasma concen-
trations of 12 BA in patients with CD found decreased 
GCDCA, TCA, and LCA, and increased GDCA and GCA 
in patients, as compared with controls [36].

A recent and comprehensive review described, in IBD 
patients, increased fecal concentrations of CA, CDCA, con-
jugated BA, sulphated BA, and decreased DCA and second-
ary BA, as compared with healthy controls [17]. In serum, 
few studies reported increased GCA concentrations, and 

reduced LCA, GCDCA, TCDCA, TCA levels in IBD [17]. 
These findings can be affected by different disease type such 
as CD or UC, clinical status such as active/inactive disease, 
and location of inflammatory changes [17, 37]. Recently, 
however, significantly increased excretion of fecal BA was 
reported in patients with UC and pan-colonic disease, in a 
significant proportion of patients with CD affecting ileum 
or colon, and even in UC or CD patients with quiescent 
inflammation [38].

During colitis, the activation of hepatic CYP8B1, the 
cytochrome synthetizing CA, promotes the accumulation 
of intestinal CA. Consequently, CA inhibits peroxisome 

Fig. 1  The enterohepatic circulation of bile acids (BA) and qualita-
tive/quantitative composition of the BA pool. Events linked to the 
synthesis, conjugation, secretion, biotransformation, re-absorption, 
and excretion of primary, secondary, and tertiary bile acids (BA) in 
humans at every cycle of the enterohepatic circulation. “Primary” 
BA, synthetized in the liver starting from cholesterol are the trihy-
droxy cholic acid (CA) hydroxylated at the 3α,7α,12α positions and 
the dihydroxy chenodeoxycholic acid (CDCA) hydroxylated at the 
3α,7α positions. The two biosynthetic pathways are the classical path-
way involving the 7a-hydroxylase which stimulates the 7a-hydrox-
ylation of cholesterol. This major enzyme contributes to more than 
75% of total production of primary BA. The alternative pathway is 
initiated by the sterol-27-hydroxylase which produces mainly CA. 
BA are actively re-absorbed at the terminal ileum. About 5% of pri-
mary BA escape ileal absorption and enter the colon where the resi-
dent microbiota initiate BA deconjugation from taurine and glycine, 
dehydrogenation, dehydroxylation, and epimerization to produce 
«secondary» BA: the dihydroxy deoxycholic acid (DCA) hydroxy-
lated at the 3α,12α positions and the monohydroxy lithocholic acid 
(LCA) hydroxylated at the 3α position. The 7α-dehydrogenation 
of CDCA form the dihydroxy 7α-oxo (keto)-LCA which is metabo-
lized to the “tertiary’ 7β-epimer, the dihydroxy hydrophilic ursode-

oxycholic acid (UDCA) hydroxylated at the 3α,7β positions in the 
colon and to CDCA again in the liver. The 7α-dehydroxylation of 
the primary BA is the essential reaction to produce DCA and LCA 
from CA and CDCA, respectively. Both LCA, 7-oxo (keto)-LCA, and 
UDCA are mainly excreted in feces while about 50% DCA is pas-
sively reabsorbed from the colon into the portal tract [27] by ionic 
more than nonionic diffusion (the remaining part being excreted with 
feces). Their fate depends on specific physicochemical properties 
and BA binding to luminal contents. In the liver, a small amount of 
LCA is quickly transformed in the sulphonated “tertiary” (S-LCA). 
Altogether, the BA pool at every cycle undergoes re-conjugation with 
taurine and glycine and new secretion in bile. Fecal loss is minimal 
(< 5% at every cycle). As an example, when a CA or CDCA pool of 
1  g cycles 6 times a day, the daily loss is 5% × 6 cycles = 30% and 
300 mg must be resynthesized in the liver [25]. B Relative composi-
tion of hepatic and gallbladder bile in health as main solutes (left) and 
individual bile acids (right). Altogether, the glyco-, tauro-conjugated 
CA, CDCA and DCA represent more than 90% of the total pool of 
BA. Abbreviations: G/T glycine, taurine, CA cholic acid, CDCA che-
nodeoxycholic acid, DCA deoxycholic acid, LCA lithocholic acid, 
UDCA ursodeoxycholic acid
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proliferator-activated receptor alpha (PPARα) with a 
decrease in fatty acid oxidation, and markedly affects the 
renewal of Lgr5 + intestinal stem cells. This pathway ulti-
mately impairs the repairing ability of the gut mucosal bar-
rier, promoting more severe colitis [39].

A longitudinal study of 1 year assessing the gut microbi-
ome in 132 subjects found that gut dysbiosis was associated 
with IBD. Microbial changes included increased facultative 
anaerobes, decreased obligate anaerobes, and this profile 
occurred with decreased rates of secondary BA, i.e., LCA 
and DCA, and molecular disruptions in microbial transcrip-
tion and metabolite pools such as short-chain fatty acids 
[40].

Both T helper 17 cells (Th17) expressing interleukin-17A, 
and regulatory T cells (Treg) play a critical role in IBD and 
become sensitive to changes of BA homeostasis. An imbal-
ance between Th17 which promotes tissue inflammation 
and Treg which suppresses autoimmunity contribute to the 
onset and progression of IBD. Both gut microbiota and BA 
[13] can influence the production and maintenance of these 
immunological cells [41]. The LCA metabolite 3-oxo-LCA 
inhibits the differentiation of TH17 cells, while the other 
LCA derivative isoallo-LCA increases the differentiation 
of Treg cells [13]. Notably, IBD patients display a marked 
reduction of 3-oxoLCA, iso-LCA and the 3α-hydroxysteroid 
dehydrogenase (3α-HSDH) genes required for their biosyn-
thesis. The reduced expression of TH17 cell-associated 
genes depends on the increased levels of these BA, which 
can strongly influence the onset and progression of IBD [14].

Deranged BA signaling

BA are well-known signaling molecules interacting with 
nuclear and membrane-associated receptors [7, 15].

FXR is the main sensor of BA in the intestine and the 
liver and regulates BA synthesis by negative feedback 
mechanisms which also involve the intestinal secretion of 
the fibroblast growth factor 19 in humans [7, 15, 42, 43]. 
Feedbacks are deeply connected with the enterohepatic 
circulation of BA [44] and with the profile of gut micro-
biota in health and disease [1, 45]. The signaling role of BA 
additional receptors include the GPBAR-1 [2, 46], and the 
sphingosine-1-phosphate receptor 2 (S1PR2) [47, 48] in the 
intestine, in the liver, in the muscle and in the brown adipose 
tissue [7, 49], and the retinoid X receptor (RXR), the small 
heterodimer partner (SHP), the liver receptor homologous-1 
(LRH-1), and liver X receptor (LXR) in the liver [49].

As a consequence of these inter-related pathways, altered 
signaling secondary to disrupted BA homeostasis may lead 
to multi-level dysfunction in the liver, i.e., intrahepatic chol-
estasis [50], liver steatosis, fibrosis, and hepatocellular carci-
noma [1, 51]. At the extrahepatic level, derangement of BA 
homeostasis can contribute to extraintestinal cancer [51] and 
may affect energy expenditure [52, 53], glucose homeostasis 
[54], lipid homeostasis [55–58], inflammatory and immune 
responses [59, 60].

In the liver, FXR plays an anti-inflammatory role by 
reducing the availability of toxic BA especially during 
cholestasis [61, 62]. FXR activation inhibits monocytes/
macrophages migration and tissue infiltration promoted by 
the chemokine monocyte chemoattractant protein-1 (MCP-1/
CCL2). This step contributes to reduce liver fibrosis [62]. 
The use of FXR agonists leads to a reduced hepatic inflam-
mation and fibrosis secondary to a concentration-dependent 
suppression of NF-κB-mediated inflammation [61]. FXR 
activation also stimulates anti-fibrotic gene expression in 
hepatic stellate cells (HSCs) through activation of FXR, 
induction of SHP, increased expression of peroxisomal pro-
liferator-activated receptor γ (PPARγ) [63, 64]. Finally, in 
the liver, BA can have pro-inflammatory effects mediated by 

Table 1  Putative mechanisms deranging bile acid (BA) homeostasis in inflammatory bowel diseases

Legend: CA, cholic acid; GPBAR1, G-protein-coupled BA receptor-1

Change Consequence

Decreased expression and/or function of the apical sodium-dependent 
bile acid transporter (ASBT)

Altered re-absorption of conjugated BA in the terminal ileum [204–209]

Surgical resection of the distal ileum Decreased re-absorption of conjugated BA in the terminal ileum [209]
BA malabsorption, intestinal inflammation [210], genetic factors [211] Decreased FXR activation, decreased inhibition of hepatic BA synthe-

sis, increased BA production [36, 66]
Altered GPBAR1 gene expression [74] and subsequent Altered modulation of BA synthesis, intestinal biotransformation, and 

uptake [7]
Gut dysbiosis Deranged BA biotransformation [34, 86, 212, 213]

Deranged inhibition of T helper cells expressing interleukin-17A (TH17 
cells) [14]

Increased CA-mediated activity of Cytochrome P450 8B1 (CYP8B1) Altered repairing ability of the intestinal mucosal barrier [39]
Altered gut metabolome [126] Deranged BA biotransformation
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the intracellular assembly of the inflammasome. In this con-
text, FXR is able to interact with the NACHT LRR and PYD 
domains-containing protein 3 (NLRP3) protein machinery, 
generating anti-inflammatory effects [65].

In the intestine, FXR has anti-inflammatory effects mainly 
preserving the integrity of the gut barrier [4, 7], modulating 
immune and inflammatory pathways by a regulation of cells 
involved in innate immunity [66, 67], and modulating the 
composition of gut microbiota [68].

In a context of deranged BA signaling, FXR- and 
GPBAR1-mediated immune effects can play a role through 
the modulatory effector functions in cells of innate immu-
nity. In these cells, FXR activation generates a tolerogenic 
phenotype either at hepatic and intestinal level, with marked 
anti-inflammatory and anti-fibrogenic effects. However, the 
translational value of results from animal studies showing 
a role of BA as effective immune modulators in humans is 
still poorly documented [69].

As observed in the liver, the relationships between BA, 
FXR, and inflammatory pathways involving NF-κB are also 
active at intestinal level. DCA levels in feces can increase 
in response to a high-fat diet and this step is associated 
with increased rate of Gram-positive bacteria [70]. In the 
intestine, increased DCA concentration has been linked 
with gut inflammation and carcinogenesis. DCA-treated 
APC (min/ +) mice showed altered gut barrier, low-grade 
gut inflammation, and tumor progression [71]. DCA is able 
to promote colonic pro-inflammatory macrophage infil-
tration, pro-inflammatory cytokine production, and mac-
rophage polarization through NF-κB/ERK/JNK signaling 
downstream of toll-like receptor 2 (TLR2), driving colonic 
inflammation [70].

FXR activation inhibits NF-κB at the intestinal level, with 
local anti-inflammatory effects. In animal models, FXR tar-
get gene expression (but nor mRNA expression) is decreased 
by inflammatory stimuli through NF-κB [66]. In addition, 
FXR activation decreases epithelial permeability and modu-
lates the expression of genes involved in gut inflammation 
[66].

Besides FXR, the NF-κB-mediated inflammatory path-
way in the intestine can be suppressed by the pregnane X 
receptor (PXR) [72], another nuclear receptor involved in 
IBD pathogenesis [66, 67, 72]. In the animal model, the 
administration of a PXR agonist protected wild type but 
not PXR-null mice from colitis induced by dextran sulphate 
sodium, decreasing mRNA expression of several NF-κB 
target genes [72]

The anti-inflammatory role of FXR is evident in 
Fxr − / − mice. These animals show a marked pro-inflam-
matory cytokine mRNA expression in the colon. Of note, 
the administration of the FXR ligand 6-ECDCA inhibits the 
expression of pro-inflammatory molecules in wild type but 
not in Fxr − / − animals [67].

FXR modulates the expression of several genes involved 
in gut permeability and inflammation, two factors involved 
in intestinal bacterial overgrowth [66–68]. FXR can inhibit 
bacterial overgrowth and mucosal injury in the ileum fol-
lowing bile duct ligation. This FXR-mediated effect protects 
the distal ileum from bacterial invasion and epithelial dam-
age [68]. The beneficial role of FXR activation on intesti-
nal inflammation seems to depend on FXR interaction with 
genes promoting antibacterial effects, i.e., genes encoding 
angiogenin, carbonic anhydrase 12, and inducible nitric 
oxide synthase, and on induction of IL-18 [68].

A study exploring the relationships between plasma BA 
profile and FXR/PXR activation in patients with CD found a 
reduced activation of target genes secondary to the deranged 
BA composition and, in turn, to the altered BA signaling 
[36]. Notably, the reduced FXR/PXR agonism can nega-
tively affect the progression of IBD [66, 67, 72, 73].

Finally, a critical role is emerging for GPBAR1, the cell 
surface BA-activated receptor highly expressed in the ileum 
and colon [7]. The susceptibility to develop a severe colitis is 
significantly increased in GPBAR1(-/-) mice, due to marked 
alterations in the intestinal barrier [74]. On the other hand, 
in animal models, GPBAR1 agonists prevent gut inflamma-
tion [75]. A recent study in patients with CD demonstrated 
that GPBAR1 can modulate, in the colon, the expression of 
ACE2 [76], a receptor involved in intestinal inflammatory 
processes [77] and able to attenuate intestinal inflammation 
[76].

Deranged BA–microbiota axis

The gut barrier is an anatomical and functional structure 
at the border between external environment, i.e., the gut 
lumen and the host body [4]. The integrity of the barrier 
depends on the dynamic interaction between several factors: 
gut microbiota, luminal content of nutrients, mucin, gas-
trointestinal motility, and secretions, i.e., gastric acid, bile, 
pancreatic juice, intestinal cells, i.e., enterocytes, Paneth 
cells, Goblet cells with their tight junctions. Essential com-
ponents of the gut barrier include also immune-modulating 
components such as antimicrobial peptides, i.e., microbial- 
[MAMPs] and pathogen-[PAMPs] associated molecular 
patterns, toll-like receptors [TLRs], B/T lymphocytes, and 
cells composing the gut-vascular barrier, i.e., endothelium 
associated with pericytes and enteric glial cells with specific 
tight junction and adherens junctions.

As part of the gut barrier machinery, the microbiota and 
BA have a critical role in maintaining the integrity of the 
intestinal barrier due to the close bidirectional crosstalk 
[49, 78–81] and potential influence on the onset and pro-
gression of chronic intestinal inflammation [82]. Of note, a 
dysfunction of the gut barrier can precede and predict the 
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development of IBD by years [83, 84]. Table 2 lists the main 
mechanisms linking gut dysbiosis with the pathogenesis 
of IBD, all pointing to a critical involvement in both local 
inflammation and altered intestinal barrier.

As compared with healthy individuals, IBD patients 
show reduced bacterial abundance and diversity [82, 85], 
with a decrease of Firmicutes and Bacteroidetes, and 
increased Proteobacteria and Enterobacteriaceae [33, 
86–89]. Reduced bacterial diversity has been described in 
both inflamed and non-inflamed colon sites in patients with 
IBD, although inflamed sites seem enriched with specific 
bacterial species i.e., Cloacibacterium and Tissierellaceae, 
as compared with non-inflamed tissues [90]. The relative 
abundance of gut microbes also changes with the activity 
of IBD, and a lower abundances of Clostridium coccoides, 
Clostridium leptum, F. prausnitzii, and Bifidobacterium has 
been linked with periods of disease remission [91]. Despite 
the association between gut dysbiosis and IBD has been well 
documented, the causal role of altered gut microbiota in the 
determination of chronic intestinal inflammation is still 
under debate. The shift of microbiome in IBD patients may 
represent a microbial response secondary to local inflam-
matory changes, rather than having a causal role [85, 92]. 
Nevertheless, several gut inflammatory pathways can be 
activated by unbalance between harmful and beneficial gut 
microbes [93, 94].This condition occurs during upregulation 
of pathogenic bacteria species, i.e., Enterobacteriaceae [95, 
96], Clostridium difficile [97], and decreased abundances of 
beneficial bacteria species, i.e., Clostridium clusters IV and 
XIVa, Faecalibacterium prausnitzii, Eubacterium [98, 99]. 
This unbalance may also lead to increased production of pro-
inflammatory lipopolysaccharides (LPSs) and their filtration 
across the altered gut barrier unable to maintain a selective 
normal permeability [95]. In line with this evidence, specific 
bacterial species, (i.e., Lactobacillus, and Faecalibacterium 
within Firmicutes; Bifidobacterium within Actinobacteria) 
[92] can have a beneficial role in IBD patients.

Of note, the reduced microbial abundance in IBD patients 
involves bacteria like Bacteroides, Clostridium, Lactobacil-
lus, Bifidobacterium, and Listeria carrying bile salt hydro-
lase (BSH), the enzyme involved in the biotransformation of 

conjugated into unconjugated BA [100, 101], and microbes 
(mainly Bacteroides, Clostridium, Eubacterium, and Lacto-
bacillus) responsible for the 7α-dehydroxylation of uncon-
jugated BA and, therefore, for their bio-transformation to 
secondary BA [102].

As shown in an animal models, the cecal concentrations 
of UDCA and LCA, its primary metabolite, were protective 
against the disruption of epithelial permeability and colonic 
inflammation, inhibiting colonic epithelial caspase-3 cleav-
age and epithelial apoptosis [103].

In a group of patients with UC, the reduced diversity of 
gut microbiota as compared with healthy controls was in line 
with decreased microbes such as Firmicutes, Clostridium 
IV, Butyricicoccus, Clostridium XlVa, Faecalibacterium, 
and Roseburia, and enrichment in Proteobacteria, Escheri-
chia, Enterococcus, Klebsiella, and Streptococcus. These 
changes caused a significant decrease of secondary BA, with 
increased primary BA, altered GPBAR1 expression, and 
increased production of pro-inflammatory cytokines [33].

As previously mentioned, the link between gut dysbiosis 
and altered profile of gut BA can reduce the FXR/PXR ago-
nism, while promoting the IBD progression through altered 
BA signaling functions [66, 67, 72, 73]. The altered intesti-
nal profile of BA secondary to dysbiosis can affect the intes-
tinal permeability, together with the dysregulation of bacte-
rial metabolites usually contributing to the maintenance of 
the integrity of gut barrier, as short-chain fatty acids (SCFA) 
like butyrate, acetate, and propionate [104, 105]. In a mouse 
model of autism spectrum disorders, a reduction in the rela-
tive abundance of Bifidobacterium and Blautia, bile-metab-
olizing species, was linked in the intestine with deficient 
BA and tryptophan metabolism and with increased intesti-
nal macromolecular permeability [106]. Cytotoxic effects 
of elevated concentration of BA on the intestinal epithe-
lium have been observed in cells, animals, and humans, and 
are able to affect the integrity of the gut barrier [107–109]. 
These effects are mediated by different inflammatory and 
apoptotic molecules as phospholipase A2 (PLA2)- cyclooxy-
genase (COX)-protein kinase C (PKC), extracellular signal-
regulated kinase 1 (ERK1), p38 mitogen-activated protein 
kinase (p38 MAPK), and phosphatidylinositol 3-kinase 

Table 2  Main mechanisms linking gut dysbiosis with the pathogenesis of IBD

Microbial invasion of the gut mucosa in IBD patients (both CD and UC) [214]
Altered expression of host genes [40, 127, 128]
Epigenetic upregulation of colitis-associated gene expression (AP1, FOSL2, FRA1) [215]
Decreased production of bacterial metabolites (mainly secondary BA, SCFAs [104, 105, 216], Acyl-homoserine lactones (AHL) [217]
Increased production of lipopolysaccharides (LPSs) [95]
Deficient tryptophan metabolism [106]
Altered production and maintenance of T helper 17 cells expressing interleukin-17A (Th17), and regulatory T cells (Treg) [13, 41, 172]
Negative effects on innate lymphoid cells (ILCs) (activation of ILC3 and dendritic cells, differentiation from ILC3 toward ILC1 [218, 219], 

increased production of IL-22, IL-17, interferon-γ [220])
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(PI3K), which can be activated by altered intestinal BA 
profile [110–117].

In vitro models of gut barrier based on monolayers of 
human intestinal Caco-2 cells contributed to document 
the negative, cytotoxic effects of hydrophobic BA (mainly 
unconjugated BA), possibly leading to increased gut perme-
ability and inflammation. In this model, CA decreases the 
transepithelial electrical resistance (TEER) and increases 
intracellular ROS generation. These effects seem to be 
mediated by the activation of signaling pathway involving 
PLA2, COX, PKC ERK1/2, PI3K, p38 MAPK, MLCK, 
NADH dehydrogenase, and XO (xanthine oxidase) [118]. 
In the same cellular model, CA, DCA, and CDCA, but not 
UDCA, decreases TEER and increase paracellular perme-
ability [119]. Furthermore, CDCA or DCA promoted a 
ligand-independent activation of the epithelial growth fac-
tor receptor (EGFR), which correlates with increased para-
cellular permeability via occludin dephosphorylation and 
cytoskeletal rearrangement at the tight junctions [119].

In animal models (mice) of colitis, increased intesti-
nal permeability at the level of the colon was linked with 
decreased proportion of UDCA, increased DCA, and 
increased jejunal FXR expression [120, 121]. Furthermore, 
mice with colitis induced by dextran sodium sulphate (DSS) 
show increased fecal BA hydrophobicity. Notably, the sever-
ity of symptoms correlated positively with fecal BA hydro-
phobicity and fecal DCA concentration [122].

Mice fed a choline-deficient, l-amino acid- deficient, 
high-fat diet showed reduced concentrations of conjugated 
BA, which was paralleled by increased gut permeability. 
In vitro, conjugated BA protected gut epithelial monolay-
ers from the damage induced by unconjugated BA through 
micelle formation [123].

In mice with DSS-induced colitis, gut inflammation wors-
ened after administration of a ketogenic diet, which induced 
an upregulation of serum and colon inflammatory cytokines 
and chemokines (IL-1α, IL-6, TNF-α, IL-17, GM-CSF 
and IL-10), increased gut permeability, and decreased the 
expression of intestinal-epithelial-barrier-associated genes. 
These changes were linked with significant variations in 
bacterial abundance, i.e., increased pathogenic taxa as Pro-
teobacteria, Enterobacteriaceae, Helicobacter, Escherichia-
Shigella; reduced beneficial taxa as Erysipelotrichaceae, and 
with altered concentration of microbial metabolites, includ-
ing BA (i.e., increased TCDCA, CA, GCA) [124].

Impaired BA homeostasis can significantly affect the 
modulatory role of BA on the proliferation of epithelial cells 
[2, 3], gene expression [5, 6], and epigenetic mechanisms [8, 
9], including the interactions between microbial and host 
genes [125] and the gut metabolome, the molecular interface 
between host and microbiota [126]. In IBD patients, varia-
tions in the relative abundance of mucosa-adherent microor-
ganisms are able to modulate the expression of several host 

genes [40, 127, 128], and an altered BA homeostasis seems 
to have a critical role in this process [129].

A study on colonic biopsies from patients with primary 
sclerosing cholangitis (PSC), who frequently have colitis, 
UC patients and healthy controls reported different micro-
biota profiles and significantly different colonic transcrip-
tome, with 939 genes sharing differential gene expression in 
patients (both UC and PSC), as compared with controls. In 
patients, imputed pathways were linked with upregulation of 
immune response and microbial defense, and BA signaling 
pathways were upregulated in PSC-IBD, as compared with 
UC [129].

Finally, a study on endoscopic mucosal biopsies (ileum 
and colon) from IBD patients documented a deficient micro-
bial gene pathway involved in the biosynthesis of second-
ary BA in inflamed terminal ileum. In samples from non-
inflamed colon, the relative abundance of BA-inducible 
microbial genes directly correlated with the expression, in 
the host, of Angiopoietin-like 4 (Angptl4) [125], a gene able 
to attenuate colonic inflammation in animal models [130]. 
The correlation between BA-inducible microbial genes and 
Angptl4 gene expression disappeared with inflammation 
[125].

Potential therapeutic implications

The available evidence suggests that there is a link between 
IBD and BA homeostasis, and that there is a room for 
potential therapeutic approaches that can modify the clini-
cal course of disease. Most relevant approaches include BA 
therapy, gut microbiota modulation, and use of potent FXR 
agonists.

Therapy with BA

Therapeutic approaches for liver diseases have used hydro-
philic BA, i.e., the “tertiary” UDCA acid, the conjugated 
tauro-UDCA, and, more recently, nor-UDCA [131]. This 
strategy decreases the hydrophobicity of the BA pool and 
the cytotoxic effect which occurs at the level of enterocytes 
[132].

In an animal model of CD, the administration of UDCA 
was beneficial through positive effects on the intestinal bar-
rier and by reducing the oxidative stress [133]. In the animal 
models of IBD, the intraperitoneal administration of UDCA 
and LCA had protective effects against increased epithelial 
permeability and colonic inflammation. The mechanism 
included the inhibition of epithelial apoptosis [103] and 
cytoprotective and anti-inflammatory effects [134].

The beneficial effects of tertiary BA also depend, at 
least in part, on changes in gut microbiota secondary to the 
mutated intraluminal BA concentration. In mice UDCA, 
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TUDCA, GUDCA restored the Firmicutes to Bacteroidetes 
ratio after a colitis-induced dysbiosis, prevented the loss of 
Clostridium cluster XIVa, and increased the abundance of 
protective species (in particular Akkermansia muciniphila) 
[135].

Looking at the effect of BA therapy in IBD, available 
results in humans are scarce and need further confirmation. 
Preliminary evidence in UC patients found better therapeutic 
effects, i.e., reduced Mayo and IBDQ scores when UDCA 
200 mg b.i.d. was added to mesalamine. Of note, the com-
bined treatment was also able to modulate the gut micro-
biota by increased Firmicutes and reduced Proteobacteria, 
as compared with subjects on mesalamine alone [136].

To counteract the altered BA balance documented in 
IBD patients, a displacement therapy should be aimed to 
inhibit the synthesis of primary BA or to increase the fecal 
elimination of toxic BA through BA binders, as cholesty-
ramine. In an animal model of IBD, cholestyramine attenu-
ates intestinal ulceration [137]. In subjects with collagen-
ous colitis, adding cholestyramine (4 g/day) to mesalamine 
increases the rate of beneficial therapeutic response (100%, 
as compared with 73% in mesalamine alone) [138]. The use 
of cholestyramine is indicated to counteract chronic diar-
rhea linked with BA malabsorption in CD [32]. In patients 
with IBD linked with primary sclerosing cholangitis and 
receiving optimized anti-TNF therapy for IBD, the use of 
cholestyramine induced a rapid and sustained drop in fecal 
calprotectin levels [139].

Therapy with probiotics and prebiotics

According to WHO and FAO, probiotics are “live microor-
ganisms when administered in adequate amounts confer a 
health benefit on the host”. The administration of probiotics 
(mainly Lactobacillus [140], Bifidobacterium [141, 142], S. 
boulardii [143, 144], L. rhamnosus GG [145–148], L. john-
sonii LA1 [149, 150], E. faecium [146], VSL#3 [151, 152], 
E. Nissle 1917 [153–155]) can have beneficial effects in IBD 
patients by acting on the microbiota/BA axis. The therapeu-
tic effects of probiotics likely involve improved gut barrier 
function and the recovery of physiological gut microbiota 
involved in the bio-transformation and homeostasis of BA, 
and ultimately modulating the profile of the luminal pool 
of BA [156].

In animal models and in humans, additional therapeu-
tic effects of probiotics (mainly Lactobacillus plantarum 
CCFM8661, Lactobacillus reuteri NCIMB 30242, VSL#3) 
involve the activation of the fibroblast growth factor 
(FGF)19 and 15 [157–159] and, in turn, enhanced synthesis 
and excretion of BA [15].

Results of controlled trials using probiotics, however, are 
controversial with few studies reporting no effects on reliev-
ing relapse [143, 150, 160] and uncertain beneficial effects 

[153, 161]. A meta-analysis exploring ten randomized con-
trolled trials found that probiotics can induce remission dur-
ing the active period of UC, but have no significant effects 
in maintaining CD and UC remission [162]. Another recent 
systematic review on the use of probiotics in IBD patients 
reported no clear beneficial effects in CD patients, but posi-
tive effects in inducing remission in patients with active UC 
[163].

In a recent study in IBD patients, the probiotic strain 
Bacillus clausii UBBC-07 positively modulated the gut 
microbiota and cytokine secretion, and was associated with 
a significant decrease of symptoms [164].

Akkermansia muciniphila represents 1–4% of gut micro-
biota in healthy humans [165]. IBD patients show decreased 
rates of A. muciniphila [165, 166] and, in the mice models of 
colitis, the administration of A. muciniphila improves intes-
tinal permeability [167], decreases colon inflammation and 
the expression of pro-inflammatory cytokines (TNF-α, IFN-
γ) [168]. In mice, the administration of protein components 
of the outer membrane protein from A. muciniphila protects 
from the development of colitis [169]. A. muciniphila can 
also play a role in the modulation of immune responses 
mediated by the Toll-like receptor 4 (TLR4), a sensor of gut 
microbiota alterations sensible to the intestinal concentra-
tion of pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) [170, 171]. 
A recent study in TLR4-/- mice reported a protective role of 
TLR4 against the development of intestinal inflammation, 
linked with the relative abundance of A. muciniphila and 
the proportion of suppressive RORγt + Treg cells [172]. The 
close crosstalk between microbiota and BA was disclosed by 
an experimental model of dextran sodium sulfate-induced 
colitis in mice, since the administration of UDCA decreased 
the inflammatory changes and increased the abundance of A. 
muciniphila [135]. In another animal model of early obesity 
and non-alcoholic fatty liver disease, the administration of 
A. muciniphila was associated with increased plasma levels 
of unconjugated, hydrophilic BA and with increased expres-
sion of hepatic genes involved in BA synthesis and transport, 
pointing to a critical role of A. muciniphila in the modulation 
of BA signaling [173].

Prebiotics are substrates selectively employed by gut 
microbes, providing beneficial effects as the development of 
probiotics (including Ruminococcaceae, Lachnospiraceae, 
and Bifidobacterium) and the formation of metabolites as 
SCFAs and BA [174–177].

The most common prebiotics employed in IBD are lactu-
lose [178], fructo-oligosaccharide (FOS) [179], germinated 
barley foodstuff [180, 181], ispaghula husk [182], Plan-
tago ovata seeds [183], and inulin [184, 185]. However, the 
effects of chronic supplementation with these prebiotics on 
BA homeostasis in IBD patients are still scarcely explored 
and lead to uncertain results.
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In humans, chronic ingestion of lactulose seems to be able 
to increase Bifidobacteria but not to significantly change 
fecal BA [186, 187]. Nevertheless, in a previous study, 
12 weeks of lactulose 60 g/day decreased secondary BA 
absorption, decreasing the DCA pool size, with a rise in 
primary BA [188].

In healthy subjects, it has been reported that long-term 
FOS administration is able to decrease fecal DCA [189]. 
A previous evidence, however, was unable to demonstrate 
significant changes in fecal BA concentration [190].

In an experimental model of colitis, mice receiving 
germinated barley foodstuff showed a reduced epithelial 
inflammatory response, paralleled by increased butyrate 
production and lower BA concentration, as compared with 
control animals [191]. This dietary fiber is able, in vitro, 
to strongly adsorb hydrophobic bile salts [192]. However, 
studies exploring the effects of germinated barley foodstuff 
on BA homeostasis in humans are still lacking.

The effects of long-term (8 weeks) supplementation with 
ispaghula husk on the fecal output of BA have been explored 
in healthy adult subjects, showing a significant decrease of 
fecal LCA and iso-LCA and the weighted ratio of LCA to 
DCA, pointing to a reduction of the hydrophobicity of the 
BA pool [193].

Plantago ovata seeds had no effect on fecal BA excre-
tion in a small group of normal subjects [194]. In guinea 
pigs, however, the husks from Plantago ovata significantly 
increased fecal BA, affecting BA absorption [195].

Finally, in animals, inulin increases the fecal concentra-
tion of DCA and LCA [177] and changes the composition 
of gut microbiota and the levels of related metabolites, as 
BA [185]. The effects of inulin decrease with deletion of 
FXR, and modulate the pathogenic mechanisms involved 
in chronic gut inflammation [185]. In patients with an ileal 
pouch-anal anastomosis, the administration of 24 g of inulin 
during 3 weeks decreased the numbers of Bacteroides fra-
gilis and reduced the fecal concentrations of secondary BA, 
with beneficial effects on the mucosal inflammation in the 
ileal reservoir[196].

Agonists of BA receptors

Studies in animal models documented beneficial effects from 
FXR activation by specific agonists as INT-747 [11], fexara-
mine [197], and GW4064 [198] documented by prevention 
of colitis, anti-inflammatory effects, restored BA homeo-
stasis, and gut microbiota modulation. In a mouse model of 
colitis, INT-747 alleviated colon inflammation downregulat-
ing pro-inflammatory cytokines and preserving gut barrier 
function [11, 67]. In mice with DCA-induced intestinal dam-
age, the administration of fexaramine decreased the injury, 
increased the abundance of SCFA-producing bacteria, and 
normalized BA homeostasis through beneficial effects of the 

FXR/FGF15 axis [197]. The administration of GW4064 gen-
erated favorable effects in an animal model of ileum injury 
induced by lipopolysaccharides decreasing tight junction 
dysfunction, macrophage infiltration, inflammatory path-
ways, and mitochondrial dysfunction with FXR-dependent 
mechanisms [198]. However, results from another in vitro 
study on colonic epithelial restitution and wound healing in 
 T84 cell monolayers documented an harmful inhibition of 
wound closure by GW4064, with a downregulation of CFTR 
gene expression [199].

Conclusion and future perspectives

A dynamic crosstalk exists between BA homeostasis which 
includes signaling effects on nuclear and membrane recep-
tors, gut microbiota, and maintenance of gut barrier integ-
rity. These critical factors can become actors in the onset 
and progression of chronic intestinal inflammatory diseases 
(Fig. 2). More studies must identify key aspects lacking the 
full translational value. In particular:

1. The potential links between gut dysbiosis, BA homeo-
stasis, and IBD pathogenesis, point to novel therapeutic 
strategies. The translational value of available animal 
and experimental studies, however, must be confirmed 
in clinical trials considering the role of confounders such 
as age, dietary habits, lifestyle, ethnicity, drugs, possible 
chronic ingestion of toxic chemicals with diet, altered 
metabolic homeostasis, and comorbidities. In humans, 
the combination of these factors limits the ultimate 
identification of the causal role of gut dysbiosis in the 
onset and progression of chronic intestinal inflamma-
tion. Well-designed, accurate, and prospective studies 
are needed with respect to gene–environment interac-
tions, and epigenetic mechanisms. oth artificial intel-
ligence and multiomics can provide additional informa-
tion in this respect [200, 201]. Starting from machine 
learning models [202, 203], these techniques will likely 
contribute to the advancement in the knowledge of the 
pathogenic mechanisms linking BA, gut microbiota, and 
gut inflammation. Results will facilitate disease man-
agement and can pave the way to primary prevention 
measures.

2. Animal studies reveal beneficial interplays between gut 
microbiota variations and anti-inflammatory effects of 
secondary and tertiary BA. However, the effective value 
of microbiota transplantation and/or of BA therapy in 
the management of humans with IBD is still uncertain. 
Although promising results derive from experimental 
studies with hydrophilic BA, large randomized, con-
trolled trials targeting the role of BA therapy are still 
needed. Further studies are also expected to verify the 
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possible convenience, in humans, of BA displacement 
therapy using BA binders as cholestyramine.

3. BA are signaling molecules for FXR and GPBAR-1. 
The interactions between BA and membrane/nuclear 
receptors can generate anti-inflammatory and immune-
modulating effects at the intestinal level, mainly acting 
on cells involved in innate immunity. Preclinical studies 
indicate that external manipulation of the BA receptors 
(mainly FXR) with specific agonists can have positive 
effects in terms of both clinical remission during active 
periods and maintenance of remissions. To date, how-
ever, results in humans are scarce and need further con-
firmation, also in terms of combination with standard 
treatments. Although a number of clinical trials are on 
the way using FXR agonists in chronic liver diseases and 
in several metabolic disorders [15], no evidence exists 
on the use of these agents in humans with IBD. We need 
caution when considering the potential negative effects 
on healing of the inflamed colon and on expression of 
genes involved in the maintenance of gut barrier [199].

4. The precise therapeutical efficacy of prebiotics and/or 
probiotics in patients with IBD requires additional vali-
dation and well-designed randomized controlled trials. 
Promising results derive from the supplementation with 

some probiotics (mainly Lactobacilli, Bifidobacteria, 
and Akkermansia muciniphila) and prebiotics (mainly 
germinated barley foodstuff and inulin). Long-term 
effects of such therapeutic approaches are also uncertain.

5. We need to clarify if combined multifaceted approaches 
(including lifestyle changes, environmental exposures, 
and innovative drugs) aimed at restoring BA homeo-
stasis and gut dysbiosis, do have additional value in the 
short and in the long term as compared with conven-
tional drug treatment.
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