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Abstract
In this paper, we seek to achieve task allocation in swarm intelligence using an embod-
ied evolutionary framework, which aims to generate divergent and specialized behaviors 
among a swarm of agents in an online and self-organized manner. In our considered sce-
nario, specialization is encouraged through a bi-objective composite fitness function for 
the genomes, which is the weighted sum of a local and a global fitness function. The for-
mer depends only on the behavior of an agent itself, while the latter depends on the effec-
tiveness of cooperation among all nearby agents. We have tested two existing variants of 
embodied evolution on this scenario and compared their performances against those of an 
individual random walk baseline algorithm. We have found out that those two embodied 
evolutionary algorithms have good performances at the extreme cases of weight configu-
rations, but are not adequate when the two objective functions interact. We thus propose 
a novel bi-objective embodied evolutionary algorithm, which handles the aforementioned 
scenario by controlling the proportion of specialized behaviors via a dynamic reproduc-
tive isolation mechanism. Its performances are compared against those of other considered 
algorithms, as well as the theoretical Pareto frontier produced by NSGA-II.
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1  Introduction

Swarm intelligence has long been investigated in the field of Biology, Sociology and 
Computer Science. It is observed that natural swarms of intelligent agents such as insect 
swarms and bird flocks have no global control mechanism and only rely on local interac-
tions to produce various collective behaviors (Camazine et al., 2003). Researchers aim to 
understand the inner workings of natural intelligent swarms, as well as construct artificial 
swarm intelligence systems. In this field, much research is devoted to the study of embod-
ied swarm intelligence, i.e. swarm robotics. By employing a large group of simple robots 
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which coordinate themselves via local interactions, a robotic system can be made robust, 
flexible and scalable (Şahin, 2004).

However, the large number of sensors, actuators and the distributed nature of processing 
make controlling a swarm robotics system difficult. Also, to achieve a particular goal for 
the whole swarm, individual robots often need to be divided into various groups to perform 
different tasks. One particular challenge in the application of swarm robotics is designing 
algorithms to achieve such task allocation. Task allocation as a subject has been well stud-
ied in a multi-agent setting. Approaches such as coalition formation have been studied both 
in software agents (Shehory & Kraus, 1998) and in robot agents (Vig & Adams, 2007). It 
focuses on enumerating all possible allocation results by the agents and agreeing on the 
best one. Later, coalition formation was extended to multi-objective problems (Agarwal 
et al., 2015) using evolutionary multi-objective optimization techniques. Various Market-
based approaches (Dias et al., 2006) have also been proposed to perform task allocation in 
a multi-robot setting. These multi-agent approaches focus on optimizing the task alloca-
tion through local or global trials of possible allocations and distributing the computational 
load onto all the robots available. It is assumed that robots have good planning capabilities, 
knowledge of tasks and other robots, as well as constant communication, all of which are 
not feasible in a swarm intelligence setting.

On the other hand, task allocation in swarm intelligence has long been studied using 
models that focus on environmental interaction with agents, especially Response Threshold 
Models (Bonabeau et al., 1996). Such models express the interactions between the environ-
ment and the agents during task allocation via having the agents respond to task-specific 
stimuli from the environment. If the stimulus exceed the corresponding threshold, the agent 
has a high chance to engage in a task and vice versa.

A minority of literature studies task allocation via interaction among the agents (Gordon 
et al., 1992; Pacala et al., 1996). Recently, there has been a growing interest in such models 
(Gordon, 2016). Notably, Chen et al. (2020) have investigated individual and social learn-
ing in creating a division of labor among agents in a self-organized way. This is similar to 
the approaches to task allocation in embodied evolution. Embodied evolution (Ficici et al., 
1999) refers to the technique of performing online and continuous evolutionary algorithms 
in a distributed manner in a multi-robot system. This practice enables the robots to modify 
their behaviors continuously and adapt to an unknown environment.

Task allocation algorithms in both multi-agent and environmental-stimuli settings 
attempt to divide available agents into predefined subgroups, where the behaviors are sep-
arately programmed. In contrast, embodied evolutionary approaches attempt not only to 
split the agents into various groups, but also to create divergent and cooperative behaviors 
in a self-organized way. In order to create intelligent swarm behaviors that mimic those of 
natural swarm intelligence, both self-organization and division of labor are crucial compo-
nents (Karaboga, 2005). However, achieving both of these features is proven to be difficult 
when using a traditional evolutionary approach, as subgroups in a population with differ-
ent genomes are unlikely to coexist, and the fitter subgroup will overtake the less fit one in 
selection (Montanier et al., 2016). Various approaches have been used in embodied evolu-
tion to solve this problem, notably reproductive isolation through fitness biases in selection 
or having sparse communications.

In evolutionary robotics, much of the literature tries to evolve specialized cooperative 
behaviors via cooperative co-evolution (Gomes et  al., 2016; Potter & Jong, 2000; Sun 
et  al., 2020). Such algorithms achieve specialization by evolving different cooperative 
components in a multi-agent system in different populations, such that there is reproduc-
tive isolation among distinct subgroups of the agents. Cooperative co-evolution however 
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must be run offline, centralized and cannot adapt to an unknown environment. There are 
a few other methods in embodied evolution proposed to replicate such reproductive isola-
tion in an online, decentralized and asynchronous way (Montanier et al., 2016; Prieto et al., 
2009). However, these methods only seek to isolate various subgroups in the population, 
and there is no mechanism that regulates the distribution of different behaviors in the popu-
lation. Furthermore, some of the methods used to enforce reproductive isolation such as 
geographical isolation is not always effective, as noted in (Montanier et al., 2016) that suc-
cessful division of labor requires sparse communication and the desired split to be roughly 
equal, thus limiting these algorithms to very specific scenarios.

Therefore, in this paper, we utilize a novel framework for a task allocation problem 
proposed by Chen et  al. (2020). This framework encourages specialized behaviors via 
the interactions between a global and a local objective function. It places an emphasis not 
only on the individual behaviors, but also the proportion of agents assigned to each behav-
ior. The latter breaks down the constraints required by existing embodied evolutionary 
approaches to produce optimal divisions of labor. We thus propose a new embodied evolu-
tionary algorithm which is able to regulate the global distribution of specialized behaviors 
within the population. Via this algorithm, we aim to extend embodied evolution in produc-
ing divergent and cooperative behaviors to more general situations. After that, we test our 
proposed algorithm and compare it to other existing embodied evolutionary methods.

The rest of this paper is arranged as follows. Section 2 will introduce in detail the related 
works in embodied evolution, as well as other works regarding task allocation in swarm 
intelligence. In Sect. 3, we define our considered task allocation scenario modeled as an 
optimization problem. Then in Sect. 4, we will describe the algorithms under investigation 
in detail. We first employ two existing embodied evolutionary algorithms. Their perfor-
mances are compared with a baseline algorithm that does not utilize collective learning. 
We then introduce our proposed bi-objective embodied evolutionary algorithm. Section 5 
contains the experiments to assess the performances of considered algorithms and their 
results. In Sect. 6, we provide an integrated look and discussions on the results. Finally, 
Sect. 7 is dedicated to the conclusion.

2 � Related work

Embodied evolution is an application of evolutionary techniques in creating robot control-
lers for multi-robot systems. In embodied evolution, every robot is seen as an individual 
in the population. This concept is different from the traditional evolutionary robotics tech-
niques, where a population of robot controllers are generated and simulated in a centralized 
manner. In embodied evolution, the individual robots perform reproduction, mutation and 
selection in an online, decentralized and localized manner (Bredeche et al., 2018). How-
ever, much of the research in this field focuses on creating a single optimal controller for 
individual robots in the population. In such scenarios, the design of embodied evolutionary 
algorithms can be very similar to traditional centralized evolutionary techniques.

A minority of literature attempts to create divergent and cooperative behaviors among 
individual robots. Similar to the centralized evolutionary techniques, such as cooperative 
co-evolution which is used to provide reproductive isolation between sub-populations 
with different genotypes, in embodied evolution, similar reproductive isolation is created 
via either geographical and communicative isolation (Montanier et al., 2016), or by con-
sidering the affinity between individuals during recombination such that an individual is 



290	 Swarm Intelligence (2021) 15:287–310

1 3

recombined with others close to its own genotype (Prieto et al., 2009, 2010; Trueba et al., 
2013; Trueba & Prieto, 2018). Such reproductive isolation means that the population is 
essentially split into multiple sub-populations. However, there has been no mechanism to 
regulate the number of individuals in each sub-population, causing the multi-robot sys-
tem to stagnate in a local minimum with a suboptimal distribution of tasks among its 
individuals.

Since efficient cooperation among agents usually requires a certain distribution of task, 
one potential mechanism is to define a global fitness function that indicates the perfor-
mance in the cooperation of the agents. A similar global fitness function was considered 
in (Trueba et al., 2013). However, the authors considered only the fitness with respect to 
genomes of the subspecies instead of those of the individual agents, thus ignoring the dis-
tribution of subspecies themselves. Therefore, we adopt a different computational model 
proposed by Chen et al. (2020). They have noted that the task allocation behaviors in social 
insects are determined by the reward functions of their individual actions and those of 
their cooperative actions. Thus, in their model, they consider a composite reward function 
with a local and a global component. The former models the performances of the agents’ 
individual actions, while the latter models the level of cooperation among the agents. In 
this model, the distribution of specialized behaviors is as important as the behaviors them-
selves. Chen et al. have explored task allocation scenarios that favor strong specialization 
as well as those that favor weak specialization, in order to better understand the behaviors 
of social insects. They have suggested two different decision-making strategies to model 
the decision-making processes in social insects: individual learning and social learning. 
The former is individual exploration of good options, and the latter is a collective algo-
rithm similar to evolutionary methods. In individual learning, they have assumed the abil-
ity by individual agents to simulate the environment. In social learning, they have assumed 
constant communication among agents in the swarm, as well as the whole swarm being 
divided into a number of subgroups that are in their individual independent environment. 
These assumptions cannot be maintained when considering an artificial swarm intelligence 
setting, such as swarm robotics. We have therefore extended their model to a more gener-
alized decentralized optimization scenario, and we have carried over the standard design 
constraints of fully decentralized embodied evolutionary algorithms.

Since the interaction between two reward functions causes trade-offs between the two 
objectives, we investigate this scenario using a multi-criteria decision-making framework 
(Branke et  al., 2008). We use Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
(Deb et al., 2002) to compute a Pareto frontier of the two objectives and compare it to the 
experimental results obtained by our considered algorithms.

3 � Problem statement

We consider a continuous task allocation problem as follows. There are N agents with 
index n = 1,… ,N that have to be allocated to two tasks, A and B. The agents have to 
optimize a parameter xn ∈ [0, 1] , which indicates the proportion of time the agent n spends 
on performing task A. The parameter xn needs to be optimized with respect to 2 objective 
functions f (xn) and g(x̄) . Here f (xn) is the local objective function that depends only on 
the agent’s own decision, while g(x̄) is the global objective function that depends on the 
total proportion of time among all agents devoted to the two tasks, hence x̄ . The agents 
are assumed to have only reactive behaviors with no planning capability. They also have 
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limited communication ranges and can only exchange information with their peers nearby. 
They can measure the value of the local objective function f (xn) , but can only measure a 
local estimate of the global objective function g(x̄) , denoted as g∗

n
 . It is computed using 

only the genomes within the communication range of robot n.

The total measured reward is therefore expressed as follows.

The agents thus need to find

where w ∈ [0, 1] is the weight of g relative to the total reward.
In our experiments, g(x̄) is assumed to be unimodal and thus have a singular optimum. 

It models the optimality of the distribution of the whole swarm’s efforts between tasks 
A and B. It gives the highest reward when the current effort allocation is at the desired 
allocation, and gives less reward the further the current effort allocation deviates from the 
desired allocation. On the other hand, f (xn) can be multimodal, and models the local char-
acteristics of the agents. For example, when f (xn) is unimodal, the individual agents have 
an optimal distribution of efforts between the two tasks in question, and the characteristics 
of the agents does not favor specialization. In case that f (xn) is multimodal, the agents can 
operate at optimal or near-optimal efficiency at multiple distributions of effort between the 
two tasks, therefore the characteristics of agents favors specialization. This model simpli-
fies the computational model used by Chen et al. (2020).

4 � Methodology

In this section, we introduce four distributed optimization algorithms investigated in this 
paper. We use individual random walk as a baseline algorithm to gauge whether the adop-
tion of a particular collective approach is beneficial. We also use a basic embodied evolu-
tion algorithm as another baseline to assess the effectiveness of having more complexity in 
the design of embodied evolution algorithms. In addition, we adopt an existing technique 
for embodied evolution algorithms to evolve divergent specialized behaviors by adding an 
affinity bias to the selection process. Finally, we introduce our proposed algorithm for the 
considered bi-objective scenario.

4.1 � Individual random walk optimization

We first introduce the baseline algorithm as shown in Algorithm  1, which is a random 
walk optimization on an individual level. The agents start from randomly selected xn val-
ues within the decision space [0, 1]. At every control loop, each agent n measures the fit-
ness �n , which denotes the current total obtained reward indicating the fitness of its cur-
rent genome. The agent then compares �n with the fitness from its last control loop � ′

n
 

and adopts the genome with the higher fitness. It then mutates its chosen genome using a 
Gaussian exploration noise with standard deviation of �exp (line 9 and 11). This baseline 

(1)
g∗
n
= g(x̄n∗ )

{n∗|n∗ ∈ 1,… ,N;robot n∗is within communication range of robot n}

(2)�n = (1 − w)f (xn) + wg∗
n

(3)x∗
n
= argmaxxn [(1 − w)f (xn) + wg∗

n
]
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algorithm achieves optimization via only the information available to the individual agents 
themselves, with no communication. It is expected that a viable collective approach 
needs to perform better than this baseline algorithm to justify the added communication 
complexity.

4.2 � Baseline embodied evolution

Algorithm 2 shows the outline for a baseline Embodied Evolution (EE) algorithm similar 
to the one presented in (Bredeche et al. 2018). At every control loop, the agents exchange 
genomes and their corresponding fitness with their neighbors (line 4, 5). An agent selects 
the genome that corresponds to the highest fitness value among its neighbors (including 
itself), denoted by the index m = 1,… ,M (line 7). After that, a Gaussian exploration noise 
with standard deviation �exp is added to mutate the genome (line 8). This is a very standard 
implementation of embodied evolution and is widely used in other studies in the field.

4.3 � Embodied evolution with affinity bias

In Algorithm 3, we use a similar affinity bias in the selection process as proposed in (Prieto 
et al., 2009, 2010). Most of the mechanisms are the same as in Algorithm 2. However, in 
this algorithm, the fitness of neighboring robots which are compared during selection is 
multiplied with an affinity factor. This factor decreases as the difference between the two 
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genomes increase (line 7). In this way, an agent selects the optimal genome using the fit-
ness adjusted with the affinity factor (line 8). Therefore, the agents are encouraged to select 
genomes close to their own. This enforces a static reproductive isolation and is able to 
encourage the whole population to diverge into multiple subgroups to suit the requirements 
of an environment. Similar use of affinity bias is popular in embodied evolution to evolve 
divergent cooperative behaviors and is used in various state-of-the-art literature (Trueba 
et al., 2013; Trueba & Prieto, 2018).

4.4 � Bi‑objective embodied evolution

In order to perform embodied evolution in the considered task allocation scenario, we 
introduce an alternative algorithm as shown in Algorithm  4. Besides xn , we introduce 
another variable yn ∈ {−1, 1} that indicates an agent’s preferred direction to change the 
current genome xn . yn = 1 means that agent n prefers to increase xn and yn = −1 means that 
agent n prefers to decrease xn . The estimated quality of preferred direction is denoted by �n.

In this algorithm, a collective decision-making process which determines the more suit-
able yn value is running simultaneously along with the optimization of genome xn . Optimi-
zation of xn is done in two alternating states, indicated by staten . In State 0 (line 12–17), 
the agent performs a random walk similar to Algorithm 1. However, the agent will only 
sample a new value of xn in the preferred direction indicated by yn . In State 1 (line 32–39), 
the agent receives xm from its M neighbors similar to Algorithms 2 and 3, but will select 
a random genome within its preferred direction indicated by yn . The random walk in State 
0, ensures that the random selection process in State 1 produces better offspring than the 
previous generation.

The preferred direction yn is determined in another decision-making process (line 
22–30) that is also executed in State 1. The agents exchange their current yn values and 
their corresponding qualities �n with their neighbors. Each agent then computes yMode , 
which is the prevailing y value in all neighboring agents and the agent itself. yMode is used 
to estimate the prevailing y in the whole swarm. �mean is computed as the mean of current 
total fitness obtained by all agents in the vicinity of agent n. The change in �mean (denoted 
as �fitness ) between consecutive control loops is then computed. �fitness is used to estimate 
the effect of the current prevailing y on the total fitness. It is expected that when the current 
prevailing y in the whole swarm indicates a direction that improves g(x̄) , agents are more 
likely to experience an increase in their own total fitness. Also, if the agent’s individual yn 
is the same as the prevailing y in the whole swarm, then it has contributed positively to the 
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effect of the latter, while if they disagree, then the contribution is negative. Thus, we design 
the decision-making mechanism such that when yn is the same as yMode , �fitness contributes 
positively to the computation of yn ’s quality and vice versa. The quality of yn (denoted as 
�n ) is computed in line 25 as follows:

�n scales with both �fitness and the number of neighbors M. The latter is because sampling 
the y values of more neighbors leads to more accurate estimation of the prevailing y of the 
whole population, therefore making the estimation of the quality of yn more accurate. After 
that, an optimal new yn is chosen from the y values of an agent’s neighbors and that of 
itself based on their qualities � (line 27–28). Finally, if �fitness is negative, and yn is equal to 
the prevailing y, the performances of the whole swarm is likely decreasing, and the agents 
are moving away from optimal genome selections. Therefore, yn value would be flipped to 
reverse this trend (line 29–30).

Overall, the proposed bi-objective embodied evolutionary algorithm does not freely 
copy high fitness genomes from other individuals in a population, as in traditional embod-
ied evolutionary algorithms. In contrast, agents use the genome and fitness information 
from their neighbors to form an estimation of the more potentially optimal direction yn 
to change its own genome xn , and thus restrict the neighbors available for selection. This 
enforces a dynamic reproductive isolation which is both able to select a genome with high 
combined fitness and to maintain a separation of specialized behaviors if required.

5 � Experiments

Our experiments are run on 20 simulated mobile robots. The specification of the mobile 
robots is set to model e-puck robots (Mondada et al., 2009). The arena is set to be 2-dimen-
sional with size of 2 m × 2 m. The default maximum communication distance is set to be 
0.5 m. In order to simulate the distributed and asynchronous process of embodied evolu-
tion, the length of a control loop is set to be an exponentially distributed random variable 
exp (0.1) s. To mimic the sporadic connectivity among the agents, the simulated robots are 
constantly performing random walk in the arena. Each robot would first move forward in 
its current direction for a random amount of time sampled from an exponential distribution 
with a mean of 40 s. When it senses another robot or the edge of the arena 0.1 m in front 
of it, or the timer runs out, it will turn in a random direction for a random amount of time 
sampled from a uniform distribution between 0 and 4.5 s. If no obstacles are detected when 
the timer runs out, the robot reverts back to moving forward, otherwise the robot will keep 
turning with a reset timer. Robot controls are actuated instantaneously, and no collision 
occurs in our simulations.

In the rest of this section, we will show our experiments and results. We first determine 
the optimal parameter settings for the considered algorithms. Then, we vary w between 0 
and 1 to observe the performance of all considered algorithms with different levels of con-
sideration of global and local fitness. At each environmental configuration, 20 experiments 
are conducted. We measure the performance via the peak total local fitness Σf (xn) and total 
global fitness Ng(x̄) . The performances of considered algorithms will be compared among 
each other and with the Pareto frontier produced by NSGA-II, which is used to determine 
the theoretical optimum of our experiment scenarios. We will also compare the average 

(4)�n = �fitness × yn × yMode ×M
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total fitness obtained over a 60s period to determine the long-term performances of the 
considered algorithms. We then add a stochastic term into the objective functions to see the 
performances of considered algorithms when facing uncertainties and noise.

5.1 � Selection of σexp

An important parameter for all considered algorithms is �exp . It is selected in the following 
scenario. Both f (xn) and g(x̄) are set to be simple unimodal functions defined as follows 
and shown in Fig. 1:

This scenario is meant to model task allocation problems in an environment that does 
not favor specialization. Since both of these objective functions have only a single opti-
mum which are at different positions, we have a clear trade-off. An agent which moves its 
option closer to the optimum of f (xn) , its corresponding x̄ will move further away from the 
optimum of g(x̄).

In order to find the optimal �exp value, we measure both the peak performances and the 
continuous performances of considered algorithms. The peak performances are measured 
via the global fitness and the local fitness when the total fitness obtained by the population 
reaches maximum during an experimental run. The weight of global fitness w is set to be 
0.5. Therefore, we also seek to select a �exp value that can deliver results with balanced 
global and local fitness. The performances at different �exp values are shown in Table 1.

It can be observed in Table 1 that the peak global fitness and the peak local fitness are 
conflicting objectives with respect to the selection of �exp , as for all considered algorithms, 
a higher �exp produces a higher peak global fitness and a lower peak local fitness and vice 
versa. This is because a high local fitness requires all individuals to have similar genomes 
that are close to the optimum of the local objective function f (xn) . This is hard to achieve 
when the individuals undergo drastic random mutations with a high �exp after every control 

(5)g(x̄) =exp

(
−

(
x̄ − 0.8

0.2

)2
)

(6)f (xn) =exp

(
−

(
xn − 0.6

0.2

)2
)

Fig. 1   Illustration of the global 
g(x̄) (magenta) and the local 
f (xn) (cyan) fitness functions in 
Scenario 1 (Color figure online)
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loop. On the other hand, a high �exp enables the population to explore the global objective 
function g(x̄) more effectively and hence attain a higher global fitness. Given the conflict-
ing nature of the two objectives, we seek to balance the two fitness obtained when the 
weight w is set to 0.5.

We also want the considered algorithms to stay on high fitness genomes continuously, 
given that the algorithms are designed to run online. Therefore, we consider the long-term 
continuous performance of the algorithms at different parameter settings and look at the 
mean total fitness during a 60-s period. It can be observed that the individual random walk 
baseline algorithm reaches maximum mean total fitness at �exp = 0.05 , while for all vari-
ants of embodied evolution, mean total fitness decreases as �exp increases. The former is 
because the agents in individual random walk baseline do not copy genomes from each 
other, and thus all have to approach the optimum via exploratory mutations. Therefore, �exp 
needs to have a larger value to ensure a fast convergence. For other embodied evolution 
algorithms, the ability to copy genomes from other individuals ensures that convergence 
is quick even with a small �exp , while a large value of �exp can introduce instability to the 
population and reduce the mean total fitness.

Taking an integrated look at both aspects of the algorithms’ performances, we pick �exp 
values for our algorithms that do not compromise the mean total fitness too much while 
seeking a balance between global and local peak fitness. The chosen �exp values are shown 
in Table 2.

Table 1   Fitness performances at different �exp for all considered algorithms, w = 0.5 (Color table online)

Table 2   Choice of �exp for 
different algorithms

Individual Base EE EE affinity Bi-ob

�exp 0.05 0.02 0.02 0.02



298	 Swarm Intelligence (2021) 15:287–310

1 3

Fig. 2   Optimal global and local fitness obtained during each experimental run for all considered algorithms 
in Scenario 1, color scale indicates weight of global fitness w, black line indicates the Pareto frontier com-
puted by NSGA-II (Color figure online)

Fig. 3   Average optimal global and local fitness at each w value in Scenario 1 (Color figure online)
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5.2 � Optimal task allocation

In this part of the experiments, we examine the impact of the full range of w from 0 to 1 in 
an interval of 0.02 and compare the local and global fitness obtained when the total fitness 
reaches maximum across all considered algorithms.

5.2.1 � Scenario 1: unimodal f (xn)

In the first scenario, we use the same unimodal f (xn) and g(x̄) as in Sect. 5.1. The results 
are shown in Figs. 2,  3 and 4.

As shown in Fig. 2 (top left), the Individual Random Walk approach is sometimes 
able to find the optimal global and local fitness quite well in its decision-making pro-
cess. However, it also frequently converges to a suboptimal solution, indicated by 
the scattered data points below the Pareto frontier. Therefore, as shown in Fig. 3 (top 
left), the mean output at medium to high w values is quite far from the Pareto frontier. 
Regarding the convergence time (Fig.  4a), Individual Random Walk is usually slower 
than other algorithms, and its convergence time increases with w. Its long convergence 
time is due to the fact that the agents do not learn genomes with high fitness from each 
other, and they have to approach the optimal point using the random exploration steps. 
Its increase with respect to w is because for the total fitness (1 − w)f (xn) + wg∗

n
 , xn has 

a much larger impact on f (xn) than on g∗
n
 . Therefore, the higher w is, the less impact xn 

has on the total fitness and less accurate an estimate of the quality improvement of an 
exploration step is.

The peak performances of the Baseline EE (Fig.  2 top right) are mostly clustered 
together with high local fitness and low global fitness, except at high w values beyond 0.7. 
This is due to the fact that the decision mechanism of traditional evolutionary algorithms 
relies on comparing the fitness among the individuals. In this case, the agents compare 
the total reward received �n = (1 − w)f (xn) + wg∗

n
 . Since g∗

n
 values are very close within 

a local group of agents, it is often ignored in the comparison. Thus, the agents will fre-
quently converge to the solution that maximizes f (xn) . At high w values beyond 0.7, the 
high weight causes the small differences in g∗

n
 to be magnified and enables the algorithm 

to consider the global reward. As shown in Fig. 4a, Baseline EE is the fastest algorithm 
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Fig. 4   Average convergence time (a) and average total fitness obtained/sec (b) of all considered algorithms 
in Scenario 1; red+: individual BL, blue*: BL EE, green⋄ : EE affinity, black◦ : bi-objective EE (Color figure 
online)
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for most of the cases, since the agents learn good options from each other and will quickly 
converge to an optimal option as long as it is reached by one agent.

EE with Affinity Bias (Fig. 2 bottom left) has similar peak performances to Baseline 
EE, as the affinity bias is mainly designed to create behavioral specialization and does not 
affect the evolution process significantly when the environment does not encourage spe-
cialization (Prieto et al., 2009).

Finally, Bi-Objective EE (Fig. 2 bottom right) obtains peak performances that are very 
close to the Pareto frontier. The results are considerably more consistent than those of Indi-
vidual Random Walk. They are also more balanced than those produced by Baseline EE 
and EE with Affinity Bias, as the results at different w values are evenly spread along the 
Pareto frontier. Bi-objective EE avoids excessively focusing on local fitness like the other 
two variants of EE. Since it simultaneously decides on the preferred direction to change the 
agents’ options yn as well as the agents’ genomes xn . The decision-making process on yn is 
able to keep track of the temporal changes of the agent’s own fitness and the distribution 
of allocated tasks in the agent’s locality x̄n∗ , and therefore is able to efficiently optimize g∗

n
 . 

As shown in Fig. 4a, Bi-Objective EE is faster than the individual baseline, but is slightly 
slower than the other two variants of EE except at high w settings.

The average total fitness obtained per second over a whole experimental run of 60s 
by all considered algorithms are shown in Fig. 4b. They are plotted against the weight of 
global fitness function w. It can be observed that all 4 algorithms have performances that 
are close to each other at both extreme ends of the values of w, while Bi-Objective EE 
outperforms the other algorithms, especially both variants of EE, at medium to high values 
of w from 0.4 to 1. As shown in Figs. 2 and 3, these are the values where the peak perfor-
mances of both variants of EE are skewed toward the local fitness.

Overall, it can be observed that when the characteristics of the agents do not favor spe-
cialization, the agents need to be able to find an optimal balance between their individual 
local reward function and the global reward function. Therefore, although the two existing 
variants of embodied evolution are able to exceed the performance of the individual base-
line when w is at either extreme ends of its values, they are unable to effectively consider 
the interactions between the two objective functions, and therefore are unable to achieve 
the optimal behaviors when w is at a medium value. On the contrary, Bi-Objective EE is 
able to attain the optimal behaviors consistently. It outperforms the two existing variants of 
embodied evolution in its bi-objective performances, while outperforms Individual Ran-
dom Walk in reliability.

Fig. 5   Illustration of the global 
g(x̄) (magenta) and local f (xn) 
(cyan) fitness functions in Sce-
nario 2 (Color figure online)
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5.2.2 � Scenario 2: bimodal f(xn)

The second experiment scenario keeps g(x̄) as in Scenario 1 and defines a bimodal f (xn) as 
follows (Fig. 5):

This scenario significantly differs from Scenario 1 in two ways: First, it is not guaranteed 
that the agents reach the optimum of f (xn) by taking incremental steps of improvement 
from a random initial position. Second, this scenario is meant to model task allocation sce-
narios that favor specialization and test the ability of the agents to self-organize into mul-
tiple subgroups. Since there are 2 local optima in f (xn) , the agents’ xn can be split between 
the two optima in a particular proportion so that x̄ lands on the optimum of g(x̄) . In addi-
tion, given the fact that the optimization problem is multi-modal with a lot of variables, 
NSGA-II has some difficulties in reaching the true Pareto frontier. 

In the peak performances produced by the Individual Random Walk (Fig. 6 top left), 
there are a large number of data points that are below the Pareto frontier and arranged in 
stripes. This is because of the characteristics of this multi-modal scenario. Since there 
are two local optima, the population needs to converge to one of them when w is low 
and achieves a particular proportion between them otherwise. Since the individuals can 
only modify their genomes via exploratory random mutations, if an incorrect proportion 
of agents converges to one local optimum of f (xn) , there is no way to change an xn from 
one local optimum to another. Therefore, from the perspective of the whole population, 
there are many local optima in terms of total fitness to which the swarm can converge. 

(7)f (xn) = exp

(
−

(
xn − 1

0.2

)2
)

∗ 0.9 + exp

(
−

(
xn − 0.3

0.2

)2
)

Fig. 6   Optimal global and local fitness obtained during each experimental run for all considered algorithms 
in Scenario 2, color scale indicates weight of global fitness w, black line indicates the Pareto frontier com-
puted by NSGA-II (Color figure online)
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In Fig. 7 top left, we can observe that this approach works well at low w values but is 
unable to stay close to the Pareto frontier at high w values. This is a significant drop 
in performance compared to the results of the same algorithm in Scenario 1. It can be 
additionally observed that the Individual Random Walk fails to achieve the theoretical 
optimal performance at very low w values, which should have an optimal local fitness of 
close to 20 and global fitness of close to 0, compared to the results produced by Base-
line EE and Bi-Objective EE.

Baseline EE (Fig.  6 top right) produces peak performances that mostly stay close to 
the Pareto frontier, with fewer suboptimal data points than Individual Random Walk. As 
can be seen in the plot of mean peak fitness (Fig. 7 top right), Baseline EE is able to reach 
optimal performances consistently at low w values. However, at medium and high w val-
ues, the results are unable to converge to the desired top right corner of the graph. Here, the 
same limitations in achieving optimal performances at high w values as in Scenario 1 are 
displayed for Baseline EE.

EE with Affinity Bias (Fig.  6 bottom left) produces less suboptimal data points than 
Individual Random Walk but more than Baseline EE. This is because the reproductive 
isolation created by the affinity bias limits the collective optimization among the agents 
and produces many potential local minima similar to Individual Random Walk. From the 
mean peak fitness plot (Fig. 6 bottom left), we can observe that EE with Affinity Bias only 
achieves optimal performances consistently at low w values, while the results can only 
approach the right section of the Pareto frontier at w values beyond 0.7.

As shown in Fig.  6 (bottom right), Bi-Objective EE has far less outlying data points 
below the Pareto frontier, with most data points clustering at either the top left and the 
top right corner of the graph. As can be seen in Fig.  7 (bottom right), Bi-Objective EE 
is not only able to consistently deliver optimal local fitness of 20 at very low w values, 

Fig. 7   Average optimal global and local fitness at each w value in Scenario 2 (Color figure online)
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comparable to Baseline EE, but also to produce higher global fitness as w increases, which 
significantly outperforms other considered algorithms.

To understand the differences between the performances of considered algorithms, 
we take a look at the progression of individual genomes during an experimental run 
when w = 0.5 , as shown in Fig. 8. The three approaches, Individual Random Walk, EE 
with Affinity Bias and Bi-Objective EE are able to split the whole population into 2 
subgroups centering around the two local optima of the local fitness function in Fig. 5. 
In contrast, the whole population in Baseline EE eventually converges to one of the two 
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Fig. 8   Progression of all agents’ genomes xn through time ( w = 0.5 ), colors represent different agents 
(Color figure online)

Fig. 9   Progression of x̄ through 
time ( w = 0.5 ); red: individual 
BL, blue: BL EE, green: EE 
affinity, black: bi-objective EE 
(Color figure online)
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local optima, thus ignoring the global fitness function entirely. This is why Baseline EE 
is not effective at dealing with a global fitness function.

On the other hand, although both the Individual Random Walk and the EE with 
Affinity Bias can split the individuals into two subgroups, the split does not consider 
the optimal proportion of agents in each subgroup and is thus heavily influenced by the 
initial distribution of genomes. As shown in Fig. 9, in both algorithms x̄ remains around 
0.5 despite the changes in individuals’ genomes. This is because the genomes are initial-
ized with a random value between 0 and 1, and the initial x̄ is likely to be around 0.5. 
As the individuals converge to the local optima of the local fitness function closest to 
their initial genomes, the mean of all genomes x̄ is unlikely to change much and thus 
still stays around 0.5, which is unlikely to be the optimal value for the global fitness 
function.

Finally, Bi-Objective EE is able to split the population into two subgroups and to 
regulate the proportion of individuals in each subgroup so that the global distribution 
of specialized behaviors is optimal. As shown in Fig. 9, x̄ under Bi-Objective EE starts 
near 0.5 but moves to around 0.8, which is the optimal value of the global fitness func-
tion and oscillates around it. This ensures not only the individual genomes converge to 
optima of the local fitness function, but also the global distribution behavior is optimal 
as well.

Overall, when the characteristics of the agents favor specialization, Bi-Objective EE 
outperforms the other considered algorithms in reaching the optimal behaviors. This is due 
to its ability to consider the two objectives while using a collective approach, therefore it 
overcomes the multi-modality of the local fitness function.

5.2.3 � Performance under sparse communications

In order to investigate the performances of considered algorithms when communica-
tions are sparse, we reduce the communication range of the simulated agents to 0.1 m for 
this experiment and observe the optimal global and local fitness obtained. As shown in 
Fig.  10a, b, when communications are sparse, existing variants of embodied evolution 
experience a significant decrease in performance. This is because these algorithms rely on 
selecting the fittest genome from their neighbors to converge to an optimal behavior. When 
the communications become sparse, the number of available neighbors decreases, and thus 
it becomes harder for the whole population to reach a high total fitness.
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Fig. 10   Average optimal global and local fitness at each w value in Scenario 2 under sparse communica-
tions, color scale indicates weight of global fitness w, black line indicates the Pareto frontier computed by 
NSGA-II (Color figure online)
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On the other hand, as shown in Fig. 10c, Bi-Objective EE is able to maintain a high 
performance under sparse communications. Different from the other two embodied evo-
lutionary algorithms, Bi-Objective EE does not directly copy high fitness genomes from 
their neighbors, but also relies on the temporal changes of their own fitness values to 
determine the optimal behavior. Therefore, it is more resilient to a reduction in number 
of neighbors. However, information from neighbors is important in Bi-Objective EE to 
accurately determine the quality of its y values. Thus, when comparing its performance 
here with in the previous section in Fig. 7 (bottom right), the performance here experi-
ences a drop in both the global and the local fitness obtained, as fewer data points con-
centrate in the top right corner.

5.3 � Long‑term performances of specialized behaviors

In this subsection, we focus on the long-term performances of the considered algorithms 
in producing and maintaining specialized behaviors. This aspect of the algorithms is 
important given that they are designed to run online. In order to gauge the continuous 
performances, we compare the mean total fitness attained by the considered algorithms. 
As discussed in Montanier et al. (2016), behavioral specialization is more easily done 
when the targeted distribution is roughly equal. Therefore, we introduce three differ-
ent scenarios that encourage a division of labor, but each requires progressively more 
imbalanced distribution of subgroups as shown in Table 3. The optimal proportion for 
the two subgroups are 1:1, 2:5 and 1:4, respectively. Illustrations of these fitness func-
tions are shown in Fig. 11. We examine the average obtained reward by the considered 
algorithms in all 3 scenarios and with different w values. We additionally repeat the 

Table 3   Local fitness functions 
in Scenarios 3.1–3.3
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Fig. 11   Illustrations of the global g(x̄) (magenta) and local f (xn) (cyan) fitness functions in Scenario 3.1–3.3 
(Color figure online)
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same experiments but with a stochastic term added to the fitness functions to measure 
the performances when facing uncertainty.

5.3.1 � Average fitness in the absence of uncertainty

The mean total fitness obtained per second are shown in Fig. 12. We observe that both 
Baseline EE and EE with Affinity Bias outperform Individual Random Walk at small w 
values, but are overtaken at medium and large w values. This is because both variants of 
EE can quickly converge to the optimum of local fitness function, but they are unable to 
effectively consider the global fitness function, and therefore the mean fitness decreases 
steadily as w increases.

EE with Affinity Bias performs the best and significantly outperforms Baseline EE 
at medium w in Scenario 3.1 (Fig. 12a), where a balanced distribution of subgroups is 
encouraged. However, its advantage over Baseline EE diminishes in Scenario 3.2 and 
3.3 (Fig.  12b, c), as there is no mechanism to regulate the distribution of individuals 
between subgroups, and the produced distribution is often not optimal.

The proposed algorithm Bi-Objective EE has slightly worse performances than other 
two EE variants in Scenario 3.1 (Fig. 12a) at low w values, but has comparable or better 
performances in all other situations. This demonstrates that Bi-Objective EE algorithm 
is able to deliver good continuous performances compared to other considered algo-
rithms. However, its advantage over the other algorithms also diminishes as the desired 
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Fig. 12   Average total fitness obtained/sec by the population at all w values for all considered algorithms; 
red+: individual BL, blue*: BL EE, green⋄ : EE affinity, black◦ : bi-objective EE (Color figure online)
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Fig. 13   Average total fitness obtained/sec by the population at all w values for all considered algorithms 
with stochasticity added; red+: individual BL, blue*: BL EE, green⋄ : EE affinity, black◦ : bi-objective EE 
(Color figure online)
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distribution of tasks becomes more imbalanced. This shows that task allocation into 
imbalanced subgroups remains challenging for Bi-Objective EE.

5.3.2 � Average fitness obtained with uncertainty

In the next step, we add a Gaussian noise with a standard deviation of 0.1 to the fit-
ness functions measured by the individual agents. The performances of considered algo-
rithms are shown in Fig. 13. Individual Random Walk’s performance is reduced more 
significantly by the noise, compared to all EE variants. This is due to the fact that the 
collective learning in EE algorithms mitigates the effects of noise, as individual agents 
can pool their observations to gain more effective genome selection in the evolutionary 
process.

Bi-Objective EE is slightly more susceptible to the effects of noise than the other two 
variants, as it relies more on the individual observations. However, its performances are 
still consistently equivalent or better than other considered algorithms, especially at w 
values between 0.4 and 0.8.

6 � Discussion

Taking an integrated look at the experimental results, we can make the following observa-
tions regarding the considered algorithms. Both variants of EE are effective at producing 
an optimal robot controller when only a local objective function is considered. Baseline EE 
is the best among the considered algorithms in such scenarios. It enables the individuals 
to quickly converge to the optimal genome regardless of the multi-modality of the consid-
ered objective function. Baseline EE also has full reproductive freedom among the agents, 
often producing better peak performances than algorithms with limited or no reproduction 
such as EE with Affinity Bias and Individual Random Walk, respectively. However, when 
a composite objective function is considered, the local component is given a much bigger 
emphasis than the global component. Furthermore, when a division of labor is encouraged 
by the interactions between global and local objective functions, Baseline EE still focuses 
on finding the singular optimum of the local objective function, often ultimately producing 
a total consensus rather than the desired division of labor and thus often has poor continu-
ous performances.

EE with Affinity Bias is able to encourage a division of labor, and therefore, it some-
times has superior continuous behaviors than Baseline EE. However, it is still unable to 
effectively optimize the proportions of specialized behaviors according to the global objec-
tive function. Thus, it has an advantage over Baseline EE only when the desired distribu-
tion of tasks is roughly equal, but this advantage diminishes when the desired distribution 
becomes more imbalanced. At the same time, the static reproductive isolation limits the 
copying of genomes between the agents, causing EE with Affinity Bias to often have worse 
peak performance than Baseline EE.

To improve the performances of existing embodied evolutionary algorithms in a similar 
task allocation scenario, the agents should take into account of both the local reward of 
their actions and the effectiveness of the cooperation between agents with different individ-
ual configurations. The embodied evolutionary algorithms implemented should also move 
beyond enforcing static reproductive isolation, such as the affinity bias used in this paper, 
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to generate divergent behaviors. Our proposed Bi-Objective EE algorithm addresses these 
two points by using a decision-making mechanism on the preferred direction to change 
the genomes of individual agents, thus achieving dynamic reproductive isolation. This 
mechanism of optimization can better regulate the proportion of specialized behaviors than 
the static reproductive isolation achieved via the affinity bias. Based on our experimental 
results, Bi-Objective EE is consistently equal or better than other algorithms in terms of 
performance. Its peak fitness obtained is close to the Pareto frontier computed by NSGA-
II. Its continuous performance is only overshadowed by other variants of EE when a high 
weight is given to the local fitness function as opposed to the global fitness function. Com-
pared to the other variants of EE, the proposed algorithm’s mechanism of genome optimi-
zation relies more on the individual agents’ local information and especially on the tempo-
ral changes of the agents’ obtained fitness values. Thus, it is more resistant to the effects of 
sparse communication but less resistant to stochastic fitness functions. Also, task allocation 
remains challenging when the desired distribution is imbalanced.

7 � Conclusion

In this paper, we consider a novel task allocation scenario in swarm intelligence. We seek 
to use embodied evolution to simultaneously evolve optimal specialized behaviors on an 
individual level and converge to an optimal distribution of behaviors on a global level. We 
model the task allocation scenario as a bi-objective optimization problem with a compos-
ite objective function that includes a local and a global component. We have applied two 
existing variants of embodied evolution to this scenario. Their performances in bi-objective 
scenarios with different weights for the two objectives are measured and compared with 
an Individual Random Walk baseline algorithm. We have concluded that in such bi-objec-
tive situations, both variants of embodied evolution are generally not adequate. Baseline 
Embodied Evolution has very good performance when only the local objective function is 
considered, but is unable to effectively consider the global objective function. Embodied 
Evolution with an Affinity Bias is able to produce a division of labor, but is also unable to 
optimize the distribution of individuals in the two subgroups and unable to reach optimum 
of the global fitness function.

We have proposed Bi-Objective Embodied Evolution as a new algorithm that is better 
able to deal with a bi-objective scenario that considers both the individual and global fit-
ness of genomes. We have demonstrated that the Bi-Objective EE is able to quickly and 
accurately converge to the optimal genomes for all agents in various bi-objective scenar-
ios. We have shown that it has superior peak and continuous performances compared to 
the three aforementioned strategies. It also produces comparable results to the theoretical 
optima computed by NSGA-II along the Pareto frontier. In addition, it converges to high 
fitness genomes and keeps them continuously, thus it is well-suited for an online applica-
tion. It is also resistant to the effects of sparse communications and, to a degree, stochastic-
ity in the objective functions.

In future works, we plan to extend the Bi-Objective EE to scenarios with multiple 
dimensions of genomes and investigate if multiple bi-objective embodied evolutionary pro-
cesses can run simultaneously. Eventually, we aim to apply the Bi-Objective EE to real 
swarm robotics tasks and produce more complex specialized cooperative behaviors.
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