
Vol.:(0123456789)

Swarm Intelligence (2024) 18:31–78
https://doi.org/10.1007/s11721-023-00232-5

1 3

Belief space‑guided approach to self‑adaptive particle
swarm optimization

Daniel von Eschwege1 · Andries Engelbrecht1,2,3

Received: 3 April 2023 / Accepted: 10 December 2023 / Published online: 31 January 2024
© The Author(s) 2024

Abstract
Particle swarm optimization (PSO) performance is sensitive to the control parameter
values used, but tuning of control parameters for the problem at hand is computation-
ally expensive. Self-adaptive particle swarm optimization (SAPSO) algorithms attempt
to adjust control parameters during the optimization process, ideally without introducing
additional control parameters to which the performance is sensitive. This paper proposes
a belief space (BS) approach, borrowed from cultural algorithms (CAs), towards develop-
ment of a SAPSO. The resulting BS-SAPSO utilizes a belief space to direct the search for
optimal control parameter values by excluding non-promising configurations from the con-
trol parameter space. The resulting BS-SAPSO achieves an improvement in performance
of 3–55% above the various baselines, based on the solution quality of the objective func-
tion values achieved on the functions tested.

Keywords  Self-adaptive · Particle swarm optimization · Belief space

1  Introduction

Particle swarm optimization (PSO) is an optimization algorithm modelled after the behaviour
of birds in a flock (Kennedy and Eberhart, 1995) and belongs to the field of swarm intelli-
gence (SI). PSO searches for a candidate solution by iteratively updating the positions of parti-
cles in a swarm. Position updates are informed by the best position a given particle has found,
as well as by the best position found by the neighbourhood particles. PSO performance is
greatly contingent on the selection of appropriate control parameter (CP) values which govern
the search behaviour (Beielstein et al., 2002; Van den Bergh and Engelbrecht, 2006; Bonyadi

 *	 Andries Engelbrecht
	 engel@sun.ac.za

	 Daniel von Eschwege
	 dvoneschwege@gmail.com

1	 Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
2	 Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
3	 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,

Mubarak Al‑Abdullah, Kuwait

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-023-00232-5&domain=pdf

32	 Swarm Intelligence (2024) 18:31–78

1 3

and Michalewicz, 2016; Bratton and Kennedy, 2007). Control parameter configurations are
usually selected as constant values, which is often not ideal for a specific problem (Van den
Bergh and Engelbrecht, 2006; Jiang et al., 2007), because different objective function land-
scapes may benefit from varying degrees of exploration versus exploitation. However, tuning
of control parameters for the problem at hand is computationally expensive and inefficient.

Alternatively, SAPSO algorithms have been proposed and attempt to adjust control param-
eters during the optimization process. Recent studies (Harrison et al., 2018a, 2016) have,
however, shown that most SAPSO approaches introduce more parameters to which PSO per-
formance is sensitive. These approaches also result in divergent behaviour, infeasible solu-
tions, and small particle step sizes, and are generally ineffective at attaining better solutions.
The self-adaptive process is further complicated by the fact that the previously optimal con-
trol parameter configuration may no longer be useful at the current moment (Harrison et al.,
2018b).

The contribution of this study lies in the proposition of a SAPSO algorithm, which uses
a cultural algorithm’s belief space to adjust the PSO control parameters during the search,
reducing the number of parameters to which PSO performance is sensitive, and improving
the performance of the algorithm. The proposed BS-SAPSO performs 3% to 55% better than
the various baselines in terms of objective function value solution quality, and (depending on
the implementation) has two or one, instead of three runtime parameters which have to be
adjusted.

Section 2 elaborates on PSO and BS, and Sect. 3 explains the design decisions pertaining
to the BS-SAPSO. Section 4 explains the experimental procedure followed and the evaluation
metrics used, and Sect. 5 relays the results obtained. Section 6 concludes the paper.

2 � Background

This section elaborates on PSO itself, the effect of control parameter configurations, existing
attempts at designing a SAPSO algorithm, metrics used to evaluate such algorithms, and the
functioning of the belief space.

2.1 � Particle swarm optimization

PSO makes use of population-based, stochastic search to find candidate solutions to an opti-
mization problem by iteratively updating the positions of particles in a swarm. In addition
to having a certain inertia, particles in the swarm update their positions in accordance with
both the best positions they have personally found, and the best positions found by the particle
neighbourhood. The latter are referred to, respectively, as the cognitive and social components
of the velocity update rule (Shi and Eberhart, 1998; Kennedy and Eberhart, 1995):

where for particle i in dimension j at time t, vij(t) is its velocity, xij(t) is its position, yij(t)
is its personal best position, and ŷij(t) its neighbourhood best position. The inertia coef-
ficient is denoted � , and the cognitive and social coefficients are c1 and c2 , respectively.

(1)vij(t + 1) = 𝜔vij(t) + c1r1ij(t)
[
yij(t) − xij(t)

]
+ c2r2ij(t)

[
ŷij(t) − xij(t)

]

33Swarm Intelligence (2024) 18:31–78	

1 3

Stochasticity is introduced via the random constants r1j and r2j , sampled from a uniform
distribution over (0,1). Position updates are governed by

2.2 � Control parameter configurations

In order to optimally traverse the search space of the problem at hand, search trajectories
should not diverge and also not repeat already explored paths cyclically. Furthermore, any
optimization algorithm must manage a trade-off between exploration and exploitation; that
is, searching as of yet unexplored areas, versus searching more thoroughly in locations
which are already known to potentially yield good solutions. This trade-off is governed
by three control parameters, namely the inertia weight, � , the cognitive acceleration coef-
ficient, c1 , and the social acceleration coefficient, c2 (Engelbrecht, 2007). Constant con-
trol parameter values are often used, e.g. by selecting the generic values of � = 0.729844 ,
c1 = 1.496180 and c2 = 1.496180 (Harrison et al., 2018a).

However, since more exploration is initially desirable, with exploitative behaviour
towards the end of the search, one school of thought holds that PSO should find more opti-
mal solutions if the control parameters can be adapted in a way which reflects this shift
from exploration towards exploitation. An example approach would be to choose control
parameters as follows [adapted from Sermpinis et al. (2013) to conform to c1 + c2 > 4 (Shi
and Eberhart, 1998)]:

where t is the current time step and nt is the maximum number of timesteps. Equation (3)
ensures a large c1 and small c2 initially, after which c1 is decreased and c2 increased. Since c1
promotes exploration by increasing the personal component, whereas c2 increases exploita-
tion by increasing the social component, particles initially explore a lot and finally exploit
more. The inertia weight � is also decreased to shift from exploration to exploitation, so
that particles initially take large steps to decrease the likelihood of becoming stuck in local
minima and explore more of the search landscape, but eventually take small steps to search
more thoroughly in the area which has been found to produce better solutions. A variant of
Eq. (3) is the time-variant acceleration coefficients PSO (PSO-TVAC) (Ratnaweera et al.,
2004), which is similar with exception of � which is kept constant. Time-variant SAPSO
algorithms therefore consider the total number of time steps used, and attempt to adjust
the control parameters accordingly (Harrison et al., 2018a). The premise of time-variant
SAPSO is therefore that a sufficient balance between exploration and exploitation can be
found provided the computational budget limit.

(2)xi(t + 1) = xi(t) + vi(t + 1)

(3)

�(t) = 0.4

(
t − nt

nt

)2

+ 0.4

c1(t) = −3
t

nt
+ 3.5

c2(t) = +3
t

nt
+ 0.5

34	 Swarm Intelligence (2024) 18:31–78

1 3

Conversely, true self-adaptive approaches adjust control parameters based on introspec-
tive information derived during the search process. True SAPSO therefore seeks to adapt
more specifically to the problem at hand, and to where in the search landscape a particle finds
itself (Hashemi and Meybodi, 2011; Tanweer et al., 2015; Zhan et al., 2009; Jun and Jian,
2009). Adaptation of control parameter configurations is usually achieved by introduction of a
governing equation which modifies control parameter configurations, and thus particle move-
ment. The governing equation is mostly based on a behavioural tendency present in the swarm
which is believed to contain information that can be exploited to improve performance (Har-
rison et al., 2018a). The premise of true SAPSO is therefore that the behaviour of particles
contains information useful towards improving algorithm performance.

2.3 � Convergence condition

A PSO particle is considered stable if it has convergent control parameters as specified by a
derived stability condition (Poli, 2009; Poli and Broomhead, 2007). If the criterion,

holds for all particles’ control parameters, the swarm is guaranteed to reach an equilibrium
state. Note, however, that the criterion does not place a bound on the number of iterations
required to reach this state, and also does not specify that velocities will not potentially
assume very large values during the path to equilibrium.

2.4 � Velocity clamping

Velocity clamping aims to prevent the explosion of particle velocities, which occurs when
particles have sufficient inertia that their velocities grow without bound. Velocity explosion
results in particles leaving the search space, often permanently remaining outside of the search
boundaries (Oldewage et al., 2017). For a search space bounded by [�, u] , the velocity can be
constrained in each dimension j to a fixed value as follows:

where

Another velocity clamping method is to limit the magnitude of the velocity vector, i.e.

where

(4)c1 + c2 <
24
(
1 − w2

)
7 − 5w

and w ∈ [−1, 1]

(5)vt+1
i,j

=

⎧⎪⎨⎪⎩

vt+1
i,j

if − vmax,j ≤ vt+1
i,j

≤ vmax,j

vmax,j if vmax,j < vt+1
i,j

−vmax,j if vt+1
i,j

< −vmax,j

(6)vmax,j = �
(
uj − �j

)
, � ∈ (0, 1)

(7)v
t+1
i

=

⎧⎪⎨⎪⎩

v
t+1
i

if
���v

t+1
i

��� <= vmax

vmax‖vt+1i ‖vt+1i
if
���v

t+1
i

��� > vmax

35Swarm Intelligence (2024) 18:31–78	

1 3

with n-dimensional vectors u =
[
u1,… , un

]T and � =
[
�1,… ,�n

]T.
Clamping velocities in all dimensions results in line search, whereas clamping per

dimension has the disadvantage that it modifies the direction in which a particle is travel-
ling. However, the random components r1 and r2 of the PSO change the particle’s trajectory
regardless of clamping, and therefore the additional modification of direction is not consid-
ered a problem.

Conversely, clamping by magnitude preserves the particle direction, but if the larg-
est and smallest velocity components are on very different scales of magnitude, scaling
all dimensions by some constant factor results in the smallest components becoming
irrelevant.

2.5 � Self‑adaptive particle swarm optimization

Despite multiple SAPSO algorithms being published, many result in particles diverging
towards infeasible search space, or premature convergence as a consequence of step sizes
rapidly tending towards zero (Harrison et al., 2016). Most of the algorithms also introduce
more control parameters than were present initially. These findings are corroborated by
another paper (Harrison et al., 2018a), in which many of the 18 SAPSO algorithms ana-
lysed were found to demonstrate either divergence or premature convergence. Furthermore,
in the attempt to suitably adjust the control parameters, � , c1 and c2 , merely three manage
to decrease the number of parameters to which performance is sensitive, namely SAPSO
by Li, Fuand and Zhang (SAPSO-LFZ) (Li et al., 2008), self-adaptive inertia weight PSO
(SA-IWPSO) (Dong et al., 2008), and PSO with random acceleration coefficients (PSO-
RAC) (Harrison et al., 2018a).

Note also that the SAPSO term is sometimes also used to refer to hyperheuristic adap-
tation strategies. In this case, instead of control parameter adaptation, a pool of candi-
date PSO variants is maintained, and the best performing variant is selected at each time
step. Examples of such approaches are the heterogeneous PSO algorithms by Engelbre-
cht (2010) and Nepomuceno and Engelbrecht (2013), as well as the Self-adaptive Particle
Swarm Optimization-based Echo State Network for Time Series Prediction approach by
Xue et al. (2021). Such approaches are not considered in this paper, because hyperheuristic
adaptation is fundamentally different to adjustment of the control parameters of an optimi-
zation algorithm.

2.6 � Cultural algorithms

Cultural algorithms (CA) are evolution-inspired algorithms which maintain a belief space
in parallel with a population space in order to engender dual inheritance of beneficial traits

(8)
vmax = �

√√√√ n∑
j=1

(
uj − �j

)2

= �|u − �|

36	 Swarm Intelligence (2024) 18:31–78

1 3

and information (Reynolds, 1994). The population space represents individuals, each with
a set of behavioural traits, and the belief space represents beliefs which generalize on indi-
vidual experiences. The population space may consist of a set of candidate solutions to the
optimization problem, while the belief space maintains a set of beliefs about where in the
search landscape the optimum resides. Any population-based metaheuristic can be used in
the population space to find an optimal solution to the relevant optimization problem, with
genetic algorithms (GAs) (Chahar et al., 2021) being generally used due to the analogy to
nature with dual genetic and cultural inheritance.

As shown in Fig. 1, at each time step individuals in the population space are evaluated
according to a fitness function, and the best individuals’ beliefs are accepted to the belief
space. The belief space is then used to influence the behaviour of individuals in the popula-
tion space, thereby affecting the behaviour of particles in the population as it exists at later
time steps. Since PSO particles’ behaviour is determined by their control parameters, the
belief space can steer the particles by influencing the control parameters. CAs therefore
simulate the exchange of ideas between individuals, generally through mechanisms such
as imitation, adaptation, or recombination. By allowing entities to learn from one another,
CAs aim to leverage the collective intelligence of the population to find more optimal
solutions.

CAs have seen real-world application in the fields such as civil engineering, mechanical
engineering, electrical engineering, and computer science, predominantly, however, in the
latter two (Maheri et al., 2021). Specific examples of problems include the optimization
of memory usage and improvement of computational efficiency, as well as fault detection
(Pan et al., 2010). The CA has also seen use in the structural optimization, for example, of
dome structures, which were optimized subject to various constraints, such as stress, dis-
placement, and frequency (Jalili et al., 2019).

3 � Design of belief space‑guided self‑adaptative mechanism

The purpose of this section is to relay the design of the BS-SAPSO algorithm. The section
starts by describing the general architecture and interaction between the PSO and the BS,
and then elaborates on specific design choices regarding selection, sampling, and updating
of the belief and population spaces.

Fig. 1   Cultural algorithm (Jalili and Hosseinzadeh, 2014)

37Swarm Intelligence (2024) 18:31–78	

1 3

3.1 � Architecture

In order to automatically tune the PSO control parameters, the PSO is augmented using the
belief space concept, borrowed from CAs. The belief space represents the control param-
eter configurations believed to be best by the particles in the population space. Throughout
the PSO search, certain particles affect the belief space, and in turn the belief space influ-
ences the control parameters of all particles in the population. An overview of the BS-
SAPSO algorithm is given in Algorithm 1.

procedure BS-SAPSO(function, swarmSize, iterations)
swarm, solutions ← InitializePSO(function, swarmSize)
limitsBS ← w : [0, 1], c1 : [0 : 4], c2 : [0 : 4]
BS ← InitializeBS(limitsBS)
for i ← 1 to iterations do

for j ← 1 to swarmSize do
if UpdateCPTrigger(i) then

CP ← UpdateCP(BS)
end if
particlePos ← PSOUpdateRule()
swarm ← swarm+ [particlePos]
particleSol ← Evaluate(particlePos, function)
solutions ← solutions+ [particleSol]

end for
bestParticles, bestSolutions ← SelectParticles(swarm, solutions)
if UpdateBSTrigger(i) then

BS ← UpdateBS(bestParticles)
end if

end for
return bestSolutions

end procedure

procedure InitializePSO(function, functionLimits, swarmSize)
swarm ← []
solutions ← []
for i ← 1 to swarmSize do

particlePos ← GenerateRandomPos(functionLimits)
particleSol ← Evaluate(particlePos, function)
swarm ← swarm+ [particlePos]
solutions ← solutions+ [particleSol]

end for
return swarm, solutions

end procedure

procedure InitializeBS(limitsBS)
BS[max] ← Max(limitsBS)
BS[min] ← Min(limitsBS)
return BS

end procedure

38	 Swarm Intelligence (2024) 18:31–78

1 3

For brevity, swarm henceforth refers to the collection of particle positions, solutions to
the collection of objective function values found by the particles at a given time step, parti-
clePos to the position of a specific particle, and particleSol to the solution of a specific par-
ticle. Furthermore, function denotes the objective function being optimized, CP the control
parameters with a mapping to their particles, and BS the belief space. Given Algorithm 1,
the functions which are not self-evident, are the subjects of investigation in this paper:

•	 Selection methods, used to select the particles that will have their beliefs accepted into
the belief space, explained in Sect. 3.2.

•	 Update and sampling triggers, to determine when the belief space is updated and con-
trol parameters are sampled. Given that a belief space update only affects the search if
the control parameters are updated as well, UPDATEBSTRIGGER is taken to be the same
as UPDATECPTRIGGER , with a discussion in Sect. 3.3.

•	 Update methods, used to specify how the chosen particles’ beliefs affect the belief
space. Here, UPDATEBS is performed as elaborated on in Sect. 3.4.

•	 Sampling methods, to determine how new control parameter values (beliefs) are sam-
pled from the belief space to influence the population space, with UPDATECP explained
in Sect. 3.5.

Ultimately, all of the abovementioned aspects influence the trade-off between explora-
tion and exploitation, and therefore the performance of the algorithm. It is expected that
if the belief space converges too quickly to a certain control parameter configuration, the
algorithm will become too exploitative, and if the belief space does not converge quickly
enough, the algorithm will become too explorative.

3.2 � Selection methods

Selection methods determine which particles are allowed to influence the belief space,
and the following selection methods are proposed:

•	 Random selection, where all particles have an equal probability of updating the belief
space. While random selection is not expected to perform well, it serves to set a BS-
SAPSO performance baseline.

•	 Elitist selection, where only the ne particles with the best objective function values are
allowed to influence the belief space, with ne reduced by one on every update. Elitist
selection postulates that since the particles have found better solutions, their control
parameters are more likely to be correct for the function at hand.

•	 Roulette wheel selection, where particles are selected based on a probability propor-
tional to their objective function values. While similar to elitist selection, the use of
probabilities prevents the strict exclusion of worse-performing particles, but merely
reduces the probability of their selection.

•	 Rank selection, where particles are ranked according to objective function value, and
selected with a probability proportional to their ranking. This selection method is simi-
lar to roulette wheel selection, but prevents giving too much weight to the best particles
in cases where the best solution quality is orders of magnitude larger than the worst.

•	 Improvement selection, where only the ne particles which demonstrated the most
improvement in objective function values are allowed to influence the belief space,

39Swarm Intelligence (2024) 18:31–78	

1 3

with ne reduced by one on every update. While similar to elitist selection, the difference
lies therein that value is placed on the improvement engendered by a control parameter
configuration, rather than the actual value, which might have resulted from lucky ini-
tialization.

•	 Improvement-magnitude selection, where the ne particles which showed the most
improvement in objective function values are allowed to influence the belief space with
a selection probability proportional to the objective function value improvement the
particle underwent. Similar to improvement selection, but with probabilities instead of
hard classes, this method gives more weight to particles that show more improvement,
without strictly excluding the other particles.

•	 Tournament selection, where ne particles are selected at random, after which particles
are selected with a probability proportional to their objective function values. Tourna-
ment selection increases the randomness of the process, while retaining a degree of elit-
ism after the random selection.

Generally, it is expected that methods which incorporate more randomness will lead to
more exploration of the control parameter space, while methods which are more determin-
istic will lead to more exploitation.

3.3 � Update and sampling triggers

To maintain consistency of the effect between updating the belief space and sampling
new control parameters, the same trigger is used for both UPDATEBSTRIGGER and
UPDATECPTRIGGER , and the following conditions that set the trigger are investigated:

•	 Always: setting the trigger always, i.e. on every time step, has the advantage of not
introducing an additional control parameter, but will probably lead to rapid conver-
gence of the belief space, because every consecutive belief space update necessarily
reduces the range of acceptable control parameter values.

•	 Time-variant: the belief space can be updated according to a function of the current
iteration, in an analogous fashion to how control parameters are updated by Eq. (3).

•	 Fixed: updating the belief space at fixed intervals pf  , instead of at every time step, is an
option to prevent early convergence, but introduces an additional hyperparameter.

•	 Stagnate: the belief space can be updated when the best solution found by the swarm
does not improve (i.e. stagnates) for ps iterations, but this introduces an additional
hyperparameter.

3.4 � Update method

The belief space represents a range of acceptable control parameter values, and as such the
limits of this range are updated based on the selected particles. Due to the large amount of
variation introduced by the various selection methods in Sect. 3.2, UPDATEBS is kept fixed
by setting the belief space boundaries to the minimum and maximum control parameter
values out of the group of selected particles.

40	 Swarm Intelligence (2024) 18:31–78

1 3

3.5 � Sampling method

In order to update control parameters based on the belief space, UPDATECP samples
new control parameter values for each particle in the swarm from a uniform distribution
between the belief space limits.

4 � Experimental procedure

This section details the experimental procedure as pertaining to evaluation metrics and
implementational details. Since many different facets of the algorithm are evaluated, a
‘run’ henceforth refers to a single execution of the BS-SAPSO on a single function, and
an ‘experiment’ refers to running the BS-SAPSO algorithm for r = 30 runs on the whole
function set, with a specific control parameter and algorithmic configuration.

4.1 � Evaluation metrics

In order to analyse the performance and behaviour of the BS-SAPSO, a number of metrics
are employed:

1.	 Normalized global best solutions The objective function values, albeit solutions, at the
global best positions, are ultimately the indicator of how well an algorithm performs on
a given optimization problem. Since functions often span vastly different magnitudes,
normalized global best solutions are used. After all experiments are completed, the high-
est and lowest global best solutions which have been found throughout all experiments
and all runs are used to normalize global best solutions to [0,1] for each experiment.
Note that this does not affect the search, since the BS-SAPSO is executed on the func-
tion set as-is, after which the solutions are merely scaled to the same range to allow for
calculating a score per experiment, by averaging over the global best solutions of the
runs in that experiment. The scale to which is normalized is arbitrary, but unitary scaling
results in easily interpretable results, where a lower value indicates a better solution.

2.	 Average swarm diversity provides information regarding the level of exploration and
exploitation. Diversity is calculated using (Olorunda and Engelbrecht, 2008)

	  with the swarm centre at

	  where ns is the number of particles in the swarm, and is nx the number of dimensions.
3.	 Percentage of particles in infeasible space If a particle violates the boundaries of fea-

sible search space even in one dimension, it is considered as being in infeasible space.

(9)D =
1

ns

ns∑
i=1

√√√√ nx∑
j=1

(
xij − x̄j

)2

(10)xj =

∑ns
i=1

xij

ns

41Swarm Intelligence (2024) 18:31–78	

1 3

Infeasible particles should not be considered when updating the best positions found as
to not direct the search out of feasible space (Engelbrecht, 2013).

4.	 Percentage of particles that are stable A stable particle has convergent control parameter
configurations, in accordance with the stability condition [refer to Sect. 2.3 in Eq. (4)].

5.	 Average particle velocity represents average step sizes, which have to decrease to achieve
convergence, but should not tend towards zero too early in the search process, as to not
get stuck in a local minimum. Average particle movement is calculated using (Harrison
et al., 2018a)

4.2 � Implementation

The PSO variant used is the inertia weight PSO (Shi and Eberhart, 1998) as given by Eqs.
(1) and (2), and the neighbourhood of each particle is the whole swarm. The swarm is ini-
tialized with particles uniformly distributed within the feasible search space, and the belief
space is initialized to the min-max ranges of � ∈ [0, 1] , c1 ∈ [0, 4] and c2 ∈ [0, 4] . For each
experiment (i.e. aspect which is investigated), r = 30 independent runs are performed over
31 minimization functions, which are given in Appendix C. The evaluation functions used
to select the best algorithm can, however, not also represent function performance with-
out bias, which is why a test set of 24 additional functions was introduced, discussed in
Sect. 4.3, and listed in Appendix C.

Objective function value is only calculated for particles which reside within feasible
space. Particles outside of feasible space have their objective values set to infinity, which,
assuming minimization, automatically disqualifies those particles from updating the per-
sonal or global best known positions. A swarm size of ns = 30 is used, together with a
dimension space of nd = 30 for each function, and imax = 5000 time steps per run. All plots
and scores are the mean and standard deviation over all the functions and runs of a given
experiment, thus (30 × 45) + (30 × 7) = 1560 runs per experiment. Given the combination
of algorithmic aspects investigated, a total of 98 experiments are performed and by implica-
tion 132,300 runs. The naming convention for experiments is (selection_method)(ne)_(update_
trigger)(p), in accordance with the explanations in Sect. 3.3. The performance of all experi-
ments is compared in Table 9 in Appendix B according to the normalized global best
solution quality achieved by that experiment, with explanation of the metrics in Sect. 4.1.

4.3 � Benchmark function set

Lang and Engelbrecht (2021) proposed a benchmark set of 24 functions as An Exploratory
Landscape Analysis-Based Benchmark Suite. This benchmark set was constructed follow-
ing an intensive analysis of BBOB (Hansen et al., 2009) and CEC (Liang et al., 2013a, b,
2014; Wu et al., 2016) benchmarks. The analysis used self-organizing maps to cluster the
functions according to their fitness landscape characteristics, and showed that many of the
functions in the BBOB and CEC benchmarks did not differ significantly. The analysis also

(11)Δ(t + 1) =
1

ns

ns∑
i=1

‖‖xi(t + 1) − xi(t)
‖‖

42	 Swarm Intelligence (2024) 18:31–78

1 3

indicated gaps, where not all fitness landscape characteristics are sufficiently represented,
with overemphasis on others (Cenikj et al., 2022; Lang and Engelbrecht, 2020a, b). Fol-
lowing the analysis, a more comprehensive benchmark set with wide coverage of fitness
landscape characteristics was proposed, all the while containing many functions which are
also used in the CEC, BBOB, and various other benchmark suites.

5 � Results

This section explains how implementational details were varied across experiments, and
presents the results obtained. Note that some plots contain gaps, for example, in Fig. 21,
which appear when particles move so far out of the search space that the swarm diversity
calculation in Eq. (9) results in numerical overflow.

5.1 � Performance baselines

This section sets four performance baselines, where one is simply the CP-tuned inertia
weight PSO, and the others are selected from the self-adaptive approaches which Harrison
et al. (2018a) found to exhibit good search characteristics. Because this study surveyed the
state of self-adaptive PSO, it sets a good starting point for comparison.

The inertia weight PSO baseline (PSO-IW) uses the constant control parameter con-
figuration from Sect. 2.2, and the second (PSO-TVIW) uses the time variant configuration
given by Eq. (3). The third is PSO-TVAC, explained in Sect. 2.2, and the fourth (PSO-
RAC) samples random convergent control parameters per particle on every time step
(Engelbrecht, 2022; Harrison et al., 2017), that is, the control parameter configurations
conform to Poli’s convergence criterion in Eq. (4). Table 1 gives the normalized global best
solutions per baseline.

Figure 2 shows the CP values of the PSO baselines throughout the search. Figure 3
confirms that all particles are stable for the constant and random baselines, whereas for
the time-variant baseline, initially all particles are unstable, which changes exactly half-
way through the search, with the entire swarm then becoming stable. Figure 4 shows that
for all baselines, initially almost all particles reside outside the feasible search space, but
towards the end most are within feasible space. Figure 5 shows that the particle velocities
of the constant baseline decrease smoothly, whereas particle velocities for the time-vari-
ant baseline explode initially, but then return to smaller values. The random baseline has
a high average velocity, but also decreases smoothly. Figure 6 confirms the observations
made in Fig. 5, as the swarm diversity is usually directly related to the average particle
velocity.

Table 1   Normalized global
best solutions for performance
baselines

Evaluation Testing

PSO-IW 0.1976 0.0808
PSO-RAC​ 0.2004 0.0910
PSO-TVAC 0.2543 0.1395
PSO-TVIW 0.2955 0.1756

43Swarm Intelligence (2024) 18:31–78	

1 3

5.2 � Belief space and control parameter updates on every time step

In this section, belief spaces are updated on every iteration and control parameters
are sampled on every iteration. The most basic version of the BS-SAPSO algorithm
(always_random) randomly selects particles to update the belief space on every time
step. Thereafter, one aspect of the algorithm is changed at a time, in accordance with
the explanations in Sect. 3.2. Table 2 gives the normalized global best solutions per
experiment, and indicates that of the experiments which always update the belief
space, elitist and improvement selection tend to perform better, followed closely by
improvement-magnitude selection. Only a selected number of metrics are plotted,
firstly due to space constraints, but also since most metrics within a section generally
resemble each other across experiments. Since the values given are mean values over
45 functions with 30 runs each, the standard deviation is also given where applicable.

Fig. 2   Control parameters for baseline

Fig. 3   Stable particles for baseline

Fig. 4   Infeasible particles for baseline

44	 Swarm Intelligence (2024) 18:31–78

1 3

A tendency observed when plotting the belief space boundaries, consisting of
{ (wmin,wmax) , (c1min, c1max) , (c2min, c2max) }, in Fig. 7, is that belief space convergence is
almost instantaneous. This occurs because the belief space boundaries are updated on
every time-step, which is too frequent to allow for exploration of the control parameter

Fig. 5   Particle velocity vectors for baseline

Fig. 6   Swarm diversity for baseline

Table 2   Normalized global best
solutions for BS/CP updates on
every time step

Evaluation Testing

always_elitist20 0.2764 0.1570
always_improve20 0.2801 0.1569
always_improve10 0.2813 0.1665
always_improve30 0.2838 0.1596
always_elitist10 0.2944 0.1770
always_improveMag30 0.2982 0.1799
always_elitist30 0.2984 0.1798
always_improveMag10 0.2989 0.1792
always_improveMag20 0.2989 0.1858
always_tournament10 0.3127 0.1890
always_tournament20 0.3150 0.1828
always_random 0.3209 0.2122
always_tournament30 0.3226 0.1858
always_roulette 0.3298 0.2088
always_rank 0.3305 0.2081

45Swarm Intelligence (2024) 18:31–78	

1 3

space. In Fig. 7, the minimum and maximum belief space boundaries therefore con-
verge to the same value, and the plot shows a flat line.

Another observation is that the belief space boundaries tend to converge around
the mean of the initial minimum and maximum belief space boundaries, implying that
belief spaces assume statistically likely values rather than displaying self-adaptive
behaviour. Belief space updates on every time step therefore do not seem to be a viable
approach.

Generally, the number of stable particles decreases when more particles are allowed
to influence the belief space (i.e. ne is increased), as shown in Fig. 8, with the inverse
being true for the number of infeasible particles in Fig. 9. The former is explained by
larger belief space ranges being used for selection of new control parameter values if ne
is higher. Furthermore, for all experiments there are cases of exploding particle veloci-
ties, for example, as in Fig. 10, and thus exploding swarm diversity, as in Fig. 11, cre-
ating an unstable search process. All methods in Table 2 perform worse than the base-
lines in Table 1 and therefore need additional modification.

5.3 � Belief space and control parameter updates at fixed intervals

All experiments in this section are based on the best performing experiments of Sect. 5.2
(that is, elitist and improvement selection), but use belief spaces which are updated at
fixed intervals, with control parameters also sampled at the same fixed intervals.

Fig. 7   Belief space boundaries for elitist selection

Fig. 8   Stable particles for elitist selection

46	 Swarm Intelligence (2024) 18:31–78

1 3

Convergence is slower than before, as can be seen in the belief space boundaries
in Fig. 12, and is achieved by fixing the belief space updates and control parameter
sampling to longer intervals ( pf = 20 and pf = 50 ). The delayed convergence improves
performance, but increases the number of unstable particles, and introduces the addi-
tional parameter pf  . Furthermore, the improvement and elitist selection methods which
initially use more particles for belief space updates (higher ne ) tend to perform better,
as shown in Table 3. Finally, despite having a relatively stable swarm, demonstrated in
Fig. 13, and low numbers of infeasible particles as shown in Fig. 14, particle velocities
in Fig. 15 and swarm diversity in Fig. 16 explode similarly as in Sect. 5.2.

Fig. 9   Infeasible particles for elitist selection

Fig. 10   Particle velocity vectors for elitist selection

Fig. 11   Swarm diversity for elitist selection

47Swarm Intelligence (2024) 18:31–78	

1 3

Table 3   Normalized global best
solutions for BS/CP updates at
fixed intervals

Evaluation Testing

fixed50_improve30 0.1922 0.0852
fixed50_elitist30 0.2077 0.0946
fixed20_improve30 0.2090 0.0882
fixed20_improve20 0.2112 0.0957
fixed20_elitist30 0.2169 0.0963
fixed10_improve30 0.2181 0.0939
fixed50_improve20 0.2186 0.0954
fixed20_elitist20 0.2231 0.1024
fixed10_elitist30 0.2232 0.1014
fixed10_improve20 0.2281 0.1049
fixed50_elitist20 0.2305 0.1031
fixed10_elitist20 0.2380 0.1150
fixed50_improve10 0.2600 0.1258
fixed50_elitist10 0.2604 0.1240
fixed20_improve10 0.2677 0.1387
fixed20_elitist10 0.2723 0.1427
fixed10_improve10 0.2743 0.1450
fixed10_elitist10 0.2787 0.1542

Fig. 12   Belief space boundaries for improvement selection at pf = 50 time steps

Fig. 13   Stable particles for improvement selection at pf = 50 time steps

48	 Swarm Intelligence (2024) 18:31–78

1 3

5.4 � Belief space and control parameter updates upon stagnation of global best
solution

All experiments in this section are similar to those in Sect. 5.3, but use belief spaces which
are updated when the global best solution does not improve for a certain number of itera-
tions, with control parameters sampled at the same time steps (Figs. 17, 18, 19, 20).

Delaying convergence by updating the belief space and control parameters when the
objective function value stagnates for longer intervals ( ps = 20 and ps = 50 ) improves per-
formance compared to performance reported in Sect. 5.2. Furthermore, improvement and
elitist selection methods which initially use more particles for belief space updates (higher
ne ) tend to perform better. Velocity explosion is, however, especially bad here, and exceeds
the plot limits regularly, as depicted in Fig. 21 (Table 4).

Fig. 14   Infeasible particles for improvement selection at pf = 50 time steps

Fig. 15   Particle velocity vectors for improvement selection at pf = 50 time steps

Fig. 16   Swarm diversity for improvement selection at pf = 50 time steps

49Swarm Intelligence (2024) 18:31–78	

1 3

Table 4   Normalized global best
solutions of for BS/CP updates
on stagnation

Evaluation Testing

stagnate20_improve30 0.2157 0.0966
stagnate10_elitist30 0.2188 0.0969
stagnate10_improve30 0.2208 0.0960
stagnate10_improve20 0.2228 0.1009
stagnate20_improve20 0.2253 0.1012
stagnate20_elitist30 0.2255 0.1006
stagnate20_elitist20 0.2270 0.1052
stagnate50_improve20 0.2270 0.1033
stagnate10_elitist20 0.2287 0.1088
stagnate50_improve30 0.2297 0.1003
stagnate50_elitist30 0.2317 0.1047
stagnate50_elitist20 0.2320 0.1050
stagnate50_improve10 0.2455 0.1204
stagnate50_elitist10 0.2480 0.1198
stagnate20_improve10 0.2487 0.1321
stagnate10_improve10 0.2498 0.1344
stagnate10_elitist10 0.2501 0.1425
stagnate20_elitist10 0.2512 0.1343

Fig. 17   Belief space boundaries for improvement selection at ps = 20 time steps

Fig. 18   Stable particles for improvement selection at ps = 20 time steps

50	 Swarm Intelligence (2024) 18:31–78

1 3

5.5 � Belief space and control parameter updates at delayed intervals

Considering the results of Sects. 5.3 and 5.4, a clear tendency is that performance improves
if larger time step intervals are used with high values of ne . Therefore, this section repeats
the experiments from these sections, but with even larger time step intervals, and with ne
set to the maximum of ne = ns = 30 . Figure 22 show a slower belief space convergence,
accompanied by less stable particles and more infeasible particles in Figs. 23 and 24. Par-
ticle velocities and swarm diversity still explodes, as shown in Figs. 25 and 26, respec-
tively. The best performing methods in Table 5 outperform the baselines in Table 1, but
only marginally.

Fig. 19   Infeasible particles for improvement selection at ps = 20 time steps

Fig. 20   Particle velocity vectors for improvement selection at ps = 20 time steps

Fig. 21   Swarm diversity for improvement selection at ps = 20 time steps

51Swarm Intelligence (2024) 18:31–78	

1 3

5.6 � Stability‑guided BS‑SAPSO

The experiments in this section repeat the three best performing experiments from
Sects. 5.2 to 5.4, with the additional condition that control parameters must adhere to Poli’s
convergence criterion [Eq. (4)], and that the belief spaces are prevented from assuming
ranges which preclude sampling of convergent control parameters. The reason for enforc-
ing Poli’s criterion is to prevent the particles from permanently leaving the search space,

Table 5   Normalized global best
solutions for BS/CP updates at
delayed fixed intervals

Evaluation Testing

delayed_fixed100_improve30 0.1919 0.0900
delayed_fixed100_elitist30 0.2023 0.0959
delayed_fixed200_improve30 0.2050 0.0996
delayed_fixed200_elitist30 0.2064 0.0998
delayed_fixed300_elitist30 0.2195 0.1081
delayed_fixed300_improve30 0.2213 0.1084
delayed_stagnate100_improve30 0.2345 0.1098
delayed_stagnate100_elitist30 0.2398 0.1093
delayed_stagnate200_elitist30 0.2483 0.1168
delayed_stagnate200_improve30 0.2488 0.1173
delayed_stagnate300_improve30 0.2555 0.1208
delayed_stagnate300_elitist30 0.2560 0.1211

Fig. 22   Belief space boundaries for improvement selection for ne = 30

Fig. 23   Stable particles for improvement selection for ne = 30

52	 Swarm Intelligence (2024) 18:31–78

1 3

thereby resulting in a more thorough search of the feasible search space, which will hope-
fully lead to better solution quality.

Sampling control parameter values which adhere to Poli’s convergence criterion, given
by Eq. (4), is straightforward; control parameters which do not adhere to the criterion
can simply be discarded and resampled, or else the sampled values for � and c1 can place
boundaries on allowable values for c2 , for more computational efficiency.

However, the situation can arise where belief space boundaries assume values which do
not permit the sampling of any convergent control parameters. This can happen because
belief space boundaries are updated only with reference to a number of influential parti-
cles, without considering whether the combination of these new belief space boundaries
allows for convergent control parameter values.

To prevent the aforementioned, limits need to be placed on the values which belief space
boundaries can assume. Limiting the belief space is, however, not straightforward, due to

Fig. 24   Infeasible particles for improvement selection for ne = 30

Fig. 25   Particle velocity vectors for improvement selection for ne = 30

Fig. 26   Swarm diversity for improvement selection for ne = 30

53Swarm Intelligence (2024) 18:31–78	

1 3

Fig. 27   Potential belief space configurations for Poli’s convergence criterion

54	 Swarm Intelligence (2024) 18:31–78

1 3

the parabolic part of Eq. (4). The possible cases which can arise are shown in Fig. 27,
where

with � the x-axis and �′ the y-axis. Also, c′
min

 (orange) and c′
max

 (red) represent the range c′
can assume, based on the belief space boundaries c1 and c2 . Furthermore, �min (blue) and
�max (purple) represent the range � (not �′ ) can assume—these are therefore the belief
space boundaries for � . The area enclosed by c′

min
 , c′

max
 , �min and �max demarcates the con-

trol parameter values which can potentially be sampled. To adhere to the convergence cri-
terion, these control parameters must therefore fall underneath the curve �′ (black).

Figure 27a demonstrates the completely convergent case; the enclosed area completely
falls under �′ —it is therefore impossible to sample non-convergent control parameters.
Figure 27b shows overlap: both convergent and non-convergent configurations are possible,
which is acceptable, because non-convergent configurations can simply be discarded. In
Fig. 27c, the relatively high c′ range, in conjunction with the low �-range, disallows con-
vergent control parameters. The same is true for Fig. 27d, except that here both the c′ range
and the � range are too high.

Belief space updates which move belief space boundaries outside the ranges which
allow for convergent parameters can be prevented by requiring that the updated belief
space adheres to either

to prevent the situation in Fig. 27c, or

to prevent the situation in Fig. 27d. Note the inversion: �max has to be considered for
the small � case, producing Fig. 27e as the corrected version of Fig. 27c with Eq. (12)
enforced. Similarly, �min has to be considered for the large � case, producing Fig. 27f as
the corrected version of Fig. 27d with Eq. (13) enforced. In order to clearly demonstrate
the difference between Fig. 27c, d, the � range has been kept fixed, adjusting only the c′
range. In reality, both ranges would be adjusted to maintain the possibility of sampling con-
vergent parameters, as once again both convergent and non-convergent control parameters
can be sampled, discarding non-convergent parameters.

As is clear from Fig. 28, the belief space never actually converges. Furthermore, the
stability guiding mechanism works perfectly, as can be seen from Fig. 29, which shows a
completely stable swarm, leading to a very small number of infeasible particles in Fig. 30.
As a result, particle velocities in Fig. 31 and swarm diversity in Fig. 32 take on values
which are orders of magnitude smaller than in Sect. 5.5. However, while the stability guid-
ing mechanism reduces the instability of the search, it actually degrades performance, as is
clear when comparing Table 6, where the prefix ‘sg’ indicates experiments employing sta-
bility guiding, to Table 5. The performance degradation is probably attributable to explora-
tion of the search space being reduced when only stable control parameter values can be sel
ected.

�
� =

24
(
1 − w2

)
7 − 5w

for w ∈ [−1, 1] and c� = c1 + c2

(12)c1 + c2 <
24

(
1 − w2

max

)
7 − 5wmax

for wmax ∈ [−1, 1]

(13)c1 + c2 <
24
(
1 − w2

min

)
7 − 5wmin

for wmin ∈ [−1, 1]

55Swarm Intelligence (2024) 18:31–78	

1 3

Table 6   Normalized global best
solutions of the stability-guided
BS-SAPSO

Evaluation Testing

sg_stagnate300_elitist30 0.2057 0.1002
sg_stagnate300_improve30 0.2060 0.1001
sg_stagnate100_improve30 0.2087 0.1027
sg_stagnate200_improve30 0.2093 0.1007
sg_stagnate200_elitist30 0.2102 0.1006
sg_stagnate100_elitist30 0.2133 0.1028
sg_fixed300_improve30 0.2180 0.1045
sg_fixed300_elitist30 0.2191 0.1042
sg_fixed200_improve30 0.2232 0.1069
sg_fixed200_elitist30 0.2244 0.1067
sg_fixed100_improve30 0.2267 0.1076
sg_fixed100_elitist30 0.2273 0.1084
sg_always_improve30 0.2654 0.1627
sg_always_elitist30 0.2747 0.1711
sg_always_improve20 0.2836 0.1814
sg_always_elitist20 0.2891 0.1803
sg_always_improve10 0.3035 0.1934
sg_always_elitist10 0.3101 0.1945

Fig. 28   Belief space for ‘Stagnate’, improvement selection, stability guided

Fig. 29   Stable particles for ‘Stagnate’, improvement selection, stability guided

56	 Swarm Intelligence (2024) 18:31–78

1 3

5.7 � BS‑SAPSO with velocity clamping

The experiments in this section repeat the experiments from Sect. 5.5 while imposing
velocity clamping per dimension in an attempt to mitigate velocity explosion, because the
stability guidance mechanism from Sect. 5.6, which also sought to reduce velocity explo-
sion, degraded performance of the PSO. The maximum velocity, Vmax , set equal to the
velocity that would allow a particle to traverse the whole search space in one step, and is
therefore determined by the domains over which each function is defined. The results are
shown in Table 7, where the prefix ‘vc’ indicates velocity clamping (Figs. 33, 34, 35).

The benefits of velocity clamping are clear, with performance scores that are much bet-
ter than those of the baseline methods in Table 1. The particle velocities in Fig. 36 and
swarm diversity plots in Fig. 37 now clearly do not grow without bounds, and remain in the
same order of magnitude as the search space dimensions.

Fig. 30   Infeasible particles for ‘Stagnate’, improvement selection, stability guided

Fig. 31   Velocity vectors for ‘Stagnate’, improvement selection, stability guided

Fig. 32   Swarm diversity for ‘Stagnate’, improvement selection, stability guided

57Swarm Intelligence (2024) 18:31–78	

1 3

5.8 � Overview of results

Generally, the trend observed throughout is that selection methods with higher selective
pressure and less randomness, such as elitist and improvement selection, perform better.
Furthermore, higher values for ne and p lead to slower convergence of the belief space,
and perform better. Whereas updating the control parameters at fixed intervals results in
the belief space boundaries following the statistical mean, updating the belief space only
upon stagnation of the global best position demonstrates more nuanced updating of belief

Table 7   Normalized global best
solution of velocity clamped
BS-SAPSO

Evaluation Testing

vc_fixed200_improve30 0.1587 0.0782
vc_fixed100_improve30 0.1631 0.0744
vc_fixed300_improve30 0.1657 0.0812
vc_fixed300_elitist30 0.1693 0.0814
vc_fixed200_elitist30 0.1712 0.0816
vc_fixed100_elitist30 0.1827 0.0819
vc_stagnate100_improve30 0.1921 0.0882
vc_stagnate100_elitist30 0.2027 0.0878
vc_stagnate200_elitist30 0.2039 0.0907
vc_stagnate200_improve30 0.2042 0.0901
vc_stagnate300_improve30 0.2122 0.0936
vc_stagnate300_elitist30 0.2141 0.0933

Fig. 33   Belief space boundaries for improvement selection for ne = 30

Fig. 34   Stable particles for improvement selection for ne = 30

58	 Swarm Intelligence (2024) 18:31–78

1 3

space boundaries, because the time step at which the loss stagnates is largely influenced
by the landscape of the specific objective function. Doing so does, however, not improve
performance, most likely because belief space boundaries are only updated when the loss
has already stagnated, at which point it may be too late to select new control parameters
which could otherwise promote more exploration. Introduction of a stability criterion for
the control parameters, which ensures that the control parameters are always within the
belief space boundaries, does not improve performance, but does reduce the number of
infeasible particles. Finally, velocity clamping per dimension is shown to be a very effec-
tive mechanism for mitigating velocity explosion, and greatly improves performance.

Table 9 in Appendix B shows that the best performing experiments updated the belief
space at fixed intervals with p = {100, 200, 300} , used improvement-based selection
with ne = 30 , and implemented velocity clamping. The best performing BS-SAPSO vari-
ant achieves an improvement of 20% in global best solution quality over PSO-IW on the

Fig. 35   Infeasible particles for improvement selection for ne = 30

Fig. 36   Particle velocity vectors for improvement selection for ne = 30

Fig. 37   Swarm diversity for improvement selection for ne = 30

59Swarm Intelligence (2024) 18:31–78	

1 3

evaluation function set, and 3% on the test set. When compared to the PSO-TVIW baseline,
the improvements in performance are 46 and 55%, respectively.

5.9 � Statistical significance

In order to determine whether the performance differences between the BS-SAPSO vari-
ants and the baselines are statistically significant, Friedman and Mann–Whitney U tests
are performed on the normalized global best solutions, on both the evaluation and test sets.

For the evaluation set, the Friedman test resulted in a test statistic of 2052.02 and a
p-value of 0.0, indicating statistical significance. For the test set, the Friedman test resulted
in a test statistic of 2237.54 and a p-value of 0.0, indicating statistical significance.

While the Friedman test was performed for all BS-SAPSO variants, the Mann–Whit-
ney U test (and subsequent analysis) is only performed for the 18 best performing vari-
ants, together with PSO-RAC. The Mann–Whitney U test used the Bonferroni correc-
tion to account for multiple comparisons, with � = 0.02∕num_comparisons . These are
compared against PSO-IW, because it is the best performing baseline. The results of the
Mann–Whitney U tests are shown in Table 8, with box plots in Fig. 38 and 39. Correspond-
ing Mann–Whitney U heatmaps of the p-values are given in Figs. 40 and 41 in Appendix
A.

The top-performing algorithms, such as vc_fixed100_improve30, are therefore
vetted as statistically significant improvements over PSO-IW.

Table 8   Mann–Whitney U test results for BS-SAPSO variants compared to PSO-IW

Name Evaluation Testing

MWU p-Value Sig MWU p-Value Sig

vc_fixed100_elitist30 257.0 0.0044 No 484.0 0.6204 No
vc_fixed100_improve30 91.0 0.0000 Yes 240.0 0.0020 Yes
vc_fixed200_elitist30 161.0 0.0000 Yes 457.0 0.9234 No
vc_fixed200_improve30 59.0 0.0000 Yes 334.0 0.0877 No
vc_fixed300_elitist30 109.0 0.0000 Yes 447.0 0.9705 No
vc_fixed300_improve30 95.0 0.0000 Yes 457.0 0.9234 No
vc_stagnate100_elitist30 506.0 0.4119 No 673.0 0.0010 Yes
vc_stagnate100_improve30 361.0 0.1907 No 673.0 0.0010 Yes
vc_stagnate200_elitist30 515.0 0.3403 No 746.0 0.0000 Yes
vc_stagnate200_improve30 535.0 0.2116 No 722.0 0.0001 Yes
sg_fixed100_improve30 839.0 0.0000 Yes 898.0 0.0000 Yes
fixed10_improve30 582.0 0.0519 No 559.0 0.1087 No
fixed20_elitist30 616.0 0.0144 No 715.0 0.0001 Yes
fixed20_improve30 492.0 0.5395 No 525.0 0.2707 No
fixed50_elitist30 551.0 0.1373 No 753.0 0.0000 Yes
fixed50_improve30 347.0 0.1297 No 561.0 0.1023 No
fixed100_improve30 378.0 0.2905 No 698.0 0.0003 Yes
stagnate20_improve30 643.0 0.0044 No 770.0 0.0000 Yes
stagnate10_improve30 695.0 0.0003 Yes 724.0 0.0001 Yes
PSO-RAC​ 414.0 0.5997 No 142.0 0.0000 Yes

60	 Swarm Intelligence (2024) 18:31–78

1 3

5.10 � Computational complexity

The computational load of the inertia weight PSO is influenced by a number of factors:

•	 The number of particles in the swarm ( ns ): each particle represents a potential solution
to the optimization problem, therefore more particles imply the exploration of more
potential solutions.

Fig. 38   Box plot of normalized global best solutions on the evaluation set

Fig. 39   Box plot of normalized global best solutions on the test set

61Swarm Intelligence (2024) 18:31–78	

1 3

•	 The dimensionality of the problem ( nd ): higher dimensionality implies a larger search
space and therefore more complexity.

•	 The number of iterations ( imax ): the PSO algorithm iteratively updates the particles’
positions based on the best-known positions, and more iterations require more compute.

As such, the computational complexity of the BS-SAPSO algorithm is expressed as
follows:

•	 Initialization of particles has a complexity of O(ns ⋅ nd) , because each particle needs an
initial position in each dimension.

•	 The main loop, where the particles’ positions and velocities are updated, has a com-
plexity of O(imax ⋅ ns ⋅ nd) . The position and velocity has to be updated in every dimen-
sion, for every particle, on every time step.

•	 Selection of the global best solution has a complexity of O(ns) , because it requires each
particle to be checked.

•	 Updating of the belief space has a complexity of O(ns) , because it requires each particle
to be checked.

•	 Updating of the control parameters has a complexity of O(1) , because it is a simple
operation.

The total computational complexity of the BS-SAPSO algorithm is O(imax ⋅ ns ⋅ nd) , which
is the same as the complexity of the inertia weight PSO algorithm. The BS-SAPSO does
not introduce nested loops, and the additional operations are O(1) or O(ns) . Therefore, the
BS-SAPSO algorithm does not increase the asymptotic computational complexity of the
inertia weight PSO algorithm.

6 � Conclusions

The study designed a self-adaptive particle swarm optimization (SAPSO) algorithm
using a belief space (BS). Considering the performance improvements obtained above
the baseline, the proposed belief space-guided self-adaptive particle swarm optimiza-
tion (BS-SAPSO) algorithm can be considered successful. The best performance is
achieved by setting the number of particles which update the BS (ne) to a high value,
as well as using large values for the interval at which the belief space is updated
(p), which prevents premature BS convergence by delaying updates. However, while
improving performance and adapting the PSO control parameters (CPs), the algorithm
does introduce ne and p as new parameters, as well as the velocity clamping bound
vmax . That being said, if ne is always set to equal the swarm size (which seems to be
optimal in almost all experiments conducted), and vmax as the distance between the
points furthest apart in the search space, the case can be made that the CPs have been
reduced from three to one. While not exhaustive, the brute force grid search under-
taken in Sect. 5 does serve to elucidate which type of belief space behaviour results
in relatively better and worse performance, and shows that it is generally the case that
more exploration (slower convergence) of the belief space leads to better performance.

62	 Swarm Intelligence (2024) 18:31–78

1 3

It is also important to note that all experiments were conducted for a fixed swarm
size, function dimensionality, and maximum time steps. To summarize, the algorithm
improves performance, prevents velocity explosion, and reduces the number of CPs
from three to one.

7 � Future work

Since the belief space tends to converge around the average of the initial belief space
boundaries, it might be worth performing an ablation study to see whether the belief
space mechanism is truly adapting to each objective function, or whether it is simply
converging at the statistical mean. To test this, the convergence of the belief space
limits could be hard-coded, after which the performance of the algorithm could be
compared to the performance of the algorithm with a self-adaptive belief space mecha-
nism. If the performance is the same, it would suggest that the belief space mechanism
is not adapting to the objective function, but that decreasing the belief space bounda-
ries in a way such as in Fig. 33 does nonetheless improve performance.

Evaluation of the BS approach to self-adaptation on other metaheuristics, such as
genetic algorithms and differential evolution, could also be worthwhile and shed light
on generalisability of the algorithm. Similarly with other problem classes, such as
large-scale, dynamic, multi-objective, and real-world optimization problems.

A potentially promising avenue for improving adaptiveness might be the use of rein-
forcement learning (RL). Since the problem of finding a self-adaptive PSO algorithm
essentially amounts to finding a policy which governs the adjustment of control param-
eter values, based on observing the particles, in order to find the optimal objective
function value, this presents an exemplary reinforcement learning problem where an
agent finds a policy to govern its actions, based on observations, in order to maximise
a reward signal. Such an approach stands to gain from the following advantages:

•	 an RL agent could explore millions of policies, many more than could be investi-
gated manually;

•	 if the RL experiment is configured correctly, and if there is a policy to be found,
there is a higher likelihood of finding said policy, because the agent can take into
account far more correlations and relationships in the runtime behaviour than can
be done manually; and

•	 a policy found in this way should represent as an algorithmic set of actions and will
therefore hopefully not introduce additional control parameters

An investigation into RL-based SAPSO therefore seems like a promising avenue for
future work.

63Swarm Intelligence (2024) 18:31–78	

1 3

Appendix A: Heatmaps

The heatmaps in Figs. 40 and 41 show the Mann–Whitney U p-values for the 20 top perform-
ing algorithms, on the evaluation and test sets, respectively.

Fig. 40   Heatmap of normalized global best solutions on the evaluation set

64	 Swarm Intelligence (2024) 18:31–78

1 3

Appendix B: Normalized global best solutions

The normalized best solutions for all experiments on both the evaluation and test sets are given
in Table 9, sorted from best to worst.

Fig. 41   Heatmap of normalized global best solutions on the test set

65Swarm Intelligence (2024) 18:31–78	

1 3

Table 9   Normalized best
solutions for all experiments

Evaluation Testing

vc_fixed200_improve30 0.1587 0.0782
vc_fixed100_improve30 0.1631 0.0744
vc_fixed300_improve30 0.1657 0.0812
vc_fixed300_elitist30 0.1693 0.0814
vc_fixed200_elitist30 0.1712 0.0816
vc_fixed100_elitist30 0.1827 0.0819
fixed100_improve30 0.1919 0.0900
vc_stagnate100_improve30 0.1921 0.0882
fixed50_improve30 0.1922 0.0852
PSO-IW 0.1976 0.0808
PSO-RAC​ 0.2004 0.0910
fixed100_elitist30 0.2023 0.0959
vc_stagnate100_elitist30 0.2027 0.0878
vc_stagnate200_elitist30 0.2039 0.0907
vc_stagnate200_improve30 0.2042 0.0901
fixed200_improve30 0.2050 0.0996
sg_stagnate300_elitist30 0.2057 0.1002
sg_stagnate300_improve30 0.2060 0.1001
fixed200_elitist30 0.2064 0.0998
fixed50_elitist30 0.2077 0.0946
sg_stagnate100_improve30 0.2087 0.1027
fixed20_improve30 0.2090 0.0882
sg_stagnate200_improve30 0.2093 0.1007
sg_stagnate200_elitist30 0.2102 0.1006
fixed20_improve20 0.2112 0.0957
vc_stagnate300_improve30 0.2122 0.0936
sg_stagnate100_elitist30 0.2133 0.1028
vc_stagnate300_elitist30 0.2141 0.0933
stagnate20_improve30 0.2157 0.0966
fixed20_elitist30 0.2169 0.0963
sg_fixed300_improve30 0.2180 0.1045
fixed10_improve30 0.2181 0.0939
fixed50_improve20 0.2186 0.0954
stagnate10_elitist30 0.2188 0.0969
sg_fixed300_elitist30 0.2191 0.1042
fixed300_elitist30 0.2195 0.1081
stagnate10_improve30 0.2208 0.0960
fixed300_improve30 0.2213 0.1084
stagnate10_improve20 0.2228 0.1009
fixed20_elitist20 0.2231 0.1024
fixed10_elitist30 0.2232 0.1014
sg_fixed200_improve30 0.2232 0.1069
sg_fixed200_elitist30 0.2244 0.1067
stagnate20_improve20 0.2253 0.1012
stagnate20_elitist30 0.2255 0.1006
sg_fixed100_improve30 0.2267 0.1076

66	 Swarm Intelligence (2024) 18:31–78

1 3

Table 9   (continued) Evaluation Testing

stagnate20_elitist20 0.2270 0.1052
stagnate50_improve20 0.2270 0.1033
sg_fixed100_elitist30 0.2273 0.1084
fixed10_improve20 0.2281 0.1049
stagnate10_elitist20 0.2287 0.1088
stagnate50_improve30 0.2297 0.1003
fixed50_elitist20 0.2305 0.1031
stagnate50_elitist30 0.2317 0.1047
stagnate50_elitist20 0.2320 0.1050
stagnate100_improve30 0.2345 0.1098
fixed10_elitist20 0.2380 0.1150
stagnate100_elitist30 0.2398 0.1093
stagnate50_improve10 0.2455 0.1204
stagnate50_elitist10 0.2480 0.1198
stagnate200_elitist30 0.2483 0.1168
stagnate20_improve10 0.2487 0.1321
stagnate200_improve30 0.2488 0.1173
stagnate10_improve10 0.2498 0.1344
stagnate10_elitist10 0.2501 0.1425
stagnate20_elitist10 0.2512 0.1343
PSO-TVAC 0.2543 0.1395
stagnate300_improve30 0.2555 0.1211
stagnate300_elitist30 0.2560 0.1208
fixed50_improve10 0.2600 0.1258
fixed50_elitist10 0.2604 0.1240
sg_always_improve30 0.2654 0.1627
fixed20_improve10 0.2677 0.1387
fixed20_elitist10 0.2723 0.1427
fixed10_improve10 0.2743 0.1450
sg_always_elitist30 0.2747 0.1711
always_elitist20 0.2764 0.1570
fixed10_elitist10 0.2787 0.1542
always_improve20 0.2801 0.1569
always_improve10 0.2813 0.1665
sg_always_improve20 0.2836 0.1814
always_improve30 0.2838 0.1596
sg_always_elitist20 0.2891 0.1803
always_elitist10 0.2944 0.1770
PSO-TVIW 0.2955 0.1756
always_improveMag30 0.2982 0.1799
always_elitist30 0.2984 0.1798
always_improveMag10 0.2989 0.1792
always_improveMag20 0.2989 0.1858
sg_always_improve10 0.3035 0.1934
sg_always_elitist10 0.3101 0.1945

67Swarm Intelligence (2024) 18:31–78	

1 3

Appendix C: Function set

The functions used in the experiments are given in Table 10, with test set functions at
the end in bold. Equations for all functions follow afterwards. C Continuous, NC non-
continuous, D differentiable, ND non-differentiable, S separable, NS non-separable, MM
multi-modal, UM unimodal.

•	 Ackley 1 for xi ∈ [−32, 32] :

•	 Alpine 1 for xi ∈ [−10, 10] :

•	 Attractive Sector for xi ∈ [−1, 1] :

 where

•	 Bohachevsky 1 for xi ∈ [−15, 15] :

•	 Bonyadi Michalewicz for xi ∈ [−5, 5] :

(C1)f (x) = −20e
−0.2

√
1

n

∑n

j=1
x2
i − e

1

n

∑n

j=1
cos(2�xi) + 20 + e

(C2)f (x) =

n∑
i=1

|xi sin(xi) + 0.1xi|

(C3)f (x) = Tosz

(
D∑
i=1

(
sixi

)2
)0.9

+ fopt

si =

{
102 if zi × x

opt

i
> 0

1 otherwise

(C4)f (x) =

n−1∑
i=1

(x2
i
+ 2x2

i+1
− 0.3 cos(3�xi) − 0.4 cos(4�xi+1) + 0.7)

(C5)f (x) =

∏n

i=1
(xi + 1)∏n

i=1
((xi + 1)2 + 1)

Table 9   (continued) Evaluation Testing

always_tournament10 0.3127 0.1890
always_tournament20 0.3150 0.1828
always_random 0.3209 0.2122
always_tournament30 0.3226 0.1858
always_roulette 0.3298 0.2088
always_rank 0.3305 0.2081

68	 Swarm Intelligence (2024) 18:31–78

1 3

Table 10   Function characteristics
(Gavana, 2022)

Function Equation Cont. Diff. Sep. Mod.

Ackley 1 (C1) C D NS MM
Alpine 1 (C2) C ND S MM
Bohachevsky1 (C4) C D S MM
Cross leg table (C8) ? ND ? MM
Deflected corrugated spring (C9) C D ?? MM
Egg holder (C13) C ND NS MM
Holder Table 1 (C18) C ND NS MM
Lanczos 3 (C19) C D NS MM
Levy 3 (C20) C D NS MM
Levy-Montalvo 2 (C21) C D NS MM
Michalewicz (C22) C D S MM
Norwegian (C26) C D NS MM
Pathological (C27) C D NS MM
Penalty 1 (C29) C D NS MM
Penalty 2 (C30) C D NS MM
Periodic (C31) C D S MM
Quadric (C35) C D NS UM
Quintic (C36) C ND S MM
Rana (C37) C ND NS MM
Rastrigin (C38) C D S MM
Salomon (C41) C D NS MM
Schubert 4 (C43) C D S MM
Sine envelope (C45) C D NS MM
Sinusoidal (C46) C D NS MM
Stretched V sine wave (C48) C D NS MM
Trid (C49) C D NS MM
Trigonometric (C50) C D NS MM
Vincent (C53) C D S MM
Wavy (C51) C D S UM
Xin-She Yang 1 (C54) NC (?) D (?) S MM
Xin-She Yang 2 (C55) C ND NS MM
Attractive sector (C3) C D S UM
Bonyadi–Michalewicz (C5) C D NS MM
Brown (C6) C D NS UM
Cosine mixture (C7) C D S MM
Discuss (C10) C D S UM
Drop wave (C11) C D ?? MM
Egg crate (C12) C D S MM
Elliptic (C14) C D S UM
Ellipsoid (C14) C D S UM
Exponential (C16) C D ?? UM
Giunta (C17) C D S MM
Mishra 1 (C23) C D NS MM
Mishra 7 (C24) C ND NS MM
Needle eye (C25) C ND S MM
Paviani (C28) C D NS MM

69Swarm Intelligence (2024) 18:31–78	

1 3

•	 Brown for xi ∈ [−1, 1] :

•	 Cosine Mixture for xi ∈ [−1, 1] :

•	 Cross Leg Table for xi ∈ [−10, 10] :

•	 Deflected Corrugated Spring for xi ∈ [0, 2�] , K = 5 , � = 5 :

•	 Discuss for xi ∈ [−100, 100] :

•	 Drop Wave for xi ∈ [−5.12, 5.12] :

•	 Egg crate for xi ∈ [−5, 5] :

(C6)f (x) =

n−1∑
i=1

(x2
i
)(x

2
i+1

+1) + (x2
i+1

)(x
2
i
+1)

(C7)f (x) = 0.1

n∑
i=1

cos(5�xi) +

n∑
i=1

x2
i

(C8)

f (x) = −
1

⎛⎜⎜⎝

������
e
�100−

√∑n
i=1

x2
i

�
� ∏n

i=1
sin(xi)

������
+ 1

⎞⎟⎟⎠

0.1

(C9)f (x) = 0.1

n�
i=1

⎡⎢⎢⎣
(xi − �)2 − cos

⎛
⎜⎜⎝
K

���� n�
i=1

(xi − �)2
⎞⎟⎟⎠

⎤⎥⎥⎦

(C10)f (x) = 106x2
1
+

n∑
i=2

x2
i

(C11)f (x) = −
1 + cos(12

�∑n

i=1
x2
i
)

2 + 0.5
∑n

i=1
x2
i

Table 10   (continued) Function Equation Cont. Diff. Sep. Mod.

Pinter 2 (C32) C D NS MM
Price 2 (C33) C D NS MM
Qings (C34) C D S MM
Ripple 25 (C39) C D S MM
Rosenbrock (C40) C D NS MM
Schaffer F7 (C42) C D NS MM
Schwefel 1 (C44) C D S UM
Step function 3 (C47) NC ND S MM
Weierstrass (C52) C D S MM

70	 Swarm Intelligence (2024) 18:31–78

1 3

•	 Egg holder for xi ∈ [−512, 512] :

•	 Elliptic for xi ∈ [−100, 100] :

•	 Ellipsoid for xi ∈ [−10, 10] :

•	 Exponential for xi ∈ [−1, 1] :

•	 Giunta for xi ∈ [−1, 1] :

•	 Holder Table 1 for xi ∈ [−10, 10] :

•	 Lanczos 3 for xi ∈ [−20, 20] :

•	 Levy 3 for xi ∈ [−10, 10] :

 where

•	 Levy–Montalvo 2 for xi ∈ [−5, 5] :

(C12)f (x) =

n∑
i=1

x2
i
+ 24

n∑
i=1

sin(xi)
2

(C13)f (x) =

n−1�
i=1

�
−(xi+1 + 47) sin(

√�xi+1 + xi∕2 + 47�) − xi sin(
√�xi − (xi+1 + 47)�)

�

(C14)f (x) =

n∑
i=1

(106)
i−1

n−1 x2
i

(C15)f (x) =

n∑
i=1

ix2
i

(C16)f (x) = −e−0.5
∑n

i=1
x2
i

(C17)f (x) = 0.6 +

2∑
i=1

(
sin(

16

15
xi − 1) + sin(

16

15
xi − 1)2 +

1

50
sin(4(

16

15
xi − 1))

)

(C18)f (x) = −

������

�
n�
i=1

cos(xi)

�
e
�1−

√∑n

i=1
xi∕��

������

(C19)f (x) =

n∏
i=1

sinc (xi) sinc (xi∕k)

(C20)f (x) = sin2(�y1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(�yi+1)] + (yn − 1)2

yi = 1 +
xi − 1

4

71Swarm Intelligence (2024) 18:31–78	

1 3

•	 Michalewicz for xi ∈ [0,�] :

•	 Mishra 1 for xi ∈ [0, 1] :

•	 Mishra 7 for xi ∈ [−10, 10] :

•	 Needle eye for xi ∈ [−10, 10] and eye = 0.0001 :

•	 Norwegian for xi ∈ [−1.1, 1.1] :

•	 Pathological for xi ∈ [−100, 100] :

•	 Paviani for xi ∈ [2.001, 9.999] :

•	 Penalty 1 for xi ∈ [−50, 50] :

(C21)f (x) = 0.1 sin(3�x1)2 + 0.1
n−1
∑

i=1
(xi − 1)2

[

sin2
(

3�xi+1
)

+ 1
]

+ 0.1
(

xn − 1
)2[sin2

(

2�xn
)

+ 1
]

(C22)f (x) = −

n∑
i=1

sin(xi)

(
sin

(
ix2

i

�

))2m

(C23)f (x) =

�
1 + n −

n−1�
i=1

xi

�(n−
∑n−1

i=1
xi)

(C24)f (x) =

√√√√√√
|||||||
sin

√√√√|
n∑
i=1

x2
i
|
|||||||
+ 0.01

n∑
i=1

xi

(C25)f (x) =

⎧⎪⎨⎪⎩

1 if �xi� < eye ∀i∑n

i=1
(100 + �xi�) if �xi� > eye

0 otherwise

(C26)f (x) =

nx∏
j=1

(
cos(�x3

j
)

(
99 + xj

100

))

(C27)f (x) =

n−1�
i=1

⎛⎜⎜⎜⎝

sin2
�

100x2
i
+ x2

i+1
− 0.5

0.5 + 0.001(xi − xi+1)
4

⎞
⎟⎟⎟⎠

(C28)f (x) =

n∑
i=1

[
log2

(
10 − xi

)
+ log2

(
xi − 2

)]
−

(
n∏
i=1

x10
i

)0.2

72	 Swarm Intelligence (2024) 18:31–78

1 3

 where

 and

•	 Penalty 2 for xi ∈ [−50, 50] :

 where

•	 Periodic for xi ∈ [−10, 10] :

•	 Pinter for xi ∈ [−10, 10] :

•	 Price 2 for xi ∈ [−10, 10] :

•	 Qings for xi ∈ [−500, 500] :

(C29)

f (x) =
�

30

[
10 sin2(�y1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2(�yi+1)

]
+ (yn − 1)2

]

+

n∑
i=1

u(xi, 10, 100, 4)

yi = 1 +
1

4
(xi + 1)

u(xi, a, k,m) =

⎧⎪⎨⎪⎩

k(xi − a)m if xi > a

0 if − a ≤ xi ≤ a

k(−xi − a)m if xi < −a

(C30)
f (x) =0.1

(

sin2(3�x1) +
n−1
∑

i=1
(xi − 1)2

[

1 + sin2(3�xi+1)
]

+ (xn − 1)2
[

1 + sin2(2�xn)
]

)

+
n
∑

i=1
u(xi, 5, 100, 4)

u(xi, a, k,m) =

⎧⎪⎨⎪⎩

k(xi − a)m if xi > a

0 if − a ≤ xi ≤ a

k(−xi − a)m if xi < −a

(C31)f (x) = 1 +

n�
i=1

sin2(xi) − 0.1e−
∑n

i=1
x2
i

(C32)f (x) =

n∑
i=1

ix2
i
+

n∑
i=1

20i sin2 A +

n∑
i=1

i log10(1 + iB2)

(C33)f (x) = 1 +

n�
i=1

sin2(xi) − 0.1e−
∑n

i=1
x2
i

(C34)f (x) =

n∑
i=1

(x2
i
− i)2

73Swarm Intelligence (2024) 18:31–78	

1 3

•	 Quadric for xi ∈ [−100, 100] :

•	 Quintic for xi ∈ [−10, 10] :

•	 Rana for xi ∈ [−500, 500] :

 where

•	 Rastrigin for xi ∈ [−5.12, 5.12]

•	 Ripple 25 for xi ∈ [0, 1] :

•	 Rosenbrock for xi ∈ [−30, 30] :

•	 Salomon for xi ∈ [−100, 100] :

•	 Schaffer F7 for xi ∈ [−100, 100] :

•	 Schubert 4 for xi ∈ [−10, 10] :

(C35)f (x) =

n∑
i=1

(
i∑

j=1

xj

)2

(C36)f (x) =

n∑
i=1

|||x
5
i
− 3x4

i
+ 4x3

i
+ 2x2

i
− 10xi − 4

|||

(C37)f (x) =

n−1∑
i=1

(xi+1 + 1) cos(t2) sin(t1) + xi cos(t1) sin(t2)

t1 =
√�xi+1 + xi + 1� and t2 =

√�xi+1 − xi + 1�

(C38)f (x) = 10n +

n∑
i=1

(
x2
i
− 10 cos(2�xi)

)

(C39)f (x) =

n∑
i=1

−e−2 log2(
xi−0.1

0.8
)2(sin6(5�xi)))

(C40)f (x) =

n−1∑
i=1

(
100(xi+1 − x2

i
)2 + (xi − 1)2

)

(C41)f (x) = − cos(2�

n∑
i=1

x2
i
) + 0.1

√√√√ n∑
i=1

x2
i
+ 1

(C42)f (x) =

n−1∑
i=1

(
0.5 +

cos2(sin(x2
i
− x2

i+1
))2 − 0.5

(1 + 0.001(x2
i
+ x2

i+1
))2

)

(C43)f (x) =

n∑
i=1

5∑
j=1

j cos((j + 1)xi + j)

74	 Swarm Intelligence (2024) 18:31–78

1 3

•	 Schwefel 1 for xi ∈ [−100, 100] and � =
√
� :

•	 Sine Envelope for xi ∈ [−100, 100] :

•	 Sinusoidal for xi ∈ [0, 180] :

•	 Step function 3 for xi ∈ [−5.12, 5.12] :

•	 Stretched V sine wave for xi ∈ [−10, 10] :

•	 Trid for xi ∈ [−20, 20] :

•	 Trigonometric for xi ∈ [0,�] :

•	 Wavy for xi ∈ [−�, �] :

•	 Weierstrass for jmax = 20, a = 0.5, b = 3 :

•	 Vincent for xi ∈ [0.25, 10] :

(C44)f (x) =

(
n∑
i=1

x2
i

)�

(C45)f (x) =

n−1�
i=1

⎛
⎜⎜⎜⎝
0.5 +

sin2
�

x2
i
+ x2

i+1
− 0.5

(1 + 0.001(x2
i
+ x2

i+1
))2

⎞
⎟⎟⎟⎠

(C46)f (x) = −

[
A

n∏
i=1

sin(xi − z) +

n∏
i=1

sin(B(xi − z))

]

(C47)f (x) =

n�
i=1

⌊x2
i
⌋

(C48)f (x) =

n−1∑
i=1

(x2
i
+ x2

i+1
)0.25[sin2(50(x2

i
+ x2

i+1
)0.1) + 0.1]

(C49)f (x) =

n∑
i=1

(xi − 1)2 −

n∑
i=2

xixi−1

(C50)f (x) =

n∑
i=1

[
n −

n∑
j=1

cos(xj) + i(1 − cos(xi) − sin(xi))

]2

(C51)f (x) = 1 −
1

n

n∑
i=1

cos(kxi)e
−x2

i

2

(C52)f (x) =

n∑
i=1

(
jmax∑
j=0

aj cos(2�bj(xi + 0.5)) − n

jmax∑
j=1

aj cos(�bj)

)

75Swarm Intelligence (2024) 18:31–78	

1 3

•	 Xin-She Yang 1 for �i ∼ U(0, 1) :

•	 Xin-She Yang 2 for xi ∈ [−2�, 2�] :

Acknowledgements  The authors acknowledge the computing resources provided by the National Integrated
Cyber Infrastructure System’s centre for high-performance computing.

Author Contributions  Conceptualization was done by Andries Engelbrecht. Development of algorithms,
methodology, data collection and analysis were performed by Daniel von Eschwege. The first draft of the
manuscript was written by Daniel von Eschwege, and review of the manuscript was done by Andries Engel-
brecht. All authors approved the final manuscript.

Funding  Open access funding provided by Stellenbosch University. The authors did not receive support
from any organization for the submitted work.

Data Availability  The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate  Not applicable.

Consent for publication  All authors gave consent that the paper may be submitted and consent has bene
provided by the institutions to which the authors are affiliated.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Tuning pso parameters through sensitivity
analysis (Technical Report Interner Bericht des Sonderforschungsbereichs (SFB) 531 Computational
Intelligence No. CI-124/02, Universita̋tsbibliothek Dortmund).

Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Infor-
mation Sciences, 176(8), 937–971.

Bonyadi, M. R., & Michalewicz, Z. (2016). Impacts of coefficients on movement patterns in the particle
swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 21(3), 378–390.

(C53)f (x) = −

n∑
i=1

sin(10 log(x))

(C54)f (x) =

n∑
i=1

�i|xi|i

(C55)f (x) =

�
n�
i=1

�xi�
�
e−

∑n

i=1
sin(x2

i
)

http://creativecommons.org/licenses/by/4.0/

76	 Swarm Intelligence (2024) 18:31–78

1 3

Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of
the IEEE swarm intelligence symposium (pp. 120–127). IEEE.

Cenikj, G., Lang, R. D., Engelbrecht, A. P., Doerr, C., Korošec, P., & Eftimov, T. (2022). Selector: selecting
a representative benchmark suite for reproducible statistical comparison. In Proceedings of the genetic
and evolutionary computation conference. GECCO ’22 (pp. 620–629). Association for Computing
Machinery. https://​doi.​org/​10.​1145/​35122​90.​35288​09

Chahar, V., Katoch, S., & Chauhan, S. (2021). A review on genetic algorithm: Past, present, and future.
Multimedia Tools and Applications, 80(5), 8091–8126. https://​doi.​org/​10.​1007/​s11042-​020-​10139-6

Dong, C., Wang, G., Chen, Z., & Yu, Z. (2008). A method of self-adaptive inertia weight for PSO. In Pro-
ceedings of the 2008 international conference on computer science and software engineering (Vol. 1,
pp. 1195–1198).

Engelbrecht, A. P. (2013). Roaming behavior of unconstrained particles. In Proceedings of the BRICS con-
gress on computational intelligence and 11th Brazilian congress on computational intelligence (pp.
104–111). https://​doi.​org/​10.​1109/​BRICS-​CCI-​CBIC.​2013.​28

Engelbrecht, A. (2022). Stability-guided particle swarm optimization. In Dorigo, M., et al. (Eds.), Swarm
intelligence. ANTS 2022. Lecture Notes in Computer Science (Vol. 13491, pp. 360–369). Cham:
Springer. https://​doi.​org/​10.​1007/​978-3-​031-​20176-9_​33

Engelbrecht, A. P. (2007). Computational intelligence: An introduction (2nd ed.). Wiley.
Engelbrecht, A. P. (2010). Heterogeneous particle swarm optimization. In M. Dorigo, M. Birattari, G. A. Di

Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Groß, E. Şahin, H. Sayama,
& T. Stützle (Eds.), Swarm Intelligence (pp. 191–202). Springer.

Gavana, A.: Global optimization benchmarks and AMPGO (2022). http://​infin​ity77.​net/​global_​optim​izati​
on/​genin​dex.​html

Hansen, N., Finck, S., Ros, R., & Auger, A. (2009). Real-parameter black-box optimization benchmark-
ing 2009: noiseless functions definitions (Research report rr-6829, INRIA, Le Chesnay-Rocquencourt,
France).

Harrison, K. R., Engelbrecht, A. P., & Ombuki-Berman, B. M. (2017). An adaptive particle swarm optimi-
zation algorithm based on optimal parameter regions. In 2017 IEEE symposium series on computa-
tional intelligence (SSCI) (pp. 1–8). https://​doi.​org/​10.​1109/​SSCI.​2017.​82853​42

Harrison, K. R., Engelbrecht, A. P., & Ombuki-Berman, B. M. (2016). The sad state of self-adaptive particle
swarm optimizers. In Proceedings of the IEEE congress on evolutionary computation (pp. 431–439).
https://​doi.​org/​10.​1109/​CEC.​2016.​77438​26

Harrison, K., Engelbrecht, A. P., & Ombuki-Berman, B. (2018). Self-adaptive particle swarm optimiza-
tion: A review and analysis of convergence. Swarm Intelligence, 12, 187–226. https://​doi.​org/​10.​1007/​
s11721-​017-​0150-9

Harrison, K. R., Engelbrecht, A. P., & Ombuki-Berman, B. M. (2018). Optimal parameter regions and the
time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm
and Evolutionary Computation, 41, 20–35. https://​doi.​org/​10.​1016/j.​swevo.​2018.​01.​006

Hashemi, A. B., & Meybodi, M. R. (2011). A note on the learning automata based algorithms for adaptive
parameter selection in PSO. Applied Soft Computing, 11(1), 689–705. https://​doi.​org/​10.​1016/j.​asoc.​
2009.​12.​030

Jalili, S., Hosseinzadeh, Y., & Rabczuk, T. (2019). In: Kulkarni, A. J., Singh, P. K., Satapathy, S. C., Hus-
seinzadeh Kashan, A., & Tai, K. (eds.) Simultaneous size and shape optimization of dome-shaped
structures using improved cultural algorithm (pp. 93–120). Springer. https://​doi.​org/​10.​1007/​
978-​981-​13-​6569-0_5

Jalili, S., & Hosseinzadeh, Y. (2014). A cultural algorithm for optimal design of truss structures. Latin
American Journal of Solids and Structures. https://​doi.​org/​10.​1590/​1679-​78251​547

Jiang, M., Luo, Y., & Yang, S. (2007). Stochastic convergence analysis and parameter selection of the stand-
ard particle swarm optimization algorithm. Information Processing Letters, 102(1), 8–16.

Jun, S., & Jian, L. (2009). An improved self-adaptive particle swarm optimization algorithm with simulated
annealing. In Proceedings of the 3rd international symposium on intelligent information technology
application (Vol. 3, pp. 396–399). https://​doi.​org/​10.​1109/​IITA.​2009.​476

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the ICNN’95—inter-
national conference on neural networks (Vol. 4, pp. 1942–1948). https://​doi.​org/​10.​1109/​ICNN.​1995.​
488968

Lang, R. D., & Engelbrecht, A. P. (2020). Decision space coverage of random walks. In 2020 IEEE congress
on evolutionary computation (CEC) (pp. 1–8). https://​doi.​org/​10.​1109/​CEC48​606.​2020.​91856​23

Lang, R. D., & Engelbrecht, A. P. (2020). Distributed random walks for fitness landscape analysis. In Pro-
ceedings of the 2020 genetic and evolutionary computation conference. GECCO ’20 (pp. 612–619).
Association for Computing Machinery. https://​doi.​org/​10.​1145/​33779​30.​33898​29

https://doi.org/10.1145/3512290.3528809
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/BRICS-CCI-CBIC.2013.28
https://doi.org/10.1007/978-3-031-20176-9_33
http://infinity77.net/global_optimization/genindex.html
http://infinity77.net/global_optimization/genindex.html
https://doi.org/10.1109/SSCI.2017.8285342
https://doi.org/10.1109/CEC.2016.7743826
https://doi.org/10.1007/s11721-017-0150-9
https://doi.org/10.1007/s11721-017-0150-9
https://doi.org/10.1016/j.swevo.2018.01.006
https://doi.org/10.1016/j.asoc.2009.12.030
https://doi.org/10.1016/j.asoc.2009.12.030
https://doi.org/10.1007/978-981-13-6569-0_5
https://doi.org/10.1007/978-981-13-6569-0_5
https://doi.org/10.1590/1679-78251547
https://doi.org/10.1109/IITA.2009.476
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/CEC48606.2020.9185623
https://doi.org/10.1145/3377930.3389829

77Swarm Intelligence (2024) 18:31–78	

1 3

Lang, R., & Engelbrecht, A. (2021). An exploratory landscape analysis-based benchmark suite. Algorithms,
14, 78. https://​doi.​org/​10.​3390/​a1403​0078

Li, X., Fu, H., & Zhang, C. (2008). A self-adaptive particle swarm optimization algorithm. In Proceed-
ings of the 2008 international conference on computer science and software engineering (Vol. 5, pp.
186–189). https://​doi.​org/​10.​1109/​CSSE.​2008.​142

Liang, J., Qu, B., Suganthan, P., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC
2015 competition on learning-based real-parameter single objective optimization. Technical Report
201411A. Zhengzhou: Computational Intelligence Laboratory, Zhengzhou University.

Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. (2013a). Problem definitions and evaluation criteria
for the CEC 2013 special session on real-parameter optimization. Technical Report 201212. Zheng-
zhou: Computational Intelligence Laboratory, Zhengzhou University.

Liang, J., Qu, B., & Suganthan, P. (2013b). Problem definitions and evaluation criteria for the CEC 2014
special session and competition on single objective real-parameter numerical optimization. Technical
Report 201311. Zhengzhou: Computational Intelligence Laboratory, Zhengzhou University.

Maheri, A., Jalili, S., Hosseinzadeh, Y., Khani, R., & Miryahyavi, M. (2021). A comprehensive survey on
cultural algorithms. Swarm and Evolutionary Computation, 62, 100846. https://​doi.​org/​10.​1016/j.​
swevo.​2021.​100846

Nepomuceno, F. V., & Engelbrecht, A. P. (2013). A self-adaptive heterogeneous PSO for real-parameter
optimization. In 2013 IEEE congress on evolutionary computation, 361–368

Oldewage, E. T., Engelbrecht, A. P., & Cleghorn, C. W. (2017). The merits of velocity clamping particle
swarm optimisation in high dimensional spaces. In Proceedings of the IEEE symposium series on com-
putational intelligence (SSCI) (pp. 1–8). https://​doi.​org/​10.​1109/​SSCI.​2017.​82808​87

Olorunda, O., & Engelbrecht, A. P. (2008). Measuring exploration/exploitation in particle swarms using
swarm diversity. In 2008 IEEE congress on evolutionary computation (IEEE world congress on com-
putational intelligence) (pp. 1128–1134). https://​doi.​org/​10.​1109/​CEC.​2008.​46309​38

Pan, Z.-L., Chen, L., & Zhang, G.-Z. (2010). Cultural algorithm for minimization of binary decision dia-
gram and its application in crosstalk fault detection. International Journal of Automation and Comput-
ing, 7(1), 70. https://​doi.​org/​10.​1007/​s11633-​010-​0070-2

Poli, R., & Broomhead, D. (2007). Exact analysis of the sampling distribution for the canonical particle
swarm optimiser and its convergence during stagnation. In Proceedings of the 9th annual confer-
ence on genetic and evolutionary computation (pp. 134–141). Association for Computing Machinery.
https://​doi.​org/​10.​1145/​12769​58.​12769​77

Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stag-
nation. IEEE Transactions on Evolutionary Computation, 13(4), 712–721. https://​doi.​org/​10.​1109/​
TEVC.​2008.​20117​44

Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computa-
tion, 8(3), 240–255. https://​doi.​org/​10.​1109/​TEVC.​2004.​826071

Reynolds, R. G. (1994). An introduction to cultural algorithms. In Sebald, A. V., & Fogel, L. J. (eds.) Evo-
lutionary programming—Proceedings of the 3rd annual conference (pp. 131–139). World Scientific
Press. https://​doi.​org/​10.​1142/​97898​14534​116 . http://​ai.​cs.​wayne.​edu/​ai/​avail​ableP​apers​OnLine/​Intro​
ToCA.​pdf

Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E. F., & Dunis, C. (2013). Forecast-
ing foreign exchange rates with adaptive neural networks using radial-basis functions and particle
swarm optimization. European Journal of Operational Research, 225(3), 528–540. https://​doi.​org/​10.​
1016/j.​ejor.​2012.​10.​020

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of the 1998 IEEE
international conference on evolutionary computation (Vol. 6, pp. 69–73). https://​doi.​org/​10.​1109/​
ICEC.​1998.​699146

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of the IEEE inter-
national conference on evolutionary computation (pp. 69–73). https://​doi.​org/​10.​1109/​ICEC.​1998.​
699146

Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Self regulating particle swarm optimization algo-
rithm. Information Sciences,294, 182–202. https://​doi.​org/​10.​1016/j.​ins.​2014.​09.​053. Innovative
Applications of Artificial Neural Networks in Engineering

Wu, G., Mallipeddi, R., & Suganthan, P. (2016). Problem definitions and evaluation criteria for the CEC
2017 competition and special session on constrained single objective real-parameter optimization.
Technical Report. Singapore: Nanyang Technological University.

https://doi.org/10.3390/a14030078
https://doi.org/10.1109/CSSE.2008.142
https://doi.org/10.1016/j.swevo.2021.100846
https://doi.org/10.1016/j.swevo.2021.100846
https://doi.org/10.1109/SSCI.2017.8280887
https://doi.org/10.1109/CEC.2008.4630938
https://doi.org/10.1007/s11633-010-0070-2
https://doi.org/10.1145/1276958.1276977
https://doi.org/10.1109/TEVC.2008.2011744
https://doi.org/10.1109/TEVC.2008.2011744
https://doi.org/10.1109/TEVC.2004.826071
https://doi.org/10.1142/9789814534116
http://ai.cs.wayne.edu/ai/availablePapersOnLine/IntroToCA.pdf
http://ai.cs.wayne.edu/ai/availablePapersOnLine/IntroToCA.pdf
https://doi.org/10.1016/j.ejor.2012.10.020
https://doi.org/10.1016/j.ejor.2012.10.020
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1016/j.ins.2014.09.053

78	 Swarm Intelligence (2024) 18:31–78

1 3

Xue, Y., Zhang, Q., & Neri, F. (2021). Self-adaptive particle swarm optimization-based echo state network
for time series prediction. International Journal of Neural Systems, 31(12), 2150057. https://​doi.​org/​
10.​1142/​S0129​06572​15005​7X

Zhan, Z.-H., Zhang, J., Li, Y., & Chung, H.S.-H. (2009). Adaptive particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), 1362–1381. https://​doi.​
org/​10.​1109/​TSMCB.​2009.​20159​56

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1142/S012906572150057X
https://doi.org/10.1142/S012906572150057X
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1109/TSMCB.2009.2015956

	Belief space-guided approach to self-adaptive particle swarm optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Particle swarm optimization
	2.2 Control parameter configurations
	2.3 Convergence condition
	2.4 Velocity clamping
	2.5 Self-adaptive particle swarm optimization
	2.6 Cultural algorithms

	3 Design of belief space-guided self-adaptative mechanism
	3.1 Architecture
	3.2 Selection methods
	3.3 Update and sampling triggers
	3.4 Update method
	3.5 Sampling method

	4 Experimental procedure
	4.1 Evaluation metrics
	4.2 Implementation
	4.3 Benchmark function set

	5 Results
	5.1 Performance baselines
	5.2 Belief space and control parameter updates on every time step
	5.3 Belief space and control parameter updates at fixed intervals
	5.4 Belief space and control parameter updates upon stagnation of global best solution
	5.5 Belief space and control parameter updates at delayed intervals
	5.6 Stability-guided BS-SAPSO
	5.7 BS-SAPSO with velocity clamping
	5.8 Overview of results
	5.9 Statistical significance
	5.10 Computational complexity

	6 Conclusions
	7 Future work
	Appendix A: Heatmaps
	Appendix B: Normalized global best solutions
	Appendix C: Function set
	Acknowledgements
	References

