Skip to main content
Log in

Exogenous auxin regulates H2O2 metabolism in roots of tomato (Lycopersicon esculentum Mill.) seedlings affecting the expression and activity of CuZn-superoxide dismutase, catalase, and peroxidase

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of this study was to test the effect of auxin treatment on selected parameters of the redox metabolism in roots. We found that auxin application results in a reduction in the H2O2 level in roots. The hormone stimulated CuZn-superoxide dismutase, but simultaneously increased the activities of catalase, cell wall bound ferulic acid peroxidase, and soluble peroxidase izoenzymes. The analysis of the expression of genes coding for the cytosolic izoform of CuZn-superoxide dismutase, catalase, and cell wall associated peroxidase (TPX 1) involved in cell wall stiffening and lignification revealed the stimulatory effect of exogenous auxin on the expression of the aforementioned genes. The enzyme activity and gene expression in the roots of control and auxin-treated plants were studied in daily intervals, during a 3-day-long growth cycle. The stimulatory effect of auxin on the enzymatic activity was transient with the highest stimulation observed on the second day of treatment. On the third day, the activities of the enzymes decreased. The maximal enzyme activities were preceded by a rise in gene expression. The increase in the level of CuZn-superoxide dismutase and catalase transcripts were detected after 1 day of auxin treatment. Then the expression of the aforementioned genes decreased. The period of auxin-dependent stimulation of the TPX 1 gene expression encompassed the first and the second day of treatment. Auxin stimulated CuZn-superoxide dismutase and catalase activities only in the distal zone of the root while peroxidase activity was increased by auxin in the distal as well as in the proximal parts of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Botella MA, Quesada MA, Hasegawa PM, Valpuesta V (1993) Nucleotide sequences of two peroxidase genes from tomato (Lycopersicon escdenfum). Plant Physiol 103:665–666. doi:10.1104/pp.103.2.665

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brett CT, Waldron KW (1996) Physiology and biochemistry of plant cell walls, 2nd edn. Chapman & Hall, London, pp 46–51

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Chadwick AV, Burg SP (1970) Regulation of root growth by auxin–ethylene interaction. Plant Physiol 45:192–200

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE (2004) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones. biosynthesis, signal transduction, action. Kluwer, Dordrecht, pp 204–220

    Google Scholar 

  • Córdoba-Pedregosa MC, González-Reyes JA, Cañadillas MS, Navas P, Córdoba F (1996) Role of apoplastic and cell wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol 112:1119–1125

    PubMed  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polyscchcarides by ascorbate-induced hydroxyl radicals. Biochem J 332:57–67

    Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97:2405–2407. doi:10.1073/pnas.97.6.2405

    Article  PubMed  CAS  Google Scholar 

  • Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′, 7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′, 7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159. doi:10.1016/S0891-5849(99)00061-1

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438. doi:10.1242/dev.00359

    Article  PubMed  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G (2005) Hydrogen peroxide and expression of hipl-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. J Exp Bot 56:2085–2093. doi:10.1093/jxb/eri207

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress- activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945. doi:10.1073/pnas.97.6.2940

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323–329. doi:10.1016/S0168-9452(00)00396-4

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667. doi:10.1007/s00425-003-1028-1

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Yalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2−, H2O2 and ·OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 135:3114–3123. doi:10.1104/pp.104.044784

    Article  Google Scholar 

  • Luu-The V, Paquet N, Calvo E, Cumps J (2005) Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques 38:287–293

    Article  PubMed  CAS  Google Scholar 

  • Medina MI, Quesada MA, Pliego F, Botella MA, Valpuesta V (1999) Expression of the tomato peroxidase gene TPX1 in NaCl-adapted and unadapted suspension cells. Plant Cell Rep 18:680–683. doi:10.1007/s002990050642

    Article  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. Plant J 29:257–268. doi:10.1046/j.0960-7412.2001.01215.x

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their associacion with lignification. Plant Cell Physiol 38:1118–1126

    PubMed  CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540. doi:10.1016/j.tplants.2004.09.002

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MAK (2005) Complementary interactions between oxidative stress and auxin control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Őtvős K, Domoki M, Fehér A (2007) Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin. Plant Growth Regul 51:109–117

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29:2002–2007. doi:10.1093/nar/29.9.e45

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI et al (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:117–1127. doi:10.1104/pp.122.4.1119

    Article  Google Scholar 

  • Quiroga M, De Forchetti SM, Taleisnik E, Tigier H (2001) Tomato root peroxidase isoenzymes: kinetic studies of the coniferyl alcohol peroxidase activity, immunological properties and role in response to salt stress. J Plant Physiol 158:1007–1013. doi:10.1078/0176-1617-00304

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136. doi:10.1104/pp.110.1.125

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632. doi:10.1104/pp.001222

    Article  PubMed  CAS  Google Scholar 

  • Romero-Romero T, Sánchez-Nieto S, SanJuan-Badillo A, Anaya AL, Cruz-Ortega R (2005) Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill. (Solanaceae). Plant Sci 168:1059–1066. doi:10.1016/j.plantsci.2004.12.002

    Article  CAS  Google Scholar 

  • Sanchez M, Pena MJ, Revilla G, Zarra I (1996) Changes in dehydroferulic acid and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyls. Plant Physiol 111:941–946

    PubMed  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implication for the control of elongation growth. Plant J 28:679–688. doi:10.1046/j.1365-313x.2001.01187.x

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828. doi:10.1007/s00425-001-0699-8

    Article  PubMed  CAS  Google Scholar 

  • Tyburski J, Krzemiński Ł, Tretyn A (2008) Exogenous auxin affects ascorbate metabolism in roots of tomato seedlings. Plant Growth Regul 54:203–215

    Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507. doi:10.1016/S0981-9428(02)01417-1

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448. doi:10.1104/pp.126.4.1438

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Grant of the Polish State Committee for Scientific Research (Grant No. 2 P04C 068 26) and by the Grant of the Rector of the Nicolaus Copernicus University (Grant No. 525-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Tyburski.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyburski, J., Dunajska, K., Mazurek, P. et al. Exogenous auxin regulates H2O2 metabolism in roots of tomato (Lycopersicon esculentum Mill.) seedlings affecting the expression and activity of CuZn-superoxide dismutase, catalase, and peroxidase. Acta Physiol Plant 31, 249–260 (2009). https://doi.org/10.1007/s11738-008-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0225-8

Keywords

Navigation