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Abstract
Social learning is a collective approach to decentralised decision-making and is comprised 
of two processes; evidence updating and belief fusion. In this paper we propose a social 
learning model in which agents’ beliefs are represented by a set of possible states, and 
where the evidence collected can vary in its level of imprecision. We investigate this model 
using multi-agent and multi-robot simulations and demonstrate that it is robust to impre-
cise evidence. Our results also show that certain kinds of imprecise evidence can enhance 
the efficacy of the learning process in the presence of sensor errors.

Keywords Social learning · Distributed decision-making · Multi-agent systems · Imprecise 
evidence

1 Introduction

In distributed autonomous systems, individuals learn about the state of the world by 
both individually gathering evidence directly from the environment, and by collectively 
fusing their own beliefs with those of their peers; the latter is usually referred as social 
learning and can be observed in many social animals (Heyes, 1994). Social learning is 
inherently decentralised, involving local interactions between agents to share informa-
tion and to reach consensus. For example, in one simple form of social learning, a popu-
lation of agents attempt to learn the true state of the world as represented by the truth 
values of several propositions. A proposition in this context could assert whether or not 
a certain property holds. For example, in a decentralised wildfire detection mission it 
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may be necessary to determine whether or not fires are present in each of the different 
grid locations overlaying a map of the search area.

In the social learning literature, noise is usually modelled as Gaussian variation from 
a true value (Lee et al., 2021; Talamali et al., 2019) or as a probability of receiving false 
evidence (Lawry & Lee, 2020). In this paper we differentiate noise of this form, which 
we hereafter refer to as inaccuracy, from imprecision and we show that the latter also 
has an important and potentially useful effect on social learning. Specifically, noise as 
outlined above, relates to the accuracy of the evidence obtained with reference to the 
true state of the world. In other words, evidence is accurate if it is consistent with the 
true state of the world and inaccurate otherwise. In contrast, evidence is imprecise if 
it fails to identify a single state of the world. From this perspective it is possible for 
evidence to be both accurate and imprecise since this simply means that the evidence 
is consistent with the true state of the world but does not uniquely identify it. In other 
words, the evidence is consistent with a number of possible states including the true 
state. In this case the degree of precision of the evidence is dependent on the number of 
states that are consistent with it.

From this perspective we consider noise to consist of both inaccuracy and imprecision, 
where the former describes the difference between the evidence gathered and the ground 
truth, and the latter is where evidence fails to identify a single state of the world. Imprecise 
evidence is inherently less informative than precise evidence, but this means that in the 
presence of errors it is more likely to be consistent with the true state of the world. Fig-
ure 1 illustrates the distinction between accuracy and precision for noisy evidence in rela-
tion to the ground truth. The centre of the rings represents the true state of the world and an 
orange circle depicts the evidence gathered by an agent. The accuracy of the evidence then 
depends on the distance of the centre of the circle to the true state, while the imprecision of 
the evidence depends on the area of the circle. Hence, imprecision and inaccuracy are inde-
pendent features of the evidence. Increasing/decreasing the radius of the circle results in 
an increase/decrease in the precision of the evidence, respectively, but the accuracy of the 
evidence remains unchanged. On the other hand, the distance from the centre of the orange 
circle to the inner-most ring is inversely proportional to the accuracy of the evidence (i.e., 
the greater the distance, the lower the accuracy). In this paper, imprecision is the size of 
the evidence set or the number of possible states consistent with the evidence, and can be 
a parameter of our model. Accuracy, on the other hand, is simply a measure of the distance 
from the evidence set to the true state of the world and is assumed to be a feature of the 
interaction between the agents’ sensors and the environment.

It has been suggested in the literature that some social insects may be able to adapt and 
even take advantage of imprecision to make more robust collective decisions (De Marco 
et al., 2008; Meyer et al., 2017; Dussutour et al., 2009). In this context it is therefore inter-
esting to investigate if artificial multi-agent systems can adapt to imprecise evidence and 

Fig. 1  Accuracy and precision. From left to right: accurate and precise; accurate and imprecise; inaccurate 
and imprecise; inaccurate and precise



Swarm Intelligence 

1 3

whether some forms of imprecise evidence may even enhance learning in the presence of 
sensor error or other types of environmental noise.

The contributions of this paper are twofold; 1) we show that social learning can be 
robust to imprecise evidence that arises naturally when evidence gathering provides only 
partial information about the state of the world; 2) we show that in the presence of inac-
curacy, updating based on a certain type of imprecise evidence can actually improve social 
learning performance. This type of imprecise evidence takes the form of a neighbourhood 
in state space centred around an agent’s estimated state of the world as obtained from 
the environment. More specifically, we focus on the state-of-the-world problem in which 
agents attempt to learn the truth values of a set of propositions based on direct but inac-
curate and imprecise evidence and on local interactions with other agents with whom they 
fuse their beliefs. In particular, using agent-based and robot simulation experiments, we 
show that the proposed set-based social learning model is robust to different degrees of evi-
dential imprecision where the evidence received by the agents is inherently imprecise. We 
then propose a novel form of evidential imprecision, accompanied by an evidence-updating 
strategy. This strategy transforms the precise evidence obtained by agents into imprecise 
evidence, allowing us to regulate the desired degree of imprecision. In this case simulation 
experiments suggest that systems using more imprecise representations of evidence can 
be more robust and more accurate than those using precise representations for certain evi-
dence and fusion rates in some circumstances.

An outline of the remainder of the paper is as follows: In Sect. 3 we describe a set-based 
model for social learning, including approaches to belief fusion and evidential updating. 
In Sect. 4, we describe a series of simulations experiments that investigate the robustness 
of social learning to imprecise evidence occurring as the result of partial information. As 
well as agent-based simulations this also includes multi-robot simulation experiments of a 
location classification task. Then in Sect. 5 we introduce imprecise evidence in the form of 
a Hamming distance neighbourhood of an estimated state of the world, where the latter is 
obtained as direct evidence from the environment. In Sect. 6 we explicitly consider robust-
ness of performance to varying rates at which evidence is obtained and at which fusion is 
carried out, and show that imprecise evidence neighbourhoods can lead to more robust per-
formance. Section 7 applies imprecise evidence neighbourhoods to the location classifica-
tion problem introduced in Sect. 4. Finally, we give some conclusions and outline possible 
future directions in Sect. 8.

2  Background

Social learning is common in social animals, like ants and bees, where individuals learn 
collectively by both observation and imitation of others (Heyes, 1994). Decentralised social 
learning and decision-making are also well studied in swarm robotics  (Brambilla et  al., 
2013). One common family of consensus formation problems are best-of-n problems, in 
which a swarm of robots collectively identifies the best option out of n possible options on 
the basis of local interactions and limited feedback (Parker & Zhang, 2009). An extensive 
overview of these problems can be found in (Valentini et al., 2017). Furthermore, social 
learning is not just limited to consensus formation; it can also shape individual behaviours. 
For instance, social feedback from peers can influence the altruistic attitude of individuals 
in a resource sharing scenario (Rausch et al., 2020a). This paper will instead focus on a 
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different social learning task in which the system must learn a complete description of the 
true state of its environment.

We consider social learning in terms of two distinct processes; evidential updating and 
belief fusion (Crosscombe & Lawry, 2021). The former is the the process by which indi-
viduals learn directly from the environment, by updating their current beliefs based on 
evidence received from the environment. In robotic applications evidence might take the 
form of signals received by various sensor modalities, such as cameras, microphones, and 
ultra-sound sensors. In a more general multi-agent context, evidence could take the form 
of data received directly relating to a particular instance or set of instances. The interaction 
between evidential updating and belief fusion has been studied based on the well known 
bounded confidence model (Hegselmann et al., 2006), which suggests that the whole soci-
ety can end up reaching a consensus on the truth assuming an appropriate confidence level 
and evidence rate. In addition, in the context of social epistemology, Douven and Kelp 
(2011) argue that the communication between agents can significantly enhance the perfor-
mance in truth approximation due to the ability to correct errors while propagating infor-
mation across the population. For problems of this type it has been argued that approaches 
combining individual evidence collection and local fusion of beliefs between individuals 
are more robust to noise and more efficient than those that rely on evidence collection 
only (Douven & Kelp, 2011; Crosscombe et al., 2017; Lee et al., 2021). In this paper we 
investigate the impact of evidential imprecision on social learning by proposing a model 
in which the level of imprecision of the evidence obtained by the agents varies. We then 
implement this model using both agent-based and robotic simulations.

The idea that imprecise evidence can sometimes be beneficial in social learning is also 
found in the study of social insects. The honeybee’s waggle dance to communicate infor-
mation about potential food sources is imprecise in its direction indication, and this results 
in variation in the angles indicated when the dance is repeated. This imprecision can be 
observed in either a series of waggle runs by a single dancing bee or between individuals 
with there typically being a variation of between 10° and 15°(De Marco et al., 2008). The 
“tuned error" hypothesis  (Towne & Gould, 1988) states that this imprecision is used for 
spreading recruits over a certain spatial configuration and is selected for by natural selec-
tion. Weidenmüller and Seeley (1999) reported experiments that supported this hypoth-
esis by finding smaller divergence angles in dances indicating potential home sites than 
in dances indicating food sources. The former are always point locations and the latter are 
often patches. However, other studies shed doubt on this hypothesis by suggesting that the 
imprecision of honey bee dances is the result of physical constraints and the honeybees’ 
limited capacity to perform what is a complex sensory task (Couvillon et al., 2012; Preece 
& Beekman, 2014; Tanner & Visscher, 2006). Despite the debate concerning this hypoth-
esis, simulation studies have suggested that an imprecision level of 10° is beneficial while 
a higher degree of imprecision is only beneficial when the food source is scarce  (Okada 
et al., 2014).

Ants have also been reported to take advantage of noise in environmental information in 
order to adapt to dynamic environments. Dussutour et al. (2009) suggested that the impre-
cision caused by variation in ants’ trail following behaviour between individuals, as well 
as by individuals’ behaviour over time, plays an important role in enabling the effective 
tracking of changes in the environment. Meyer et al. (2017) suggests that the crucial role of 
imprecision is not tied to a particular organism or species but can be relevant across a wide 
range of systems.

In collective intelligence, noise is usually studied in terms of the speed-accuracy trade-
off of collective decision-making tasks (Valentini et al., 2017; Douven, 2019). Collective 
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decision-making tasks usually require a system-level balance between speed and accuracy. 
Methods for making reliable decisions are usually slower than those for which a greater 
degree of inaccuracy is tolerated. For example, using a larger neighbourhood when apply-
ing majority rule on social networks can speed up the process of reaching consensus, how-
ever this can also reduce accuracy in collective decision-making  (Valentini et al., 2016). 
Khaluf (2022) proposed a weighted fusion model where the weights are determined by 
the robots’ self-classification, which is based on the divergence of their beliefs compared 
to their neighbours. This method can enhance consensus accuracy, especially in the pres-
ence of sensor noise, albeit at the expense of additional time. In this paper we investigate 
how explicitly incorporating a certain kind of imprecise evidence into the evidential updat-
ing process can lead to improved performance in social learning when there is sensory 
error. The idea is that agents obtain an estimate of the true state of the world as direct evi-
dence from interacting with the environment. However, they then update so as to also allow 
states that are sufficiently similar to the estimated state to be taken into account. Sufficient 
similarity between states in this context will then be modelled as a threshold on distance 
between different states, and form a parameter of the proposed social learning method.

Belief sets are a direct way to represent beliefs and evidence with varying levels of 
imprecision, in which an agent’s belief is represented by the set of states or worlds that 
it regards as being possible  (Dubois et al., 2016). Therefore, the cardinality of the set is 
a straightforward measure of the imprecision of an agent’s belief or evidence. As such, 
we adopt a set-based learning model in which beliefs about the world and evidence col-
lected by agents are represented by sets of states. Belief sets are one of the simplest for-
malisms for representing uncertainty and imprecision in AI. The use of sets of states to 
represent beliefs, sometimes referred to as ‘epistemic sets’, dates back to Hintikka’s pos-
sible worlds semantics (Hintikka, 1962), with some early applications in AI and computer 
science found in Vardi (1989) and Ruspini (1987). More recently, epistemic sets have also 
been applied to a simple social learning problem using an abstract agent-based simula-
tion (Lawry et al., 2019). Using epistemic sets allows for agents to hold beliefs of varying 
levels of precision, which has the potential to improve system-level robustness to noise 
compared with other simpler models, e.g., the weighted voter model (Valentini et al., 2014; 
Crosscombe et al., 2017). Opinion diffusion logic is relevant in this context as it sometimes 
employs a semantic model of belief equivalent to epistemic sets (Schwind et al., 2015). In 
particular, an agent’s belief or evidence can be represented by a logical formula F which 
has a model theoretic representation equivalent to the epistemic set consisting of those 
states (or interpretations) in which F is true (Cholvy, 2018). The imprecision of an epis-
temic set then depends on the generality of the associated formula. For example, let l1 and 
l2 denote propositions asserting that there is a wildfire in locations 1 and 2, respectively. In 
this context a state of the world is a pair of truth values, each of which is either 0 or 1, indi-
cating whether l1 and l2 are false or true. In this case evidence l1 ∧ l2 asserts that there are 
wildfires in both locations, while evidence l1 ∨ l2 asserts that there is a wildfire in at least 
one of the two locations. Clearly the second formula is more general than the first and this 
is reflected in the relative imprecision of the associated epistemic sets as given by {⟨1, 1⟩} 
and {⟨1, 1⟩, ⟨1, 0⟩, ⟨0, 1⟩} , respectively.

For epistemic sets we can define fusion operators that work on the principle that disa-
greement or inconsistency between agents results in more imprecise beliefs, while agree-
ment between agents increases precision. In this way Lawry et  al. (2019) suggested the 
fusion process can help to both propagate correct information while facilitating error cor-
rection provided that belief imprecision is linked to evidence collection. There is a strong 
relationship between epistemic sets and Dempster-Shafer theory since in the latter beliefs 
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can be thought of as being characterised by mass functions defined over epistemic sets. 
In Dempster-Shafer theory a large number of fusion operators have been proposed in the 
literature, an overview of which is given by Osswald and Martin (2006). The robustness 
to noise of several of these operators applied to the best-of-n problem has been compared 
by Crosscombe et  al. (2019). In particular, best performance in noisy conditions was 
achieved by Yager’s operator (Yager, 1992) and by Dubois & Prade’s operator (Dubois & 
Prade, 1988). Bartashevich and Mostaghim (2021) expanded their exploration to include a 
broader range of operators from the existing literature, further substantiating the potential 
of fusion rules in evidence theory for robust collective intelligence. In general, the fusion 
process provides a means of resolving inconsistencies between different sources and hence 
achieving consensus. Several pairwise operators for fusing beliefs have been proposed and 
Dubois et al. (2016) suggest a number of desirable properties that any information fusion 
process should satisfy.

3  Agent‑based social learning model

Consider a population of agents cooperating in an attempt to learn the state of their envi-
ronment. We assume that the state of their environment can be described by a finite set of 
propositions P = {p1,… , pn} . From this perspective a state s is the allocation of Boolean 
truth values to each of the propositions. Let � denote the set of all states so that |�| = 2n . 
An agent’s belief B ⊆ � is the set of states which they believe can possibly be the true state 
of the world. Imprecise beliefs are then the subsets of � with cardinality |B| > 1 , while a 
singleton belief B = {s} indicates that the agent is certain that s is the true state. We assume 
that agents adopt a closed-world assumption which in this context means assuming that � 
covers all possible states of the world. Therefore, agents’ beliefs are constrained such that 
B ≠ ∅ since it cannot be the case that all states in � are impossible. Note that a given belief 
∅ ≠ B ⊆ � classifies each proposition pi as being either true (if s(pi) = 1 for all s ∈ B ), false 
(if s(pi) = 0 for all s ∈ B ), or otherwise uncertain. Hence, the more imprecise an agent’s 
belief, the more propositions the agent believes to be uncertain. This indicates a natural 
relationship between the epistemic model of beliefs and three-valued approaches (Cross-
combe et al., 2017). For example, consider a search and rescue scenario with 8 locations 
where pi denotes the proposition ‘casualties are in location i’ for i = 1,… , 8 . Now consider 
the belief B given by:

In this case B corresponds to the belief that there are casualties either in location 1 or loca-
tion 2 but not both, and there are no casualties in any other location. Therefore, according 
to B no propositions are classified as being certainly true, p3,… , p8 are classified as being 
certainly false, and p1 and p2 are uncertain.

We now introduce the pairwise fusion operator for combining agents’ belief sets pro-
posed by Dubois and Prade (1988, eq. 56):

In addition to fusing with other agents, agents receive direct information from the environ-
ment as evidence. For evidential updating, we assume that the evidence takes the form of 
a set of assertions about the true state of the world. Suppose, for example, agents receive a 

B = {⟨1, 0, 0, 0, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0, 0, 0, 0⟩}.

(1)B1 ⊙ B2 =

{
B1 ∩ B2 ∶ B1 ∩ B2 ≠ �

B1 ∪ B2 ∶ B1 ∩ B2 = �
.
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set of states that can possibly be the true state. Given the form of E we then propose that an 
agent updates its belief B to B|E by applying the operator as follows:

This method of evidence updating in which certain states are ruled out as part of the 
learning process has already been applied effectively in social learning  (Lawry et  al., 
2019). Since evidence corresponds to a set of states, then we can naturally measure its 
imprecision by its cardinality, i.e. the greater |E| the more imprecise the evidence. For 
instance, consider a search and rescue scenario involving 8 distinct locations. If we have 
E1 = {⟨1, 0, 0, 0, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0, 0, 0, 0⟩} and E2 = {⟨0, 1, 0, 0, 0, 0, 0, 0⟩} , then 
|E1| = 2 > |E2| = 1 . In other words, E1 is evidently more imprecise than E2 . In this context:

• E1 suggests that there are casualties either in location 1 or location 2 (but not in both), 
and no other locations have casualties.

• E2 , on the other hand, is a more precise evidence set and indicates that there are casual-
ties only in location 1, with no casualties reported in any other location.

In order to investigate the impact of imprecision on social learning we will focus on the 
state-of-the-world problem in which agents attempt to learn the truth values of a set of 
propositions. This will be based both on direct but potentially inaccurate and imprecise 
evidence, in conjunction with local interactions between the agents whereby they fuse their 
beliefs. In Sect. 4 we now investigate how tolerant this form of social learning is to the 
presence of imprecise evidence which arises naturally as the result of only partial informa-
tion being obtained during evidence gathering.

4  Social learning with imprecise evidence

In this section, we introduce two simulation scenarios where imprecise evidence is natu-
rally encountered by the agents/robots. In Sect. 4.1, the agents receive error-free but impre-
cise evidence. In other words, the cardinality of the evidence set will vary while the true 
state of the world will always be included. We then introduce a robotic classification task 
where the imprecision of evidence is dependent on the number of locations visited by 
robots during a single evidence collection episode.

4.1  Agent‑based simulation with random imprecision

This section describes simulations of a multi-agent system with k = 100 agents attempting 
to socially learn the truth values of n = 8 propositions. The agents are initialised without any 
prior knowledge, i.e., they deem every state as being equally possible so that B = � . In order 
to investigate the model’s robustness to imprecise evidence, the degree of evidence impreci-
sion received, as measured by |E| , is varied. For example, we might think of this as occurring 
when agents gradually learn facts about the world from different sources and expressed as 
logical formulas with different levels of generality. In this section, we only consider an error-
free scenario such that the evidence obtained by the agents will be guaranteed to include the 
true state of the world s∗ , while each of the other states has equal probability of being sampled 

(2)B|E =

{
B ∩ E ∶ B ∩ E ≠ �

B ∶ otherwise
.
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without replacement. The number of states that are not s∗ included in the evidence set will 
depend on a model parameter controlling the level of imprecision.

In practice, both evidence and agent interactions may be sparse or limited. We model this 
probabilistically as follows: Each agent conducts evidential updating and belief fusion itera-
tively. During each iteration, every agent has probability � (the evidence rate) of successfully 
obtaining evidence from the environment, and the agent will stop collecting evidence if it is 
certain about every proposition, i.e. it has a singleton belief. Agents also learn from the evi-
dence being gathered by their peers using belief fusion. Every agent in the population has 
probability � (the fusion rate) of being placed in a pool to fuse their belief with the belief of 
another agent. Each agent within the pool will be randomly paired with another agent and then 
each pair will combine their beliefs using the fusion operator in Equation (1). For every pair, 
both agents will adopt the result of this fusion as their new belief. If the number of agents in 
the pool is odd, then one agent will not take part in fusion.

The evidence received by the agents will be modelled as follows. The degree of the impre-
cision of evidence is pre-defined and varied to investigate the robustness of the set-based 
social learning model to different degrees of evidential imprecision. The evidential impre-
cision is constant across all iterations and across the population. In this section, we present 
error-free simulation results of which the true state of the world is guaranteed to be included 
in the evidence sets and the rest of the states will be randomly selected until the pre-defined 
evidential imprecision |E| is satisfied.

We evaluate performance on this learning task using the average Hamming distance H 
from the agents’ belief values to the true state s∗ . Furthermore, without loss of generality, we 
assume that s∗ is such that s∗(pi) = 1 for i = 1,… , n . In this context, the Hamming distance 
between states is defined as follows: Let s1 = ⟨s1(p1),… , s1(pn)⟩ and s2 = ⟨s2(p1),… , s2(pn)⟩ 
be two states, then the Hamming distance between them is given by:

.
We then extend this to give a normalised Hamming distance between an epistemic set 

B ⊆ � and the true state of the world s∗ as follows:

Furthermore, we evaluate the performance at the population level, � , as the average Ham-
ming distance between the population of agents A of size k, and s∗ , re-scaled as an accu-
racy measure such that:

This accuracy measure � is ranging from 0 to 1. � = 0 represents the belief is completely 
incorrect and � = 1 indicates the belief is completely correct about every proposition. The 
population’s initial belief is set to be completely uncertain and therefore the system starts 
from an accuracy of � = 0.5.

In Fig. 2 we show the average accuracy � of the agents’ beliefs against time t for differ-
ent values of evidential imprecision |E| and different combinations of evidence rate, � , and 
fusion rate, � . For each combination of parameters we ran the experiments 50 times and 

(3)H(s1, s2) =

n∑

i=1

|s1(pi) − s2(pi)|.

(4)H(B, s∗) =
1

|B|
1

n

∑

s∈B

H(s, s∗).

(5)�(A, s∗) = 1 −
1

k

∑

B∈A

H(B, s∗).
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the results are averaged over those 50 runs. We see that the population converges to � = 1 
at steady state for every combination of � , � , and |E| . Since the only belief for which � = 1 
is B = {s∗} it follows that the population has reached consensus by correctly and precisely 
identifying the true state of the world. Furthermore, this suggests that this social learning 
model is robust to various levels of evidential imprecision, provided that s∗ ∈ E.

In Fig. 2a we see that the population converges more slowly as evidence imprecision 
increases, such as when evidence is sparse ( � = 0.1 ) and fusion is infrequent ( � = 0.1 ). For 
|E| = 1 , the population converges quickly to consensus by around t = 25 . Convergence time 
increases to around 80 time steps when |E| = 255 , this corresponding to the most imprecise 
non-vacuous evidence for n = 8 propositions since only one state of the world is emitted. 
In a scenario where evidential updating is frequent while fusion is infrequent, as shown in 
Fig. 2b, the population converges faster for all levels of evidence imprecision than when 
evidential updating is infrequent; within 10 time steps for |E| = 1 and within 25 iterations 
for |E| = 255 . When evidence is sparse and fusion is more frequent, Fig. 2c shows that the 
population also reaches consensus faster than in Fig. 2a whereas all levels of imprecision 
converge after around the same number of time steps. In Fig. 2d, both evidential updating 
and fusion are frequent, resulting in fast convergence to the true belief, with little difference 
between the different levels of evidential imprecision. The effect of evidence imprecision 
on the convergence time decreases as we increase � or � , as seen in Fig. 2b–d. Futhermore, 
from Fig.  2b, c we see that both more frequent evidence and more frequent fusion can 
reduce the differences in the learning speed of the population. Furthermore, the frequency 
of belief fusion has the greater effect. Comparing Fig. 2b, c, we see that the convergence 
speeds are less affected by the level of evidential imprecision when agents learns more 
socially ( � = 0.1, � = 0.9 ) than when they learn more independently ( � = 0.9, � = 0.1).

(a) ρ = 0.1, σ = 0.1 (b) ρ = 0.9, σ = 0.1

(c) ρ = 0.1, σ = 0.9. (d) ρ = 0.9, σ = 0.9.

Fig. 2  Average accuracy at steady state against time t for evidence rate � ∈ {0.1, 0.9} , fusion rate 
� ∈ {0.1, 0.9} , and evidential imprecision |E| = 1,… , 255
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So far, the evidence received by agents in this section has been error-free. However, in 
real-world situations it is highly likely that the evidence received could be inaccurate; often 
due to noisy sensing equipment or even environmental noise. In the following section we 
will investigate social learning in a multi-robot scenario in which both evidential inaccu-
racy and imprecision are present.

4.2  Location classification task by multi‑robot system

In practice, a potential source of imprecision is when agents receive only partial informa-
tion about the state of the world during the evidence collection process. In this section 
we consider a particular form of imprecise evidence arising from partial knowledge in a 
multi-robot system in which robots are investigating properties of a number of different 
locations. During an evidence collection episode individual robots are only able to visit a 
limited number of locations and, hence, obtain only partial information about the full state 
of the world. In this context our results show that for a simple robot arena environment, 
social learning is robust to a range of different evidence collection bounds while being 
more effective than an approach based on individual, evidence-based learning alone.

We conduct simulation experiments for a multi-robot system needing to make a col-
lective decision about the true state of the world by attempting to classify n locations as 
either being red or green. Specifically, the proposition pi asserts that location i is red and 
¬pi asserts that location i is green. In this case a state si is the Boolean allocation of the two 
colours to each location and beliefs are the set of the allocations deemed possible.

We now describe a series of experiments in which k = 5 or 10 e-puck robots investigate 
n = 4 , 8 or 12 locations arranged in a circle, each coloured either red or green. This is 
a similar configuration to that used by Lee et al. (2021). Evidence is collected using the 
e-puck’s in-built camera and with an additional error imposed on the classification process. 
To model this we introduce an error rate � corresponding to the probability of receiving 
evidence that is inconsistent with the true state of the world. More specifically, let the true 
state be denoted by s∗ , then in the case that an agent receives information about location 
s(pi) they will receive s(pi) = s∗(pi) with probability 1 − � , and s(pi) = 1 − s∗(pi) with prob-
ability � . Between evidence collection episodes individuals move to the centre of the arena 
for fusion. The goal is for the whole system to reach consensus by identifying the true state 
of the world, i.e., the correct colour of each location from the 2n = 16 , 256, or 4096 pos-
sibilities for n = 4, 8 or 12, respectively.

We simulate e-puck robots (Mondada et al., 2009) which are well-suited to a classifica-
tion task of this kind since they are equipped with a range of sensors. Experiments were 
performed in the CoppeliaSim1 simulation environment which models the physical charac-
teristics of the e-pucks, including motion, communication and sensing. Figure 3 shows the 
experimental arena which has n = 8 locations equally distributed around a 1.12 m circle 
with the k = 5 e-pucks’ fusing positions spaced evenly around a 0.3 m disc at the centre. 
Each e-puck returns to their fusing positions after an evidence collection episode to fuse 
their beliefs with another robot also at their positions at that time. The robots will only be 
able to communicate when they are at the fusing positions, i.e., around the central area of 
the arena, this restriction providing a basic model of a scenario in which communication is 
limited.

1 https://www.coppeliarobotics.com/
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A group of e-pucks are initialised without any prior knowledge and hence with ini-
tial beliefs corresponding to the set of all states, representing total ignorance. They are 
given the coordinates of all locations and relevant fusing positions and apply simple path 
planning to travel between sites and the fusing positions. The e-pucks featured have 8 IR 
proximity sensors and therefore we apply Braitenberg-based collision avoidance algo-
rithms (Braitenberg, 1986). The system learns the environment iteratively with individuals 
alternating between episodes of evidence collection and fusion. During an evidence col-
lection episode a robot visits some of the sites about which they are currently uncertain, 
where the number of locations visited is less than a pre-specified upper bound Nu.

This parameter Nu is defined as the maximum number of locations that a robot is able to 
visit during each evidence collection episode, this modelling plausible real-life constraints 
imposed by both robot hardware, and the scale and complexity of the environment, on dis-
tance that can be travel during evidence collection. A natural consequence of this bound is 
that evidence collected during each episode will typically only provide partial information 
in the form of noisy data concerning the class of only some of the locations. The repre-
sentation of this partial information will take the form of imprecise evidence. We can then 
determine the impact that imprecise evidence has on the population by varying Nu . Robots 
will obtain precise evidence if they visited a relatively high numbers of locations since 
the evidence E they received would then identify a small number of possible states, i.e., 
have low cardinality. More specifically, the relationship between the number of sites visited 
v and the cardinality of the evidence set is given by |E| = 2n−v . Each robot selects up to 
Nu locations from the set of locations for which either class is still possible according to 
their current belief B. At each location an e-puck uses its camera to capture a colour value 
indicating the class to which that particular site belongs. After visiting all the locations 
that they have selected, they update their belief according to Equation (2) and return to 
their pre-specified central location. Each robot then broadcasts its belief along with a flag 
message identifying the broadcaster as being ready to fuse. In our model we simulate the 

Fig. 3  Top-down view of the 
experimental setup for n = 8 
sites. The red/green squares indi-
cate the location of the sites, and 
the white circles show the fusion 
positions. An e-puck resides at 
each fusion position
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communication between e-pucks using the built-in CoppeliaSim functions while physical 
e-pucks can achieve the same communication via on-board Wi-Fi or Bluetooth functional-
ity in practical applications. They also listen for any other robots currently broadcasting 
and fuse their belief with the transmitted belief in the first such message they receive.

Figure 4 shows a state transition diagram for the above process. Robots have 3 internal 
states: Investigation (I); Evidential updating (E); and Belief fusion (F). Robots are initial-
ised in state I before they select locations to investigate and visit them in order, collecting 
class information as they go. Once all relevant locations have been visited the robot transi-
tions to state E and updates their belief based on the evidence collected. They then transi-
tion to the state F, return to their fusing positions and perform fusion. If their beliefs now 
identify a single complete set of classifications for all the locations they remain in their 
fusing positions in state F and carry out another fusion, otherwise they transition to state I 
for another evidence collection episode.

We use the accuracy metric defined in Equation (5) to measure the performance of 
the whole population of robots. Notice that for evidence-only learning, that is when the 
belief fusion process is disabled and robots learn independently based only on the evidence 
they receive, the simulations lead to Bernoulli experiments with the success probability 
p = 1 − � . The expected value of the Hamming distance between a robot’s belief and the 
true state is then as follows:

We therefore employ 1 − � as a benchmark to illustrate the improvement in performance 
which results from robots interacting with one another and fusing their beliefs to achieve 
social learning.

We now present results from simulation experiments conducted with k = 5 or 10 
e-pucks, n = 4 , 8, or 12 sites and different upper bounds Nu on the number of sites vis-
ited during an evidence collection episode. For each combination of parameters we ran the 
experiments 20 times. The results presented herein are then averaged across runs with error 
bands corresponding to the 5th and 95th percentiles.

Figure 5 shows the log average cardinality log2|B| (blue line) and the average accuracy 
� (purple line) of the robots’ beliefs against time t for n ∈ {8, 12} locations with an upper 
bound Nu = 3 . For all plots in Fig. 5 the dotted orange lines indicate the value of 1 − � ; 
i.e. the expected accuracy when agents learn individually from direct evidence alone. For 
instance, Fig. 5a shows results from an evidence-only learning scenario where we see that, 
for n = 12 locations, k = 10 e-pucks and error rate � = 0.2 , the average cardinality of the 
population’s beliefs decreases to 0 over time while the average accuracy of the system con-
verges to the expected accuracy of 1 − � . This is because, without belief fusion, agents 
are dependent on the evidence that they receive directly, without any communication with 
other agents. This leads to agents adopting erroneous beliefs about the state of the world. 

(6)�(H(B, s∗)) =
1

n

n∑

i=0

(
n

i

)
i(1 − �)(n−i)�i = �.

Fig. 4  The robot’s state transition 
model. (I) When the robot visits 
all of the locations it has planned 
to visit. Evidential updating (E), 
and Belief fusion (F)

E FI
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An accuracy value above the dotted line is therefore indicative of the system’s ability to 
correct for errors as a direct result of social learning.

From Fig.  5b–f we see that, across all runs and for all parameter combinations, the 
robots converge to a belief of cardinality |B| = 1 , i.e., a singleton belief, as shown by the 
blue lines decreasing to log2|B| = 0 . This means that, under our model, all of the e-pucks 
eventually remain stationary at their central fusing positions having reached a consensus 
about the state of the world that they believe to be true. Of course, the primary purpose of 
location classification is for the system to accurately identify the true state of the world. 
The purple lines in Fig. 5b–f show the average accuracy of the population plotted against 
time. Broadly, we see that the system is able to correctly classify locations with high accu-
racy. Starting with an error-free scenario in Fig. 5b with 8 locations and an upper bound 
of Nu = 3 as well as k = 5 e-pucks, the robots always identify the true state of the world 
s∗ with accuracy � = 1 in under 100 seconds across all 20 experiments. This is perhaps 
unsurprising when robots obtain perfect information during evidence collection. In Fig. 5d 
we show a moderately noisy scenario with � = 0.2 and an upper bound Nu = 3 . With noisy 

Fig. 5  Average log cardinality log2|B| and average accuracy � plotted against iteration for Nu = 3 with dif-
ferent numbers of agents k, locations n and error rate � . a Evidence-only learning (without fusion). b–f 
Social learning (with fusion)
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evidence the system is slower to reach a consensus but still manages to converge on a 
belief with an avearage accuracy of 0.98 after roughly 400 seconds. With higher noise lev-
els � = 0.3 and � = 0.4 , the robots converges with a lower accuracy � = 0.85 and � = 0.75 
and more variation across multiple runs, as shown in Fig. 5e, f. However, the systems still 
manage to reach consensus at a singleton belief in these higher noise level scenarios, with 
higher time costs, around 700 seconds.

The upper bound on the number of locations Nu also has an impact on accuracy when 
the population size k is small, with higher accuracy being achieved for intermediate values 
of Nu . For example, Fig. 6a shows the average accuracy against the upper bound Nu taking 
values from [1, n], for k = 5 and n ∈ {4, 8, 12} , with moderate error rate � = 0.2 . In Fig. 6a 
the best performance is obtained when the visit bound Nu = 2, 3 where, at steady state, the 
system achieves an accuracy � = 1 on average. That means the system reaches consensus 
on s∗ across all the 20 experiments. For Nu = 1 and Nu = 4 , however, the accuracy falls to 
around 0.87 and 0.95, respectively. More generally, good performance across all Nu values 
shows that this form of social learning is still accurate under imprecise evidence. Although, 
there is some reduction in performance for the most imprecise case when a maximum of 
only 1 location is visited in each evidence collection episode.

Increasing the number of robots k can improve the overall performance of social learn-
ing and decrease the variance in accuracy, as shown in Fig.  6a, b. The system achieves 
greater accuracy for all upper bounds with k = 10 robots than k = 5 robots. The perfor-
mance is also less variant across simulations and across different Nu.

Overall, the results of the robot simulation experiments show that this form of multi-
robot social learning achieves high accuracy across all different imprecision levels. The 
approach therefore has the potential to be effectively applied to location classification tasks 

Fig. 6  Average accuracy at steady state for various upper bounds Nu and error rate � = 0.2 . a n ∈ {4, 8, 12} 
from left to right with k = 5 . b n ∈ {4, 8, 12} from left to right with k = 10



Swarm Intelligence 

1 3

conducted by multi-robot systems. In this approach, each robot does not have to investigate 
every location for the system to reach consensus. There can be good performance in sce-
narios in which access to some locations is restricted, either by the range of the robots (e.g., 
due to power constraints) or a heterogeneous system possessing different levels of access 
or capabilities. Furthermore, the approach scales well to scenarios in which the number of 
locations is greater than the number of robots.

Figure 7 shows the average convergence time for the system against Nu . This is the time 
it takes for the robots to reach a consensus. For � = 0.2 we see a relatively consistent con-
vergence time for different Nu , which demonstrates the robustness of the social learning 
model to noisy evidence and insensitivity to the level of evidential precision. In general, 
the time cost of the classification task is insensitive to both the population size and differ-
ent constraints on the number of locations that can be visited in an evidence collecting epi-
sode. In other words, the convergence time is insensitive to the different levels of evidential 
imprecision.

In Sect. 4 we have shown that social learning can perform well when evidence is impre-
cise. This is the case even when the level of imprecision is very high or if imprecision is 
combined with noise. In other words, social learning can be robust to evidence that is both 
imprecise and noisy. In the following sections we show that social learning performance 
can actually be improved by incorporating imprecise evidence of a particular type and level 
into the belief updating process.

5  The benefits of imprecise evidence in social learning

In this section, we introduce a method to use evidence imprecision as a design parameter 
for social learning and conduct agent-based simulations to investigate the resulting perfor-
mance in social learning. Here we assume the information received by the agent is precise, 
identifying a single state se which may or may not deviate from the true state of the world, 
depending on whether or not there is environmental noise i.e. 𝜖 > 0 . Let He = H(s∗, se) 
denote the Hamming distance between the true state of the world and the state identified 
during evidence collection. In the case that the noise 𝜖 > 0 then He is a random variable 
with the following probability distribution:

(7)P(He = i|�) =
(
n

i

)
�i(1 − �)n−i.

Fig. 7  Average time to convergence against upper bound Nu for � = 0.2 , k ∈ {5, 10} with n ∈ {4, 8, 12} 
from left to right
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Based on Equation (7), the maximum likelihood estimation of He is Ĥe = 0 , Ĥe = 1 , and 
Ĥe = 2 for � = 0.1 , 0.2, and 0.3 respectively if n = 8 . In other words, the probability that 
s∗ = se , i.e. He = 0 , can be relatively small compared to s∗ ≠ se ( He > 0 ) if the values of 
n and � are high. In Fig. 8, s1

e
 , s2

e
 , and s3

e
 are three states independently collected as evi-

dence assuming 𝜖 > 0 . All three states are different from the true state s∗ with the distance 
shown as concentric circles centred on s∗ . However, if we consider imprecise evidence in 
the form of a neighbourhood of the evidence states, then as the radius of that neighbour-
hood increases so will the probability that s∗ is contained in the evidence set (see the brown 
circle around s1

e
 ). We hypothesize that this increase in probability of the evidence being 

consistent with the true state of the world can be potentially beneficial in social learning.
In general, given an estimated state of the world se obtained from evidence then an asso-

ciated imprecise evidence set E(se, H̃) can be defined as a Hamming distance neighbour-
hood of se based on distance threshold H̃ in the following way:

We use H̃ as a representation parameter to control the imprecision of the evidence 
received by the agents. An agent receives precise evidence se and uses it as an estimate of 
the state of the world. This is generated by independently sampling the truth value of each 
proposition and then recording the value 1 with probability 1 − � and 0 with probability � , 
based on the assumption that the actual truth value is 1 for each proposition. The cardinal-
ity of the evidence increases with H̃ , for example, for n propositions, the cardinality of the 

evidence is �E(se, H̃)� = ∑H̃

i=0

�
n

i

�
.

We now describe a number of agent-based simulation experiments to investigate the 
effect of varying the threshold H̃ on social learning. Here we will assume a population of 
k = 100 agents investigating the truth-values of n = 8 propositions. The evidential updat-
ing and belief fusion method as defined in Equation (1) and Equation (2) are also applied 
in this simulation with the evidence rate � ∈ [0.02, 1) and the fusion rate � ∈ [0.02, 1) . 
The population of agents are initialised as having no prior knowledge about the world and 
hence hold completely ignorant beliefs, i.e., B = � , at time t = 0 . Experiments are run 50 
times to account for variation in performance.

Figure  9 shows heat maps of average accuracy for varying fusion and evidence 
rates, at different levels of evidential imprecision as parameterised by different Ham-
ming distance thresholds and different error rates. For each single heat map, with a step 

(8)E(se, H̃) = {s ∶ H(s, se) ⩽ H̃}, where H̃ ∈ {0,… , n − 1}.

Fig. 8  Diagram showing the rela-
tionship between the observed 
state se and the true state s∗
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size of 0.02 we have evidence rates � ∈ [0.02, 1) for the vertical axis and fusion rates 
� ∈ [0.02, 1) for the horizontal axis. The top-left plot in Fig. 9 includes axis labels for 
clarity. The Hamming distance threshold increases from left to right for Fig. 9a–d. Here 
lighter and darker colours indicate higher and lower accuracy, respectively. Across the 
heat maps, when evidence is of low to intermediate imprecision, we see that the sys-
tem is more accurate when the evidence rate is relatively high in relation to the fusion 
rate. In other words, lower fusion rates increase the system’s robustness across various 
evidence rates, error rates, and levels of evidential imprecision. On the other hand, in 
areas where the evidence rate is relatively low compared to the fusion rates, the sys-
tem requires significantly low fusion rates to reach higher accuracy. In regions of the 
parameter space in which the fusion rate is higher than the evidence rate, the learn-
ing accuracy is improved by increasing the Hamming threshold H̃ to different levels, 
depending on different error rates. Beyond the certain points, e.g. H̃ = 3 for � = 0.3 , 
additional increases in the Hamming threshold tend to reduce overall accuracy while 
making it more consistent across various regions of the parameter space. As the level of 
evidential imprecision increases, the performance across the parameter space becomes 
more uniform, displaying a moderate level of accuracy. There is a unique case in Fig. 9a 
when H̃ = 7 , where the accuracy is uniformly low. This particular scenario will be fur-
ther discussed and analysed in conjunction with the subsequent figures.
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(a) ε = 0.1

(b) ε = 0.2

(c) ε = 0.3

(d) ε = 0.4

Fig. 9  Average accuracy � at steady state for different evidence imprecision for different error rates 
� ∈ {0.1, 0.2, 0.3, 0.4} , fusion rates � ∈ [0.02, 1) , and evidence rates � ∈ [0.02, 1) . From left to right: 
H̃ ∈ {0,… , 7}
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From Fig. 9 we see that the optimal Hamming thresholds for achieving the best per-
formance vary depending on the error rates. In particular, when � = 0.3 , from Fig. 9c 
we see that accuracy is highest across the whole fusion and evidence rate parameter 
space when H̃ = 2 or H̃ = 3 . For higher levels of imprecision there is then a relatively 
uniform decrease in performance across the parameter space; see particularly the first 
column from the right when H̃ = 7 . In general, these results indicate that highest overall 
accuracy is obtained for moderate levels of imprecision when using the proposed neigh-
bourhood approach. For lower error rates, Fig. 9a, b show that optimal performance is 
achieved with relatively low Hamming thresholds of H̃ = 1 and H̃ = 2 for � = 0.2 , and 
H̃ = 0 and H̃ = 1 for � = 0.1 . This suggests that at lower error rates, more precise evi-
dence can result in high overall accuracy. In contrast, as shown in Fig. 9d, at a higher 
error rate of � = 0.4 , the model suggests that best performance is achieved with con-
siderably higher Hamming thresholds of H̃ = 3 and H̃ = 4 , i.e. in scenarios where the 
noise level or error rate is higher, more imprecise evidence can be advantageous for 
improving the overall accuracy. Hence, in general these results suggest a pattern of per-
formance in which the higher the noise, the higher the level of imprecision at which 
the best accuracy is obtained. In summary, as observed from Fig. 9, the highest overall 
accuracy across different evidence and fusion rates, and in the presence of significant 
inaccuracy, is achieved at intermediate levels of evidential imprecision, for which we 
see more lighter colours. Furthermore, the optimal level of imprecision increases with 
higher error rates.

A common trade-off in social learning is between speed of learning and accuracy of 
learning; known as the speed vs. accuracy trade-off. This has been studied extensively 
across the collective intelligence literature from insect swarms to swarm robotics (Valentini 
et al., 2016). In the context of evidence neighbourhoods, we can consider the impact of dif-
ferent levels of evidential imprecision on time to convergence. We define convergence as 
all agents reaching a consensus on a singleton belief, i.e. all agents agree that the singleton 
belief represents the true state of the world s∗ . Figure 10 shows the time steps to consensus 
for different Hamming threshold values and error rates, with lighter colours indicating less 
convergence time steps. A maximum limit of 20, 000 time steps is set for each simulation, 
i.e. this will be used as the convergence time for any simulation run that fails to converge 
within 20, 000 time steps to get the average value. It is significant to note that the system 
exhibits increased robustness to varying evidence rates and error rates when the fusion rate 
is low, as demonstrated in Fig. 9. However, a trade-off exists, as lower fusion rates requires 
a greater number of time steps for agents to achieve consensus, as shown in Fig. 10. For 
example, for H̃ = 2 , comparing Figs.  9c to 10c, for low fusion rates � ∈ (0, 0.1) , agents 
reach consensus after 100 to 300 time steps with an accuracy close to 1, even for very low 
evidence rates. Whereas for low evidence rates and the highest fusion rates � ∈ (0.9, 1) , the 
average accuracy is much lower (around 0.8) but a consensus is reached within just 20 time 
steps.

From Fig. 10 we also see that the system exhibits slower convergence with increasing 
error rates when H̃ ≤ 3 , whereas convergence accelerates with higher error rates when 
H̃ ≥ 6 . For H̃ ∈ {4, 5} , the most rapid convergence is observed at medium error rates, spe-
cifically when � = 0.2 for H̃ = 4 and � = 0.3 for H̃ = 5 . One possible explanation for this 
phenomenon is that, under conditions of highly imprecise evidence and low error rates, 
agents are more likely to receive similar imprecise evidence at different time steps. Conse-
quently, their beliefs remain imprecise following the fusion process. As a result, a greater 
number of time steps are required to accumulate sufficient variation through errors, which 
in turn drives the cardinality down and facilitates convergence. This insight highlights the 
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intricate relationship between error rates, evidence imprecision, and system dynamics in 
the context of social learning models.

6  Imprecision and robustness in social learning

Robustness to variation in underlying conditions is important in this social learning context 
since environments are often dynamic and our knowledge of them is usually limited. For 
example, evidence and fusion rates may be varying and difficult to predict in advance since 
different factors may influence agents’ capacity to collect evidence or interact with each 
other during the learning process. In order to evaluate the influence of different levels of 
evidential imprecision on the robustness to different evidence and fusion rates, we can use 
aspects of info-gap theory proposed by Ben-Haim (2006). Info-gap theory provides theo-
retical tools to aid decision-making under severe uncertainty, by analysing robustness to 
variation around a set of estimated parameter values representing the best available knowl-
edge of the underlying conditions of the system. We apply the info-gap theory to evaluate 
variation in the fusion and evidence rate, � and �.

Suppose we have estimates of the evidence and fusion rates for a given social learn-
ing problem denoted by �̂� and �̂� respectively. Let U(h) denote a neighbour of (�̂�, �̂�) 

Fusion Rate σ

E
v
id

e
n
c
e

R
a
te

ρ

(a) ε = 0.1
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Fig. 10  Average number of time steps until convergence � at steady state for different evidence imprecision 
defined by various Hamming thresholds H̃ and error rate � ∈ {0.1, 0.2, 0.3, 0.4} , fusion rates � ∈ [0.02, 1) , 
and evidence rates � ∈ [0.02, 1) . From left to right: H̃ ∈ {0,… , 7}
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in the parameter space of size h. This is referred to in info-gap theory as an horizon of 
uncertainty:

The robustness at (�̂�, �̂�) is then defined as the size of the largest horizon of uncertainty 
for which the average learning error 1 − � is guaranteed to not exceed a critical maximum 
value � . For different values of � we then have the following robustness function:

where m(h) = max{|1 − �(�, �)| ∶ (�, �) ∈ U(h)} is the maximum error across all param-
eter values in the horizon of uncertainty of size h.

Figure 11 illustrates the application of info-gap theory to the current context. Suppose 
that �̂� and �̂� are at the centre of the parameter space i.e. �̂� = �̂� = 0.5 . Let ĥ1 and ĥ2 be 
robustness functions for two different algorithms. The if ĥ1(𝛿) ≥ ĥ2(𝛿) for all � then we 
say that algorithm 1 robust dominates algorithm 2 at parameter estimates �̂� and �̂� . In other 
words, for every tolerance level � there is larger neighbourhood of (�̂�, �̂�) for which the error 
tolerance constraint is guaranteed to be met for algorithm 1 than there is for algorithm 2. 
This is a clear indication that under these conditions the performance of algorithm  1 is 
more robust to variation in fusion and evidence rates than algorithm 2 for all tolerance lev-
els. On the other hand, if the robustness curves ĥ1 and ĥ2 cross then this suggests that there 
are some levels of tolerance at which algorithm 1 is the most robust and some at which 
algorithm 2 is.

Figure 12 shows the robustness curves ĥ(𝛿) for different Hamming thresholds H̃ , and 
assuming (�̂�, �̂�) = (0.5, 0.5) . In both Fig. 12a, b the robustness curves for H̃ = 1 and H̃ = 2 
(pink and purple lines) are everywhere greater than the curve for H̃ = 0 . This indicates 
that this moderate level of imprecise evidence is more robust for all tolerance levels � than 
precise evidence. In Fig. 12b where the noise is � = 0.2 the robustness curve for the high 
imprecision level of H̃ = 7 is dominated by the robustness curves for H̃ = 1 and H̃ = 2 
showing that it is the least robust model of these imprecise evidence models. On the other 
hand, it crosses the curve for H̃ = 0 at � = 0.1 showing that it is slightly more robust than 
the most precise evidence model if the tolerance to error is higher than 0.1. However, in 
Fig. 12a showing the higher noise level � = 0.3 , the robustness curve for H̃ = 7 crosses all 
other robustness curves so that there is a small range of higher tolerance values for which 
it is the most robust imprecise evidence model. In other words, in this case the highly 

(9)U(h) = {(𝜎, 𝜌) ∈ (0, 1)2 ∶ |𝜎 − �̂�| ⩽ h, |𝜌 − �̂�| ⩽ h}.

(10)ĥ(𝛿) = max{h ∶ m(h) ⩽ 𝛿},

Fig. 11  Diagram showing the 
horizon of uncertainty in Info-
Gap Theory as a neighbourhood 
of the estimated fusion and 
evidence rates (�̂�, �̂�)
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imprecise model is more robust than other more precise evidential models if the tolerance 
to error is relatively high. Overall, this suggests that in noisy environments the level of 
error that is acceptable will play a role in deciding which level of evidential imprecision is 
most robust.

7  The benefits of imprecision in multi‑robot systems

The agent-based simulations described in Sect. 5 have shown that evidential imprecision 
defined by a Hamming distance-based method can improve the overall accuracy of social 
learning. In this section we conduct simulation experiments for the multi-robot location 
classification task described in Sect.  4.2 using the imprecise evidence model defined by 
Equation (8) in Sect. 5. In order to obtain an estimate of the state of the world, we let the 
e-pucks visit all the locations during every evidence gathering episode, i.e. during an epi-
sode a robot visits all locations, including those about which they are currently certain, 
to collect a sensor reading. Hence, using the notation from Sect.  5, during an evidence 
gathering episode a robot visits each location to obtain an estimate of its colour resulting 
in a n-dimensional binary vector se corresponding to their estimate of the colours of all 
n locations. The robot then updates their beliefs by conditioning on imprecise evidence 
in the form of the Hamming neighbourhood E(se, H̃) for some threshold H̃ . For instance, 
if H̃ = 1 , E(se, H̃) then includes the estimated classes se together with all states in which 
the class of exactly one of the locations is changed from that given in se . Then for H̃ = 2 
states with exactly two location classes switched are also included and so on. In light of the 
fact that Sect. 5 suggests that high levels of evidential imprecision result in much slower 
convergence, in the following experiments we set a maximum simulation time of 4000 
seconds.

Figure 13 shows the average learning accuracy of the multi-robot system for hamming 
threshold H̃ ∈ {0, 1,… , 7} , and error rates � = 0.3 and � = 0.4 . We run 10 independent 
simulations for each combination of the parameters. Error bars represent the width of the 
95% confidence interval. In Fig. 13a where � = 0.3 , peak accuracy is observed for H̃ = 2 . 
Compared with the most precise evidence, the optimal thresholds not only result in a 
higher average accuracy but also less variation in accuracy across runs. Beyond this range, 
from H̃ ≥ 3 , the learning accuracy starts to decrease. For a higher error rate, � = 0.4 , the 
highest accuracy is achieved by H̃ = 3 , as shown in Fig. 13b. For both error rates shown in 

Fig. 12  Robustness curves for various evidence imprecision levels and �̂� = 0.5, �̂� = 0.5 , a � = 0.3 ; b � = 0.2
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Fig. 13, we see a significant improvement in the system’s learning accuracy when compar-
ing the optimal thresholds, H̃ = 2 or 3, with the most precise evidence, H̃ = 0 . Therefore, 
a moderate level of imprecision introduced by the Hamming neighbourhood approach can 
significantly improve the system’s accuracy, depending on the degree of inaccuracy of the 
evidence. These results are surprisingly consistent with the agent-based simulation results 
in Sect. 5 and particularly the heat maps in Fig. 9a, where, in the presence of error, opti-
mal Hamming thresholds are also between H̃ = 2 and H̃ = 3 across varying evidence and 
fusion rates.

In Sect. 5, Fig. 10 suggests that for the most imprecise evidence, the speed of the social 
learning model may be significantly slower than models with lower levels of evidential 
imprecision. We therefore show Fig. 14 for the average accuracy and log cardinality against 
time. In Fig. 14g, h we see that for the most imprecise evidence, H̃ = 7 , the system fails 
to reach consensus within 4000 seconds. For H̃ = 6 , as depicted in Fig. 14e, f, all 10 runs 
achieve consensus within 4000 seconds at an error rate of � = 0.4 , whereas the system does 
not reach consensus at the lower error rate of � = 0.3 . In other word, in this case higher 
error rates result in higher speed of social learning. This is consistent with the trend shown 
in Fig. 10. At lower levels of evidential imprecision, the duration required for consensus 
is not largely affected by variations in error rates. Specifically, the system reaches consen-
sus in 1200 seconds for H̃ = 0 and in 800 seconds for H̃ = 3 , for both error rates investi-
gated. Notably, the imprecise evidence model with H̃ = 3 , not only converges more rapidly 
than the precise evidence model with H̃ = 0 , but also attains superior learning accuracy. 
In other words, in scenarios with low evidential imprecision, consensus time cost remains 
relatively stable across error rates, and intriguingly, the moderate imprecision model with 
H̃ = 3 outperforms the most precise model with H̃ = 0 in terms of both convergence speed 
and learning accuracy.

8  Conclusions and future work

In this paper we have introduced a set-based model of belief for social learning. This has 
enabled us to clearly distinguish between imprecision and inaccuracy (error). Specifically, 
in this setting imprecision can be quantified by the cardinality of the evidence sets, while 
error refers to the difference between the evidence gathered and the true state of the world 
s∗ , and can be modelled by a probabilistic parameter � (i.e. the error rate). We have then 
used this model to show that social learning can be robust to imprecise evidence and fur-
thermore that certain types of imprecision can result in improved performance.

Fig. 13  Average accuracy at steady state for various Hamming thresholds H̃ , error rate � ∈ {0.3, 0.4} , and 
k = 5 , n = 8
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We have presented simulation results suggesting that social learning is robust to 
different levels of imprecise evidence arising naturally as a result of evidence gath-
ering only providing partial information. In this context, we have also investigated a 
multi-robot location classification problem with a small population size in which the 

Fig. 14  Average log cardinality log2|B| and average accuracy � plotted against time for various Hamming 
distance thresholds with k = 5 e-pucks, n = 8 locations, and error rate � ∈ {0.3, 0.4})
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imprecision of evidence gathered by the robots may vary because of hardware or envi-
ronmental constraints. For this scenario the average accuracy is robust to different levels 
of imprecise evidence. We have also found that increasing the number of robots can 
decrease the variation of system’s average accuracy at different levels of imprecise 
evidence. The results of our robot simulation experiments show that our approach has 
strong potential to be applied to location classification tasks conducted by multi-robot 
systems.

For a certain type of imprecise evidence, where agents obtain an estimate of the true 
state of the world and then take a neighbourhood of that estimate, there can actually be ben-
efits of imprecise evidence. The results showed that the overall best accuracy across vari-
ous evidence and fusion rate combinations and fastest convergence speed can be obtained 
with an intermediate level of precision with the presence of error. Furthermore, certain 
levels of imprecision can enable more robustness to variations in fusion and evidence rate 
than can be obtained from a precise evidence model. Indeed in high error scenarios there 
are even some levels of tolerance at which the most imprecise evidential model is also the 
most robust. Evidence neighbourhoods of this kind were then applied to the multi-robot 
location classification problems and results once again suggest that best performance is 
achieved when there is a moderate level of evidential imprecision.

In light of previous work on imprecise fusion  (Liu et  al., 2021), as future work we 
intend to investigate whether there are advantages in combining imprecision in both the 
fusion and evidential updating processes. Another avenue of future research will be to add 
communication constraints to the model, such as network connectivity or physical distance 
range. There are recent studies showing that limited connectivity can improve the perfor-
mance of social learning (Crosscombe & Lawry, 2021) and that constrained communica-
tion of multi-agent systems can be more robust to the environment changes (Talamali et al., 
2021). Additionally, it’s worth noting that different types of network connectivity may have 
varied performance outcomes. For instance, scale-free networks have been shown to enable 
faster information propagation in the nest, leading to quicker collective responses com-
pared to proximity networks (Rausch et al., 2020b).
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