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Abstract An insect–plant interaction induced gall forma-

tion is where gall wasps change the plant development

towards formation of new units to shield and nourish the

evolving larvae. The targets of the insect signals and the

mechanism of gall development are unknown. To show the

molecular pathways that are responsive to the gall wasp,

the proteomic approach was used to compare the gall with

non-gall plant tissues. We studied three oak gall species

(Cynips quercusfolii, Cynips longiventris, and Neuroterus

quercusbaccarum) and the host plant (Quercus robur).

Among the 21 identified proteins, 18 increased and three

decreased in abundance in gall tissue, in comparison to the

leaf tissues. Ten proteins were C. quercusfolii responsive,

two only with this gall inducer, while seven increased in

abundance. Eleven proteins were C. longiventris respon-

sive, and two only with this gall inducer. Sixteen proteins

were associated with gall formation by the N. quercus-

baccarum and, in this, eight only with this gall inducer. A

similar effect on protein abundance occurred as galls in leaf

veins (for five proteins). For leaf blades, such a relation

was not found. The role of each protein is discussed

according to its involvement in the gall formation. More-

over, S-adenosyl methionine synthase, flavone 3-hydroxy-

lase, stress- and pathogenesis-related proteins, and gamma

carbonic anhydrase are associated with developmental

regulation of plant tissue into a gall.

Keywords Oak � Quercus robur � Cynips quercusfolii �
Cynips longiventris � Neuroterus quercusbaccarum � Tree

Introduction

Plant gall induction is common in many insect families, but

most of the species belong to only two groups: gall wasps

and gall midges (Cook and Gullan 2004). The insect con-

trols plant morphogenesis, inducing the formation of a new

structure as a gall (Harper et al. 2004). There are three

well-distinguished phases of gall formation: first initiation,

subsequent growth, and final maturation (Rohfritsch and

Shorthouse 1982; Rey 1992). Oviposition by the female

wasp or midge onto the meristematic tissue starts the ini-

tiation phase. The insect controls the place of gall emer-

gency (Giertych et al. 2013). The host usually reacts with

necrosis of cells under the egg; the cells below divide and

finally enclose the egg (Rey 1992; Brooks and Shorthouse

1998; Pilichowski and Giertych 2017). The gall chamber is

formed through cell differentiation and is lined inside with

inner-gall tissue, and the outer gall is built with cortical

parenchyma. The growth phase primarily is composed of

cell elongation, leading to gall expansion. The cell layers

of the inner-gall tissue decrease during development

because the larvae feed on them. The parenchyma cells are

changed into nutritive cells as the larvae feed, and they

produce lipids and proteins as well as amylases, which are

involved in starch decomposition (Bronner 1992; Rey

1992; Brooks and Shorthouse 1998). During maturation,

cell division stops, the galls lignify, the larvae mature and
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pupate, and finally, the gall tissue desiccates (Harper et al.

2004).

Cynipid gall generation is a result of the complicated

interaction between the insect and the host plant. The

larvae interact with the plant to switch normal plant

development to ensure shelter, nutrients, and protection

for their defence inside a gall (Stone et al. 2002). The

template of the internal gall tissue is generally similar

for all cynipid galls, with two distinguished layers, an

outer cortical parenchyma and an inner gall, in which

one (monolocular) or many (multilocular) larvae are

housed (Harper et al. 2004). The inner-gall chamber is

surrounded by a hard layer of sclerenchyma (Guzicka

et al. 2017), and its tissue is built of two kinds of cells:

inner nutritive cells and nutritive parenchyma cells

(Harper et al. 2004). During gall formation, many

physiological, biochemical, and molecular changes

occur in the tissue, showing meaningful distinction from

the host-plant non-gall tissue (Harper et al. 2004). The

signal pathway from the gall wasp to the host plant is

almost unknown; however, gall formation requires

continuous activity of unknown stimuli (Stone et al.

2002). Insect-herbivore induction causes anatomical and

biochemical modification of the host-plant tissues into

the gall. The gall inducers can manipulate the plant

metabolism according to their own benefit (Detoni et al.

2010). Detoni et al. (2011) hypothesised that specific

proteins, likely representing different metabolic classes,

are associated with the physiological processes deter-

mining the host resistance to the gall-insect attack.

Although the number of publications about the manip-

ulation of plant tissues by insects forming galls is large,

how they reprogram the host-plant development is not still

well characterised (Cornell 1983; Hartley and Lawton

1992; Schönrogge et al. 1998; Hartley 1998). To recognise

such a mechanism would be of great interest for insect–

plant interaction studies.

To identify the molecular mechanism involved in gall

formation, we investigated changes in the oak gall pro-

teomes induced by three cynipid wasps commonly found in

this region: Cynips quercusfolii, Cynips longiventris, and

Neuroterus quercusbaccarum. Analysis of the differences

and similarities between Quercus robur gall tissues and

non-gall tissues allows us to show the level of control

exercised by the insect on the plant development, and the

relationship between the gall and plant tissues. We

assumed a high similarity of protein profiles for galls of

each wasp species and a greater affinity of galls with leaf

vein tissue than with leaf blade. Results are discussed in

relation to system biology approaches (Staszak and

Pawłowski 2012).

Methods and materials

Plant materials and experimental design

The samples of leaves and all gall species were collected

from six (treated as a repetition) trees of English oak (Q.

robur L.) growing at the edge of a forest in Tulce

(Kobylepole Forest, Babki Forest District, Poland,

52�2100300N; 17�0401600E) in August 2012. This period is

optimal because galls have reached the maximum size and

maturity, but larvae are very small yet. Agamic generation

galls induced by C. quercusfolii Linnaeus 1758, C, lon-

giventris Linnaeus 1758, and N. quercusbaccarum Lin-

naeus 1758, and leaves, which were divided into veins and

laminas, were collected from every tree. An analytical

sample for each tree was collected (for each insect species)

from a few to several galls, depending on the size of each,

and several leaves were divided into laminas and veins. A

total of 30 samples were analysed. The gall tissue, leaf

veins, and laminas were dissected 1 h after harvest and

frozen in liquid nitrogen and stored at -70 �C.

Protein extraction

Extracts were prepared from three types of galls (without

the insects), leaf blades, and leaf veins. At least three

independent protein samples were prepared, as already

presented (Faurobert et al. 2007; Pawłowski 2009; Staszak

and Pawłowski 2014). Ground material was resuspended in

three volumes of extraction buffer (consisting of 700 mM

saccharose, 500 mM tris, pH 8, 100 mM KCl, 2% (v/v) b-

mercaptoethanol, and 2 mM phenylmethylsulfonyl fluo-

ride, pH 8.5) and kept for 10 min on ice. Subsequently,

tris-saturated phenol was added in equal volume. Samples

were stirred for 10 min and centrifuged (10 min, 5525g,

4 �C) to isolate the phenolic and aqueous phases. The

phenolic phase was extracted again with the same volume

of extraction buffer. Subsequently, centrifugation was

repeated, and five volumes of precipitation solution (0.1 M

ammonium acetate in methanol) were added to the recov-

ered phenol phase. Proteins were precipitated at -20 �C
overnight. After centrifugation for 10 min (5525g, 4 �C),

the protein pellet was washed three times with the pre-

cipitation solution and once with acetone. Each washing

step was followed by 5 min of centrifugation as described

above. After drying under a vacuum, the pellet was

resuspended in lysis buffer [9 M urea, 4% (w/v) CHAPS,

0.5% (v/v) Triton X-100, 20 mM dithiothreitol (DTT), and

1.2% (v/v) pharmalyte, pH 3–10] and the protein concen-

tration was measured according to a modified Bradford

assay (Ramagli and Rodriguez 1985).
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Protein electrophoresis, 2-DE IEF/SDS-PAGE

All analyses were conducted at 25 �C with at least three

biological replicas. Proteins (700 mg for colloidal Coo-

massie blue) were first separated according to their charge on

rehydrated Immobiline dry strips (24 cm, containing linear

gradient of pH 4–7) with the rehydration buffer [6 M urea,

2 M thiourea, 2% (w/v) CHAPS, 20 mM (w/v) DTT, and

0.5% (v/v) pharmalyte, pH 4–7] on Ettan IPGphor 3 IEF

System (GE Healthcare Life Science). The programme for

isoelectric focusing was according to the manufacturer’s

suggestions for 24-cm strips. The strips were either stored at

-80 �C or they were directly treated for 10 min with equi-

libration solution I [6 M urea, 1.5 M Tris–HCl, pH 8.8, 30%

(v/v) glycerol, 2% (w/v) SDS, and 1% (w/v) DTT] and for the

same time with equilibration Solution II [Solution I supple-

mented with 2.5% (w/v) iodoacetamide, without DTT] and

subjected for the second dimension (SDS-PAGE) run.

For SDS-PAGE, precasted Ettan DALT 12.5% (w/v)

polyacrylamide gels (GE Healthcare) and the Ettan Dalt

Six electrophoresis unit were used. Conditions for the run

were as follows: 1 h at 80 V and 5 h at 500 V. Molecular

weight markers (GE Healthcare) were applied. After

electrophoresis, proteins were stained with colloidal Coo-

massie blue, which allowed visualisation, quantification,

and mass spectrometry (MS) analysis (Neuhoff et al. 1988).

Proteome analysis

The protein patterns were analysed after scanning using the

2D Image Master 7 Platinum program (GE Healthcare). The

two-dimensional (2D) patterns (three from three indepen-

dent biological samples) were aligned and matched after spot

detection, and the normalised spot volumes were ascertained

quantitatively. The per cent volume was calculated for each

matched spot, as the volume divided by the total volume of

matched spots. Abundantly variable spots (significantly

changed between gel sets/classes, i.e., central tendency,

dispersion, and overlapping measures were used) underwent

analysis of variance (ANOVA) and the Tukey–Kramer HSD

test (JMP software, SAS Institute, Cary, USA) to choose

spots that significantly varied (p\ 0.05) in abundance for

the five factors: the gall types and leaf parts. Protein spots

that exhibited at least a 1.5-fold increase or decrease in their

relative abundance between galls and leaf tissues were

considered differentially expressed. Fold change was cal-

culated as log2 (Meunier et al. 2005). The significant alter-

nating proteins were identified by MS.

Mass spectrometry (MS)

The protein spots underwent a standard ‘in-gel digestion’

processing; they were reduced with 10 mM (w/v) DTT (for

30 min at 56 �C), alkylated 45 min with 55 mM iodoac-

etamide (in the dark at room temperature), and digested

overnight with trypsin (Promega, Madison, WI, USA) in

25 mM ammonium bicarbonate (25 ng/ll). The resulting

peptides were eluted from the polyacrylamide with 0.1%

(v/v) TFA in 2% (v/v) ACN.

Peptides were analysed by liquid chromatography and

the mass spectrometer device at the Institute of Biochem-

istry and Biophysics, the Laboratory of Mass Spectrometry

at the Polish Academy of Sciences, Warsaw, Poland.

Samples were concentrated and desalted on an RP-C18

pre-column (nanoACQUITY Symmetry� C18, Waters,

Milford, MA, USA), and peptides were separated on a

nano-ultra performance liquid chromatography (UPLC)

RP-C18 column (Waters, BEH130 C18 column, 75 lm id,

250 mm long) of a nanoACQUITY UPLC system, using a

linear acetonitrile gradient [0–60% (v/v) ACN for

120 min] in the presence of 0.05% (v/v) formic acid with a

flow rate of 150 nl/min. The column outlet was directly

coupled to the electrospray ionisation (ESI) ion source of

the orbitrap velos type mass spectrometer (Thermo Elec-

tron Corp., San Jose, CA, USA), working in the regime of

data dependent MS to MS/MS switch. An electrospray

voltage of 1.5 kV was used. A blank run preventing cross-

contamination from previous samples preceded each

analysis.

The mascot search algorithm (http://www.

matrixscience.com) was used for protein identification,

against the NCBInr (http://www.ncbi.nig.gov) databases.

The mascot search probability-based molecular weight

search (MOWSE) score was used. The ion score was

-10 9 log(P), where P was the probability that the

observed match was a random event. Peptides with a

mascot score exceeding the threshold value, corresponding

to a \5% false positive rate, as calculated by the mascot

procedure, were considered to be positively identified.

Identified proteins were functionally grouped according

to the KEGG database (http://www.genome.jp/kegg/path

way.html) (Kanehisa et al. 2012), and a Venn diagram of

protein quantification was prepared according to bioinfor-

matics and evolutionary genomics (http://bioinformatics.

psb.ugent.be/webtools/Venn/).

Results

Protein patterns from three gall types in leaf blades and

veins were analysed to estimate proteins involved in the

gall-formation process. Proteome maps were established,

which displayed on, average, 359 Coomassie blue-stained

spots. A total set of 21 spots (6% of the total spots)

showing significant changes in volume (ANOVA, the

Tukey–Kramer HSD test, and fold change [1.5) were

Acta Physiol Plant (2017) 39:114 Page 3 of 12 114

123

http://www.matrixscience.com
http://www.matrixscience.com
http://www.ncbi.nig.gov
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


identified by MS. Identified proteins displayed significant

differential abundance for the gall type and the part of the

leaf.

The gels from each variant were used to create master

gels, showing the results of statistical analysis (Fig. 1a–e).

Among the 21 identified proteins (Table 1; Fig. 2), 18

increased and three decreased in abundance in the gall

tissue, compared to the leaf tissues. Ten proteins were C.

quercusfolii responsive, two only with this gall inducer,

while seven increased in abundance. Eleven proteins were

C. longiventris responsive, two only with this gall inducer,

while eight increased in abundance. Sixteen proteins were

associated with gall formation by N. quercusbaccarum, in

this, eight only with this gall inducer, while 13 increased in

abundance. For five proteins, the influence of the gall wasp

was statistically the same and was simultaneously signifi-

cantly different from the whole leaf (three proteins) or leaf

blade (two proteins). A similar effect on protein abun-

dance, as galls had leaf vein (for five proteins). For leaf

blades, such a relation was not observed.

The identified proteins were further grouped, based on

their functional categories, into four classes: metabolism,

genetic information processing, cellular processes, and

unclassified (Table 1; Fig. 3).
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Fig. 1 Positions of 21 proteins that varied in abundance on 2D

colloidal blue-stained gels of Quercus robur galls initiated by Cynips

quercusfolii (a), Cynips longiventris (b), Neuroterus quercusbac-

carum (c), and in control (without galls) of Q. robur leaf blades

(d) and veins (e). Labels show the proteins are abundantly variable

between galls and leaf tissues. The numbers of these 21 identified

proteins present in the gels correspond to those listed in Table 1
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Discussion

The proteomic approach is broadly used for the investi-

gation of many developmental processes in plants (e.g.,

Pawłowski 2009, 2010; Pawłowski and Staszak 2016).

There are just a few research studies carried out on the

molecular mechanism, especially at the proteomic level,

associated with gall formation. The protein analysis of

inner-gall and plant tissue showed the distinct protein

profiles and identified some inner-gall proteins (Schön-

rogge et al. 2000). These proteins, which are characteristic

only for gall tissues, may enable understanding of how the

larvae change the plant development to form galls. The

NAD-dependent formate dehydrogenase (FDH) was iden-

tified in the inner-gall tissue in two species. The FDHs are

a nuclear-encoded proteins found in the mitochondria and

expressed under stress (Hourton-Cabassa et al. 1998).

Schönrogge et al. (2000) also detected a biotin carboxyl

carrier protein (BCCP), a part of acetyl CoA-carboxylase

(ACCase), associated with the synthesis of triacylglycerol

lipids, an energy supplier (Elborough et al. 1996). The

upregulation of BCCP demonstrates an increase in lipid

synthesis to provide sufficient nutrients for the growing

larvae. Schönrogge et al. (2000) suggested that identified

proteins are associated with respiratory stress arising in

galls, and seed-specific proteins are involved in gall

formation.

The insect gut participates in diverse physiological

processes, for example in host–insect interactions and

regulations of host development (Nation 2002). The most

impressive characteristic of the gall midge gut larval

transcriptome is the presence of a large quantity of small

secretory protein (SSP) transcripts (Zhang et al. 2010). The

SSPs likely act in plant–insect interactions and might be

valid regulators of gall development (Zhang et al. 2010). A

gall insect can restrain plant growth, reprogram plant gene

transcription, and stimulate nutritive tissues (Anderson and

Harris 2006; Harris et al. 2006; Liu et al. 2007).

Our results showed that the protein patterns differ

between galls and leaves. We observed protein character-

istics for Cynips galls and for N. quercusbaccarum. Pro-

teomes of Cynips galls were much more similar to each

other than to N. quercusbaccarum. All that suggests dif-

ferent influences of gall wasps from different species on the

host plant. The function of the investigated proteins and the

Fig. 2 Venn diagram of the 21 identified proteins classified based on

gall formation

Unclassified

Metabolism

increase

decrease

A

90%

10%

Unclassified

Cellular
processes

Metabolism

9%

9%

82%

B

Unclassified

Genetic
information
processing

Metabolism 81%

13%

6%

C

Fig. 3 Classification of the 21 identified abundantly variable proteins

to functional categories according to the KEGG database. The

percentage of proteins in each class based on the number of all the

identified proteins is shown as an indication of how many were

upregulated (dark portion of each bar) or downregulated (white

portion of each bar). Proteins associated with gall formation by

Cynips quercusfolii (a), C. longiventris (b), and Neuroterus quercus-

baccarum (c)
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associated metabolic pathways according to involvement in

gall formation will be discussed in subsequent sections.

The discussion will follow the magnitude of fold-change

values (Table 2).

Metabolism

The S-adenosyl methionine (SAM) synthase belongs to the

secondary metabolism class (spots 53, 128, and 129

increased and spot 54 decreased in abundance in the galls).

The SAM synthase catalyses the formation of the SAM

from methionine and ATP. The SAM is a substrate in the

nicotianamine, ethylene, and polyamine biosynthesis

reactions and during plant growth and development,

ensures the methyl groups for the most methylation reac-

tions (Ravanel et al. 1998; Sauter et al. 2013). Ethylene

controls many features of plant growth and development

from seed germination through the root and stem formation

to fruit ripening and is a key mediator of stress responses in

plants (Merchante et al. 2013). It controls plant develop-

ment and growth by regulating the meristem activity and

cell-wall structure (Vandenbussche et al. 2012). Among

these functions of ethylene is the regulation of ‘Rhizo-

bium’-induced nodulation in legumes (Gresshoff et al.

2009), a process that is, in some way, similar to gall for-

mation. Polyamines actively participate in cell division,

cell specification, and transcriptional, translational, and

post-translational regulation of genes, transcripts, and

proteins (Tiburcio et al. 2014). In plants, they are involved

in developmental processes, such as organogenesis, floral

and fruit expansion, and response to the influence of abiotic

and biotic stress factors (Tiburcio et al. 2014). Interest-

ingly, biotin synthase (spot 253, found only in N. quer-

cusbaccarum) is also a SAM radical enzyme that is

involved in biotin metabolism. Biotin (essential vitamin

H/B8) is an enzyme cofactor implicated in reactions of

Table 2 Changes in abundance

of proteins related to gall

formation

Spota Proteinb Fold changec

Cq/lb Cl/lb Nq/lb Cq/lv Cl/lv Nq/lv

Metabolismd

9 ATP synthase d chain 2.2 2.6 3.8 1.0 1.5 2.6

19 Putative ascorbate peroxidase 1.3 0.2 2.4 -0.1 -1.3 1.0

53 S-Adenosylmethionine synthase ?? ?? ?? 3.0 3.0 2.2

54 S-Adenosylmethionine synthetase -2.6 -3.3 -2.4 -2.1 -2.9 -2.0

58 Enolase 1.6 2.2 2.4 0.3 1.0 1.1

61 UDP-glucose pyrophosphorylase -2.5 -1.8 -1.7 -2.4 -1.6 -1.5

62 UDP-glucose pyrophosphorylase -1.9 -2.3 -2.3 -1.8 -2.2 -2.2

63 ATP synthase beta subunit 0.8 1.3 1.4 -0.3 0.2 0.3

66 Aldehyde dehydrogenase 0.4 0.8 -1.1 1.5 1.9 0.0

125 Catalase ?? ?? ?? ?? ?? ??

128 S-Adenosylmethionine synthase 1 ?? ?? ?? ?? ?? ??

129 S-Adenosylmethionine synthetase, putative 0.6 0.2 -1.6 2.3 1.9 0.1

134 Enolase ?? ?? ?? ?? ?? ??

187 Flavanone 3-hydroxylase ?? ?? ?? ?? ?? ??

189 Chalcone synthase ?? ?? ?? -2.4 -0.7 1.5

253 Biotin synthase 0 0 ?? 0 0 ??

Genetic information processing

114 Cytosolic class II low molecular weight HSP ?? 0 ?? ?? 0 ??

115 HSP17.4 ?? 0 ?? ?? 0 ??

Cellular processes

45 Actin 2.1 2.5 1.3 0.8 1.1 -0.1

Unclassified

23 DDB_G0288155 isoform 1 7.5 6.4 4.7 3.1 2.0 0.3

98 Stress and pathogenesis-related protein -1.4 -0.2 1.2 ?? ?? ??

a Spot number as indicated on the 2-D gels
b The proteins identified in the present study
c Fold change calculated as log2 ratio. Significance data[0.58 or\-0.58 (log2 1.5)
d Functional protein classification according to KEGG
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carboxylation and decarboxylation of fatty acid and car-

bohydrate metabolism (Fugate and Jarrett 2012). The

biotinylation of these reaction enzymes is a post-transla-

tional modification, allowing the transformation of inactive

proteins into their active forms (Alban 2011). Summaris-

ing, the SAM metabolism, being a central point in nitrogen

metabolism and other metabolites, can play an essential

role in gall formation by influencing gene expression

pathways, cell division, and tissue differentiation.

Flavanone 3-hydroxylase (spot 187), which arose in

galls, is a main enzyme in the flavonoid biosynthesis

(Winkel-Shirley 2001). A main physiological function of

the flavonoid pigments is the lure of flower pollinators and

seed dispersers. This aim is achieved by beautiful pig-

mentation of flowers, fruits, etc. Besides that, flavonoids

also play a pivotal function in plant and microbe signalling

and in stress protection, mainly against excessive UVB

radiation (Ballaré 2014). Their role in galls can be asso-

ciated with the colour of the gall surface, which may play a

signalling role between the plant and insect. Differential

flavonoid accumulation and flavanone 3-hydroxylase

expression was observed in legume plant nodules, in

comparison with root tissue (Charrier et al. 1998).

Catalase (spot 125) is a ubiquitous enzyme involved in

the cell protection from the toxic effect of peroxides (Sofo

et al. 2015). Enzyme catalyses the transition of hydrogen

peroxide to water and molecular oxygen. Catalases also

utilise hydrogen peroxide to oxidise various substrates,

such as alcohol or phenols. Catalase arose in galls and

reached the highest abundance in C. quercusfolii galls in

comparison to those of leaf tissues. A similar effect was

observed in the galls of Alstonia scholaris caused by

Pseudophacopteron alstonium (Yang et al. 2015).

According to these authors and our results, it can be con-

cluded that an increase in catalase activity is associated

with the defensive response of the host-plant against insect

activity.

The ATP synthase (spots 9 and 63, increased in galls)

provides energy for the growing gall tissue. Enolase is also

associated with energy provision (spots 58 and 134,

increased in galls) and is an enzyme involved in glycolysis,

a process in which ATP is synthesised.

The UDP-glucose pyrophosphorylase (UGPase, spots

61 and 62) is a key enzyme implicated in the synthesis

of UDP-glucose, which is involved in glycosylation

reactions (Decker et al. 2012). These include synthesis

of sucrose, polysaccharides, glycoproteins, glycolipids,

sulpholipids, and secondary metabolites. The UDP sug-

ars are, by far, the major substrates for polysaccharide

synthesis (Kotake et al. 2010). In the present study, a

decrease in UGPase abundance was indicated in gall

tissues in comparison to leaf tissues (Table 2). The role

of UGPase in gall formation is difficult to distinguish;

however, it can be associated with the synthesis of

nucleotide sugars, which serve as glycosyl donors or

with starch synthesis. Upregulation of the UGPase gene

in Populus deltoids leaves resulted in reduced sugar and

starch levels (Payyavula et al. 2014). Starch is a main

part of the nutritive layer in the gall. This suggests that

starch synthesis can also increase in galls, providing

nutrition for the larvae.

Aldehyde dehydrogenase 2 (ALDH, spot 66, increased

in C. longiventris) catalyses the reactive aldehyde oxi-

dation into their adequate carboxylic acids (Kirch et al.

2005). The ALDHs use either NAD? or NADP? as a

cofactor to convert aldehydes to carboxylic acids plus

NADH or NADPH. Compounds with aldehydic functional

groups are generated as important intermediates in many

catabolic and biosynthetic pathways of carbohydrates,

lipids, vitamins, steroids, and amino acids. Moreover, the

ALDH-mediated generation of NADH/NADPH repre-

sents a major source of reducing equivalents required for

maintaining cellular redox balance (Brocker et al. 2012).

In addition, ALDHs act as ‘aldehyde scavengers’ during

lipid peroxidation where they remove reactive aldehydes

entailed by the oxidative degradation of lipid membranes

(Brocker et al. 2012). ALDHs that have been charac-

terised to date, the most have been involved in different

processes and have putative substantial roles in growth

and development of the plant (Tian et al. 2015). For

example, the rice ALDH7 is essential for seed maturation

and longevity (Shin et al. 2009). The ALDH2 family

members in plants detoxify acetaldehyde to acetate, which

can be later used in fatty acid synthesis (Wei et al. 2009).

The ALDH2 role in gall development can be associated

with synthesis of nutrition compounds used by gall wasp

larvae.

Chalcone synthase (CHS, spot 189) synthetises polyke-

tides, a group of diverse secondary metabolites as antho-

cyanins and flavonoids in plants. Plants have evolutionarily

recruited the CHSs to adapt to the changing environment,

especially to biotic stresses (Han et al. 2014). The

expression of CHS was significantly upregulated during

gall formation in fig flowers (Martinson et al. 2015). A

similar effect, an increase in abundance, was indicated in

investigated galls, in comparison to leaf blades. The fla-

vonoids play diverse roles in plant–insect interactions

(Simmonds 2001, 2003). They have been associated puta-

tively with host recognition and insect reception (Martin-

son et al. 2015). However, they can diminish the growth

and survivorship of insects (Abou-Zaid et al. 1993). Fla-

vonoids can also stimulate oviposition of Lepidoptera

(Honda 1990). The function CHS can play in galls is

probably associated with the stimulation of oviposition by

the next larvae, a hypothesis that was also postulated by

Martinson et al. (2015).
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Genetic information processing

Cytosolic Class II low molecular weight HSP (spot 114) and

HSP 17.4 (spot 115) are small stress-induced molecular

chaperones belonging to the HSP20/sHSP family. Their role

is associated with protein processing in the endoplasmic

reticulum, either by direct interaction with or by affecting

signalling components involved in the initiation of the

hypersensitive response (Sarkar et al. 2009). Recent data

have shown that they are implicated in the response to biotic

stresses (Lopes-Caitar et al. 2013). In the present study, they

reached the highest significant abundance in N. quercus-

baccarum. They are probably implicated in the response to

stress associated with insect activity.

Cellular processes

Actin (spot 45) is a base protein of the cytoskeleton par-

ticipating in a large number of essential cellular processes,

including cell division, cell elongation, cell signalling,

vesicle and organelle movement, and the creation and

preservation of cell connections and shape (Volkmann and

Baluška 1999; Thomas et al. 2009; Higaki et al. 2010).

Increase in actin accumulation during gall formation can be

associated with cell division in the developing new tissues.

Unclassified

Protein DDB_G0288155 (spot 23, increased in galls)

exhibits high sequence homology to gamma CA proteins.

The CAs catalyse the synthesis of bicarbonate (and pro-

tons) from carbon dioxide and water (Park et al. 2012).

Gamma CAs were discovered in mitochondrial Complex I,

where they are responsible for the carbon transportation

between mitochondria and chloroplasts that enhance the

performance of carbon dioxide fixation (Ferry 2010). Their

role in gall formation can be associated with the higher

demand for the carbon skeleton during development.

Stress and pathogenesis-related proteins (spot 98,

increased in N. quercusbaccarum) are a homolog of

pathogenesis-related class 10 (PR-10) proteins, which are

produced as a defence response to various pathogens

(Pasternak et al. 2006). It also has a similar sequence to

PYR/PYL/RCAR proteins, which are receptors of ABA

(Klingler et al. 2010). Its role in the ABA transduction

pathway can be proof for the involvement of ABA in

regulating cynipid gall formation. On one hand, stress and

pathogenesis-related proteins can play a protective role

against insects; on the other hand, by involvement in ABA

signalling, it may be responsive for initiation/building of

the isolation structure (gall) from the plant tissues. Liu

et al. (2010) showed that reactive oxygen species are

implicated in plant defence against a gall midge. In rice

class III, peroxidases play a role in the response against

Hessian fly attacks. That can also be an explanation for the

role of stress and pathogenesis-related proteins in control-

ling gall formation.
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