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Abstract
In this paper, we study the problem of collective and emergent sensing with a flying robot 
swarm in which social interactions among individuals lead to following the gradient of a 
scalar field in the environment without the need of any gradient sensing capability. We 
proposed two methods—desired distance modulation and speed modulation—with and 
without alignment control. In the former, individuals modulate their desired distance to 
their neighbors and in the latter, they modulate their speed depending on the social interac-
tions with their neighbors and measurements from the environment. Methods are system-
atically tested using two metrics with different scalar field models, swarm sizes and swarm 
densities. Experiments are conducted using: (1) a kinematic simulator, (2) a physics-based 
simulator, and (3) real nano-drone swarm. Results show that using the proposed methods, 
a swarm—composed of individuals lacking gradient sensing ability—is able to follow the 
gradient in a scalar field successfully. Results show that when individuals modulate their 
desired distances, alignment control is not needed but it still increases the performance. 
However, when individuals modulate their speed, alignment control is needed for collec-
tive motion. Real nano-drone experiments reveal that the proposed methods are applicable 
in real-life scenarios.
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1  Introduction

Understanding and designing the behavior of large swarms of robots is an endeavour 
that is highly relevant both in science and engineering. From the scientific perspective, 
a long-standing challenge is to understand how complex collective sensing, information 
processing, and synchronous dynamics emerge from individuals that are simple, embod-
ied, independent in their cognitive processes, and interact only through local sensing and 
communication (Şahin, 2004; Brambilla et al., 2013). Indeed, there are many examples of 
natural systems such as animals and insects that are able to move together in a coordinated 
fashion while performing complex collective sensing and coordination actions  (Couzin 
et  al., 2005), such as identifying and moving toward a resource location  (Couzin et  al., 
2005; Kearns, 2010) or avoiding predators (Olson et al., 2013). This is only possible if the 
rules for individuals are designed in such a way that they only use local information and 
local sensing.

The collective behavior of a swarm is not necessarily the direct and traceable result of 
the individual behaviors. In fact, it is not only the individual behaviors that determine the 
group behavior, but also the interactions between individuals and between individuals and 
the environment. Here, we address the problem of collective and emergent sensing (Ber-
dahl et al., 2018), where social interactions among individuals lead to collective computa-
tion of an environmental property by only using local scalar measurements. A good exam-
ple of this problem is the taxis behavior defined as moving toward or away from a given 
physical feature (Gorban & Çabukoǧlu, 2018) such as light or temperature. This is known 
to be solvable by living organisms, for instance by golden shiner fish (Puckett et al., 2018; 
Berdahl et al., 2013). A school of golden shiners incapable of sensing the light gradient can 
collectively sense and follow the decreasing light gradient by making local light intensity 
measurements and considering social cues of their group members.

In this paper, we aim to develop two methods—desired distance modulation and speed 
modulation—with and without alignment control that can work along with a well-studied 
flocking algorithm (Ferrante et al., 2014) for collective gradient following with an aerial 
robot swarm. The proposed methods ensure collective and emergent sensing of the gradi-
ent in a scalar field and robots follow the increasing gradient direction in a cohesive and 
ordered manner. In order to test our goals, methods are first tested with kinematic and 
physics-based simulators, then by using a swarm of nano-aerial vehicles. Moreover, we test 
the scalability of the methods by using swarms with different sizes in simulations and we 
analyze behaviors in collective level on various scalar field models such as Linear, Bimodal 
and Circle to assess dependency of behaviors on changing environment. In addition, the 
density (ratio between the swarm area and the bounded area) is investigated.

2 � Related work

Collective sensing and taxis have been studied in the context of both biological and arti-
ficial systems. In biological systems, bacteria groups are a good first example to study, 
because of their limited sensory, memory and motion capabilities  (Shklarsh et al., 2011; 
Camley et al., 2016). Shklarsh et al. (2011) proposed a bacteria-inspired collective naviga-
tion method based on changing social interactions. In their method, simple agents vary 
the strength of their interactions based on the concentration of a chemical substance and 
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the bacteria swarm was able to reach the lowest concentration region. Another example of 
collective sensing is seen on fish schools. In (Puckett et al., 2018; Berdahl et al., 2013), the 
anti-phototaxis behavior of fish schools is studied. The results showed that a fish school 
can effectively steer toward darker regions collectively provided that each fish modulates 
its speed based on the light intensity it detects locally. This speed modulation method is the 
inspiration to one of the methods proposed in this paper. Kernbach et al. (2009) studied the 
thermotactic aggregation behavior of young honey bees. Each honeybee when encounters 
another honeybee stops for a certain waiting time. By only modulating the waiting time 
based on local temperature measurement of each bee, it was observed that bees are able to 
aggregate on the optimal temperature gradient on the environment.

There are also many examples of artificial systems designed to make collective level 
estimation of environmental properties. In (Wahby et al., 2019), previously mentioned hon-
eybee-inspired aggregation method (Kernbach et al., 2009) is improved with an ability to 
aggregate on different upper and lower values of temperature gradient in the environment 
using only local communication. In (Campo et al., 2011), an aggregation task with shelter 
selection is considered. Robots using only local density estimation are able to aggregate 
in a shelter that fits better the swarm size. In (Valentini et al., 2016), the robot swarm col-
lectively estimates the most frequent tile color of the ground using communication to per-
form voting or exchange their predictions. Some studies related to division of labor also 
show that modifications of social interactions due to environment can also produce collec-
tive level solutions to more realistic problems. In (Zahadat & Schmickl, 2016), underwa-
ter robots demonstrate a fully distributed dynamic and efficient task allocation among the 
swarm by only relying on local interactions. In this method, which is inspired by honey-
bee age-polyethism, interactions also involves communication. Alternatively, it is shown 
that  (Carreón et  al., 2017) social interactions and limited environmental observations of 
agents can be used in real-life problems like regulation of a public transport service. By 
locally observing the approaching trains and a virtual pheromone assigned to each stop, 
Carreón et al. (2017) showed that a whole metro system can be organized in a distributed 
fashion.

We now discuss the literature that is the most related to the work presented in this paper. 
In (Schmickl et al., 2016), a swarm of simulated individuals can follow the decreasing gra-
dient by a method inspired by slime molds. The algorithm works by individuals exchang-
ing messages (“pings”) with frequencies correlated with their local estimate of the gradi-
ent. The requirement of individuals to estimate the direction of “pings” potentially comes 
with challenges for a real-world application. Neither this method nor its more recent adap-
tations (Varughese et al., 2019) are implemented on a real platform. Bjerknes et al. (2007) 
present a truly distributed and emergent collective taxis on a simulated swarm with highly 
realistic features and constraints. Robots in an area illuminated by a beacon modify their 
desired distances to the rest of the swarm. The ones that are illuminated by the beacon 
tries to be more distant to the others, the swarm moves toward the beacon. Although there 
is a similarity between this approach and one of our methods, individuals move in a stag-
gered and slower way in  (Bjerknes et  al., 2007) without a group order, therefore in this 
work collective taxis emerges but not collective motion rendering it not suitable for aerial 
swarms. In addition, their aim is more toward achieving single source localization rather 
than gradient following. Shaukat and Chitre (2016) presents an underwater application 
with autonomous robots to localize an RF beacon. Robots employ a method that eventually 
results in adaptive group coherence, depending on proximity to the source. Although they 
demonstrated the effectiveness of adaptive group coherence for a collective and emergent 
source localization on real underwater platforms, robots used directional information of 
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signal measurements by employing two receivers on left and right side of the platforms. 
Duisterhof et al. (2021) demonstrates a relevant example of a collective search for a gas 
source with a nano-drone swarm. They showed that local information exchange between 
on-board controlled drones and local gas sensing are sufficient to locate the source col-
lectively. Differently from our approach, agents use waypoints to navigate and share their 
sensing information with each other. Despite that, when we consider the current challenges 
with aerial vehicles (Coppola et al., 2020) such as on-board peer sensing and autonomous 
flight without any external positioning system, Duisterhof et  al. (2021) presents a very 
promising real-life application within the given hardware constraints.

With respect to the most similar studies just discussed, the work presented in this paper 
differs from them by: demonstrating an emergent taxis behavior with the constraints of real 
aerial platforms using only local and scalar measurements rather than directional informa-
tion about the gradient, avoiding any external information exchange about the scalar meas-
urements among the individuals while having an ordered and cohesive collective motion.

3 � Methodology

We consider a swarm composed of N individuals that can move in a 2D bounded environ-
ment. The environment contains a certain fictitious substance that is spread in the arena in 
a non-uniform way, through a gradient. This gradient is modeled as a very fine grid where 
each cell has a scalar value. The grid modeling of the environment serves both to sim-
plify the computations as well as to model the finite sensing resolution of individual robots. 
Individuals can sense the local value in the grid cell in which they are currently located in. 
Yet individuals move continuously, independent from the cell structure of the environment. 
In addition, individuals can sense the relative distances and bearings of other individuals 
within a limited sensing range ( Dp ). Additionally, individuals can sense their distance to 
the environmental boundaries if they are in the boundary sensing range ( Dr ). Movements 
of the individuals follow the non-holonomic constraints: At each time instant, the focal 
individual has a direction of motion, which is called the heading and it can only move along 
this heading direction based on its linear speed. The heading direction changes according 
to the angular velocity of the individual. The details of physics used during simulations 
depend on the specific simulator platform considered. In the following, we explain first the 
standard collective motion method (Sect. 3.1); subsequently, we introduce desired distance 
modulation (Sect. 3.2) and speed modulation (Sect. 3.3) methods that can achieve collec-
tive gradient following and a baseline method for individual gradient following (Sect. 3.4).

3.1 � Standard collective motion

The standard collective motion (SCM) method is used by the individuals to reach and 
maintain collective motion in a cohesive and ordered fashion. At each time instant, the 
focal individual i calculates a virtual force f⃗i as follows:

The virtual force consists of three vectors: The proximal control vector p⃗i , the alignment 
control vector h⃗i , and the boundary avoidance vector r⃗i . The proximal control vector p⃗i 
generates a spring-like effect between neighboring individuals: If the focal individual and 

(1)f⃗i = 𝛼p⃗i + 𝛽h⃗i + 𝛾 r⃗i



121Swarm Intelligence (2023) 17:117–146	

1 3

its neighbor are closer than the desired distance, p⃗i becomes a repulsive force, otherwise 
it is an attractive force unless two robots are exactly at the desired distance. The align-
ment control vector h⃗i contributes to maintain a consensus between the heading of the focal 
individual and the average heading of its neighbors. It was shown in previous studies (Fer-
rante et al., 2012) that collective motion can be achieved without alignment control vector, 
therefore in this paper, we consider alignment control as “optional” and perform experi-
ments with and without it. Lastly, the boundary avoidance vector r⃗i ensures a safe distance 
between the environmental boundaries and the focal individual. The weights � , � and � 
determine the relative contribution of the corresponding virtual force vectors.

Proximal control is always enabled by default to guarantee collision-free cohesive 
motion (Turgut et al., 2008; Ferrante et al., 2012, 2014). At each time instant, p⃗i is cal-
culated for each neighbor (m) of the total R neighbors by the focal individual in the 
sensing range, Dp . The proximal control vector is calculated as:

Here, pm
i
(dm

i
, �i) and ∠ej�m

i  are the magnitude and the angle of the vector i pointing at each 
perceived individual, respectively. The magnitude of the ith vector is calculated using the 
following virtual force function derived from a modified Lennard–Jones potential function, 
as:

where dm
i

 is the relative distance of m sensed by i, � is the gain of the force function and �i 
is the desired distance coefficient between i and its neighbors. The relation between desired 
distance of i and �i is as follows:

We indicate both dm
i

 and �i as variables because the value of the former is the distance 
of neighbor m to focal individual i which is continuously changing and the latter is the 
desired distance coefficient of individual i which changes in the desired distance modula-
tion method explained later.

Alignment control is calculated by normalizing the sum of the headings of each 
neighbor in the sensing range Dp , together with the heading of the focal individual i. h⃗i 
is calculated as follows:

where ∠ej�m refers to the heading of individual m and the heading of the focal individual i is 
indicated as ∠ej�0 . Headings are calculated with respect to a common frame of reference for 
all individuals. In a real application, this frame of reference can be implemented either by 
a digital compass “common north” (Turgut et al., 2008) or via a shared directional signal 
such as a light source (Ferrante et al., 2014).

Boundary avoidance is calculated for every edge of the polygonal boundary of envi-
ronment within the boundary perception range Dr
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For every perceived edge (b) among all simultaneously perceived edges (B) of the polygo-
nal boundary of environment, the magnitude of the avoidance vector (Khaldi & Cherif, 
2016) is calculated as follows:

krep is the gain of the avoidance vector, L0 is the relaxation threshold of the function and Lb 
is the shortest distance to the edge b. The unit vector p⃗b

i
 indicates the direction of closest 

point on the edge b in the frame of reference of individual i.
Motion control is achieved by using f⃗i to calculate the desired linear and angular 

speeds of the focal individual i at a time instant as in (Ferrante et al., 2012). First, f⃗i is 
projected on the two orthogonal axes of i’s local frame of reference. It is a right-handed 
reference frame in which the x-axis is parallel to the heading of individual i. Figure 1 
visualizes each step of SCM for a focal agent and 2 neighbors to the point where fx and 
fy are found. The linear and angular speeds are calculated as follows:

(6)r⃗i =
∑
b∈B

r⃗b
i

(7)r⃗b
i
= krep

�
1

Lb
−

1

L0

�⎛
⎜⎜⎝
p⃗b
i

L3
b

⎞
⎟⎟⎠

(8)Ui = K1fx + Uc

Fig. 1   Step by step visualization of how total virtual force vector on the focal agent is calculated in SCM 
and components on the local reference frame are found. (a) First, the focal agent measures the relative dis-
tances (d1

2, d1
3) and relative angles (ϕ1

2, ϕ1
3) of neighbours within the perception range Dp. In addition, the 

distance to any boundary (Lb) within the range Dr is measured. Optionally, the average heading of neigh-
bours is also found (average of θ1, θ2 and θ3). Later, all measured distances and angles are used in the 
corresponding formulas to calculate the virtural force components for proximal control (p1

2, p1
3), alignment 

control (h1) and boundary avoidance rb
1. (b) The resultant force vector f1 is calculated by summing all the 

force vectors. Finally, f1 is projected onto local reference frame of the focal agent. Components of f1 in this 
local frame (fx and fy) are used to calculate linear and angular speeds. α, β, and γ are set to 1 for simplicity
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The linear speed Ui is determined by multiplying the x component of f⃗i ( fx ) by the linear 
speed gain K1 and adding it to the bias speed, Uc . The angular speed is determined by mul-
tiplying the y component of f⃗i ( fy ) with the angular speed gain K2.

The linear and angular speeds of i are bounded as follows:

3.2 � Desired distance modulation

In the standard collective motion (SCM) method, the desired distance between the focal 
individual i and its perceived neighbors is determined by the �i term, which is constant 
and the same for all individuals. In the first proposed method Desired Distance Modula-
tion (DM), we instead change �i for every individual to correlate the desired distance 
with the local perceived value of the scalar field, G◦ , in the environment as follows:

where �max and �min are the maximum and minimum values of �i , respectively. Gmax is the 
maximum local value in the environment. We expect the agents perceiving higher local 
values to have higher desired distance values hence they tend to be more distant to their 
neighbors. On the contrary, neighbors perceiving lower local values have smaller desired 
distance values making them to be closer to their neighbors. This symmetry breaking 
within the swarm creates a tendency to move toward higher local values.

3.3 � Speed modulation

The second proposed method, Speed Modulation (SM), introduces two alterations on 
the control of the individuals:

•	 The focal individual i amplifies the repulsive component of the calculated proximal 
control vector. In particular, the neighbors of the focal agent which are closer than 
the desired distance starts to produce stronger repulsion forces than they would be 
producing with SCM. This magnification of the repulsive forces increases when the 
focal individual is perceiving higher local values.

•	 The focal individual i decreases its calculated linear speed according to the local 
value.

(9)�i = K2fy

Ui =

⎧
⎪⎨⎪⎩

0 Ui ≤ 0

Ui 0 < Ui < Umax

Umax Ui ≥ Umax

𝜔i =

⎧
⎪⎨⎪⎩

−𝜔max 𝜔i ≤ −𝜔max

𝜔i 0 < 𝜔i < 𝜔max

𝜔max 𝜔i ≥ 𝜔max

(10)�i = �min +

(
G◦

Gmax

)(
�max − �min

)
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The first item on the list requires an additional element to calculate f⃗i:

where � is the weight of this new effect, virtual repulsion vector p⃗r
i
 , which consists of repul-

sive forces in p⃗i . Ra , is the repulsion weight calculated as a function of the local value as:

Next, the calculated linear speed Ui of the focal individual i is modulated according the 
local value as:

where Pu is the portion of Ui to be modified, Eu is the local value correlation exponent and 
Umin is the minimum linear speed value as a lower threshold after the modulation. In SM, 
when the focal agent reads a higher local value, it slows down. When it slows down, its 
neighbors will temporarily be closer than the desired distance producing a combined repul-
sive force. To increase the strength of this repulsive force, we modify its strength ( Ra ). 
Since the portion of the swarm on higher local values will be slowed down and pushed out 
by their neighbors, the rest will be pulled toward the higher local values creating a collec-
tive gradient following effect.

3.4 � Baseline method: single gradient follower

When employing one of the two proposed methods, the swarm is expected to show a col-
lective taxis behavior by following the increasing gradient direction in the environment 
without explicit gradient sensing. As a baseline method, an algorithm is proposed for a 
solitary individual. The individual is assumed to perceive the local values on the circum-
ference of its sensing circle. By knowing the local values, it can follow the best direction 
where the gradient increases. This method is used as the baseline of comparison with the 
proposed methods. This comparison could be helpful on deciding if the emergent sensing 
of the gradient by the swarm is comparable with a genuine gradient sensing of a single 
individual. The desired linear and angular speeds of the single individual is calculated as a 
function of the resultant virtual force vector as follows:

The goal direction vector, g⃗i , is a unit vector in the direction of maximum positive change 
in local values between the individual i’s current location and perceived values on the sens-
ing circumference. � is the relative weight of the goal direction vector. The motion control 
method of the single individual is exactly the same used in the other methods.

(11)f⃗i = Ra𝛿p⃗
r
i
+ 𝛼p⃗i + 𝛽h⃗i + 𝛾 r⃗i

(12)Ra =

(
G◦

Gmax

)

(13)Ui = max{Ui

[
1 − Pu

(
G◦

Gmax

)Eu

]
,Uminsgn(Ui)}

(14)f⃗i = 𝜃g⃗i + 𝛾 r⃗i
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4 � Multi‑agent simulations

We first perform an in-depth analysis of the proposed methods on an efficient kinematic 
multi-agent simulator. Multi-agent simulations are the first step to assess the success and 
scalability of the proposed methods in addition to their robustness over changing environ-
ment models. Despite its simplicity, the simulator is powerful enough to perform a compre-
hensive analysis while systematically varying a number of key parameters.

4.1 � Experimental setup

In multi-agent simulations, a swarm of N point agents is considered. The positions and 
the headings of the agents, which are both continuous variables, are updated with discrete 
integration steps. For all experiment settings, the control time step dt is chosen to be 0.05 
simulated seconds (ss). The position and heading updates also involve a uniformly distrib-
uted random error in the range ( [−ep, ep] ). Another error term with the same characteristics 
is added to the perceived distance of neighboring peers in each local axis of the focal agent, 
in the range of ( [−en, en]).

Four different factors are considered in the experiments: Method, swarm size, scalar 
field model to represent the environmental gradient, and swarm density. Concerning the 
first factor, we consider the two proposed methods, Desired Distance Modulation (DM) 
and Speed Modulation (SM), both with and without heading alignment control (HA), in 
order to assess each method’s individual effect and the one combined with HA. In addition, 
we consider the Standard Collective Motion (SCM), as well as the baseline method, Single 
Gradient Follower (SGF), that will be tested with a single agent only, making a total of 
five method combinations. For the second factor, except for SGF, different swarm sizes are 
considered for each of the different settings: 5, 50 and 100. For the third factor, we consid-
ered seven different scalar field models to reveal correlations between certain gradient pat-
terns and collective responses if there is any. Their visualization and naming are depicted 
in Fig. 2. In addition, two snapshots with different experiment settings are shown in Fig. 3.

To implement scalar field models, the environment is divided into grids. For all experi-
mental settings, the length of these grids ( Δg ) are taken as 0.04 units. A uniformly distrib-
uted random error ( [−eg, eg] ) is added to the perceived local value. Concerning the last 
experimental factor, the swarm density level (DL) is defined as the ratio between the area 
the swarm covers and the environment’s total area. To impose particular values of swarm 
density levels, we assume that the area that the swarm covers is proportional to the total 
number of agents. With this assumption, we can choose environments with growing areas 
in a way that is proportional to the total number of agents. A summary of this proportional 
relationship for different environments are shown in Table 1.

For each setting, experiments are repeated 100 times. For each run, a centroid location 
is chosen randomly in order to eliminate the effect of initial conditions on the performance 
of the swarm. Finally, agents are initialized around the centroid location such that they 
are all in the sensing range of each other. The termination criteria of each experiment is 
chosen to be linked to the trajectory length of the centroid of the swarm. The cutoff value 
for trajectory length is taken as 2.5 times of the edge length of the experiment arena. The 
experiment is finalized when the trajectory length reaches the cutoff value, or when total 
time limit (640,000 simulated seconds) is exceeded.
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The numerical values of the common parameters are given in Table 2. The method spe-
cific parameters are presented in Table 3. Methods require different parameter values to 
perform at their best and we tune these values manually for different methods. For example 
tuning � implies an increased weight of proximal control when compared to other effects. 

Fig. 2   Visualization of scalar field models used in the experiments; Brighter regions indicate higher scalar 
values

Fig. 3   Snapshots from two different multi-agent simulation runs; a DMHA on the Barrier model and b 
SMHA on the Circle model, blue line indicates trajectory of the swarm centroid and arrows show the head-
ing direction of corresponding agents

Table 1   Edge dimensions 
and areas of square shaped 
environments in units, 
corresponding to density level 
and swarm size

Swarm size Edge length Env. area Edge length Env. area
DL1 DL1 DL2 DL2

5 40 units 1600 unit2 10 units 100 unit2

50 126.48 units 16000 unit2 31.62 units 1000 unit2

100 178.88 units 32000 unit2 44.72 units 2000 unit2
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This is why DM have larger value of � when compared to DMHA since DM lacks align-
ment control. Speed gains also differ for the needs of different methods: Reflecting the 
resultant force vector on angular speed ( K2 ) is more important on SM and SMHA when 
compared to DM. Speed modulating methods perform better when agents control their 
headings more sensitively.

Methods have certain parameters only defined for themselves. For DM and DMHA, 
these parameters are �min and �max . They tune the amplitude of desired distance asymme-
try within the swarm. Since they should be chosen sufficiently large but not freely. Larger 
values can cause separations in the group. Whereas P

u
 and E

u
 tune what portion of linear 

speed will be modulated and how strong it will get affected from the local value. Modifying 
the speed with insufficient strength and portion may shadow the effect of our method SM. 
Whereas larger than sufficient values may harm the ability of swarm to collectively move.

Table 2   Values of common 
parameters in all experiment 
mediums

Parameter Value

N :  Total number of agents 5, 50, 100
Δg ∶ Grid edge size (units) 0.04
Dp ∶ Perception range (units) 2.0
� ∶ Proximal control strength coefficient 12.0
Dr ∶ Boundary perception range (units) 0.5
� ∶ Boundary avoidance weight coefficient 1.0
krep ∶ Boundary avoidance strength coefficient 2.0
L0 ∶ Avoidance vector relaxation threshold 0.5
Umax ∶ Maximum linear speed ( units∕t) 0.15
Umax (SGF): Maximum linear speed ( units∕t) 0.1
Uc ∶ Constant speed addition ( units∕t) 0.05
Gmax ∶ Maximum grid value 255.0
ep ∶ Position update random error range (units) [∓0.05]
en ∶ Peer perception random error range (units) [∓0.05]
eg ∶ Local value perception random error range [∓0.5]
dt :  Control time step (ss) 0.05

Table 3   Values of method specific parameters in multi-agent simulations

Parameter DM DMHA SM SMHA SCM SGF

� ∶ Proximal cont. weight coeff. 2.0 0.5 0.5 0.6 1.0 –
� ∶ Alignment cont. weight coeff. – 2.0 – 2.0 2.0 –
K1 ∶ Linear speed gain 0.5 0.02 0.03 0.03 0.03 0.4
K2 ∶ Angular speed gain 0.05 0.4 0.4 0.4 0.4 0.1
�max ∶ Max. angular speed ( rad∕t) �/4 �/4 �/4 �/4 �/3 �/4
�min ∶ Max. desired distance coeff. 0.3 0.3 – – – –
�max ∶Min. desired distance coeff. 0.6 0.6 – – – –
P
u
∶ Modified Ui portion – – 0.5 1.0 – –

E
u
∶ Local val. correlation exp. – – 2.0 10.0 – –

� ∶ Goal direction weight coeff. – – – – – 5.0
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4.2 � Metrics

In order to measure the performance of the swarm in following the gradient toward the 
increasing values of the scalar field, we define and use a gradient following performance 
(GFP) metric. This metric is calculated as follows: First, at the end of each run, the cen-
troid trajectory -which is equal in length for all methods on a particular experiment set-
ting- is divided into equal-length segments ( Δd ) and control points are specified as the end 
point of each segment. This step ensures all experiment runs produce the same number of 
control points ( Nd ) of the local value perceived by swarm centroid. Second, the local value 
of the cell where the swarm centroid falls is recorded ( G◦(ni) , ni ∈ Nd ). Third, the local 
values observed on each control point of a trajectory, belonging to a single experiment 
run, are summed. Finally, the summation is normalized by using the result of the baseline 
method (SGF) at the same experiment settings. Recorded values of SGF and each trajec-
tory segment are denoted as G◦(n

i

∗) and ni∗ , respectively. It is also important to state that 
the experiments for SGF are repeated 10 times more (1000 in total) compared to all the 
others and the best of 10 is chosen for each experiment configuration to remove any effect 
of randomness. GFP can be formulated as follows:

GFP can take any value between 0 and 1. When GFP approximates 1 it means the perfor-
mance of the chosen method producing similar results with our baseline method (SGF). 
The opposite case simply implies swarm always perceived local values close to zero. 
There are two edge cases to be considered during the calculation of GFP: a case that the 
swarm could not reach the designated trajectory length in total time limit and a case that 
the swarm is no longer a single group which means that the location of the centroid is no 
longer a valid indicator. For the former case, a fair way to compute the metric is to consider 
the trajectory pieces collected up to the time limit. In the latter case, the situation is not 
acceptable for our objectives. Therefore, if group separation occurs, the gradient follow-
ing performance is recorded as 0 for that run. To determine whether separation occurs, we 
calculate the number of groups at a certain time instant. This is done by considering pairs 
of agents that are located within their sensing range. Afterwards, the pairs are appended to 
a list of equivalence pairs and the method of equivalence class is used to assign an equiva-
lence class to each pair. Total number of equivalence classes gives us the total number of 
groups.

4.3 � Results

In Fig. 4, we report GFP for swarms of the largest size (100 agents), for all scalar field 
models and for two different swarm densities. As expected, standard collective motion 
SCM fails to keep up with the baseline method SGF, since the swarm simply wanders 
around in the arena and averages all the local values it measures along the way. That is 
why SCM has different values among different scalar field models depending on bright 
to dark ratio in the model. Corresponding values can be observed on Fig. 4a.

We now focus on the performance of each method on different environments. Fig-
ure 4b reports the results for the Barrier scalar field model. Despite the fact that with 

(15)GFP =

∑
ni∈Nd

G◦(ni)

∑
ni

∗∈Nd

G◦(ni
∗)
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DM numerous experiments resulted with high GFP, there is a considerable portion 
of runs demonstrating significant performance loss. Depending on the starting point, 
if swarm’s trajectory does not intersect with the "barrier" of the environment, DM 
shows more potential. This is the case since DM lacks the ability of a sudden turn as an 
ordered swarm, by reason of not having alignment control. The number of experiments 

Fig. 4   Gradient following performances (GFP) of all methods in multi-agent simulations, on all scalar field 
models: Desired Distance Modulation (DM), its variation with alignment control (DMHA), Speed Modula-
tion (SM), its variation with alignment control (SMHA) and Standard Collective Motion (SCM), the black 
dashed line at 1 indicates the best performance of Single Gradient Follower (SGF) and GFP of other meth-
ods are normalized accordingly, violins are presented for different density levels. Median GFP values of 
each method on each model is presented in a 
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that resulted in poor performance are higher for the swarm density level of 1, indicating 
that DM performs slightly better in high swarm density level. In other words, it is possi-
ble that with low swarm density level, the desired distance difference among agents are 
not enough for repeatable success.

The situation is different when considering DMHA, in which the majority of the experi-
mental runs achieved high GFP. Alignment control, which is the difference between DM 
and DMHA, plays a key role in explaining how controlling alignment of agents affects the 
ability of swarm to avoid sudden changes in the gradient trend. When SM is considered, 
the majority of the experiments demonstrated high GFP with swarm density level 2. The 
performance of SM is drastically different for density level of 1. The performance metric 
drops to a value even lower than SCM. The reason behind this sudden performance loss is 
that as stated earlier, an experiment is terminated if swarm centroid trajectory could not 
reach determined length in given time. The way we have designed the metric is the key 
here: The overall shortage of SM is greater since it loses the ability to move whereas SCM 
is always able to move although the direction of motion is not toward the most rewarding 
portions of scalar fields. Finally, SMHA shows a satisfactory performance with high GFP.

In Fig. 4c , which reports the results for Bimodal scalar field model, we see reduced var-
iation in the performances among different methods compared to the Barrier model. A pos-
sible reason for that is the absence of an obstruction on the way of increasing scalar values 
of the gradient in Bimodal model. Apart from SM at swarm density level of 1, all methods 
indicate a high success. Nevertheless, DM has a slightly decreased performance at swarm 
density level of 1 when it is compared to 2. The same reason for that, which is stated for the 
Barrier model, also applies here. The performance of SMHA slightly decrease from swarm 
density level 1 to 2. This situation is the opposite of what is seen for DM. Although the 
difference is not significant, it indicates a correlation between low performance and high 
density for SMHA.

The results for the Circle model are reported in Fig. 4d. The performances reported here 
are very similar to the ones for Bimodal model, with a slight increase overall. This increase 
is better observable on median values at Fig.  4a. As a notable difference, DM’s perfor-
mance loss for swarm density level 1 does not exist for the Circle model. That absence 
of performance loss indicates a correlation between success of the swarm and scalar field 
model characteristics.

A slightly more challenging version of the Barrier model is the Double Barrier model. 
The results for this version which are presented in Fig. 4e clearly reflects the situation. For 
DM, portion of the experiments with poor performance is clearly growing. At swarm den-
sity level 1, this portion becomes the majority and drags the median line to a value lower 
than SCM. The fact that a swarm with DM performs worse than a method without a gradi-
ent perception, indicates that DM may cause swarm to spend more time and stuck between 
pitfalls if the opening is narrow while SCM still ignores the pitfalls and wander around 
aimlessly, including regions with higher values. Although the situation is not exactly the 
same for DMHA, the performance decrease is still observable.

The results for the Linear model, which is quite similar to the Barrier and Double Bar-
rier models only with a difference on not having any barrier regions with undesirable val-
ues, is presented in Fig. 4f. For DMHA, although the median line is very close to 1 for 
swarm density level 1 and 2 within a close distribution, there are numerous data points 
valued as 0. As stated earlier, this indicates a group separation. This separation is observed 
more at swarm density level 2 when compared to 1. One possible reason of facing a separa-
tion on most successful method so far is continuous and directed nature of gradient in the 
Linear model. This nature allows the highly aligned swarm to speed up and collide with the 
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boundary edge. SM indicates a good performance with a narrow distribution, again only 
for swarm density level 2. SMHA also presents a satisfying performance on both density 
levels but with a small number of group separations, like DMHA.

Performances of different methods on the Linear Symmetrical model is presented at 
Fig. 4g. The first thing observed from a wide aspect is that almost all methods performed 
better than they do on the other linearly oriented scalar field models. DM and DMHA per-
formed with a comparable success to the baseline method, apart from only 2 group separa-
tions out of total 100 experiments, observed with DMHA. The same trend of having better 
performance than other scalar field models can also be observed for SM and SMHA. The 
fact that maximum valued column is located in the center, leads to a sharper change in local 
values and produce a high-valued region in the middle to host the swarm far from bound-
ary repulsion. These key features of the Linear Symmetrical model helps us to understand 
overall increase on the performances.

For the final and most distinguished scalar field model, the Spiral, the results are 
reported in Fig.  4h. As an overall trend, it is observed that all methods have decreased 
performances when compared to the other models. Firstly, DM has a satisfactory median 
line for swarm density level 2 around 0.9 while having a considerable amount of data point 
below it. This wide distribution exist also for swarm density level 1. Although the distribu-
tion of the performance metric is not narrow around the median line, DMHA still indicates 
that it is the best performing method among others in Spiral model. For SM and SMHA, 
the performances are distinctly better than SCM. Yet, the performances are comparably 
lower than they are at other scalar field models. When the distinct and narrow nature of the 
Spiral model is considered together with highest dark to bright region ratio, reasoning the 
overall performance decrease is not a challenge here.

4.4 � Discussion of results

When we observe the results of multi-agent simulations (Fig. 4), we see that DM shows a 
satisfactory performance overall. The highest performances (Fig. 4a) are seen on the sca-
lar models (Linear Symmetrical and Circle) where maximum is far from the borders and 
closer to the middle. These type of scalar fields naturally have values changing faster than 
the other fields. This case is in accordance with our expectations since larger local value 
difference leads to larger desired distance difference among agents that leads to a better 
performance. A different phenomenon is observed in the Bimodal and Linear models such 
that the performance decreases on lower swarm density levels. The performance drop can 
be connected to decreased variations in the scalar values measured by the individuals. In 
addition, DM shows significant performance drops when it encounters with pitfalls. This 
negative effect can be explained by the lack of the heading alignment component.

When alignment control is also employed, as in DMHA, we obtain better performances 
than DM. We also do not see any negative effect of the swarm density level on the per-
formance. Yet, we observe group separations. Although we see only 2 in 100 runs on 
the Linear Symmetrical model, we see higher numbers on the Linear model. The Linear 
model have the maximum value along the edge. Since the edges have a repulsive effect, 
the swarm can possibly be hitting the edge like a fluid hitting a flat surface and scattering 
afterwards. In order to test this effect, we generated a scalar field model very similar to the 
Linear model with the only difference being the extended high-valued edge containing the 
maximum value. The performance comparison of DMHA on these scalar field models are 
shown in Fig. 5. We observe that number of group separations dropped to 0 with a slight 
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performance decrease on the extended Linear model. The reason of this decrease in GFP is 
not due to DMHA performing worse instead our baseline method SGF performing better, 
since brighter regions are extended. Extended bright region is more advantageous for a sin-
gle robot when compared to a swarm. A single robot can easily stay in that region.

Another method we proposed for collective sensing in the swarm was SM. GFP results 
show that SM has a performance comparable with DM and DMHA (Fig. 4a). Observable 
drops of the performance occur in the models which involves pitfalls (Barrier and Dou-
ble Barrier models) or more complex than others (Spiral model). This is expected from a 
swarm without alignment control. Yet, this conclusion is only valid with the high swarm 
density level (2).

On the low swarm density level (1), experiments are terminated earlier with SM since 
the swarm was not able to travel long enough to meet the trajectory length criteria. That is 
when GFP is recorded as 0 for the rest of the "unrealized trajectory", which is observable 
on the violin plots in all scalar field models. Penalizing behaviors this way complies with 
our research goal since we require uninterrupted collective motion compared to intermit-
tent swarm motion that can be interrupted, even if the interruption occurs in the desired 
region.

For a deeper understanding of this issue, Fig. 6a, c can be referred. Figures report the 
gradient value and speed of the swarm centroid for DMHA and SM methods on the Circle 
model at swarm density level 2 as an average of total 100 experiments. Level 2 is chosen 
since at that level, both methods are successful and results give information about method’s 
specific differences. Firstly, two methods differ by their ascent to higher gradient value: 
While DMHA ascents to high gradient values sharply and maintain those values after-
wards, SM shows a slow and gradual increase. This can be analyzed together with the cor-
responding centroid speeds, since DMHA quickly increases the speed and maintains it as 
well while SM increases the speed slightly at the beginning just before losing it for the rest 
of the experiment. Although the nature of SM suggests lower speed for swarm, the centroid 
speed is lower than what can be ideally desired.

Analyzing the order metric  (Ferrante et  al., 2014), which is an important collective 
motion property, might explain the decreased speed performance observed with SM. 
The order metric is a quantitative value designating the agreement of swarm member’s 

Fig. 5   The original and the extended version of Linear scalar field model and gradient following perfor-
mance (GFP) of DMHA on both versions with different density levels
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heading. It takes values closer to 1 when all members are moving in the same direction and 
approaches to 0 when member’s orientations are unrelated with each other. The order ( Ψ ) 
is calculated as follows where ej�i denotes the heading angle of agent i:

Figure  6b, d report the order metric and centroid gradient value for DMHA and SM, 
respectively. The reason behind the difference between high and consistent speed of 
DMHA and decreased speed of SM can be found here. While DMHA reaches high order 
(as expected since it has alignment control) in a short time after the beginning, SM is never 
able to increase the order. That difference indicated that although a swarm with SM can 
move toward increasing values of gradient, it is impractically slow and chaotic. Moreover, 
as we see on the gradient following performance results for swarm density level 2, this 
slowness and disordered structure had to be stopped with a time-limit induced termination.

When SM is equipped with alignment control (SMHA), the performance improves sig-
nificantly on the environment models with pitfalls. The performance difference with and 
without alignment control on these environment models is smaller with DM. In desired 
distance modulation methods, collective motion emerges from relative positions of the 
peers. Whereas in speed modulation methods, collective motion relies more on relative 

(16)Ψ =

‖ ∑
i∈N

ej�i‖
N

Fig. 6   Time evolution of swarm centroid speed, order and gradient value seen by swarm centroid of DMHA 
and SM from multi-agent simulations with 100 agents, on Circle scalar field model with swarm density 
level 2, colored lines show average of the variables over 100 experiments and colored bands show 95% 
confidence level
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speeds and headings. In other words, speed modulation is affected by a scalar variable such 
as the speed whereas distance modulation mainly depends on the vectorial adjustments 
(bearings of neighbor peers). This is a possible cause of the strong coupling between the 
performance of speed modulation and alignment control.

Moreover, in physical systems, obtaining better performance with lower accuracy on 
relative positions of entities is easier when compared to relative speeds or headings. The 
reason behind this is the fact that with relative positions, direction is the most important 
factor to the methods whereas for speed modulation, direction is a secondary product of 
changing relative speeds. Thus, we analyzed SMHA in physics-involved experiments to 
assess its real-world applicability and compare it with DM and DMHA in order reveal the 
challenges in a method relying on accurate control of individuals’ relative speeds. We have 
chosen SMHA for these experiments, instead of SM, since we can safely claim alignment 
control can bring improved order and this is the only possible way to get performances 
from speed modulation which are good enough to be compared with desired distance mod-
ulation methods’.

5 � Dynamical simulations

Dynamical simulations are conducted on a physics-based simulator by employing realistic 
dynamic and sensory model of the Crazyflie nano aerial vehicle  (Panerati et  al., 2021). 
This particular simulator and aerial vehicle model are chosen since the real experiments 
are also conducted with the Crazyflie platform. Several snapshots taken during different 
experiment settings are shown in Fig. 7. Dynamical simulations are computationally costly 
when compared to multi-agent simulations. Hence, only a subset of the experiments con-
ducted previously is considered here.

In dynamical simulations and real robot experiments, drones move in a fixed altitude 
and perform 2D flight. Although these aerial platforms have an advantage of moving in 
3D, the proposed methods are not developed yet for 3D flight but still has the potential to 
do so. Instead of using the full potential of drones right away, in the first application of our 
methods, we aim to show the performance of the proposed methods in collective gradient 
following in a relatively simpler setting.

Fig. 7   Snapshots from dynamical simulation experiments with swarms of 5 and 50 robots on Circle scalar 
field model
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5.1 � Experimental setup

In dynamical simulation setup, the platform model responds to changing values of linear 
speed commands at 20 Hz. Controlling a robot in a swarm with velocity commands would 
also enable porting of all the swarm robotics approaches normally developed on unmanned 
ground vehicles (UGVs) (Brambilla et al., 2013) to unmanned aerial vehicles. One further 
ingredient to achieve this is the ability to control the heading of a quadrotor, in a way that is 
compliant to the non-holonomic constraints typical of unmanned ground vehicles (Amorim 
et al., 2021).

Quadrotors are holonomic so that they can move in any direction in any time. Yet, if 
the velocity commands are generated in that manner, they may cause abrupt changes in 
the orientation of the quadrotor. Consequently, they might cause dynamical instabilities. 
Additionally, satisfying non-holonomic constraints is also required to implement SCM. 
SCM requires the platform to respond to linear speed commands, that move the platform 
in the direction of its current heading and respond to angular speed commands, that rotate 
the heading of the platform. To satisfy these non-holonomic constraints one option is to 
make the platform respond to angular speed commands through rotations of the quadrotor 
around the vertical axis (yaw), which effectively means to change its heading. This might 
bring new overhead and constraints to the controller that might cause further instabilities. 
For this reason, we choose to change the quadrotor heading only “virtually”, as follows: 
Initially, every robot has a randomly chosen virtual heading. Linear speed commands 
generate translation motion that are only applied in this direction, as if it is a differential 
drive ground vehicle. The angular speed commands, instead, modify this virtual heading, 
that will in turn change the axis along which we constrain the translating motion of the 
quadrotor.

The simulator does not model a sensor that can perform relative localization. It is also 
not straightforward to implement a controllable physical variable modeling the environ-
mental gradient. Therefore, we emulate both the peer sensing and the scalar field model 
concepts in a way that is transparent to the proposed algorithms: Robots still can only sense 
peers within a certain sensing distance and only know the scalar value of the field at their 
particular location. In this way, the algorithms are compatible with any sensor for relative 
localization and any sensor for gradient sensing.

The computational complexity of the physics simulator imposes a time limitation for the 
experiments. Therefore, we performed experiments only within a subset of the experimen-
tal setup considered in multi-agent simulations, which excludes SM, since it shows signifi-
cantly lower group order as a result of continuously changing linear speed values and needs 
significantly more time to move a considerable distance.

As another limitation imposed by higher computational complexity, we considered 
only three scalar field models: The Circle, Linear and Linear Symmetrical. They are 
chosen based on our judgement that they are fundamentally distinct models. Besides, 
we chose these models, because, we think that they are feasible to implement on our 
real flight arena. Additionally, we consider only two group sizes for dynamical simula-
tions: 5 and 50. Experimenting with 5 agents allows us to make a smooth transition 
to the real robot experiments, since the number of aerial vehicles considered in real 
experiments is 5. Besides, 50 was our computational limit for physics-based simu-
lations. In order to increase similarity of the simulation configuration with the real 
experiments, we chose the swarm density level equal to what we have in real robot 
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experiments. Therefore, with 5 agents, dimensions were 6.5 m by 4 m and for 50 
agents they were 16.12 m by 16.12 m.

Each experimental condition is repeated 50 times. Initial placement of the robots 
around initialization points are done in the same way with the multi-agent simulations. 
Initial centroid positions are chosen among the four corners and the center of the envi-
ronment, where from each position 10 experiment runs are started. The termination 
criteria (the trajectory length) is specified as 2.5 times the longest edge length of the 
environment. None of the experiments needed and used a time limit.

The numerical values for the parameters are introduced in Sect. 3 and those related 
to the physics simulator settings can be found in Table 4. The chosen numerical values 
show a difference with multi-agent simulations, which is motivated by the fact that two 
robot models are completely different in terms of movement capabilities and sensing, 
which results in different collective dynamics. In order to reduce the gap between ide-
alized agents and physics-based agents, parameter values are manually tuned. Param-
eter optimization is left out of scope of this paper.

Gradient following performance (GFP) is used to measure the success of the swarm 
and recorded every 2 calculation steps. Hence, SGF is also implemented in the phys-
ics-based simulator and repeated 10 times more than other methods. In addition, the 
number of groups is checked during each experiment: No separation is ever observed, 
therefore the results of this metric are not shown. We also report the performances 
from multi-agent simulations, in order to perform a comparison. For 5 and 50 agents, 
multi-agent simulations are conducted with 2 different density levels, one reflects real 
experiments and the other one the multi-agent simulations.

5.2 � Results

In Fig. 8, we report GFP from dynamical simulations together with the multi-agent sim-
ulation counterparts. When we check the plots, we conclude that the results of multi-
agent simulations are well replicated on dynamical simulations with various methods, 
scalar field models and densities. This case also can be quantitatively validated in 
Figs. 4a and 8a.

Table 4   Values of method 
specific parameters in dynamical 
simulations

Parameter DM DMHA SMHA SGF

� ∶ Proximal cont. weight coeff. 1.0 1.0 0.8 –
� ∶ Alignment cont. weight coeff. – 2.0 2.0 –
K1 ∶ Linear speed gain 0.3 0.04 0.04 0.3
K2 ∶ Angular speed gain 0.6 0.1 0.3 0.2
�max ∶ Max. angular speed ( rad∕t) �/4 �/2 �/3 �/4
�min ∶ Max. desired distance coeff. 0.8 0.8 – –
�max ∶ Min. desired distance coeff. 0.5 0.5 – –
P
u
∶ Modified Ui portion – – 1.0 –

E
u
∶ Local val. correlation exp. – – 3.0 –

� ∶ Goal direction weight coeff. – – – 5.0
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When we observe the performances on the Circle model with 5 agents (Fig.  8b), we 
see an apparent GFP difference between SMHA, and the other methods. Although, finite-
size effects greatly affected SMHA, this effect is less obvious with DM and DMHA since 
in these methods, unmatched desired distance values among peers are already producing 
repulsive forces for the focal agents in a direction outwards from the rest of the swarm 
pointing out the increasing gradient. Another point to note for this experiment setting is 
that DM can perform comparably better than SGF. It is only possible with low number 

Fig. 8   Gradient following performances (GFP) of chosen methods (DM,DMHA and SMHA) in dynamical 
simulations, on Circle, Linear and Linear Symmetrical scalar field models with 5 and 50 robots, the black 
dashedline at 1 indicates the best performance of Single Gradient Follower (SGF) and GFP of other meth-
ods are normalized accordingly, violins are presented for different density levels and simulation mediums: 
Dynamical simulations with real robot experiments density level (Dyn-RealDL), multi-agent simulations 
with real robot experiments density level (Multi-RealDL) and multi-agent simulations with swarm density 
level 2 (Multi-DL2), median GFP values for each setting can be observed in a 
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of agents and in multi-agent simulations. These conditions point out that when agents are 
moving similar to ideal case, a small swarm is better to keep their centroid at the bright and 
pointy center of the gradient circle than a single agent trying to wander around that bright 
center point. Better performance of DM over SGF is almost vanished for the same Circle 
model when experiments are conducted with 50 agents, as can be seen in Fig. 8c. Another 
difference we observed with 50 agents is the improvement of SMHA’s performance.

In Linear model, (Fig. 8d, e), we see several differences from the Circle model. Due to 
slower and smoother changing scalar values of the Linear model, DM no longer crosses 
the baseline. Besides, DMHA points out several group separations with 50 agents in multi-
agent simulations. Meanwhile SMHA shows a slightly better but less repeatable perfor-
mance when compared to the Circle model. Although the increased median values can be 
explained by the larger portion of the environment with higher values for this case, the 
wider spread points out an inconsistency on following an increasing trend.

In Linear Symmetrical model (Fig.  8f, g), all methods demonstrate a slight improve-
ment on their performances when compared to the other models. This can be linked to the 
sharper transition of values in the Linear Symmetrical model and more importantly, wider 
region of field with higher values to settle and keep the swarm centroid there, unlike the 
boundary effect the swarm is facing on the Linear model or smaller bright region in the 
Circle model. In addition, SMHA shows its best performance with 5 agents in this scalar 
field model.

5.3 � Discussion of results

Physics-based simulations stand as a meeting point for three different experiment medi-
ums. Using a realistic model for the aerial vehicles brings differences on relative and abso-
lute performances of the methods.

As an important outcome, performance of DM and DMHA methods stand in a strong 
agreement with multi-agents simulation results (Figs. 4a, 8a). This creates a strong motiva-
tion and confidence to carry these methods to real robot experiments. Although the case 
is similar in SMHA with 50 agents, the decreased performance with 5 agents indicates 
the weakness of SMHA on scalability. When the number of peers in a locality decreases, 
the robots that are facing higher gradient values can not become effective enough in group 
level to influence the others. There might be solutions to increase the effect of slowed down 
peers on others such as increasing the speed gap between peers that are measuring different 
gradient values or strengthening the effect of peers on each other. Yet, based on our knowl-
edge and experience we expect that both possible solutions end up with losing collective 
motion stability. As a result of weakness of SMHA with low robot numbers in addition to 
our trials, we did not included this method in real robot experiments. To further motivate 
this exclusion, another reason is the fact that robots with SMHA need to be successful 
on changing their speed accurately and frequently. Yet, it is a big challenge for a robotic 
hardware, especially aerial vehicles on the air. That is why we believe, this method was not 
applicable with our real-world experimental setup.
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6 � Real robot experiments

Final stage of the experiments is conducted with a real nano-aerial vehicle platform, the 
Crazyflie.1 This platform is selected because of its small size (9.2 cm motor to motor dis-
tance) and capabilities for indoor flights. Experiments conducted with a real aerial plat-
form constitutes a strong test bed for applicability of proposed methods with physical con-
straints, inaccuracies and delays.

6.1 � Experimental setup

Crazyflie is able to fly in a stable manner without the need for global position information, 
yet still there is no fully developed option for accurate on-board peer localization. There-
fore, as commonly done for this platform, we use an indoor positioning setup: The Loco 
Positioning System (LPS). This system works based on Ultra-Wide Band (UWB) signals 

Fig. 9   Crazyflie aerial platform has a UWB deck on top a and combination of flow camera and laser dis-
tance sensor on bottom b. Trajectories in c and d are colored for each robot in the swarm. c in Circle sca-
lar field model shows circulations around the bright center while d shows straighter paths from darker to 
brighter regions of Linear model

1  https://​www.​bitcr​aze.​io/​produ​cts/​crazy​flie-2-​1/.

https://www.bitcraze.io/products/crazyflie-2-1/
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exchanged between fixed anchors, which are UWB emitters, placed in the arena at posi-
tions shared with Crazyflies and UWB receivers installed on the Crazyflie board. By using 
LPS, the drones can localize themselves within a 10  cm accuracy. Estimations for posi-
tion on horizontal and vertical axes are done on board. Crazyflie platform equipped with a 
UWB deck on top and a flow deck on bottom, which consists of a flow camera for veloc-
ity measurements and laser distance sensor for altitude measurements, is shown in Fig. 9. 
Although peer localization is not performed fully on-board, UWB applications on Crazy-
flie proceeds in a promising direction for a possible usage of fully on-board localization 
in the near future. Yet another limitation we have is not being able to process high-level 
control fully on board. To be precise, although in principle it is possible to implement a 
controller for our methods on board, the ecosystem was not developed enough by the time 
we conducted our experiments. Thus, our Crazyflie setup utilizes a central computer in 
the control loop: High-level controllers are running on the central computer that receives 
instantaneous positions of all robots and calculates velocity command for each drone at 
every time step. These commands are then send to each drone via a serial communication 
protocol using the Crazyradio platform. For the high level controller and corresponding 
communication requirements, Crazyswarm  (Preiss et  al., 2017) framework is employed. 
The peer localization and sensing of local values of the scalar field model are also imple-
mented on the central computer following the constraints of the sensing ranges. In sensing 
the local values, the absolute position of each drone is used to find which cell it lies within 
and the value of that cell with a random uniform error in range of [−eg, eg].

The flight arena dimensions are chosen to be 6.5 meters by 4 meters and total number 
of robots in the swarm is 5. Long exposure photographs of the swarm on the flight arena 
captured during experiments are shown in Fig. 9. Considering the limited dimensions of 
the Crazyflie and its battery capacity, the flight time is limited at 4.5 minutes. The same 
scalar field models used in dynamical simulations are chosen for experiments: Circle, Lin-
ear and Linear Symmetrical. For real robot experiments, the DM and the DMHA methods 
are used.

For each method and the scalar field model, 6 experiments are conducted. As in multi-
agent and physics-based simulations, drones are initialized and take off within their sensing 
range and with the centroid located within a proximity of chosen initial point. Initial points 
are selected to be on each of the four corners of the arena in addition to upper and lower 
points of a vertical line drawn through the middle of arena’s long edge. A slight difference 
from the physics-based simulations is that instead of using center point, two points located 
above and below center point are used as initial points. Since with real platforms repeating 
an experiment is more costly, we decided that analyzing group motion with initial condi-
tions closer to lower gradient values is more important compared to the case where they 
start already closer to higher gradient values. The parameter values for the methods are 
chosen to be the same as in the dynamical simulations. This is the supporting evidence to 
the fact that physics-based simulations are realistic enough to model and predict the out-
come of the real robots.

The success of the aerial swarm on following the increasing gradient in the environ-
ment is assessed through the inspection of the centroid trajectory of the swarm reported in 
Fig. 10 and of the gradient value that swarm centroid is experiencing as plotted in Fig. 11. 
In this plot, the centroid gradient values are averaged over all 6 experiments performed 
with a given method and a given scalar field model. The positions of the centroid, and the 
local value of the gradient corresponding to the centroid location are recorded at 2 Hz.
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Fig. 10   Trajectories of swarm centroids from real robot experiments for DM and DMHA methods, on 
Circle, Linear and Linear Symmetrical scalar field models, different colors indicate different experiments, 
filled circle indicates start of the trajectory and filled crosses indicates the endpoint for corresponding color

Fig. 11   Development of gradient values over time seen by swarm centroids at real-robot experiments for 
DM and DMHA at Circle, Linear and Linear Symmetrical scalar field models
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6.2 � Results

When 6 different trajectories of each method are observed on the Circle model 
(Fig.  10a, b), we see an increased concentration and overlapping ellipses around the 
center for DMHA which indicates an effective collective behavior. The reason why 
we consider these trajectories as effective is the behavior of the swarm in the high-
value gradient region is not stationary: The swarm continues to revolve in a collective 
ordered manner centered around the high value region of the gradient. As stated ear-
lier, a stationary swarm located on the bright region is not the ideal case, because we 
ideally want a swarm that does not lose the order when reaching the end point of the 
gradient, as in a real task there could be a subsequent gradient to follow and gaining 
back the order might take some time. When trajectories for DM is closely observed, 
although they seem similar at high level, the ragged structure of the trajectories and 
the non-elliptic tours around the center indicates a less ordered and directed motion. 
Yet, the greatest advantage of DM is being able to achieve gradient-following results 
without alignment control, which indicates the presence of a trade-off between swarm 
capabilities and performance.

In the Linear model (Fig. 10c, d) and the Linear Symmetrical model (Fig. 10e, f), 
the trajectories for both DMHA and DM are concentrated on the left (Linear model) or 
center (Linear Symmetrical model) of the arena where higher local values of the gra-
dient are located. In addition, here the positive contribution of alignment control can 
also be observed, as in the Circle model. Trajectories of DMHA are much direct and 
short when compared to DM. Yet, DMHA has more circular paths spreading around a 
wider area while DM shows a more stable concentration around the region.

Figure  10 also reports the minimum distance observed between drones in all 6 
experiments. In both methods, this distance is not significantly different from each 
other. The values are in the expected range (when �min and �max are considered in 
Table 4). Moreover, similarity between minimum distances of methods is also expected 
since both use the same values for corresponding parameters. Our observations during 
experiments also agree with the data: Minimum distances were as expected and safe 
for drones.

Figure  11a–c present the mean and confidence interval of the centroid gradient 
value over time for the chosen scalar field models, as averaged over experiment repeti-
tions. In all models, we see the gradient values reach up to over 200. In all models but 
more apparently in the Circle and Linear Symmetrical models, DM has a more stable 
mean line while we can see oscillations for DMHA. In addition, DMHA increases to 
its marginally stable form quicker than DM. Whereas the speed of DMHA on reach-
ing its maximum value is apparently higher in the Linear model, as expected since the 
distance from darker to brighter regions is longer than others for the Linear model. 
This may be due to the fact that, in a more stretched environment, the swarm keeps 
an ordered regime longer and therefore moves faster, on average on the whole trajec-
tory. Finally, in only Linear Symmetrical model we can see that the mean DM line is 
above the DMHA line almost all the time, since more stationary attitude of DM is most 
important in this scalar field model. In addition, the value that mean lines reach for 
both methods are higher than they are in the Circle and Linear models. The observa-
tion of both methods showing relatively better performance on Linear Symmetrical 
model is in accordance with the implications done before from multi-agent and dynam-
ical simulation results.
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6.3 � Discussion of results

Overall, with both methods the swarm shows motion from lower gradient values to higher 
ones in all scalar field models. Nevertheless, DMHA and DM have their strengths and 
weaknesses in different points. While DMHA is better on reaching the bright side with a 
shorter path and staying active there, DM is better on centering the highest value and stay 
stationary after. One could suggest that an adaptive usage of alignment control might serve 
as an optimal strategy to advantage the strengths of both methods. Yet, we want to test the 
isolated effect of heading control on the methods since our concern is avoiding heading 
control completely. Since our definition of virtual heading on the drones is not suitable for 
on-board sensing, alignment control certainly requires communication. We believe that a 
part of our novelty relies on eliminating any need of information exchange between peers 
on their scalar perceptions of the environment. Hence, exchanging heading information 
will violate this novelty. For that reason, involving heading information in any portion is 
something we try to avoid.

Since the velocity constraints, desired peer distances and peer sensing ranges are chosen 
according to our real-world hardware setup from the beginning (e.g., even for multi-agent 
simulations), we were able to test our methods with minimal modification. The method 
parameters of physics-based simulations and real robot experiments were exactly the same. 
We see it as an advantage for both mediums of experiments: We both increase our confi-
dence on the physics-based simulations and on the possibility to increase robot number in 
real robot experiments since we already increased it up to 50 in physics-based simulations.

Even with the current inaccuracy level on robots moving with velocities of maximum 
15 cm/s, we were able to produce desired collective behaviors. Moreover, as it can also be 
seen in Fig. 11, the success of DM was comparable to DMHA. We see it as an important 
outcome since we are able to state that desired distance modulation works without the need 
of alignment control. In a truly distributed application, this will avoid the implementation 
of a local communication modality since the distance and bearing of other agents can be 
sensed on-board in various ways. For example visually or by using specialized sensors. We 
believe being freed of this need can drastically increase the method’s real-life applicability.

7 � Conclusion

In this paper, we proposed two different methods –desired distance modulation and speed 
modulation—for collective gradient following with a swarm of robots. Differently from the 
literature, proposed methods achieve collective gradient sensing without the requirement of 
any information exchange or multiple sensors on board to estimate the gradient. Through 
systematic experiments in different gradient models and densities, we showed that both 
methods with and without alignment control successfully performed in different environ-
ment settings. Success of the proposed methods proves that collective motion and emergent 
sensing can be produced simultaneously when agents have a real aerial platform dynamics. 
To the best of our knowledge, it is the first time that collective gradient sensing is achieved 
with agents having such limited sensing capabilities. Our experimental analysis lever-
aged on three different experimental setups: (1) a multi-agent kinematic-based simulator 
aimed at performing an analysis of all the proposed methods in a rich set of environmental 
conditions to understand the inherent dynamics, (2)  a physics-based simulator aimed at 
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performing real-world like experiments in a systematic way; (3) real quadrotor platforms 
aimed at validating the methods in a real-world setting. In the experiments, both gradient 
following performance and cohesiveness of the swarm are evaluated.

We can draw a conclusion from the results that the desired distance modulation method 
is performing successfully among different gradient models and densities in both simula-
tions and real-world experiments. Alignment control enhances the performance and adds 
more robustness but it is not required when the desired distance modulation method is 
employed. A swarm with speed modulation is much more sensitive to individuals’ abil-
ity on accurate speed control and develops a dependency on alignment control. Without 
alignment control, the group order is easily lost and collective motion ability of the swarm 
is deteriorated as observed in dynamical simulations. Yet, simulations with point-mass 
agents still show a potential with speed modulation: Accurate speed control with realistic/
real agents or a future development on the method to make it more robust to noise in speed 
control could make speed modulation usable real-world applications.

Although we only tested the ability of the swarm on following a stationary gradient in 
the environment, proposed methods are fully compatible with dynamically changing gradi-
ent models. Since we always care about having an ordered and moving swarm, testing the 
performances of proposed methods with such gradient models is a highly possible future 
challenge. A complementary development will be further enhancing our real platform to 
sense a physical property such as gas particles, temperature or light. By doing so, we will 
be highlighting the importance and portability of our methods on real-world problems. 
Such real-world applications with an aerial swarm can be searching radioactive sources 
outdoor, gas leaks indoor or localizing any physical property source which can be suitable 
for our gradient modeling approach. Another future aspect we have is interpreting the gra-
dient differently. A good example is replacing the scalar measurements of individuals with 
a danger indicator depending on a "predator" and use the collective sensing ability to avoid 
it. The opposite is also possible, track and chase a "prey" with a similar approach. This 
draws another exciting integration with a real-life problem.
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