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Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 
axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involve-
ment of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Con-
sequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide 
array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated 
inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis 
might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the 
approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research 
avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis 
in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these recep-
tors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on 
gastrointestinal diseases.
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Abbreviations
ALI	� Acute lung injury
BAL	� Bronchoalveolar lavage fluid
C5a	� Complement 5a
cAMP	� Cyclic adenosine monophosphate
CD11b	� Cluster of differentiation 11b
COPD	� Chronic obstructive pulmonary disease
COVID-19	� Coronavirus disease 2019
CRAC​	� Calcium release activated channel
CXCR	� C-X-C motif chemokine receptor
CXCL	� C-X-C motif chemokine
ESL1	� E-selectin ligand 1
fMLP	� N-Formylmethionine-leucyl-phenylalanine

G31P	� CXCL8 (3–72) K11R/G31P, a competitive 
inhibitor of CXCR1/2

GPCR	� G-protein coupled receptor
GRK	� G-protein coupled receptor kinases
IL	� Interleukin
IP3	� Inositol triphosphate
I/R	� Ischemia/reperfusion
JAK	� Janus kinase
KC	� Keratinocyte-derived chemokine (synonym 

for CXCL1)
LFA-1	� Leukocyte function-associated antigen 1
LPS	� Lipopolysaccharide
MAPK	� Map kinase
MDSC	� Myeloid-derived suppressor cells
MPO	� Myeloperoxidase
NE	� Neutrophil elastase
NET	� Neutrophil extracellular trap
NOD	� Non-obese diabetic
TNF-α	� Tumor necrosis factor alpha
PI3K	� Phosphoinositide 3-kinase
PD1	� Programmed death ligand 1
PTx	� Pertussis toxin
ROS	� Reactive oxygen species
PLC	� Phospholipase C
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PSGL-1	� P-selectin glycoprotein ligand 1
SOCE	� Store-operated calcium entry
STIM	� Stromal interaction molecule
TAN	� Tumor-associated neutrophils
TLR	� Toll-like receptor

Introduction/background

CXCR1 and 2 are two chemokine receptors which are 
expressed mainly on leukocytes but also on endothelial cells 
and cancer cells. CXCR1/2 play a major role in the patho-
physiology of a wide spectrum of inflammatory conditions. 
Consequently, their inhibition presents a great therapeutic 
potential [1]. This review focuses on the activation and inhi-
bition of these receptors in neutrophils, key inhibitor classes, 
and the therapeutic relevance of inhibition.

Neutrophilic granulocytes are key cells of the innate 
immune system, as well as important for modulating pro-
cesses of adaptive immunity [2]. Neutrophils are also 
referred to as polymorphonuclear cells and possess a range 
of enzymes and inflammatory mediators in their granules as 
well as a wide receptor repertoire, including the expression 
of CXCR1/2 (Fig. 1). With the help of this defense weap-
onry, they unfold a spectrum of functions including shaping 
immune responses, mediating tissue injury and repair, and 

killing microorganisms. The mechanisms used for killing 
pathogens, including phagocytosis, degranulation, and neu-
trophil extracellular trap (NET) formation, are furthermore 
involved in tissue injury during inflammatory and autoim-
mune diseases. In addition, the complex role of neutrophils 
in cancer pathophysiology is beginning to be unraveled [3, 
4].

In a healthy state, neutrophils circulate in the peripheral 
blood. Upon signals from the inflammation site, e.g., through 
the local production/release of chemokines, neutrophils are 
recruited into the affected tissue. Recruitment of neutrophils 
from the intravascular compartment into tissue is a tightly 
regulated process following a cascade of activation and 
adhesion events consisting in tethering, rolling, and adhesion 
to the inflamed vessel wall with subsequent postarrest modi-
fications and eventually transmigration into inflamed tissue 
(Fig. 2) [5, 6]. Among the receptors and ligands involved, 
the CXCR1/2-CXCL8 axis plays an important role, particu-
larly in the induction of firm neutrophil arrest, but also in 
the subsequent steps including postarrest modifications and 
transmigration [7].

The CXCR1/2 receptors

CXCR1/2 (formerly termed IL-8 receptor alpha and beta) are 
class A (rhodopsin-like) G-protein-coupled receptors with 7 

Fig. 1   The Neutrophil. Neutrophils are terminally differentiated leu-
kocytes, around 12 µm in diameter. They are histologically character-
ized by a “neutral” color (as opposed to basophilic or eosinophilic 
granulocytes), segmented nucleus, and granules. Granules contain 
anti-microbial and anti-tissue proteins including myeloperoxidase 
(MPO), neutrophil elastase (NE), matrix metalloproteases (MMPs), 
gelatinase and lactoferrin. Their receptor profiles include G-protein-
coupled receptors (GPCRs) like CXC-receptors 1 and 2 (CXCR1/2), 

Formyl-peptide receptors 1 and 2 (FPRs), and Leukotriene B4 recep-
tors (LTB4-R), as well as Fc-receptors, innate immunity receptors 
like toll-like-receptors 1–9 (TLR1-9), lectins, RIG- and NOD-like 
receptors, and non-G-protein-coupled cytokine receptors (NGPCR-
Cytokine-R) like interleukin 4 receptor or interleukin 1 receptor 1; 
as well as adhesion receptors like L-selectin, P-selectin glycoprotein 
ligand 1 (PSGL-1), leukocyte function-associated antigen 1 (LFA-1), 
Macrophage antigen-1 (Mac-1) [18, 181]
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transmembrane domains. They are expressed on neutrophils, 
macrophages and mast cells and other leukocytes as well as 
on non-immune cells such as endothelial cells and cancer 
cells [8]. CXCR1 and 2 bind C-X-C motif chemokines carry-
ing the glutamic acid-leucine-arginine (ELR) motif, mainly 
the chemokines CXCL1 through 8. In humans, high affinity 
ligands for CXCR1 are CXCL6 and CXCL8, and for CXCR2 
CXCL1-3 and 5–8 [9]. In mice and rats, no homologue of 
human CXCL8 has been described. However, CXCL1 (also 
called keratinocyte-derived chemokine/KC) is considered 
its functional homologue [10].

Recently, the 3D structure of CXCR1 was resolved by 
Park and colleagues using nuclear magnetic resonance 
(NMR) spectroscopy (PDB: 2LNL) showing three extracel-
lular loops and three intracellular loops. Of the intracellular 
loops particularly the third one is proposed to play a crucial 
role for the signal transduction to G proteins [11]. The struc-
ture of CXCR2 has been resolved so far only in complex 
with the guanine nucleotide exchange factor PDZ-RhoGEF 
(PDB: 5TYT) [12].

The resolution of CXCR1’s 3D structure paved the way 
for further in silico analyses, including its ligand binding 
sites and modes. These models propose that the N loop 
of CXCL8 (see also below) and the N terminal domain of 
CXCR1 interact electrostatically, which enables the N ter-
minal ELR motif of CXCL8 to move closer to the extracel-
lular loops of the receptor (mediated through hydrophobic 
interactions).Finally, firm binding of the two molecules is 
mediated through electrostatic interactions [13].

The chemokine CXCL8/IL‑8

Most research on CXCR1/2 inhibitors focused on the role 
of CXCL8. The chemokine CXCL8, also known as inter-
leukin 8 (IL-8), is a variable-length protein that many cells 
can secrete, including monocytes, macrophages, fibroblasts, 
hepatocytes, epithelial and endothelial cells [14]. It belongs 
to the C-X-C family of chemokines, meaning the first two 
cysteine amino acids are separated by another amino acid. 
CXCL8 is synthesized as a 99 amino acid long precursor 
protein and then cleaved depending on cell type and stimulus 
[15]. CXCL8 secretion is often induced by stimulation with 
interleukin 1β (IL-1β) or tumor necrosis factor α (TNF-α). 
Its 3D structure was resolved by NMR spectroscopy in 1990 
(PDB: 1IL8). The main features are two antiparallel alpha 
helices on top of a six-stranded platform of beta sheets [16].

CXCL8 primarily functions as a chemoattractant for 
neutrophils, i.e. CXCL8 triggers the recruitment of neutro-
phils to the site of inflammation through interaction with 
neutrophil-expressed CXCR1/2 [17]. CXCR1 and 2 both 
have similar affinities for CXCL8 (Kd 0.7–3.6 nM; [20, 
21]) and intradermal application of CXCL8 results in edema 
and neutrophil accumulation at the site of injection, in most 
studies with no signs of additional inflammatory symptoms 
such as pain or itching. Interestingly, neutrophil recruit-
ment is significantly enhanced by transendothelial trans-
port of extravascular chemokines to the luminal site of the 
inflamed endothelium mediated by endothelium expressed 
Duffy antigen receptor [18]. In vivo, chemokines including 

Fig. 2   Role of CXCR1/2 in the Neutrophil Recruitment Cascade. The 
recruitment of neutrophils is proceeding along a cascade of adhe-
sion and activation steps. Free flowing neutrophils are initially teth-
ered to the endothelial lining via selectins (e.g., E- and P-selectin) 
and corresponding selectin ligands (e.g., PSGL1 or ESL1) mediating 
rolling along the endothelium. During rolling, neutrophils receive 
activation signals, e.g., through selectin/selectin ligand interactions 
and through binding of chemokines (e.g. CXCL8) to their recep-
tors (e.g. CXCL2). These signals lead to a conformational change 
of neutrophil-expressed β2 integrins which further slows down roll-

ing velocity and eventually mediates firm neutrophil arrest. Relevant 
chemokine receptors on neutrophils are CXCR1 and 2 interacting 
with chemokine CXCL8 (Il-8, in humans) or CXCL1 (KC, in mice). 
After firm adhesion, neutrophils undergo postarrest modifications 
including β2-integrin clustering, spreading, adhesion strengthening, 
and crawling. Latter is needed for finding a suitable transmigration 
spot. Finally, the cell exits the vessel through or between the endothe-
lial cells and penetrates the vascular basement membrane to reach the 
inflamed tissue. Molecules here include VE-cadherin and others [5, 
182]. Figure adapted from [183]
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CXCL8 are predominantly bound to heparan sulfates on the 
glycocalyx of endothelial cells and presented to intravascular 
neutrophils [18]. Intravascular application of CXCL8 leads 
to severe systemic granulocytopenia, followed by granulo-
cytosis [19].

Of note, CXCL8 exists both in a monomeric and a 
dimeric form, which may have different effects on CXCR1/2 
regarding desensitization and receptor internalization [22].

In rats and mice, it has been demonstrated that application 
of recombinant human CXCL8, which is not found physi-
ologically in those animals, also reliably leads to firm arrest 
of rolling neutrophils [23, 24].

Physiological functions and signal transduction 
of CXCR1/2

Binding of CXCL8 to its receptors causes activation of neu-
trophils, which can be seen by chemotaxis toward the gradi-
ent, increased adhesion and transmigration, increased reac-
tive oxygen species (ROS) production and activation of Ca2+ 
signaling [1]. On a molecular level, G protein, phosphoinosi-
tol 3-kinase (PI3K) and Ras/MAP kinase (MAPK) signaling 

pathways are involved to induce the above-mentioned effec-
tor functions (Fig. 3). Interestingly, receptor function might 
be dependent on the specific bound chemokine (biased ago-
nism) [25].

CXCR1/2 are coupled to heterotrimeric G proteins. 
In vitro experiments using COS7 cells revealed that Gq alpha 
proteins, Gαi2 and Gαi3 are involved in signal transduction 
[26]. Upon ligand binding, the beta and gamma subunits dis-
sociate from the α subunit and activate subsequent pathways, 
most notably Phospholipase C (PLC) or PI3K (Fig. 3). The 
activation (dissociation) of the βγ subunit alone is sufficient 
for critical neutrophil functions such as chemotaxis [27].

CXCL8 binding to CXCR1, but not to CXCR2, results 
in respiratory burst through the activation of Phospholipase 
D [28, 29].

The activation of PLC-β2 and PLC-β3 via the formation 
of inositol triphosphate (IP3) and subsequent activation 
of IP3 sensitive receptors on the endoplasmatic reticulum 
(ER) leads to ER Ca2+ depletion and concomitant increase 
in cytosolic Ca2+ levels, a process which is pertussis-toxin 
sensitive [26]. After depletion of ER stores, Ca2+ chan-
nels on the plasma membrane open and more Ca2+ flows 

Fig. 3   Inhibition of intracellular 
CXCR1/2 mediated signal-
ing in neutrophils. Binding of 
CXCL8 to CXCR1/2 leads to 
inhibition of adenylyl cyclase, 
and activation of different 
enzymes including phospholi-
pase D (PLD), phospholipase 
Cβ (PLCβ), PI3K and Ras. 
Inhibition of CXCR1/2 activates 
adenylyl cyclase, and attenu-
ates the activation of the other 
enzymes, leading to decreased 
neutrophil activation. For details 
and references, see text
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in from the extracellular space, which is also referred to 
as store-operated calcium entry (SOCE) [30]. SOCE is 
induced by the interaction of the ER calcium sensor pro-
tein stromal interaction molecule 1 (STIM1) with calcium 
release activated Ca2+ (CRAC) channels on the plasma 
membrane including Orai1 and Orai2 [29]. Ca2+ signal-
ing is essential for a wide range of neutrophil functions 
including β2-integrin outside in signaling, cytoskeletal 
rearrangement, migration, phagocytosis, ROS production 
and degranulation [29].

In neutrophils, PI3Kγ is activated by the βγ subunits of 
G-protein coupled receptors (GPCRs) [31] and is required 
for neutrophil adhesion (specifically postarrest adhesion 
strengthening) under flow [32]. It is also involved in medi-
ating chemotaxis [33].

One well characterized downstream function of CXCL8 
in neutrophils is the activation of β2-integrins including leu-
kocyte function-associated antigen 1 (LFA-1, CD11a/CD18, 
αLβ2) [34]. On neutrophils, β2-integrins play a major role in 
mediating slow rolling and adhesion of neutrophils to the 
inflamed endothelium (Fig. 2).

Similar to other GPCRs, CXCR1/2 show receptor inter-
nalization after ligand binding. Following agonist binding 
to CXCR1/2, receptor phosphorylation by a GPCR kinase 
(GRK) occurs, which in turn facilitates binding of β-arrestin 
to the receptors leading to receptor desensitization and 
finally clathrin-mediated endocytosis via the AP-2 adaptor 
protein [35–38]. The receptor is cleared of the agonist and 
can then be recycled back to the cell membrane. CXCR1 and 
2 undergo internalization to a similar degree, however, dif-
fer in their recycling characteristics. There is evidence that 
receptor internalization occurs only at rather high concentra-
tions of chemokines suggesting an involvement particularly 
in the later stages of chemotaxis [38]. It is noteworthy to 
mention here that these in vitro experiments were done with 
soluble chemokines, whereas chemokines under in vivo con-
ditions are also immobilized e.g., on endothelial cells, which 
might influence receptor internalization.

Besides internalization, CXCR1/2 can also be desensi-
tized by the activation of other receptors, including formyl-
methionyl-leucyl-phenylalanine (fMLP) or Complement 5a 
(C5a) receptors. CXCR1 activation in turn can desensitize 
fMLP and C5a receptors [39]. A similar desensitization can 
also be observed between CXCR1/2 and C–C chemokine 
receptor 5 (CCR5) [40]. This phenomenon is known as class 
desensitization and usually leads to attenuated cell signaling 
upon ligand binding [39, 41].

Chemotaxis is one of the best studied effects following 
activation of the neutrophil CXCL8-CXCR1/2 axis. Neu-
trophils sense and follow a gradient of chemokine, under 
physiological conditions to the site of inflammation. The 
process is dependent on intracellular Ca2+ [42], PI3K, Janus 
kinase 3 (JAK3) [43] and tyrosine kinases Cbl and Akt [44].

Different chemokines/ligands trigger different functions 
upon binding to the same receptor. This phenomenon, well 
known for GPCRs in general [45], was recently also dem-
onstrated specifically for CXCR1/2: CXCL1 and CXCL6 
lead to attenuated intracellular cAMP and Ca2+ signaling 
compared to equimolar CXCL8 stimulation [25].

On an organism level, CXCL8 and CXCR2 also play 
a critical role in angiogenesis, as demonstrated by many 
in vitro and in vivo studies [46]. This is especially impor-
tant for tumor proliferation, as inhibiting CXCR1/2 has also 
been shown to be beneficial in certain entities of cancer (see 
section “Therapeutic targeting of CXCR1/2 in disease”).

Therapeutic inhibition of CXCR1/2

A variety of inhibitors of CXCR1 and/or 2 have been 
described to date and are summarized in Table 1. One of the 
first to be used was the toxin of Bordetella pertussis (Pertus-
sis toxin; PTx), which was discovered to inhibit neutrophil 
activation with impaired granule enzyme secretion [47] and 
reduced CXCL1-mediated adhesion in mice in vivo [24]. On 
a molecular level, PTx catalyzes the ADP-ribosylation of the 
Gα subunits Gαi1-3 and Gαo1-2 which prevents downstream 
G-protein signaling. Because of its inherent wide range of 
(side-)effects in humans, it is currently not therapeutically 
used. However, it remains a valuable tool in the research of 
chemokine-mediated neutrophil activation [48, 49].

The diaryl urea class of chemokine receptor inhibitors 
includes the compounds SKF83589, SB225002, SB332235, 
SB265610, SB656933 (Elubrixin) and GSK1325756 
(Danirixin). All compounds share two phenyl groups con-
nected by a urea group and are CXCR2-selective. Lim-
ited data is available on SKF83589, the first of its class 
[50]. SB225002 was developed from SKF83589 and first 
described in 1998, where its binding to CXCR2 was char-
acterized using radioligand binding assays and its effects on 
the receptors investigated using calcium signaling, chemo-
taxis and neutrophil recruitment assays. The compound 
attenuated Ca2+ mobilization in response to CXCL1, and 
CXCL8 (only in HL60 cells). It reliably inhibited neutrophil 
chemotaxis in response to both CXCL1 and CXCL8, and 
lowered systemic neutrophil counts following i.v. adminis-
tration of CXCL8 [51]. SB332235 was first described in a 
publication from 2002, where its binding was characterized 
using a radioligand binding assay, and its inhibitory action 
was demonstrated by Ca2+ mobilization assays, chemot-
axis assays and an experimental arthritis model in rabbits 
[52]. SB332235 inhibited neutrophil chemotaxis in vitro 
and attenuated arthritis, as measured by lower leukocyte 
counts and chemokine concentrations in synovial fluid [52]. 
SB265610 was described in 2009 as an allosteric inverse 
agonist of the CXCR2 receptor, but apparently not pursued 
further to clinical research [53]. SB656933 (Elubrixin) was 
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first characterized in 2011 using a CXCL1-induced CD11b 
expression assay and experimental ozone-induced airway 
inflammation model in humans [54]. It inhibited CD11b 
expression, as well as neutrophil recruitment and activa-
tion (as measured by myeloperoxidase [MPO] release) in a 
dose-dependent manner. It was tested in clinical phase 1 and 
2 studies for cystic fibrosis, chronic obstructive pulmonary 
disease (COPD) and ulcerative colitis (Table 2).

SB455821, a CXCR2 inhibitor, inhibited neutrophil trans-
migration in vitro, as well as in vivo in a murine peritonitis 
assay. Interestingly, in response to zymosan, it did not inhibit 
neutrophil recruitment into the peritoneum of mice [55].

GSK1325756 (Danirixin), also a diarylurea compound, 
was investigated in Ca2+ mobilization and CD11b upregula-
tion assays. In addition, it was tested in a lipopolysaccharide 
(LPS)- or ozone-induced acute lung injury (ALI) model in 
rats, where it showed lower disease scores when pretreated 
with GSK1325756 [56, 57]. Multiple clinical phase 1 and 
2 trials for COPD and viral respiratory infections were sub-
sequently performed (please refer to Table 2 for a detailed 
list of trials). However, due to insufficient efficacy in disease 

improvement in these trials, GlaxoSmithKline recently 
stopped Danirixin development for COPD [58].

Another class of inhibitors are boronic acid containing 
molecules. The first of its class is SX-517, which was first 
characterized in 2014 [59]. Its pharmacodynamics was ana-
lyzed in a radioligand binding assay, and its effects were 
studied functionally in human neutrophils in vitro and in a 
murine in vivo inflammation model involving a dorsal air 
pouch [59]. Another compound, SX-576, led to reduced 
neutrophil influx in an ozone-induced ALI rat model [60]. 
Further studies were conducted by the team to improve 
their solubility and oral bioavailability [61]. The successor 
SX-682 then proved to attenuate myeloid-derived suppressor 
cells (MDSC) influx in head and neck cancer as well as in 
castration-resistant prostate cancer, thereby increasing the 
efficacy of immunotherapy [62–64]. SX-682 has recently 
entered phase 1 trial for melanoma treatment [65].

Another group of dual CXCR1/2 small molecule antag-
onists include Ladarixin, Reparixin (Repertaxin), DF2162 
and DF2755A. Reparixin, a R-ibuprofen derivative, was 
described in 2004 and tested in a GPCR signaling and 

Table 1   Inhibitors of CXCR1/2 Name Class References

Allosteric inhibition
 SKF83589 Diarylurea [50]
 SB225002 [51]
 SB656933 [54]
 SB332235 [52]
 GSK1325756
(Danirixin)

[56]

 SB468477 Cyanoguanidine [184]
 Reparixin (Repertaxin) R-ibuprofen derivate [185]
 Ladarixin (DF2156A) Trifluoromethanesulfonate phenyl 

propanamide
[77]

 DF2755A [80]
 DF2162 [74]
 SCH-527123 (Navarixin) [82, 83]
 SX-576 Boronic acid [60]
 SX-517 [59]
 AZD8309
 AZD5069
 AZ10397767

Bicyclic thiazolopyrimidine [186]
[94]
[88]

 PD0220245 Quinoxaline [109]
Competition or binding of CXCL8
 CXCL8 K11R G31P Mutated peptide [159]
 DD-NAc-PGP isomer Small peptide [100]
 TNF-stimulated gene 6 protein (TSG6) Protein [187]

Inhibition of associated G protein
  Pepducin × 1/2pal-i1 Lipid-conjugated peptide [106]

 Pertussis toxin Peptide [24]
Unknown
 SB455821 Unknown [55]
 Antileukinate Protein [97]
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Table 2   Clinical trials for CXCR1/2 inhibitors

Compound Clinical indication Selectivity Company Phase References

SX-682 Advanced melanoma CXCR2 Syntrix Biosystems Phase 1 NCT03161431
Ladarixin (DF2156A) Insulin-dependent Diabe-

tes mellitus type 1
CXCR1/2 dual Dompè SpA Phase 2

Phase 3
NCT02814838
NCT04628481

Reparixin (Repertaxin) Lung transplant/
ischemia–reperfusion 
injury

CXCR1 Phase 2 NCT00224406

Post surgical I/R follow-
ing coronary artery 
bypass graft

CXCR1 Phase 1 EudraCT 2004‐001,138‐18 
[194]

T1D islet cell transplanta-
tion Metastatic breast 
cancer

Phase 2
Phase 2

NCT01220856
NCT05212701

AZD8309 Airway inflammation CXCR2 AstraZeneca (Basic science) ISRCTN46666382
NCT00860821

AZD5069 Airway inflammation CXCR2 AstraZeneca Phase 1 NCT01735240 
NCT01332903 
NCT01480739 
NCT01083238 
NCT00953888

NCT01100047 
NCT01051505

NCT01989520
NCT01890148
NCT01962935
NCT02583477

Metastatic castration-
resistant prostate cancer

CXCR2 AstraZeneca Phase 1 NCT03177187

Severe asthma CXCR2 AstraZeneca Phase 1 NCT01704495
Bronchiectasis CXCR2 AstraZeneca Phase 1 NCT01255592
COPD CXCR2 AstraZeneca Phase 2 NCT01233232
Solid tumors CXCR2 AstraZeneca Phase 2 NCT02499328

SB-656933 Ulcerative colitis CXCR2 GlaxoSmithKline Phase 2 NCT00748410
SCH 527,123
MK-7123

COPD CXCR2 Merck Sharp & Dohme 
Corp

Phase 2 NCT01006616

Asthma CXCR2 Merck Sharp & Dohme 
Corp

Phase 2 NCT00688467
NCT00632502

Advanced solid tumors CXCR2 Merck Sharp & Dohme 
Corp

Phase 2 NCT03473925

Psoriasis CXCR2 Merck Sharp & Dohme 
Corp

Phase 2 NCT00684593

Monoclonal Anti-CXCL8 COPD CXCL8 Abgenix Inc Phase 2 [195]
GSK1325756
(Danirixin)

COPD and viral respira-
tory infections

CXCR2 GlaxoSmithKline Phase 1 NCT01209052 
NCT01209104

NCT02201303
NCT03457727
NCT02453022
NCT01453478
NCT03136380
NCT01267006
NCT02169583

Phase 2 NCT02130193
NCT03034967
NCT02469298
NCT02927431
NCT03250689
NCT03170232
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chemotaxis assay, and in a rat liver I/R injury model, 
where it showed attenuated Ca2+ signaling, reduced migra-
tion and reduced neutrophil infiltration into the liver [66]. 
The efficacy of Reparixin was also evaluated in a type 1 
diabetes mouse model and spinal cord injury rat model, 
where it led to reduced neutrophil infiltration, improved 
glycemia and improved neurological scores, respectively 
[67–69]. In a human trial for type 1 diabetes islet trans-
plantation however, no further benefits compared to pla-
cebo could be shown [70]. Similarly, it was investigated 
for advanced triple-negative breast cancer in a human 
trial, where it did not show a prolonged progression-free 
survival compared to placebo [71]. On the other hand, 
in a human trial in patients with SARS-CoV-2 infection 
(COVID-19) pneumonia, Reparixin led to an improve-
ment in clinical outcomes compared to the standard of 
care [72]. DF2162’s activity was evaluated using radioli-
gand binding and chemotaxis assays [73]. Here, it inhib-
ited chemotaxis while it did not affect CXCL8 binding. 
Further evaluation was performed in a rat arthritis, mouse 
nociception and lung fibrosis model, where it attenuated 
inflammation/fibrosis as measured by neutrophil influx, 
local chemokine production and histological scores [74, 
75]. Ladarixin, also known as DF2156A, was developed 
in 2012 and characterized using radioligand binding and 
chemotaxis assays, where it showed similar inhibitory 
activity for CXCR1 and 2, an optimized pharmacokinetic 
profile and overall inhibited neutrophil chemotaxis [76]. 
Ladarixin was first tested in a mouse sponge-induced 
angiogenesis model of chronic inflammation, where it 
reduced neutrophil migration, TNF-α production and new 
vessel formation [76]. Apart from that, it was also tested 
in in vitro adipocyte models, mouse type 1 diabetes and rat 
cerebral ischemia/reperfusion (I/R) models. In these tested 
animal models, Ladarixin showed improved outcomes as 
measured by increased insulin sensitivity, delayed dia-
betes development/lower glycemia, improved neurologi-
cal scores following cerebral I/R and reduced neutrophil 
infiltration [67, 76–78]. In a human trial, Ladarixin short-
term treatment did not show any appreciable effects on 
preserving residual beta cell function in new-onset type 1 
diabetes patients [79]. DF2755A was recently described 
using radioligand binding and chemotaxis assays [80]. It 
inhibited chemotaxis without affecting binding of CXCL8. 
In a mouse mechanical nociception and post-surgical pain 
model, it was able to lower inflammatory hyperalgesia as 
measured by higher paw redrawal thresholds [80]. Moreo-
ver, it had been reported recently that oral treatment with 
DF2755A can prevent and reverse peripheral neuropathy 
associated to non-Hunner interstitial cystitis/bladder pain 
syndrome by directly inhibiting chemokine-induced exci-
tation of sensory neurons in a cyclophosphamide-induced 
non-ulcerative interstitial cystitis rat model [81].

SCH527123, also known as MK-7132 or Navarixin, is 
another small molecule allosteric inhibitor of CXCR1 and 
2 [82, 83]. In addition to inhibiting neutrophil activation, 
recruitment and chemotaxis, it was tested in multiple pulmo-
nary inflammation models, where it could attenuate or block 
local neutrophil influx, goblet cell hyperplasia and excessive 
mucus production [82]. In a trial in healthy humans, a reduc-
tion of ozone-induced airway neutrophilia could be dem-
onstrated for the compound [84]. Navarixin was also tested 
in a murine and piglet Influenza model, where it improved 
survival and attenuated lung injury [85]. In an colorectal 
cancer model, Navarixin was able to inhibit tumor growth, 
spreading and angiogenesis in vivo [86]. Those findings 
were translated into different phase 2 clinical trials in COPD 
patients (see Table 2). Here, Navarixin showed improvement 
in pulmonary function (increase in forced expiratory volume 
in 1 s, FEV1) and decreased sputum neutrophil numbers, 
while it also led to dose-dependent neutropenia [87]. Other 
phase 2 clinical trials were focusing on asthma and psoriasis. 
Here, no disease improvement could be observed (Table 2). 
The most recent trial is investigating a beneficial effect of 
Navarixin in advanced or metastatic solid tumors. Results 
are still pending.

Another CXCR2-antagonist, AZD8309, is a pyrimi-
dine-based compound, which selectively blocks CXCR2 
[88]. Its oral application was examined in a clinical trial of 
inhaled LPS in healthy volunteers as a model for neutro-
philic airway inflammation. AZD8309 led to reduced spu-
tum neutrophil counts, reduced neutrophil elastase (NE) 
activity and reduced generation of CXCL1 [89]. A recent 
study used the compound in a murine pancreatitis model, 
where it successfully attenuated neutrophil influx, intra-
pancreatic activation of proteases and thereby reduced dis-
ease severity [90]. A subsequently developed compound, 
AZD5069 [91] was assessed in multiple phase 1 trials (see 
Table 2) and showed predictive linear pharmacokinetics 
with no relevant disturbances by food uptake, patient age 
or ethnicity and an optimal dosing at twice a day [92]. 
Other phase 1 studies investigated the safety of the com-
pound in asthma and metastatic ductal adenocarcinoma 
(Table 2). Currently, a phase 1 and a phase 2 trial on the 
combination with Enzalutamide in metastatic castration-
resistant prostate cancer is ongoing. In a phase 2 trial for 
uncontrolled persistent and severe asthma, no significant 
reduction in the amount of exacerbations could be demon-
strated [93]. Another phase 2 study in patients with COPD 
showed AZD5069 to be well tolerated overall, but found 
it caused systemic neutropenia in some cases [94, 95]. 
The results for an application of the compound to treat 
relapsed metastatic squamous cell carcinomas of the head 
and neck have not been published yet (NCT02499328). 
Another similar compound called AZ10397767 is thiazo-
lopyrimidine-based and an inhibitor for both CXCR2 and 
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CCR2 [88]. In an in vivo lung adenocarcinoma model, 
AZ10397767 could attenuate neutrophil influx and tumor 
growth, but not CXCR2 dependent angiogenesis in mice 
[96].

Besides small molecule inhibitors, peptide-based 
CXCR1/2 inhibitors have been developed. Those include 
Antileukinate, Nac-PGP, CXCL8 K11R G31P or pepducins. 
Antileukinate was first described in 1995 and successfully 
characterized and tested in radioligand binding, enzyme 
release, chemotaxis assays, as well as in a rabbit skin edema 
model and a murine bleomycin-induced acute lung injury 
model. The peptide attenuated neutrophil activation, chem-
otaxis in response to CXCL8 in vitro, and inflammation/
neutrophil recruitment in vivo [97, 98]. N-Acetyl-Proline-
Guanine-Proline (Nac-PGP) is a peptide which was found in 
the degraded extracellular matrix following airway inflam-
mation and neutrophil influx [99] and described as a com-
petitive CXCR1/2 antagonist [100]. CXCL8 (3–73) K11R 
G31P (short G31P) is a CXCL8 analog with two mutations 
(at positions 11 and 31, respectively), and was reported to 
have a higher affinity for CXCR1 and 2 than native CXCL8, 
while suppressing neutrophil activation and chemotaxis 
[101, 102]. It was also effective in attenuating pulmonary 
inflammation in an experimental K. pneumoniae pneumo-
nia guinea pig model, as measured by neutrophil counts in 
bronchioalveolar lavage (BAL) fluid, MPO release and lung 
histological analysis [103].

Pepducins are lipid-conjugated proteins which target 
intracellular loops of G proteins. Lipids, such as palmitate, 
are appended N-terminally to intracellular loops, e.g., i3 or 
i1, of G-protein coupled receptors. The lipid allows these 
molecules to float in the cell membrane and disrupt the 
activation of G proteins via interfering with the intracellu-
lar loops of these receptor [104]. They are named after the 
receptor they target, then the conjugated lipid, and finally 
the intracellular loop, for example × 1/2-pal-i1 is a pepducin 
targeting CXCR1/2 (× 1/2), has palmitate conjugated (pal), 
and interacts with the first intracellular loop (i1). In a 2005 
study [105], it was shown that pepducin × 1/2-pal-i3 and 
pepducin × 1/2-LCA-i1 inhibit neutrophil function in vitro 
as well as in vivo. This was evidenced by absent Ca2+ influx 
upon CXCL8 binding, reduced leukocyte recruitment 
in vitro, as well as in a murine peritonitis assay. The admin-
istration of the pepducins protected the mice from death 
due to septic peritonitis, even if the administration occurred 
delayed [105].

Later, another pepducin, × 1/2-pal-i1, was synthesized and 
tested for its clinical use, as well as for histological effects 
on neutrophils, cytokines and lipids in experimental murine 
alcoholic steatohepatitis (mASH). Although neutrophils and 
CXCR1/2 have not been addressed systematically in this 
disease (model) before, the inhibitor reduced the incidence 
and mortality of mASH. It reversed mASH, downregulated 

CXCL1/TNF-α/IL1b expression, and reduced neutrophil and 
lipid accumulation in the liver [106].

CXCR2 inhibitors that have been disclosed, but so far not 
extensively tested in vivo, include a pyrimidine-5-carbon-
itrile- [107] and triazolopyrimidine- [108], and a 2-amino-
3-heteroaryl-quinoxaline-based compound [109]. In addi-
tion, a nicotinanilid [110], and a nicotinamide [111] based 
compound were synthesized, which are both potent CXCR2 
inhibitors.

Finally, new methods for the discovery of CXCR1/2 
inhibitor compounds based on in silico modeling are emerg-
ing as recently described [112].

Therapeutic targeting of CXCR1/2 focusing 
on gastrointestinal and metabolic diseases

As already mentioned above, blocking CXCR1, but more so 
CXCR2, have been shown to significantly reduce neutrophil 
recruitment, associated tissue damage and disease severity in 
many clinical disease models. In this section, the therapeutic 
effects of pharmacological CXCR1/2 blockade are summa-
rized with an emphasis on gastrointestinal and metabolic 
diseases (Table 3).

Inflammatory bowel disease

Ulcerative colitis (UC) is a chronic autoimmune disease of 
the intestinal mucosa, mainly the rectum and colon. The 
inflammation of the intestine generates symptoms such as 
bloody diarrhea, malabsorption and pain, usually in a bipha-
sic manner (flare-up and remission). Discovered pathophysi-
ological features include the relevance of innate lymphoid 
cells, T helper cells, IL-13 and IL-4 as drivers of the dis-
ease [113]. Also, dysbiosis and TLR2 and 4 upregulation 
is seen, though it is unclear whether these are causes or 
consequences. Current treatment options include 5-ami-
nosalicylates, corticosteroids, 5-mercaptopurine, anti-TNF 
antibodies, and–as ultima ratio–proctocolectomy [113]. 
Neutrophils have been reported to be involved in the patho-
genesis of UC: depletion of neutrophils and inhibition of 
leukocyte adhesion in a rat model attenuated experimental 
UC, and in humans, CXCL8 and CXCR1/2 expression is 
increased in UC and can be correlated with different dis-
ease phases and severity [114, 115]. Neutrophil infiltration 
is also one of the major criteria in two histological grad-
ing systems for UC [116]. Similar to rheumatoid arthritis, 
elevated S100A8/A9 (calprotectin) levels can be seen in UC, 
and correlate with disease severity, so that fecal S100A8/
A9 levels are an established biomarker to monitor disease 
activity [117]. In murine studies, mice lacking CXCR2 
were protected to a certain degree from experimental colitis 
[118, 119]. The small molecule CXCR2 inhibitor SB225002 
also improved acute colitis in mice in vivo [120]. Further 
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inhibitory and clinical studies have not yet been reported, 
despite the evidence of neutrophil contribution to UC [115].

For the other major inflammatory bowel disease, Crohn’s 
disease (CD), positive correlation of CXCL8 with disease 
activity has been reported in around half of studies in a 
meta-analysis, so CXCL8 as biomarker still remains con-
troversial [121]. Neutrophils, and specifically neutrophil 
extracellular traps, seem to contribute to inflammation and 
tissue destruction in both CD and UC [122].

Alcoholic steatohepatitis (ASH) is a sterile inflammation 
of the liver resulting from excessive long-term alcohol con-
sumption. ASH usually manifests itself through liver failure, 
and if left untreated leads to cirrhosis and eventually end-
stage liver disease and death. Pathophysiologically, chronic 
alcohol consumption severely disturbs liver fatty acid, ROS 
and enzyme metabolism. Histologically, liver tissue from 
ASH patients shows accumulation of fat (steatosis), infiltra-
tion of immune cells including neutrophils termed Mallory-
Denk bodies, and perivenular fibrosis [123]. Treatment is 
usually symptomatic, and abstinence does not guarantee 
remission of the disease. Immunomodulators like corticos-
teroids and anti-TNFα drugs have been tested with mixed 
results [124]. Chemokines which seem to be involved in the 
recruitment of neutrophils to liver tissue include CXCL2 and 
to a lesser extent CXCL1 [125]. In a murine ASH model, 

CXCR1/2 pepducins were able to stop the progression, as 
well as reverse the condition as evidenced by reduced neu-
trophils liver infiltration and normalization of liver histology 
[106].

Cancer and inhibition of the of the CXCL8‑CXCR1/2 
axis

The role of neutrophils and chemokines has been well estab-
lished in various malignancies. Tumors interact in many 
ways with various immune cell populations aiming to be 
tolerated by both adaptive and innate immunity to guarantee 
tumor growth including induction of angiogenesis in solid 
tumors [8]. A meta-analysis on various cancer entities con-
cluded that accumulation of neutrophils in tumor tissue is a 
negative prognostic factor in cancer overall [126].

It Is thought that neutrophils are recruited to the tumor 
tissue and by releasing their enzymes and destroying the 
ECM, they pave the way for tumor cells to grow [127]. 
Besides recruiting tumor-associated neutrophils (TANs) and 
other immune cells to the tumor [128, 129], the activation 
of CXCR2 can directly and indirectly lead to tumor cell pro-
liferation [130, 131], inhibit physiological cell proliferation 
[132–134], cause tumor cell migration enabling metastasis 
[135, 136] and induce angiogenesis [137, 138]. Studies on 

Table 3   Potential therapeutic use of CXCR1/2 inhibitors

Experimental disease model Inhibitor(s) Effects References

Alcoholic steatohepatitis (mouse) Pepducin × 1/2pal-i1 Reduced neutrophil infiltration; normalization of 
histology

[106]

Coecal ligation and puncture (mouse) Different pepducins Reduced mortality [105]
Anti-CXCR2 Ab Delayed neutrophil infiltration, reduced mortality [188]

Type 1 diabetes (mouse) Reparixin, Ladarixin Delayed diabetes development, lower glycemia 
after T1D development

[67]

Transient cerebral ischemia (rat) Ladarixin CXCL8 G31P Reduced cerebral MPO, ischemic volume; 
improved neurological outcome

[77, 189]

Intestinal ischemia (rat) CXCL8 G31P Reduced neutrophil infiltration, improved histology [190]
Dust-induced lung inflammation (mouse) CXCL8 G31P Reduced neutrophil infiltration, chemokine levels, 

improved histology
[191]

Acute lung injury (mouse) Reparixin Reduced neutrophil infiltration, improved vascular 
leakage, improved gas exchange

[185]

Bleomycin-induced lung fibrosis (mouse) DF2162 Reduced neutrophil infiltration, reduced fibrosis [75]
Spinal cord injury (rat) Reparixin Reduced chemokines, lesion area; increased neu-

rons, clinical scores
[68]

Hepatic reperfusion injury (rat) Reparixin Reduced neutrophil infiltration, liver enzymes, 
necrosis

[66]
Ladarixin [76]

Sponge-induced angiogenesis (mouse) Ladarixin Reduced neutrophil infiltration, hemoglobin levels
Rheumatoid arthritis (mouse) SCH-563705 Reduced chemokines in synovial fluid, decreased 

disease severity including histology
[192]

Cigarette smoke-induced lung inflammation 
(mouse)

SCH-N Reduced neutrophil infiltration in BAL, improved 
histology, increase of MIP-2 and KC in BAL

[193]

Ozone‐induced airway inflammation (human) SB-656933 Dose-dependent reduction of neutrophils and acti-
vation in sputum

[54]
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CXCR2 provide evidence that at least for gastric [139–142], 
cholangiocellular [143], colorectal [144, 145], pancreatic 
[146, 147], breast [148], prostate [149], and lung cancer 
[150], absence or inhibition of the receptor leads to a better 
outcome of the malignancies in terms of tumor volume, and 
angiogenesis. By contrast, in studies investigating gastric 
cancer [151], triple-negative breast cancer [152, 153], and 
renal cancer [154], a protective effect of CXCR2 was shown.

Studies using small molecule CXCR1/2 inhibitors are 
starting to emerge, for example in vitro and in vivo inhibition 
of malignant melanoma cell growth using Ladarixin [155, 
156]. In addition, the combination of Reparixin with anti-
neoplastic agent docetaxel reduced the tumor size in a model 
of human breast cancer cell lines and breast cancer patient-
derived xenografts [157] demonstrating that Reparixin is 
able to reduce in vivo the tumor-initiating ability of breast 
cancer cells by affecting the cancer stem cell population. 
In a colon cancer cell model, treatment of mice with SCH-
527123 or SCH-479833 attenuated liver metastasis forma-
tion [158]. G31P application in a mouse prostate cancer cell 
model resulted in reduced tumor growth and reduced tumor 
vascularization [159]. In Ras-driven cancers, inhibition of 
CXCL8 using an antibody attenuated their growth due to 
increased tumor cell death [160]. Recently, it was shown 
that CXCR1/2 inhibitors can reduce tumor volume in vivo 
in renal cell carcinoma and squamous cell carcinoma resist-
ant to standard treatment [161]. One study specifically con-
firmed that inhibiting CXCR1/2 on neutrophils, but not on 
endothelial cells or tumor cells, significantly reduced neu-
trophil accumulation, tumor growth and metastasis forma-
tion in pancreatic cancer [147, 162]. CXCR2 inhibition and 
subsequent reduced accumulation of neutrophil precursors 
can also potentiate anti-programmed death ligand 1 (PD1) 
immunotherapy in some cancer models, especially mela-
noma [64, 65, 163]. However, despite the growing evidence 
of a potentially critical role of the CXCL8-CXCR1/2 axis in 
cancer progression [164], interfering with neutrophil recruit-
ment into tumor tissue as a therapeutic approach only begins 
to emerge and more evidence linking the CXCL8-CXCR1/2 
axis to neutrophils in cancer is warranted.

Metabolic syndrome and atherosclerosis

The metabolic syndrome describes risk factors, and their 
eventually occurring metabolic diseases such as type 2 dia-
betes and atherosclerosis [165]. The link between obesity, 
diabetes and inflammation originates in dysfunctional adipo-
cytes and pro-inflammatory macrophages releasing inflam-
matory mediators, which are responsible for a chronic low-
level inflammation, which again has been shown to associate 
with diabetes development [78, 166]. Here, CXCL8 and 
CXCL1, but also other ELR-CXC chemokines like CXCL5 
have been identified as key adipocytokines, their levels 

correlating with obesity [167–169]. Atherosclerosis is one 
of the most important chronic inflammatory disorders in the 
circle of metabolic dysregulation. Here, hypercholesterine-
mia and other factors lead to atherosclerotic plaque forma-
tion, which progressively occludes the vessel over time. This 
also bears the risk of rupture and mobilization of plaque 
content into the vessel with subsequent downstream occlu-
sion and ultimately organ damage [170]. In atherosclerotic 
plaques various CXCR2 ligands were found in humans as 
well as in mice demonstrating together with CXCR2 to be a 
driving force in atheroprogression [171–173]. Furthermore, 
stimulation of CXCR1/2 by a CXCL8-homologue induced 
development and progression of atherosclerotic plaques in 
LDL-receptor deficient mice illustrating an important role 
of CXCR2 in atherosclerosis [174, 175]. This seems to be 
particularly true for the early phase of the disease where neu-
trophils are recruited to atherosclerotic lesions in a CXCR2 
dependent manner [173].

Diabetes mellitus

The role of neutrophils and the CXCL8-CXCR1/2 axis 
including its inhibition have been intensively investigated for 
a variety of autoimmune diseases [176]. Increased CXCL1 
was identified as a possible marker for β-cell destructive 
autoimmune activity in the pancreas during onset of type 
1 diabetes [177], leading to a build-up of blood glucose 
and all its (potential) consequences. Pathophysiologically, 
immune cells including neutrophils and T cells attack and 
destroy β-cells [178]. Mounting evidence shows the CXCL8-
CXCR1/2 axis plays an important role in the recruitment of 
neutrophils to the pancreatic tissue [179]. Traditionally, T1D 
is treated with lifelong parenteral insulin substitution. How-
ever, new immunomodulatory drugs, including CXCR1/2 
inhibitors, are starting to emerge: treatment of mice with 
SB225002 in an experimental T1D model attenuated neu-
trophil recruitment to the pancreas almost completely [180]. 
Reparixin was tested in mice and humans regarding the out-
come of islet cell transplantations and was found to consist-
ently attenuate disease progression as evidenced by elevated 
C-peptide levels and lower insulin requirement [69]. Ladar-
ixin has been shown to block and reverse T1D development 
in non-obese diabetic (NOD) mice. This was associated with 
inhibition of insulitis and modification of leukocytes distri-
bution in blood, spleen, bone marrow and lymph nodes [68].

Conclusion

The chemokine receptors CXCR1/2 on neutrophils have 
been identified as key players in many inflammatory dis-
orders. Therefore, therapeutic inhibition of CXCR1/2 (or 
its ligands such as CXCL8) might be beneficial and help 
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to reduce neutrophil recruitment in those disorders with 
unwanted neutrophil recruitment including inflammatory 
bowel disease, atherosclerosis, rheumatoid arthritis, and 
others.

Recent evidence also suggests a critical role of neutro-
phils in cancer development and progression and studies 
highlighting the potential therapeutic uses of inhibitors of 
this axis are beginning to emerge, especially with malig-
nancies in the gastrointestinal tract including pancreas, and 
colon, but also in other organs such as skin (melanoma), 
and kidney.

Taken together, for many neutrophil-driven disease enti-
ties, preclinical evidence of the efficacy of CXCR1/2 inhibi-
tors is accumulating. Further studies and clinical trials are 
now warranted to clarify and potentially solidify the thera-
peutic use of CXCR1/2 inhibitors.
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